v8/src/log-utils.cc
mikhail.naganov@gmail.com ef246011e7 Fix Windows build. My mistake for not trying it our prior to submitting.
Kudos to William Hesse for alarming me.

TBR=sgjesse@chromium.org

Review URL: http://codereview.chromium.org/214020

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@2938 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-09-18 13:23:58 +00:00

504 lines
14 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "log-utils.h"
namespace v8 {
namespace internal {
#ifdef ENABLE_LOGGING_AND_PROFILING
LogDynamicBuffer::LogDynamicBuffer(
int block_size, int max_size, const char* seal, int seal_size)
: block_size_(block_size),
max_size_(max_size - (max_size % block_size_)),
seal_(seal),
seal_size_(seal_size),
blocks_(max_size_ / block_size_ + 1),
write_pos_(0), block_index_(0), block_write_pos_(0), is_sealed_(false) {
ASSERT(BlocksCount() > 0);
AllocateBlock(0);
for (int i = 1; i < BlocksCount(); ++i) {
blocks_[i] = NULL;
}
}
LogDynamicBuffer::~LogDynamicBuffer() {
for (int i = 0; i < BlocksCount(); ++i) {
DeleteArray(blocks_[i]);
}
}
int LogDynamicBuffer::Read(int from_pos, char* dest_buf, int buf_size) {
if (buf_size == 0) return 0;
int read_pos = from_pos;
int block_read_index = BlockIndex(from_pos);
int block_read_pos = PosInBlock(from_pos);
int dest_buf_pos = 0;
// Read until dest_buf is filled, or write_pos_ encountered.
while (read_pos < write_pos_ && dest_buf_pos < buf_size) {
const int read_size = Min(write_pos_ - read_pos,
Min(buf_size - dest_buf_pos, block_size_ - block_read_pos));
memcpy(dest_buf + dest_buf_pos,
blocks_[block_read_index] + block_read_pos, read_size);
block_read_pos += read_size;
dest_buf_pos += read_size;
read_pos += read_size;
if (block_read_pos == block_size_) {
block_read_pos = 0;
++block_read_index;
}
}
return dest_buf_pos;
}
int LogDynamicBuffer::Seal() {
WriteInternal(seal_, seal_size_);
is_sealed_ = true;
return 0;
}
int LogDynamicBuffer::Write(const char* data, int data_size) {
if (is_sealed_) {
return 0;
}
if ((write_pos_ + data_size) <= (max_size_ - seal_size_)) {
return WriteInternal(data, data_size);
} else {
return Seal();
}
}
int LogDynamicBuffer::WriteInternal(const char* data, int data_size) {
int data_pos = 0;
while (data_pos < data_size) {
const int write_size =
Min(data_size - data_pos, block_size_ - block_write_pos_);
memcpy(blocks_[block_index_] + block_write_pos_, data + data_pos,
write_size);
block_write_pos_ += write_size;
data_pos += write_size;
if (block_write_pos_ == block_size_) {
block_write_pos_ = 0;
AllocateBlock(++block_index_);
}
}
write_pos_ += data_size;
return data_size;
}
bool Log::is_stopped_ = false;
Log::WritePtr Log::Write = NULL;
FILE* Log::output_handle_ = NULL;
LogDynamicBuffer* Log::output_buffer_ = NULL;
// Must be the same message as in Logger::PauseProfiler.
const char* Log::kDynamicBufferSeal = "profiler,\"pause\"\n";
Mutex* Log::mutex_ = NULL;
char* Log::message_buffer_ = NULL;
void Log::Init() {
mutex_ = OS::CreateMutex();
message_buffer_ = NewArray<char>(kMessageBufferSize);
}
void Log::OpenStdout() {
ASSERT(!IsEnabled());
output_handle_ = stdout;
Write = WriteToFile;
Init();
}
void Log::OpenFile(const char* name) {
ASSERT(!IsEnabled());
output_handle_ = OS::FOpen(name, OS::LogFileOpenMode);
Write = WriteToFile;
Init();
}
void Log::OpenMemoryBuffer() {
ASSERT(!IsEnabled());
output_buffer_ = new LogDynamicBuffer(
kDynamicBufferBlockSize, kMaxDynamicBufferSize,
kDynamicBufferSeal, strlen(kDynamicBufferSeal));
Write = WriteToMemory;
Init();
}
void Log::Close() {
if (Write == WriteToFile) {
fclose(output_handle_);
output_handle_ = NULL;
} else if (Write == WriteToMemory) {
delete output_buffer_;
output_buffer_ = NULL;
} else {
ASSERT(Write == NULL);
}
Write = NULL;
DeleteArray(message_buffer_);
message_buffer_ = NULL;
delete mutex_;
mutex_ = NULL;
is_stopped_ = false;
}
int Log::GetLogLines(int from_pos, char* dest_buf, int max_size) {
if (Write != WriteToMemory) return 0;
ASSERT(output_buffer_ != NULL);
ASSERT(from_pos >= 0);
ASSERT(max_size >= 0);
int actual_size = output_buffer_->Read(from_pos, dest_buf, max_size);
ASSERT(actual_size <= max_size);
if (actual_size == 0) return 0;
// Find previous log line boundary.
char* end_pos = dest_buf + actual_size - 1;
while (end_pos >= dest_buf && *end_pos != '\n') --end_pos;
actual_size = end_pos - dest_buf + 1;
ASSERT(actual_size <= max_size);
return actual_size;
}
LogMessageBuilder::WriteFailureHandler
LogMessageBuilder::write_failure_handler = NULL;
LogMessageBuilder::LogMessageBuilder(): sl(Log::mutex_), pos_(0) {
ASSERT(Log::message_buffer_ != NULL);
}
void LogMessageBuilder::Append(const char* format, ...) {
Vector<char> buf(Log::message_buffer_ + pos_,
Log::kMessageBufferSize - pos_);
va_list args;
va_start(args, format);
AppendVA(format, args);
va_end(args);
ASSERT(pos_ <= Log::kMessageBufferSize);
}
void LogMessageBuilder::AppendVA(const char* format, va_list args) {
Vector<char> buf(Log::message_buffer_ + pos_,
Log::kMessageBufferSize - pos_);
int result = v8::internal::OS::VSNPrintF(buf, format, args);
// Result is -1 if output was truncated.
if (result >= 0) {
pos_ += result;
} else {
pos_ = Log::kMessageBufferSize;
}
ASSERT(pos_ <= Log::kMessageBufferSize);
}
void LogMessageBuilder::Append(const char c) {
if (pos_ < Log::kMessageBufferSize) {
Log::message_buffer_[pos_++] = c;
}
ASSERT(pos_ <= Log::kMessageBufferSize);
}
void LogMessageBuilder::Append(String* str) {
AssertNoAllocation no_heap_allocation; // Ensure string stay valid.
int length = str->length();
for (int i = 0; i < length; i++) {
Append(static_cast<char>(str->Get(i)));
}
}
void LogMessageBuilder::AppendAddress(Address addr) {
static Address last_address_ = NULL;
AppendAddress(addr, last_address_);
last_address_ = addr;
}
void LogMessageBuilder::AppendAddress(Address addr, Address bias) {
if (!FLAG_compress_log) {
Append("0x%" V8PRIxPTR, addr);
} else if (bias == NULL) {
Append("%" V8PRIxPTR, addr);
} else {
uintptr_t delta;
char sign;
if (addr >= bias) {
delta = addr - bias;
sign = '+';
} else {
delta = bias - addr;
sign = '-';
}
Append("%c%" V8PRIxPTR, sign, delta);
}
}
void LogMessageBuilder::AppendDetailed(String* str, bool show_impl_info) {
AssertNoAllocation no_heap_allocation; // Ensure string stay valid.
int len = str->length();
if (len > 0x1000)
len = 0x1000;
if (show_impl_info) {
Append(str->IsAsciiRepresentation() ? 'a' : '2');
if (StringShape(str).IsExternal())
Append('e');
if (StringShape(str).IsSymbol())
Append('#');
Append(":%i:", str->length());
}
for (int i = 0; i < len; i++) {
uc32 c = str->Get(i);
if (c > 0xff) {
Append("\\u%04x", c);
} else if (c < 32 || c > 126) {
Append("\\x%02x", c);
} else if (c == ',') {
Append("\\,");
} else if (c == '\\') {
Append("\\\\");
} else {
Append("%lc", c);
}
}
}
void LogMessageBuilder::AppendStringPart(const char* str, int len) {
if (pos_ + len > Log::kMessageBufferSize) {
len = Log::kMessageBufferSize - pos_;
ASSERT(len >= 0);
if (len == 0) return;
}
Vector<char> buf(Log::message_buffer_ + pos_,
Log::kMessageBufferSize - pos_);
OS::StrNCpy(buf, str, len);
pos_ += len;
ASSERT(pos_ <= Log::kMessageBufferSize);
}
bool LogMessageBuilder::StoreInCompressor(LogRecordCompressor* compressor) {
return compressor->Store(Vector<const char>(Log::message_buffer_, pos_));
}
bool LogMessageBuilder::RetrieveCompressedPrevious(
LogRecordCompressor* compressor, const char* prefix) {
pos_ = 0;
if (prefix[0] != '\0') Append(prefix);
Vector<char> prev_record(Log::message_buffer_ + pos_,
Log::kMessageBufferSize - pos_);
const bool has_prev = compressor->RetrievePreviousCompressed(&prev_record);
if (!has_prev) return false;
pos_ += prev_record.length();
return true;
}
void LogMessageBuilder::WriteToLogFile() {
ASSERT(pos_ <= Log::kMessageBufferSize);
const int written = Log::Write(Log::message_buffer_, pos_);
if (written != pos_ && write_failure_handler != NULL) {
write_failure_handler();
}
}
void LogMessageBuilder::WriteCStringToLogFile(const char* str) {
const int len = strlen(str);
const int written = Log::Write(str, len);
if (written != len && write_failure_handler != NULL) {
write_failure_handler();
}
}
// Formatting string for back references to the whole line. E.g. "#2" means
// "the second line above".
const char* LogRecordCompressor::kLineBackwardReferenceFormat = "#%d";
// Formatting string for back references. E.g. "#2:10" means
// "the second line above, start from char 10 (0-based)".
const char* LogRecordCompressor::kBackwardReferenceFormat = "#%d:%d";
LogRecordCompressor::~LogRecordCompressor() {
for (int i = 0; i < buffer_.length(); ++i) {
buffer_[i].Dispose();
}
}
static int GetNumberLength(int number) {
ASSERT(number >= 0);
ASSERT(number < 10000);
if (number < 10) return 1;
if (number < 100) return 2;
if (number < 1000) return 3;
return 4;
}
int LogRecordCompressor::GetBackwardReferenceSize(int distance, int pos) {
// See kLineBackwardReferenceFormat and kBackwardReferenceFormat.
return pos == 0 ? GetNumberLength(distance) + 1
: GetNumberLength(distance) + GetNumberLength(pos) + 2;
}
void LogRecordCompressor::PrintBackwardReference(Vector<char> dest,
int distance,
int pos) {
if (pos == 0) {
OS::SNPrintF(dest, kLineBackwardReferenceFormat, distance);
} else {
OS::SNPrintF(dest, kBackwardReferenceFormat, distance, pos);
}
}
bool LogRecordCompressor::Store(const Vector<const char>& record) {
// Check if the record is the same as the last stored one.
if (curr_ != -1) {
Vector<const char>& curr = buffer_[curr_];
if (record.length() == curr.length()
&& strncmp(record.start(), curr.start(), record.length()) == 0) {
return false;
}
}
// buffer_ is circular.
prev_ = curr_++;
curr_ %= buffer_.length();
Vector<char> record_copy = Vector<char>::New(record.length());
memcpy(record_copy.start(), record.start(), record.length());
buffer_[curr_].Dispose();
buffer_[curr_] =
Vector<const char>(record_copy.start(), record_copy.length());
return true;
}
bool LogRecordCompressor::RetrievePreviousCompressed(
Vector<char>* prev_record) {
if (prev_ == -1) return false;
int index = prev_;
// Distance from prev_.
int distance = 0;
// Best compression result among records in the buffer.
struct {
intptr_t truncated_len;
int distance;
int copy_from_pos;
int backref_size;
} best = {-1, 0, 0, 0};
Vector<const char>& prev = buffer_[prev_];
const char* const prev_start = prev.start();
const char* const prev_end = prev.start() + prev.length();
do {
// We're moving backwards until we reach the current record.
// Remember that buffer_ is circular.
if (--index == -1) index = buffer_.length() - 1;
++distance;
if (index == curr_) break;
Vector<const char>& data = buffer_[index];
if (data.start() == NULL) break;
const char* const data_end = data.start() + data.length();
const char* prev_ptr = prev_end;
const char* data_ptr = data_end;
// Compare strings backwards, stop on the last matching character.
while (prev_ptr != prev_start && data_ptr != data.start()
&& *(prev_ptr - 1) == *(data_ptr - 1)) {
--prev_ptr;
--data_ptr;
}
const intptr_t truncated_len = prev_end - prev_ptr;
const int copy_from_pos = data_ptr - data.start();
// Check if the length of compressed tail is enough.
if (truncated_len <= kMaxBackwardReferenceSize
&& truncated_len <= GetBackwardReferenceSize(distance, copy_from_pos)) {
continue;
}
// Record compression results.
if (truncated_len > best.truncated_len) {
best.truncated_len = truncated_len;
best.distance = distance;
best.copy_from_pos = copy_from_pos;
best.backref_size = GetBackwardReferenceSize(distance, copy_from_pos);
}
} while (true);
if (best.distance == 0) {
// Can't compress the previous record. Return as is.
ASSERT(prev_record->length() >= prev.length());
memcpy(prev_record->start(), prev.start(), prev.length());
prev_record->Truncate(prev.length());
} else {
// Copy the uncompressible part unchanged.
const intptr_t unchanged_len = prev.length() - best.truncated_len;
// + 1 for '\0'.
ASSERT(prev_record->length() >= unchanged_len + best.backref_size + 1);
memcpy(prev_record->start(), prev.start(), unchanged_len);
// Append the backward reference.
Vector<char> backref(
prev_record->start() + unchanged_len, best.backref_size + 1);
PrintBackwardReference(backref, best.distance, best.copy_from_pos);
ASSERT(strlen(backref.start()) - best.backref_size == 0);
prev_record->Truncate(unchanged_len + best.backref_size);
}
return true;
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal