v8/include/cppgc/member.h
Anton Bikineev 5c416ad2c3 cppgc: Avoid compression/decompression in Member operators/ctors
1) In copy/move ctors and operator=() we can just copy raw compressed
   value;
2) For null check we don't need to decompress the value;
3) Same for operator==().
4) Hashing can also be optimized in a followup.

Bug: chromium:1325007
Change-Id: Ic1bf2c5049802c078b3e0121dcbe62d9ecea83b3
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3647359
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Anton Bikineev <bikineev@chromium.org>
Cr-Commit-Position: refs/heads/main@{#80571}
2022-05-16 22:17:47 +00:00

470 lines
16 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_CPPGC_MEMBER_H_
#define INCLUDE_CPPGC_MEMBER_H_
#include <atomic>
#include <cstddef>
#include <type_traits>
#include "cppgc/internal/api-constants.h"
#include "cppgc/internal/pointer-policies.h"
#include "cppgc/sentinel-pointer.h"
#include "cppgc/type-traits.h"
#include "v8config.h" // NOLINT(build/include_directory)
namespace cppgc {
class Visitor;
namespace internal {
#if defined(CPPGC_POINTER_COMPRESSION)
class CageBaseGlobal final {
public:
V8_INLINE static uintptr_t Get() {
CPPGC_DCHECK(IsBaseConsistent());
return g_base_;
}
V8_INLINE static bool IsSet() {
CPPGC_DCHECK(IsBaseConsistent());
return (g_base_ & ~kLowerHalfWordMask) != 0;
}
private:
// We keep the lower halfword as ones to speed up decompression.
static constexpr uintptr_t kLowerHalfWordMask =
(api_constants::kCagedHeapReservationAlignment - 1);
static thread_local V8_EXPORT uintptr_t g_base_
#if !V8_CC_MSVC
__attribute__((require_constant_initialization))
#endif // !V8_CC_MSVC
;
CageBaseGlobal() = delete;
V8_INLINE static bool IsBaseConsistent() {
return kLowerHalfWordMask == (g_base_ & kLowerHalfWordMask);
}
friend class CageBaseGlobalUpdater;
};
class CompressedPointer final {
public:
using Storage = uint32_t;
V8_INLINE CompressedPointer() : value_(0u) {}
V8_INLINE explicit CompressedPointer(const void* ptr)
: value_(Compress(ptr)) {}
V8_INLINE explicit CompressedPointer(std::nullptr_t) : value_(0u) {}
V8_INLINE explicit CompressedPointer(SentinelPointer)
: value_(kCompressedSentinel) {}
V8_INLINE const void* Load() const { return Decompress(value_); }
V8_INLINE const void* LoadAtomic() const {
return Decompress(
reinterpret_cast<const std::atomic<Storage>&>(value_).load(
std::memory_order_relaxed));
}
V8_INLINE void Store(const void* ptr) { value_ = Compress(ptr); }
V8_INLINE void StoreAtomic(const void* value) {
reinterpret_cast<std::atomic<Storage>&>(value_).store(
Compress(value), std::memory_order_relaxed);
}
V8_INLINE void Clear() { value_ = 0u; }
V8_INLINE bool IsCleared() const { return !value_; }
V8_INLINE friend bool operator==(CompressedPointer a, CompressedPointer b) {
return a.value_ == b.value_;
}
static V8_INLINE Storage Compress(const void* ptr) {
static_assert(
SentinelPointer::kSentinelValue == 0b10,
"The compression scheme relies on the sentinel encoded as 0b10");
static constexpr size_t kGigaCageMask =
~(api_constants::kCagedHeapReservationAlignment - 1);
CPPGC_DCHECK(CageBaseGlobal::IsSet());
const uintptr_t base = CageBaseGlobal::Get();
CPPGC_DCHECK(!ptr || ptr == kSentinelPointer ||
(base & kGigaCageMask) ==
(reinterpret_cast<uintptr_t>(ptr) & kGigaCageMask));
const auto uptr = reinterpret_cast<uintptr_t>(ptr);
// Truncate the pointer and shift right by one.
auto compressed = static_cast<Storage>(uptr) >> 1;
// If the pointer is regular, set the most significant bit.
if (V8_LIKELY(compressed > 1)) {
CPPGC_DCHECK((reinterpret_cast<uintptr_t>(ptr) &
(api_constants::kAllocationGranularity - 1)) == 0);
compressed |= 0x80000000;
}
return compressed;
}
static V8_INLINE void* Decompress(Storage ptr) {
CPPGC_DCHECK(CageBaseGlobal::IsSet());
const uintptr_t base = CageBaseGlobal::Get();
// Sign extend the pointer and shift left by one.
const int64_t mask = static_cast<int64_t>(static_cast<int32_t>(ptr)) << 1;
return reinterpret_cast<void*>(mask & base);
}
private:
static constexpr Storage kCompressedSentinel =
SentinelPointer::kSentinelValue >> 1;
// All constructors initialize `value_`. Do not add a default value here as it
// results in a non-atomic write on some builds, even when the atomic version
// of the constructor is used.
Storage value_;
};
#endif // defined(CPPGC_POINTER_COMPRESSION)
class RawPointer final {
public:
using Storage = uintptr_t;
RawPointer() : ptr_(nullptr) {}
explicit RawPointer(const void* ptr) : ptr_(ptr) {}
V8_INLINE const void* Load() const { return ptr_; }
V8_INLINE const void* LoadAtomic() const {
return reinterpret_cast<const std::atomic<const void*>&>(ptr_).load(
std::memory_order_relaxed);
}
V8_INLINE void Store(const void* ptr) { ptr_ = ptr; }
V8_INLINE void StoreAtomic(const void* ptr) {
reinterpret_cast<std::atomic<const void*>&>(ptr_).store(
ptr, std::memory_order_relaxed);
}
V8_INLINE void Clear() { ptr_ = nullptr; }
V8_INLINE bool IsCleared() const { return !ptr_; }
V8_INLINE friend bool operator==(RawPointer a, RawPointer b) {
return a.ptr_ == b.ptr_;
}
private:
// All constructors initialize `ptr_`. Do not add a default value here as it
// results in a non-atomic write on some builds, even when the atomic version
// of the constructor is used.
const void* ptr_;
};
// MemberBase always refers to the object as const object and defers to
// BasicMember on casting to the right type as needed.
class MemberBase {
protected:
#if defined(CPPGC_POINTER_COMPRESSION)
using RawStorage = CompressedPointer;
#else // !defined(CPPGC_POINTER_COMPRESSION)
using RawStorage = RawPointer;
#endif // !defined(CPPGC_POINTER_COMPRESSION)
struct AtomicInitializerTag {};
MemberBase() = default;
explicit MemberBase(const void* value) : raw_(value) {}
MemberBase(const void* value, AtomicInitializerTag) { SetRawAtomic(value); }
explicit MemberBase(RawStorage raw) : raw_(raw) {}
explicit MemberBase(std::nullptr_t) : raw_(nullptr) {}
explicit MemberBase(SentinelPointer s) : raw_(s) {}
const void** GetRawSlot() const {
return reinterpret_cast<const void**>(const_cast<MemberBase*>(this));
}
const void* GetRaw() const { return raw_.Load(); }
void SetRaw(void* value) { raw_.Store(value); }
const void* GetRawAtomic() const { return raw_.LoadAtomic(); }
void SetRawAtomic(const void* value) { raw_.StoreAtomic(value); }
RawStorage GetRawStorage() const { return raw_; }
void SetRawStorageAtomic(RawStorage other) {
reinterpret_cast<std::atomic<RawStorage>&>(raw_).store(
other, std::memory_order_relaxed);
}
bool IsCleared() const { return raw_.IsCleared(); }
void ClearFromGC() const { raw_.Clear(); }
private:
mutable RawStorage raw_;
};
// The basic class from which all Member classes are 'generated'.
template <typename T, typename WeaknessTag, typename WriteBarrierPolicy,
typename CheckingPolicy>
class BasicMember final : private MemberBase, private CheckingPolicy {
public:
using PointeeType = T;
constexpr BasicMember() = default;
constexpr BasicMember(std::nullptr_t) {} // NOLINT
BasicMember(SentinelPointer s) : MemberBase(s) {} // NOLINT
BasicMember(T* raw) : MemberBase(raw) { // NOLINT
InitializingWriteBarrier();
this->CheckPointer(Get());
}
BasicMember(T& raw) : BasicMember(&raw) {} // NOLINT
// Atomic ctor. Using the AtomicInitializerTag forces BasicMember to
// initialize using atomic assignments. This is required for preventing
// data races with concurrent marking.
using AtomicInitializerTag = MemberBase::AtomicInitializerTag;
BasicMember(std::nullptr_t, AtomicInitializerTag atomic)
: MemberBase(nullptr, atomic) {}
BasicMember(SentinelPointer s, AtomicInitializerTag atomic)
: MemberBase(s, atomic) {}
BasicMember(T* raw, AtomicInitializerTag atomic) : MemberBase(raw, atomic) {
InitializingWriteBarrier();
this->CheckPointer(Get());
}
BasicMember(T& raw, AtomicInitializerTag atomic)
: BasicMember(&raw, atomic) {}
// Copy ctor.
BasicMember(const BasicMember& other) : BasicMember(other.GetRawStorage()) {}
// Allow heterogeneous construction.
template <typename U, typename OtherBarrierPolicy, typename OtherWeaknessTag,
typename OtherCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember( // NOLINT
const BasicMember<U, OtherWeaknessTag, OtherBarrierPolicy,
OtherCheckingPolicy>& other)
: BasicMember(other.GetRawStorage()) {}
// Move ctor.
BasicMember(BasicMember&& other) noexcept
: BasicMember(other.GetRawStorage()) {
other.Clear();
}
// Allow heterogeneous move construction.
template <typename U, typename OtherBarrierPolicy, typename OtherWeaknessTag,
typename OtherCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember(BasicMember<U, OtherWeaknessTag, OtherBarrierPolicy,
OtherCheckingPolicy>&& other) noexcept
: BasicMember(other.GetRawStorage()) {
other.Clear();
}
// Construction from Persistent.
template <typename U, typename PersistentWeaknessPolicy,
typename PersistentLocationPolicy,
typename PersistentCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember(const BasicPersistent<U, PersistentWeaknessPolicy,
PersistentLocationPolicy,
PersistentCheckingPolicy>& p)
: BasicMember(p.Get()) {}
// Copy assignment.
BasicMember& operator=(const BasicMember& other) {
return operator=(other.GetRawStorage());
}
// Allow heterogeneous copy assignment.
template <typename U, typename OtherWeaknessTag, typename OtherBarrierPolicy,
typename OtherCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember& operator=(
const BasicMember<U, OtherWeaknessTag, OtherBarrierPolicy,
OtherCheckingPolicy>& other) {
return operator=(other.GetRawStorage());
}
// Move assignment.
BasicMember& operator=(BasicMember&& other) noexcept {
operator=(other.GetRawStorage());
other.Clear();
return *this;
}
// Heterogeneous move assignment.
template <typename U, typename OtherWeaknessTag, typename OtherBarrierPolicy,
typename OtherCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember& operator=(BasicMember<U, OtherWeaknessTag, OtherBarrierPolicy,
OtherCheckingPolicy>&& other) noexcept {
operator=(other.GetRawStorage());
other.Clear();
return *this;
}
// Assignment from Persistent.
template <typename U, typename PersistentWeaknessPolicy,
typename PersistentLocationPolicy,
typename PersistentCheckingPolicy,
typename = std::enable_if_t<std::is_base_of<T, U>::value>>
BasicMember& operator=(
const BasicPersistent<U, PersistentWeaknessPolicy,
PersistentLocationPolicy, PersistentCheckingPolicy>&
other) {
return operator=(other.Get());
}
BasicMember& operator=(T* other) {
SetRawAtomic(other);
AssigningWriteBarrier();
this->CheckPointer(Get());
return *this;
}
BasicMember& operator=(std::nullptr_t) {
Clear();
return *this;
}
BasicMember& operator=(SentinelPointer s) {
SetRawAtomic(s);
return *this;
}
template <typename OtherWeaknessTag, typename OtherBarrierPolicy,
typename OtherCheckingPolicy>
void Swap(BasicMember<T, OtherWeaknessTag, OtherBarrierPolicy,
OtherCheckingPolicy>& other) {
auto tmp = GetRawStorage();
*this = other;
other = tmp;
}
explicit operator bool() const { return !IsCleared(); }
operator T*() const { return Get(); }
T* operator->() const { return Get(); }
T& operator*() const { return *Get(); }
// CFI cast exemption to allow passing SentinelPointer through T* and support
// heterogeneous assignments between different Member and Persistent handles
// based on their actual types.
V8_CLANG_NO_SANITIZE("cfi-unrelated-cast") T* Get() const {
// Executed by the mutator, hence non atomic load.
//
// The const_cast below removes the constness from MemberBase storage. The
// following static_cast re-adds any constness if specified through the
// user-visible template parameter T.
return static_cast<T*>(const_cast<void*>(MemberBase::GetRaw()));
}
void Clear() { SetRawStorageAtomic(RawStorage{}); }
T* Release() {
T* result = Get();
Clear();
return result;
}
const T** GetSlotForTesting() const {
return reinterpret_cast<const T**>(GetRawSlot());
}
private:
explicit BasicMember(RawStorage raw) : MemberBase(raw) {
InitializingWriteBarrier();
this->CheckPointer(Get());
}
BasicMember& operator=(RawStorage other) {
SetRawStorageAtomic(other);
AssigningWriteBarrier();
this->CheckPointer(Get());
return *this;
}
const T* GetRawAtomic() const {
return static_cast<const T*>(MemberBase::GetRawAtomic());
}
void InitializingWriteBarrier() const {
WriteBarrierPolicy::InitializingBarrier(GetRawSlot(), GetRaw());
}
void AssigningWriteBarrier() const {
WriteBarrierPolicy::AssigningBarrier(GetRawSlot(), GetRaw());
}
void ClearFromGC() const { MemberBase::ClearFromGC(); }
T* GetFromGC() const { return Get(); }
friend class cppgc::Visitor;
template <typename U>
friend struct cppgc::TraceTrait;
template <typename T1, typename WeaknessTag1, typename WriteBarrierPolicy1,
typename CheckingPolicy1>
friend class BasicMember;
template <typename T1, typename WeaknessTag1, typename WriteBarrierPolicy1,
typename CheckingPolicy1, typename T2, typename WeaknessTag2,
typename WriteBarrierPolicy2, typename CheckingPolicy2>
friend bool operator==(
const BasicMember<T1, WeaknessTag1, WriteBarrierPolicy1, CheckingPolicy1>&
member1,
const BasicMember<T2, WeaknessTag2, WriteBarrierPolicy2, CheckingPolicy2>&
member2);
};
template <typename T1, typename WeaknessTag1, typename WriteBarrierPolicy1,
typename CheckingPolicy1, typename T2, typename WeaknessTag2,
typename WriteBarrierPolicy2, typename CheckingPolicy2>
bool operator==(const BasicMember<T1, WeaknessTag1, WriteBarrierPolicy1,
CheckingPolicy1>& member1,
const BasicMember<T2, WeaknessTag2, WriteBarrierPolicy2,
CheckingPolicy2>& member2) {
return member1.GetRawStorage() == member2.GetRawStorage();
}
template <typename T1, typename WeaknessTag1, typename WriteBarrierPolicy1,
typename CheckingPolicy1, typename T2, typename WeaknessTag2,
typename WriteBarrierPolicy2, typename CheckingPolicy2>
bool operator!=(const BasicMember<T1, WeaknessTag1, WriteBarrierPolicy1,
CheckingPolicy1>& member1,
const BasicMember<T2, WeaknessTag2, WriteBarrierPolicy2,
CheckingPolicy2>& member2) {
return !(member1 == member2);
}
template <typename T, typename WriteBarrierPolicy, typename CheckingPolicy>
struct IsWeak<
internal::BasicMember<T, WeakMemberTag, WriteBarrierPolicy, CheckingPolicy>>
: std::true_type {};
} // namespace internal
/**
* Members are used in classes to contain strong pointers to other garbage
* collected objects. All Member fields of a class must be traced in the class'
* trace method.
*/
template <typename T>
using Member = internal::BasicMember<T, internal::StrongMemberTag,
internal::DijkstraWriteBarrierPolicy>;
/**
* WeakMember is similar to Member in that it is used to point to other garbage
* collected objects. However instead of creating a strong pointer to the
* object, the WeakMember creates a weak pointer, which does not keep the
* pointee alive. Hence if all pointers to to a heap allocated object are weak
* the object will be garbage collected. At the time of GC the weak pointers
* will automatically be set to null.
*/
template <typename T>
using WeakMember = internal::BasicMember<T, internal::WeakMemberTag,
internal::DijkstraWriteBarrierPolicy>;
/**
* UntracedMember is a pointer to an on-heap object that is not traced for some
* reason. Do not use this unless you know what you are doing. Keeping raw
* pointers to on-heap objects is prohibited unless used from stack. Pointee
* must be kept alive through other means.
*/
template <typename T>
using UntracedMember = internal::BasicMember<T, internal::UntracedMemberTag,
internal::NoWriteBarrierPolicy>;
} // namespace cppgc
#endif // INCLUDE_CPPGC_MEMBER_H_