v8/test/mjsunit/compiler/number-comparison-truncations.js
Camillo Bruni e3e8ea5d65 [flags] Rename --opt to --turbofan
To be consistent with the all the other tiers and avoid confusion, we
rename --opt to ---turbofan, and --always-opt to --always-turbofan.

Change-Id: Ie23dc8282b3fb4cf2fbf73b6c3d5264de5d09718
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3610431
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Commit-Queue: Camillo Bruni <cbruni@chromium.org>
Reviewed-by: Jakob Linke <jgruber@chromium.org>
Cr-Commit-Position: refs/heads/main@{#80336}
2022-05-03 12:10:30 +00:00

147 lines
4.1 KiB
JavaScript

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --turbofan --turbo-inlining --no-assert-types
// Test that SpeculativeNumberEqual[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y === 0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberEqual[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberEqual with Number feedback.
function foo(x, y) {
if (x * y === -0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThan[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y < 0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(1, foo(-3, 0));
assertEquals(1, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThan[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberLessThan with Number feedback.
function foo(x, y) {
if (x * y < -0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(1, foo(-3, 0));
assertEquals(1, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThanOrEqual[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y <= 0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThanOrEqual[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberLessThanOrEqual with Number feedback.
function foo(x, y) {
if (x * y <= -0) return 0;
return 1;
}
%PrepareFunctionForOptimization(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();