c8b2fa454a
Patch from Steven Keuchel <keuchel@chromium.org> BUG=v8:2198 LOG=N TEST=mjsunit/harmony/block-let-crankshaft.js R=rossberg@chromium.org Review URL: https://codereview.chromium.org/307593002 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21684 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1710 lines
53 KiB
C++
1710 lines
53 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/codegen.h"
|
|
#include "src/compiler.h"
|
|
#include "src/debug.h"
|
|
#include "src/full-codegen.h"
|
|
#include "src/liveedit.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/prettyprinter.h"
|
|
#include "src/scopes.h"
|
|
#include "src/scopeinfo.h"
|
|
#include "src/snapshot.h"
|
|
#include "src/stub-cache.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
void BreakableStatementChecker::Check(Statement* stmt) {
|
|
Visit(stmt);
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::Check(Expression* expr) {
|
|
Visit(expr);
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitVariableDeclaration(
|
|
VariableDeclaration* decl) {
|
|
}
|
|
|
|
void BreakableStatementChecker::VisitFunctionDeclaration(
|
|
FunctionDeclaration* decl) {
|
|
}
|
|
|
|
void BreakableStatementChecker::VisitModuleDeclaration(
|
|
ModuleDeclaration* decl) {
|
|
}
|
|
|
|
void BreakableStatementChecker::VisitImportDeclaration(
|
|
ImportDeclaration* decl) {
|
|
}
|
|
|
|
void BreakableStatementChecker::VisitExportDeclaration(
|
|
ExportDeclaration* decl) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitBlock(Block* stmt) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitExpressionStatement(
|
|
ExpressionStatement* stmt) {
|
|
// Check if expression is breakable.
|
|
Visit(stmt->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
|
|
// If the condition is breakable the if statement is breakable.
|
|
Visit(stmt->condition());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitContinueStatement(
|
|
ContinueStatement* stmt) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
|
|
// Return is breakable if the expression is.
|
|
Visit(stmt->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
|
|
Visit(stmt->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
// Switch statements breakable if the tag expression is.
|
|
Visit(stmt->tag());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
// Mark do while as breakable to avoid adding a break slot in front of it.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
|
|
// Mark while statements breakable if the condition expression is.
|
|
Visit(stmt->cond());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
|
|
// Mark for statements breakable if the condition expression is.
|
|
if (stmt->cond() != NULL) {
|
|
Visit(stmt->cond());
|
|
}
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
|
|
// Mark for in statements breakable if the enumerable expression is.
|
|
Visit(stmt->enumerable());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
|
|
// For-of is breakable because of the next() call.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitTryCatchStatement(
|
|
TryCatchStatement* stmt) {
|
|
// Mark try catch as breakable to avoid adding a break slot in front of it.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitTryFinallyStatement(
|
|
TryFinallyStatement* stmt) {
|
|
// Mark try finally as breakable to avoid adding a break slot in front of it.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitDebuggerStatement(
|
|
DebuggerStatement* stmt) {
|
|
// The debugger statement is breakable.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitNativeFunctionLiteral(
|
|
NativeFunctionLiteral* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitConditional(Conditional* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitLiteral(Literal* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
|
|
// If assigning to a property (including a global property) the assignment is
|
|
// breakable.
|
|
VariableProxy* proxy = expr->target()->AsVariableProxy();
|
|
Property* prop = expr->target()->AsProperty();
|
|
if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
|
|
is_breakable_ = true;
|
|
return;
|
|
}
|
|
|
|
// Otherwise the assignment is breakable if the assigned value is.
|
|
Visit(expr->value());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitYield(Yield* expr) {
|
|
// Yield is breakable if the expression is.
|
|
Visit(expr->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitThrow(Throw* expr) {
|
|
// Throw is breakable if the expression is.
|
|
Visit(expr->exception());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitProperty(Property* expr) {
|
|
// Property load is breakable.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCall(Call* expr) {
|
|
// Function calls both through IC and call stub are breakable.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
|
|
// Function calls through new are breakable.
|
|
is_breakable_ = true;
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
|
|
Visit(expr->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
|
|
Visit(expr->expression());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
|
|
Visit(expr->left());
|
|
if (expr->op() != Token::AND &&
|
|
expr->op() != Token::OR) {
|
|
Visit(expr->right());
|
|
}
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
|
|
Visit(expr->left());
|
|
Visit(expr->right());
|
|
}
|
|
|
|
|
|
void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
|
|
}
|
|
|
|
|
|
#define __ ACCESS_MASM(masm())
|
|
|
|
bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
|
|
Isolate* isolate = info->isolate();
|
|
|
|
Logger::TimerEventScope timer(
|
|
isolate, Logger::TimerEventScope::v8_compile_full_code);
|
|
|
|
Handle<Script> script = info->script();
|
|
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
|
|
int len = String::cast(script->source())->length();
|
|
isolate->counters()->total_full_codegen_source_size()->Increment(len);
|
|
}
|
|
CodeGenerator::MakeCodePrologue(info, "full");
|
|
const int kInitialBufferSize = 4 * KB;
|
|
MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
|
|
#ifdef ENABLE_GDB_JIT_INTERFACE
|
|
masm.positions_recorder()->StartGDBJITLineInfoRecording();
|
|
#endif
|
|
LOG_CODE_EVENT(isolate,
|
|
CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
|
|
|
|
FullCodeGenerator cgen(&masm, info);
|
|
cgen.Generate();
|
|
if (cgen.HasStackOverflow()) {
|
|
ASSERT(!isolate->has_pending_exception());
|
|
return false;
|
|
}
|
|
unsigned table_offset = cgen.EmitBackEdgeTable();
|
|
|
|
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
|
|
Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
|
|
code->set_optimizable(info->IsOptimizable() &&
|
|
!info->function()->dont_optimize() &&
|
|
info->function()->scope()->AllowsLazyCompilation());
|
|
cgen.PopulateDeoptimizationData(code);
|
|
cgen.PopulateTypeFeedbackInfo(code);
|
|
code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
|
|
code->set_handler_table(*cgen.handler_table());
|
|
code->set_compiled_optimizable(info->IsOptimizable());
|
|
code->set_allow_osr_at_loop_nesting_level(0);
|
|
code->set_profiler_ticks(0);
|
|
code->set_back_edge_table_offset(table_offset);
|
|
code->set_back_edges_patched_for_osr(false);
|
|
CodeGenerator::PrintCode(code, info);
|
|
info->SetCode(code);
|
|
#ifdef ENABLE_GDB_JIT_INTERFACE
|
|
if (FLAG_gdbjit) {
|
|
GDBJITLineInfo* lineinfo =
|
|
masm.positions_recorder()->DetachGDBJITLineInfo();
|
|
GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
|
|
}
|
|
#endif
|
|
void* line_info = masm.positions_recorder()->DetachJITHandlerData();
|
|
LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned FullCodeGenerator::EmitBackEdgeTable() {
|
|
// The back edge table consists of a length (in number of entries)
|
|
// field, and then a sequence of entries. Each entry is a pair of AST id
|
|
// and code-relative pc offset.
|
|
masm()->Align(kIntSize);
|
|
unsigned offset = masm()->pc_offset();
|
|
unsigned length = back_edges_.length();
|
|
__ dd(length);
|
|
for (unsigned i = 0; i < length; ++i) {
|
|
__ dd(back_edges_[i].id.ToInt());
|
|
__ dd(back_edges_[i].pc);
|
|
__ dd(back_edges_[i].loop_depth);
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EnsureSlotContainsAllocationSite(int slot) {
|
|
Handle<FixedArray> vector = FeedbackVector();
|
|
if (!vector->get(slot)->IsAllocationSite()) {
|
|
Handle<AllocationSite> allocation_site =
|
|
isolate()->factory()->NewAllocationSite();
|
|
vector->set(slot, *allocation_site);
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
|
|
// Fill in the deoptimization information.
|
|
ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
|
|
if (!info_->HasDeoptimizationSupport()) return;
|
|
int length = bailout_entries_.length();
|
|
Handle<DeoptimizationOutputData> data =
|
|
DeoptimizationOutputData::New(isolate(), length, TENURED);
|
|
for (int i = 0; i < length; i++) {
|
|
data->SetAstId(i, bailout_entries_[i].id);
|
|
data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
|
|
}
|
|
code->set_deoptimization_data(*data);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
|
|
Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
|
|
info->set_ic_total_count(ic_total_count_);
|
|
ASSERT(!isolate()->heap()->InNewSpace(*info));
|
|
code->set_type_feedback_info(*info);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::Initialize() {
|
|
InitializeAstVisitor(info_->zone());
|
|
// The generation of debug code must match between the snapshot code and the
|
|
// code that is generated later. This is assumed by the debugger when it is
|
|
// calculating PC offsets after generating a debug version of code. Therefore
|
|
// we disable the production of debug code in the full compiler if we are
|
|
// either generating a snapshot or we booted from a snapshot.
|
|
generate_debug_code_ = FLAG_debug_code &&
|
|
!masm_->serializer_enabled() &&
|
|
!Snapshot::HaveASnapshotToStartFrom();
|
|
masm_->set_emit_debug_code(generate_debug_code_);
|
|
masm_->set_predictable_code_size(true);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
|
|
PrepareForBailoutForId(node->id(), state);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::CallLoadIC(ContextualMode contextual_mode,
|
|
TypeFeedbackId id) {
|
|
ExtraICState extra_state = LoadIC::ComputeExtraICState(contextual_mode);
|
|
Handle<Code> ic = LoadIC::initialize_stub(isolate(), extra_state);
|
|
CallIC(ic, id);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) {
|
|
Handle<Code> ic = StoreIC::initialize_stub(isolate(), strict_mode());
|
|
CallIC(ic, id);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::RecordJSReturnSite(Call* call) {
|
|
// We record the offset of the function return so we can rebuild the frame
|
|
// if the function was inlined, i.e., this is the return address in the
|
|
// inlined function's frame.
|
|
//
|
|
// The state is ignored. We defensively set it to TOS_REG, which is the
|
|
// real state of the unoptimized code at the return site.
|
|
PrepareForBailoutForId(call->ReturnId(), TOS_REG);
|
|
#ifdef DEBUG
|
|
// In debug builds, mark the return so we can verify that this function
|
|
// was called.
|
|
ASSERT(!call->return_is_recorded_);
|
|
call->return_is_recorded_ = true;
|
|
#endif
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
|
|
// There's no need to prepare this code for bailouts from already optimized
|
|
// code or code that can't be optimized.
|
|
if (!info_->HasDeoptimizationSupport()) return;
|
|
unsigned pc_and_state =
|
|
StateField::encode(state) | PcField::encode(masm_->pc_offset());
|
|
ASSERT(Smi::IsValid(pc_and_state));
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < bailout_entries_.length(); ++i) {
|
|
ASSERT(bailout_entries_[i].id != id);
|
|
}
|
|
#endif
|
|
BailoutEntry entry = { id, pc_and_state };
|
|
bailout_entries_.Add(entry, zone());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
|
|
// The pc offset does not need to be encoded and packed together with a state.
|
|
ASSERT(masm_->pc_offset() > 0);
|
|
ASSERT(loop_depth() > 0);
|
|
uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
|
|
BackEdgeEntry entry =
|
|
{ ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
|
|
back_edges_.Add(entry, zone());
|
|
}
|
|
|
|
|
|
bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
|
|
// Inline smi case inside loops, but not division and modulo which
|
|
// are too complicated and take up too much space.
|
|
if (op == Token::DIV ||op == Token::MOD) return false;
|
|
if (FLAG_always_inline_smi_code) return true;
|
|
return loop_depth_ > 0;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EffectContext::Plug(Register reg) const {
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
|
|
__ Move(result_register(), reg);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
|
|
__ Push(reg);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::TestContext::Plug(Register reg) const {
|
|
// For simplicity we always test the accumulator register.
|
|
__ Move(result_register(), reg);
|
|
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
|
|
codegen()->DoTest(this);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EffectContext::PlugTOS() const {
|
|
__ Drop(1);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
|
|
__ Pop(result_register());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::StackValueContext::PlugTOS() const {
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::TestContext::PlugTOS() const {
|
|
// For simplicity we always test the accumulator register.
|
|
__ Pop(result_register());
|
|
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
|
|
codegen()->DoTest(this);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EffectContext::PrepareTest(
|
|
Label* materialize_true,
|
|
Label* materialize_false,
|
|
Label** if_true,
|
|
Label** if_false,
|
|
Label** fall_through) const {
|
|
// In an effect context, the true and the false case branch to the
|
|
// same label.
|
|
*if_true = *if_false = *fall_through = materialize_true;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
|
|
Label* materialize_true,
|
|
Label* materialize_false,
|
|
Label** if_true,
|
|
Label** if_false,
|
|
Label** fall_through) const {
|
|
*if_true = *fall_through = materialize_true;
|
|
*if_false = materialize_false;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::StackValueContext::PrepareTest(
|
|
Label* materialize_true,
|
|
Label* materialize_false,
|
|
Label** if_true,
|
|
Label** if_false,
|
|
Label** fall_through) const {
|
|
*if_true = *fall_through = materialize_true;
|
|
*if_false = materialize_false;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::TestContext::PrepareTest(
|
|
Label* materialize_true,
|
|
Label* materialize_false,
|
|
Label** if_true,
|
|
Label** if_false,
|
|
Label** fall_through) const {
|
|
*if_true = true_label_;
|
|
*if_false = false_label_;
|
|
*fall_through = fall_through_;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::DoTest(const TestContext* context) {
|
|
DoTest(context->condition(),
|
|
context->true_label(),
|
|
context->false_label(),
|
|
context->fall_through());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
|
|
ASSERT(scope_->is_global_scope());
|
|
|
|
for (int i = 0; i < declarations->length(); i++) {
|
|
ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
|
|
if (declaration != NULL) {
|
|
ModuleLiteral* module = declaration->module()->AsModuleLiteral();
|
|
if (module != NULL) {
|
|
Comment cmnt(masm_, "[ Link nested modules");
|
|
Scope* scope = module->body()->scope();
|
|
Interface* interface = scope->interface();
|
|
ASSERT(interface->IsModule() && interface->IsFrozen());
|
|
|
|
interface->Allocate(scope->module_var()->index());
|
|
|
|
// Set up module context.
|
|
ASSERT(scope->interface()->Index() >= 0);
|
|
__ Push(Smi::FromInt(scope->interface()->Index()));
|
|
__ Push(scope->GetScopeInfo());
|
|
__ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
|
|
AllocateModules(scope->declarations());
|
|
|
|
// Pop module context.
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
// Update local stack frame context field.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Modules have their own local scope, represented by their own context.
|
|
// Module instance objects have an accessor for every export that forwards
|
|
// access to the respective slot from the module's context. (Exports that are
|
|
// modules themselves, however, are simple data properties.)
|
|
//
|
|
// All modules have a _hosting_ scope/context, which (currently) is the
|
|
// (innermost) enclosing global scope. To deal with recursion, nested modules
|
|
// are hosted by the same scope as global ones.
|
|
//
|
|
// For every (global or nested) module literal, the hosting context has an
|
|
// internal slot that points directly to the respective module context. This
|
|
// enables quick access to (statically resolved) module members by 2-dimensional
|
|
// access through the hosting context. For example,
|
|
//
|
|
// module A {
|
|
// let x;
|
|
// module B { let y; }
|
|
// }
|
|
// module C { let z; }
|
|
//
|
|
// allocates contexts as follows:
|
|
//
|
|
// [header| .A | .B | .C | A | C ] (global)
|
|
// | | |
|
|
// | | +-- [header| z ] (module)
|
|
// | |
|
|
// | +------- [header| y ] (module)
|
|
// |
|
|
// +------------ [header| x | B ] (module)
|
|
//
|
|
// Here, .A, .B, .C are the internal slots pointing to the hosted module
|
|
// contexts, whereas A, B, C hold the actual instance objects (note that every
|
|
// module context also points to the respective instance object through its
|
|
// extension slot in the header).
|
|
//
|
|
// To deal with arbitrary recursion and aliases between modules,
|
|
// they are created and initialized in several stages. Each stage applies to
|
|
// all modules in the hosting global scope, including nested ones.
|
|
//
|
|
// 1. Allocate: for each module _literal_, allocate the module contexts and
|
|
// respective instance object and wire them up. This happens in the
|
|
// PushModuleContext runtime function, as generated by AllocateModules
|
|
// (invoked by VisitDeclarations in the hosting scope).
|
|
//
|
|
// 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
|
|
// assign the respective instance object to respective local variables. This
|
|
// happens in VisitModuleDeclaration, and uses the instance objects created
|
|
// in the previous stage.
|
|
// For each module _literal_, this phase also constructs a module descriptor
|
|
// for the next stage. This happens in VisitModuleLiteral.
|
|
//
|
|
// 3. Populate: invoke the DeclareModules runtime function to populate each
|
|
// _instance_ object with accessors for it exports. This is generated by
|
|
// DeclareModules (invoked by VisitDeclarations in the hosting scope again),
|
|
// and uses the descriptors generated in the previous stage.
|
|
//
|
|
// 4. Initialize: execute the module bodies (and other code) in sequence. This
|
|
// happens by the separate statements generated for module bodies. To reenter
|
|
// the module scopes properly, the parser inserted ModuleStatements.
|
|
|
|
void FullCodeGenerator::VisitDeclarations(
|
|
ZoneList<Declaration*>* declarations) {
|
|
Handle<FixedArray> saved_modules = modules_;
|
|
int saved_module_index = module_index_;
|
|
ZoneList<Handle<Object> >* saved_globals = globals_;
|
|
ZoneList<Handle<Object> > inner_globals(10, zone());
|
|
globals_ = &inner_globals;
|
|
|
|
if (scope_->num_modules() != 0) {
|
|
// This is a scope hosting modules. Allocate a descriptor array to pass
|
|
// to the runtime for initialization.
|
|
Comment cmnt(masm_, "[ Allocate modules");
|
|
ASSERT(scope_->is_global_scope());
|
|
modules_ =
|
|
isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
|
|
module_index_ = 0;
|
|
|
|
// Generate code for allocating all modules, including nested ones.
|
|
// The allocated contexts are stored in internal variables in this scope.
|
|
AllocateModules(declarations);
|
|
}
|
|
|
|
AstVisitor::VisitDeclarations(declarations);
|
|
|
|
if (scope_->num_modules() != 0) {
|
|
// Initialize modules from descriptor array.
|
|
ASSERT(module_index_ == modules_->length());
|
|
DeclareModules(modules_);
|
|
modules_ = saved_modules;
|
|
module_index_ = saved_module_index;
|
|
}
|
|
|
|
if (!globals_->is_empty()) {
|
|
// Invoke the platform-dependent code generator to do the actual
|
|
// declaration of the global functions and variables.
|
|
Handle<FixedArray> array =
|
|
isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
|
|
for (int i = 0; i < globals_->length(); ++i)
|
|
array->set(i, *globals_->at(i));
|
|
DeclareGlobals(array);
|
|
}
|
|
|
|
globals_ = saved_globals;
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
|
|
Block* block = module->body();
|
|
Scope* saved_scope = scope();
|
|
scope_ = block->scope();
|
|
Interface* interface = scope_->interface();
|
|
|
|
Comment cmnt(masm_, "[ ModuleLiteral");
|
|
SetStatementPosition(block);
|
|
|
|
ASSERT(!modules_.is_null());
|
|
ASSERT(module_index_ < modules_->length());
|
|
int index = module_index_++;
|
|
|
|
// Set up module context.
|
|
ASSERT(interface->Index() >= 0);
|
|
__ Push(Smi::FromInt(interface->Index()));
|
|
__ Push(Smi::FromInt(0));
|
|
__ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
|
|
|
|
{
|
|
Comment cmnt(masm_, "[ Declarations");
|
|
VisitDeclarations(scope_->declarations());
|
|
}
|
|
|
|
// Populate the module description.
|
|
Handle<ModuleInfo> description =
|
|
ModuleInfo::Create(isolate(), interface, scope_);
|
|
modules_->set(index, *description);
|
|
|
|
scope_ = saved_scope;
|
|
// Pop module context.
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
// Update local stack frame context field.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
|
|
// Nothing to do.
|
|
// The instance object is resolved statically through the module's interface.
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitModulePath(ModulePath* module) {
|
|
// Nothing to do.
|
|
// The instance object is resolved statically through the module's interface.
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
|
|
// TODO(rossberg): dummy allocation for now.
|
|
Scope* scope = module->body()->scope();
|
|
Interface* interface = scope_->interface();
|
|
|
|
ASSERT(interface->IsModule() && interface->IsFrozen());
|
|
ASSERT(!modules_.is_null());
|
|
ASSERT(module_index_ < modules_->length());
|
|
interface->Allocate(scope->module_var()->index());
|
|
int index = module_index_++;
|
|
|
|
Handle<ModuleInfo> description =
|
|
ModuleInfo::Create(isolate(), interface, scope_);
|
|
modules_->set(index, *description);
|
|
}
|
|
|
|
|
|
int FullCodeGenerator::DeclareGlobalsFlags() {
|
|
ASSERT(DeclareGlobalsStrictMode::is_valid(strict_mode()));
|
|
return DeclareGlobalsEvalFlag::encode(is_eval()) |
|
|
DeclareGlobalsNativeFlag::encode(is_native()) |
|
|
DeclareGlobalsStrictMode::encode(strict_mode());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
|
|
CodeGenerator::RecordPositions(masm_, fun->start_position());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
|
|
CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
|
|
if (!info_->is_debug()) {
|
|
CodeGenerator::RecordPositions(masm_, stmt->position());
|
|
} else {
|
|
// Check if the statement will be breakable without adding a debug break
|
|
// slot.
|
|
BreakableStatementChecker checker(zone());
|
|
checker.Check(stmt);
|
|
// Record the statement position right here if the statement is not
|
|
// breakable. For breakable statements the actual recording of the
|
|
// position will be postponed to the breakable code (typically an IC).
|
|
bool position_recorded = CodeGenerator::RecordPositions(
|
|
masm_, stmt->position(), !checker.is_breakable());
|
|
// If the position recording did record a new position generate a debug
|
|
// break slot to make the statement breakable.
|
|
if (position_recorded) {
|
|
DebugCodegen::GenerateSlot(masm_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
|
|
if (!info_->is_debug()) {
|
|
CodeGenerator::RecordPositions(masm_, expr->position());
|
|
} else {
|
|
// Check if the expression will be breakable without adding a debug break
|
|
// slot.
|
|
BreakableStatementChecker checker(zone());
|
|
checker.Check(expr);
|
|
// Record a statement position right here if the expression is not
|
|
// breakable. For breakable expressions the actual recording of the
|
|
// position will be postponed to the breakable code (typically an IC).
|
|
// NOTE this will record a statement position for something which might
|
|
// not be a statement. As stepping in the debugger will only stop at
|
|
// statement positions this is used for e.g. the condition expression of
|
|
// a do while loop.
|
|
bool position_recorded = CodeGenerator::RecordPositions(
|
|
masm_, expr->position(), !checker.is_breakable());
|
|
// If the position recording did record a new position generate a debug
|
|
// break slot to make the statement breakable.
|
|
if (position_recorded) {
|
|
DebugCodegen::GenerateSlot(masm_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetStatementPosition(int pos) {
|
|
CodeGenerator::RecordPositions(masm_, pos);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::SetSourcePosition(int pos) {
|
|
if (pos != RelocInfo::kNoPosition) {
|
|
masm_->positions_recorder()->RecordPosition(pos);
|
|
}
|
|
}
|
|
|
|
|
|
// Lookup table for code generators for special runtime calls which are
|
|
// generated inline.
|
|
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
|
|
&FullCodeGenerator::Emit##Name,
|
|
|
|
const FullCodeGenerator::InlineFunctionGenerator
|
|
FullCodeGenerator::kInlineFunctionGenerators[] = {
|
|
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
|
};
|
|
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
|
|
|
|
|
|
FullCodeGenerator::InlineFunctionGenerator
|
|
FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
|
|
int lookup_index =
|
|
static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
|
|
ASSERT(lookup_index >= 0);
|
|
ASSERT(static_cast<size_t>(lookup_index) <
|
|
ARRAY_SIZE(kInlineFunctionGenerators));
|
|
return kInlineFunctionGenerators[lookup_index];
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
|
|
const Runtime::Function* function = expr->function();
|
|
ASSERT(function != NULL);
|
|
ASSERT(function->intrinsic_type == Runtime::INLINE);
|
|
InlineFunctionGenerator generator =
|
|
FindInlineFunctionGenerator(function->function_id);
|
|
((*this).*(generator))(expr);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
ASSERT(args->length() == 2);
|
|
EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
ASSERT(args->length() == 2);
|
|
EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
|
|
context()->Plug(handle(Smi::FromInt(0), isolate()));
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
|
|
switch (expr->op()) {
|
|
case Token::COMMA:
|
|
return VisitComma(expr);
|
|
case Token::OR:
|
|
case Token::AND:
|
|
return VisitLogicalExpression(expr);
|
|
default:
|
|
return VisitArithmeticExpression(expr);
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
|
|
if (context()->IsEffect()) {
|
|
VisitForEffect(expr);
|
|
} else if (context()->IsAccumulatorValue()) {
|
|
VisitForAccumulatorValue(expr);
|
|
} else if (context()->IsStackValue()) {
|
|
VisitForStackValue(expr);
|
|
} else if (context()->IsTest()) {
|
|
const TestContext* test = TestContext::cast(context());
|
|
VisitForControl(expr, test->true_label(), test->false_label(),
|
|
test->fall_through());
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
|
|
Comment cmnt(masm_, "[ Comma");
|
|
VisitForEffect(expr->left());
|
|
VisitInDuplicateContext(expr->right());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
|
|
bool is_logical_and = expr->op() == Token::AND;
|
|
Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR");
|
|
Expression* left = expr->left();
|
|
Expression* right = expr->right();
|
|
BailoutId right_id = expr->RightId();
|
|
Label done;
|
|
|
|
if (context()->IsTest()) {
|
|
Label eval_right;
|
|
const TestContext* test = TestContext::cast(context());
|
|
if (is_logical_and) {
|
|
VisitForControl(left, &eval_right, test->false_label(), &eval_right);
|
|
} else {
|
|
VisitForControl(left, test->true_label(), &eval_right, &eval_right);
|
|
}
|
|
PrepareForBailoutForId(right_id, NO_REGISTERS);
|
|
__ bind(&eval_right);
|
|
|
|
} else if (context()->IsAccumulatorValue()) {
|
|
VisitForAccumulatorValue(left);
|
|
// We want the value in the accumulator for the test, and on the stack in
|
|
// case we need it.
|
|
__ Push(result_register());
|
|
Label discard, restore;
|
|
if (is_logical_and) {
|
|
DoTest(left, &discard, &restore, &restore);
|
|
} else {
|
|
DoTest(left, &restore, &discard, &restore);
|
|
}
|
|
__ bind(&restore);
|
|
__ Pop(result_register());
|
|
__ jmp(&done);
|
|
__ bind(&discard);
|
|
__ Drop(1);
|
|
PrepareForBailoutForId(right_id, NO_REGISTERS);
|
|
|
|
} else if (context()->IsStackValue()) {
|
|
VisitForAccumulatorValue(left);
|
|
// We want the value in the accumulator for the test, and on the stack in
|
|
// case we need it.
|
|
__ Push(result_register());
|
|
Label discard;
|
|
if (is_logical_and) {
|
|
DoTest(left, &discard, &done, &discard);
|
|
} else {
|
|
DoTest(left, &done, &discard, &discard);
|
|
}
|
|
__ bind(&discard);
|
|
__ Drop(1);
|
|
PrepareForBailoutForId(right_id, NO_REGISTERS);
|
|
|
|
} else {
|
|
ASSERT(context()->IsEffect());
|
|
Label eval_right;
|
|
if (is_logical_and) {
|
|
VisitForControl(left, &eval_right, &done, &eval_right);
|
|
} else {
|
|
VisitForControl(left, &done, &eval_right, &eval_right);
|
|
}
|
|
PrepareForBailoutForId(right_id, NO_REGISTERS);
|
|
__ bind(&eval_right);
|
|
}
|
|
|
|
VisitInDuplicateContext(right);
|
|
__ bind(&done);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
|
|
Token::Value op = expr->op();
|
|
Comment cmnt(masm_, "[ ArithmeticExpression");
|
|
Expression* left = expr->left();
|
|
Expression* right = expr->right();
|
|
OverwriteMode mode =
|
|
left->ResultOverwriteAllowed()
|
|
? OVERWRITE_LEFT
|
|
: (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
|
|
|
VisitForStackValue(left);
|
|
VisitForAccumulatorValue(right);
|
|
|
|
SetSourcePosition(expr->position());
|
|
if (ShouldInlineSmiCase(op)) {
|
|
EmitInlineSmiBinaryOp(expr, op, mode, left, right);
|
|
} else {
|
|
EmitBinaryOp(expr, op, mode);
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitBlock(Block* stmt) {
|
|
Comment cmnt(masm_, "[ Block");
|
|
NestedBlock nested_block(this, stmt);
|
|
SetStatementPosition(stmt);
|
|
|
|
Scope* saved_scope = scope();
|
|
// Push a block context when entering a block with block scoped variables.
|
|
if (stmt->scope() == NULL) {
|
|
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
|
|
} else {
|
|
scope_ = stmt->scope();
|
|
ASSERT(!scope_->is_module_scope());
|
|
{ Comment cmnt(masm_, "[ Extend block context");
|
|
__ Push(scope_->GetScopeInfo());
|
|
PushFunctionArgumentForContextAllocation();
|
|
__ CallRuntime(Runtime::kHiddenPushBlockContext, 2);
|
|
|
|
// Replace the context stored in the frame.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
|
|
}
|
|
{ Comment cmnt(masm_, "[ Declarations");
|
|
VisitDeclarations(scope_->declarations());
|
|
PrepareForBailoutForId(stmt->DeclsId(), NO_REGISTERS);
|
|
}
|
|
}
|
|
|
|
VisitStatements(stmt->statements());
|
|
scope_ = saved_scope;
|
|
__ bind(nested_block.break_label());
|
|
|
|
// Pop block context if necessary.
|
|
if (stmt->scope() != NULL) {
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
// Update local stack frame context field.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
|
|
Comment cmnt(masm_, "[ Module context");
|
|
|
|
__ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
|
|
__ Push(Smi::FromInt(0));
|
|
__ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
|
|
StoreToFrameField(
|
|
StandardFrameConstants::kContextOffset, context_register());
|
|
|
|
Scope* saved_scope = scope_;
|
|
scope_ = stmt->body()->scope();
|
|
VisitStatements(stmt->body()->statements());
|
|
scope_ = saved_scope;
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
// Update local stack frame context field.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
|
|
Comment cmnt(masm_, "[ ExpressionStatement");
|
|
SetStatementPosition(stmt);
|
|
VisitForEffect(stmt->expression());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
Comment cmnt(masm_, "[ EmptyStatement");
|
|
SetStatementPosition(stmt);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
|
|
Comment cmnt(masm_, "[ IfStatement");
|
|
SetStatementPosition(stmt);
|
|
Label then_part, else_part, done;
|
|
|
|
if (stmt->HasElseStatement()) {
|
|
VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
|
|
PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
|
|
__ bind(&then_part);
|
|
Visit(stmt->then_statement());
|
|
__ jmp(&done);
|
|
|
|
PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
|
|
__ bind(&else_part);
|
|
Visit(stmt->else_statement());
|
|
} else {
|
|
VisitForControl(stmt->condition(), &then_part, &done, &then_part);
|
|
PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
|
|
__ bind(&then_part);
|
|
Visit(stmt->then_statement());
|
|
|
|
PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
|
|
}
|
|
__ bind(&done);
|
|
PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
|
|
Comment cmnt(masm_, "[ ContinueStatement");
|
|
SetStatementPosition(stmt);
|
|
NestedStatement* current = nesting_stack_;
|
|
int stack_depth = 0;
|
|
int context_length = 0;
|
|
// When continuing, we clobber the unpredictable value in the accumulator
|
|
// with one that's safe for GC. If we hit an exit from the try block of
|
|
// try...finally on our way out, we will unconditionally preserve the
|
|
// accumulator on the stack.
|
|
ClearAccumulator();
|
|
while (!current->IsContinueTarget(stmt->target())) {
|
|
current = current->Exit(&stack_depth, &context_length);
|
|
}
|
|
__ Drop(stack_depth);
|
|
if (context_length > 0) {
|
|
while (context_length > 0) {
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
--context_length;
|
|
}
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
|
|
__ jmp(current->AsIteration()->continue_label());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
|
|
Comment cmnt(masm_, "[ BreakStatement");
|
|
SetStatementPosition(stmt);
|
|
NestedStatement* current = nesting_stack_;
|
|
int stack_depth = 0;
|
|
int context_length = 0;
|
|
// When breaking, we clobber the unpredictable value in the accumulator
|
|
// with one that's safe for GC. If we hit an exit from the try block of
|
|
// try...finally on our way out, we will unconditionally preserve the
|
|
// accumulator on the stack.
|
|
ClearAccumulator();
|
|
while (!current->IsBreakTarget(stmt->target())) {
|
|
current = current->Exit(&stack_depth, &context_length);
|
|
}
|
|
__ Drop(stack_depth);
|
|
if (context_length > 0) {
|
|
while (context_length > 0) {
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
--context_length;
|
|
}
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
|
|
__ jmp(current->AsBreakable()->break_label());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::EmitUnwindBeforeReturn() {
|
|
NestedStatement* current = nesting_stack_;
|
|
int stack_depth = 0;
|
|
int context_length = 0;
|
|
while (current != NULL) {
|
|
current = current->Exit(&stack_depth, &context_length);
|
|
}
|
|
__ Drop(stack_depth);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
|
|
Comment cmnt(masm_, "[ ReturnStatement");
|
|
SetStatementPosition(stmt);
|
|
Expression* expr = stmt->expression();
|
|
VisitForAccumulatorValue(expr);
|
|
EmitUnwindBeforeReturn();
|
|
EmitReturnSequence();
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
|
|
Comment cmnt(masm_, "[ WithStatement");
|
|
SetStatementPosition(stmt);
|
|
|
|
VisitForStackValue(stmt->expression());
|
|
PushFunctionArgumentForContextAllocation();
|
|
__ CallRuntime(Runtime::kHiddenPushWithContext, 2);
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
|
|
|
|
Scope* saved_scope = scope();
|
|
scope_ = stmt->scope();
|
|
{ WithOrCatch body(this);
|
|
Visit(stmt->statement());
|
|
}
|
|
scope_ = saved_scope;
|
|
|
|
// Pop context.
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
// Update local stack frame context field.
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
Comment cmnt(masm_, "[ DoWhileStatement");
|
|
SetStatementPosition(stmt);
|
|
Label body, book_keeping;
|
|
|
|
Iteration loop_statement(this, stmt);
|
|
increment_loop_depth();
|
|
|
|
__ bind(&body);
|
|
Visit(stmt->body());
|
|
|
|
// Record the position of the do while condition and make sure it is
|
|
// possible to break on the condition.
|
|
__ bind(loop_statement.continue_label());
|
|
PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
|
|
SetExpressionPosition(stmt->cond());
|
|
VisitForControl(stmt->cond(),
|
|
&book_keeping,
|
|
loop_statement.break_label(),
|
|
&book_keeping);
|
|
|
|
// Check stack before looping.
|
|
PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
|
|
__ bind(&book_keeping);
|
|
EmitBackEdgeBookkeeping(stmt, &body);
|
|
__ jmp(&body);
|
|
|
|
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
|
|
__ bind(loop_statement.break_label());
|
|
decrement_loop_depth();
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
|
|
Comment cmnt(masm_, "[ WhileStatement");
|
|
Label test, body;
|
|
|
|
Iteration loop_statement(this, stmt);
|
|
increment_loop_depth();
|
|
|
|
// Emit the test at the bottom of the loop.
|
|
__ jmp(&test);
|
|
|
|
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
|
|
__ bind(&body);
|
|
Visit(stmt->body());
|
|
|
|
// Emit the statement position here as this is where the while
|
|
// statement code starts.
|
|
__ bind(loop_statement.continue_label());
|
|
SetStatementPosition(stmt);
|
|
|
|
// Check stack before looping.
|
|
EmitBackEdgeBookkeeping(stmt, &body);
|
|
|
|
__ bind(&test);
|
|
VisitForControl(stmt->cond(),
|
|
&body,
|
|
loop_statement.break_label(),
|
|
loop_statement.break_label());
|
|
|
|
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
|
|
__ bind(loop_statement.break_label());
|
|
decrement_loop_depth();
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
|
|
Comment cmnt(masm_, "[ ForStatement");
|
|
Label test, body;
|
|
|
|
Iteration loop_statement(this, stmt);
|
|
|
|
// Set statement position for a break slot before entering the for-body.
|
|
SetStatementPosition(stmt);
|
|
|
|
if (stmt->init() != NULL) {
|
|
Visit(stmt->init());
|
|
}
|
|
|
|
increment_loop_depth();
|
|
// Emit the test at the bottom of the loop (even if empty).
|
|
__ jmp(&test);
|
|
|
|
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
|
|
__ bind(&body);
|
|
Visit(stmt->body());
|
|
|
|
PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
|
|
__ bind(loop_statement.continue_label());
|
|
if (stmt->next() != NULL) {
|
|
Visit(stmt->next());
|
|
}
|
|
|
|
// Emit the statement position here as this is where the for
|
|
// statement code starts.
|
|
SetStatementPosition(stmt);
|
|
|
|
// Check stack before looping.
|
|
EmitBackEdgeBookkeeping(stmt, &body);
|
|
|
|
__ bind(&test);
|
|
if (stmt->cond() != NULL) {
|
|
VisitForControl(stmt->cond(),
|
|
&body,
|
|
loop_statement.break_label(),
|
|
loop_statement.break_label());
|
|
} else {
|
|
__ jmp(&body);
|
|
}
|
|
|
|
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
|
|
__ bind(loop_statement.break_label());
|
|
decrement_loop_depth();
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
Comment cmnt(masm_, "[ TryCatchStatement");
|
|
SetStatementPosition(stmt);
|
|
// The try block adds a handler to the exception handler chain before
|
|
// entering, and removes it again when exiting normally. If an exception
|
|
// is thrown during execution of the try block, the handler is consumed
|
|
// and control is passed to the catch block with the exception in the
|
|
// result register.
|
|
|
|
Label try_entry, handler_entry, exit;
|
|
__ jmp(&try_entry);
|
|
__ bind(&handler_entry);
|
|
handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
|
|
// Exception handler code, the exception is in the result register.
|
|
// Extend the context before executing the catch block.
|
|
{ Comment cmnt(masm_, "[ Extend catch context");
|
|
__ Push(stmt->variable()->name());
|
|
__ Push(result_register());
|
|
PushFunctionArgumentForContextAllocation();
|
|
__ CallRuntime(Runtime::kHiddenPushCatchContext, 3);
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset,
|
|
context_register());
|
|
}
|
|
|
|
Scope* saved_scope = scope();
|
|
scope_ = stmt->scope();
|
|
ASSERT(scope_->declarations()->is_empty());
|
|
{ WithOrCatch catch_body(this);
|
|
Visit(stmt->catch_block());
|
|
}
|
|
// Restore the context.
|
|
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
|
|
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
|
|
scope_ = saved_scope;
|
|
__ jmp(&exit);
|
|
|
|
// Try block code. Sets up the exception handler chain.
|
|
__ bind(&try_entry);
|
|
__ PushTryHandler(StackHandler::CATCH, stmt->index());
|
|
{ TryCatch try_body(this);
|
|
Visit(stmt->try_block());
|
|
}
|
|
__ PopTryHandler();
|
|
__ bind(&exit);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
|
Comment cmnt(masm_, "[ TryFinallyStatement");
|
|
SetStatementPosition(stmt);
|
|
// Try finally is compiled by setting up a try-handler on the stack while
|
|
// executing the try body, and removing it again afterwards.
|
|
//
|
|
// The try-finally construct can enter the finally block in three ways:
|
|
// 1. By exiting the try-block normally. This removes the try-handler and
|
|
// calls the finally block code before continuing.
|
|
// 2. By exiting the try-block with a function-local control flow transfer
|
|
// (break/continue/return). The site of the, e.g., break removes the
|
|
// try handler and calls the finally block code before continuing
|
|
// its outward control transfer.
|
|
// 3. By exiting the try-block with a thrown exception.
|
|
// This can happen in nested function calls. It traverses the try-handler
|
|
// chain and consumes the try-handler entry before jumping to the
|
|
// handler code. The handler code then calls the finally-block before
|
|
// rethrowing the exception.
|
|
//
|
|
// The finally block must assume a return address on top of the stack
|
|
// (or in the link register on ARM chips) and a value (return value or
|
|
// exception) in the result register (rax/eax/r0), both of which must
|
|
// be preserved. The return address isn't GC-safe, so it should be
|
|
// cooked before GC.
|
|
Label try_entry, handler_entry, finally_entry;
|
|
|
|
// Jump to try-handler setup and try-block code.
|
|
__ jmp(&try_entry);
|
|
__ bind(&handler_entry);
|
|
handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
|
|
// Exception handler code. This code is only executed when an exception
|
|
// is thrown. The exception is in the result register, and must be
|
|
// preserved by the finally block. Call the finally block and then
|
|
// rethrow the exception if it returns.
|
|
__ Call(&finally_entry);
|
|
__ Push(result_register());
|
|
__ CallRuntime(Runtime::kHiddenReThrow, 1);
|
|
|
|
// Finally block implementation.
|
|
__ bind(&finally_entry);
|
|
EnterFinallyBlock();
|
|
{ Finally finally_body(this);
|
|
Visit(stmt->finally_block());
|
|
}
|
|
ExitFinallyBlock(); // Return to the calling code.
|
|
|
|
// Set up try handler.
|
|
__ bind(&try_entry);
|
|
__ PushTryHandler(StackHandler::FINALLY, stmt->index());
|
|
{ TryFinally try_body(this, &finally_entry);
|
|
Visit(stmt->try_block());
|
|
}
|
|
__ PopTryHandler();
|
|
// Execute the finally block on the way out. Clobber the unpredictable
|
|
// value in the result register with one that's safe for GC because the
|
|
// finally block will unconditionally preserve the result register on the
|
|
// stack.
|
|
ClearAccumulator();
|
|
__ Call(&finally_entry);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
Comment cmnt(masm_, "[ DebuggerStatement");
|
|
SetStatementPosition(stmt);
|
|
|
|
__ DebugBreak();
|
|
// Ignore the return value.
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitConditional(Conditional* expr) {
|
|
Comment cmnt(masm_, "[ Conditional");
|
|
Label true_case, false_case, done;
|
|
VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
|
|
|
|
PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
|
|
__ bind(&true_case);
|
|
SetExpressionPosition(expr->then_expression());
|
|
if (context()->IsTest()) {
|
|
const TestContext* for_test = TestContext::cast(context());
|
|
VisitForControl(expr->then_expression(),
|
|
for_test->true_label(),
|
|
for_test->false_label(),
|
|
NULL);
|
|
} else {
|
|
VisitInDuplicateContext(expr->then_expression());
|
|
__ jmp(&done);
|
|
}
|
|
|
|
PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
|
|
__ bind(&false_case);
|
|
SetExpressionPosition(expr->else_expression());
|
|
VisitInDuplicateContext(expr->else_expression());
|
|
// If control flow falls through Visit, merge it with true case here.
|
|
if (!context()->IsTest()) {
|
|
__ bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitLiteral(Literal* expr) {
|
|
Comment cmnt(masm_, "[ Literal");
|
|
context()->Plug(expr->value());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
Comment cmnt(masm_, "[ FunctionLiteral");
|
|
|
|
// Build the function boilerplate and instantiate it.
|
|
Handle<SharedFunctionInfo> function_info =
|
|
Compiler::BuildFunctionInfo(expr, script());
|
|
if (function_info.is_null()) {
|
|
SetStackOverflow();
|
|
return;
|
|
}
|
|
EmitNewClosure(function_info, expr->pretenure());
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitNativeFunctionLiteral(
|
|
NativeFunctionLiteral* expr) {
|
|
Comment cmnt(masm_, "[ NativeFunctionLiteral");
|
|
|
|
// Compute the function template for the native function.
|
|
Handle<String> name = expr->name();
|
|
v8::Handle<v8::FunctionTemplate> fun_template =
|
|
expr->extension()->GetNativeFunctionTemplate(
|
|
reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
|
|
ASSERT(!fun_template.IsEmpty());
|
|
|
|
// Instantiate the function and create a shared function info from it.
|
|
Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
|
|
const int literals = fun->NumberOfLiterals();
|
|
Handle<Code> code = Handle<Code>(fun->shared()->code());
|
|
Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
|
|
bool is_generator = false;
|
|
Handle<SharedFunctionInfo> shared =
|
|
isolate()->factory()->NewSharedFunctionInfo(
|
|
name, literals, is_generator,
|
|
code, Handle<ScopeInfo>(fun->shared()->scope_info()),
|
|
Handle<FixedArray>(fun->shared()->feedback_vector()));
|
|
shared->set_construct_stub(*construct_stub);
|
|
|
|
// Copy the function data to the shared function info.
|
|
shared->set_function_data(fun->shared()->function_data());
|
|
int parameters = fun->shared()->formal_parameter_count();
|
|
shared->set_formal_parameter_count(parameters);
|
|
|
|
EmitNewClosure(shared, false);
|
|
}
|
|
|
|
|
|
void FullCodeGenerator::VisitThrow(Throw* expr) {
|
|
Comment cmnt(masm_, "[ Throw");
|
|
VisitForStackValue(expr->exception());
|
|
__ CallRuntime(Runtime::kHiddenThrow, 1);
|
|
// Never returns here.
|
|
}
|
|
|
|
|
|
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
|
|
int* stack_depth,
|
|
int* context_length) {
|
|
// The macros used here must preserve the result register.
|
|
__ Drop(*stack_depth);
|
|
__ PopTryHandler();
|
|
*stack_depth = 0;
|
|
return previous_;
|
|
}
|
|
|
|
|
|
bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
|
|
Expression* sub_expr;
|
|
Handle<String> check;
|
|
if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
|
|
EmitLiteralCompareTypeof(expr, sub_expr, check);
|
|
return true;
|
|
}
|
|
|
|
if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
|
|
EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
|
|
return true;
|
|
}
|
|
|
|
if (expr->IsLiteralCompareNull(&sub_expr)) {
|
|
EmitLiteralCompareNil(expr, sub_expr, kNullValue);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) {
|
|
DisallowHeapAllocation no_gc;
|
|
Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
|
|
|
|
// Iterate over the back edge table and patch every interrupt
|
|
// call to an unconditional call to the replacement code.
|
|
int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
|
|
|
|
BackEdgeTable back_edges(unoptimized, &no_gc);
|
|
for (uint32_t i = 0; i < back_edges.length(); i++) {
|
|
if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
|
|
ASSERT_EQ(INTERRUPT, GetBackEdgeState(isolate,
|
|
unoptimized,
|
|
back_edges.pc(i)));
|
|
PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
|
|
}
|
|
}
|
|
|
|
unoptimized->set_back_edges_patched_for_osr(true);
|
|
ASSERT(Verify(isolate, unoptimized, loop_nesting_level));
|
|
}
|
|
|
|
|
|
void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) {
|
|
DisallowHeapAllocation no_gc;
|
|
Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
|
|
|
|
// Iterate over the back edge table and revert the patched interrupt calls.
|
|
ASSERT(unoptimized->back_edges_patched_for_osr());
|
|
int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
|
|
|
|
BackEdgeTable back_edges(unoptimized, &no_gc);
|
|
for (uint32_t i = 0; i < back_edges.length(); i++) {
|
|
if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
|
|
ASSERT_NE(INTERRUPT, GetBackEdgeState(isolate,
|
|
unoptimized,
|
|
back_edges.pc(i)));
|
|
PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
|
|
}
|
|
}
|
|
|
|
unoptimized->set_back_edges_patched_for_osr(false);
|
|
unoptimized->set_allow_osr_at_loop_nesting_level(0);
|
|
// Assert that none of the back edges are patched anymore.
|
|
ASSERT(Verify(isolate, unoptimized, -1));
|
|
}
|
|
|
|
|
|
void BackEdgeTable::AddStackCheck(Handle<Code> code, uint32_t pc_offset) {
|
|
DisallowHeapAllocation no_gc;
|
|
Isolate* isolate = code->GetIsolate();
|
|
Address pc = code->instruction_start() + pc_offset;
|
|
Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
|
|
PatchAt(*code, pc, OSR_AFTER_STACK_CHECK, patch);
|
|
}
|
|
|
|
|
|
void BackEdgeTable::RemoveStackCheck(Handle<Code> code, uint32_t pc_offset) {
|
|
DisallowHeapAllocation no_gc;
|
|
Isolate* isolate = code->GetIsolate();
|
|
Address pc = code->instruction_start() + pc_offset;
|
|
|
|
if (OSR_AFTER_STACK_CHECK == GetBackEdgeState(isolate, *code, pc)) {
|
|
Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
|
|
PatchAt(*code, pc, ON_STACK_REPLACEMENT, patch);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool BackEdgeTable::Verify(Isolate* isolate,
|
|
Code* unoptimized,
|
|
int loop_nesting_level) {
|
|
DisallowHeapAllocation no_gc;
|
|
BackEdgeTable back_edges(unoptimized, &no_gc);
|
|
for (uint32_t i = 0; i < back_edges.length(); i++) {
|
|
uint32_t loop_depth = back_edges.loop_depth(i);
|
|
CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
|
|
// Assert that all back edges for shallower loops (and only those)
|
|
// have already been patched.
|
|
CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
|
|
GetBackEdgeState(isolate,
|
|
unoptimized,
|
|
back_edges.pc(i)) != INTERRUPT);
|
|
}
|
|
return true;
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
} } // namespace v8::internal
|