v8/src/deoptimizer.cc
verwaest 07c1d181e7 Rename original constructor to new target
BUG=

Review URL: https://codereview.chromium.org/1442643009

Cr-Commit-Position: refs/heads/master@{#32023}
2015-11-17 08:21:32 +00:00

3405 lines
120 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer.h"
#include "src/accessors.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/frames-inl.h"
#include "src/full-codegen/full-codegen.h"
#include "src/global-handles.h"
#include "src/macro-assembler.h"
#include "src/prettyprinter.h"
#include "src/profiler/cpu-profiler.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
base::OS::CommitPageSize(),
#if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
NOT_EXECUTABLE,
#else
EXECUTABLE,
#endif
NULL);
}
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
: allocator_(allocator),
deoptimized_frame_info_(NULL),
current_(NULL) {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
deopt_entry_code_entries_[i] = -1;
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
}
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
allocator_->Free(deopt_entry_code_[i]);
deopt_entry_code_[i] = NULL;
}
}
void DeoptimizerData::Iterate(ObjectVisitor* v) {
if (deoptimized_frame_info_ != NULL) {
deoptimized_frame_info_->Iterate(v);
}
}
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_->IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Context* native_context = function_->context()->native_context();
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->contains(addr)) return code;
element = code->next_code_link();
}
}
return NULL;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
type,
bailout_id,
from,
fp_to_sp_delta,
NULL);
CHECK(isolate->deoptimizer_data()->current_ == NULL);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
// No larger than 2K on all platforms
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
size_t Deoptimizer::GetMaxDeoptTableSize() {
int entries_size =
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
commit_page_size) + 1;
return static_cast<size_t>(commit_page_size * page_count);
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
CHECK_NOT_NULL(result);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = NULL;
return result;
}
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
if (jsframe_index == 0) return 0;
int frame_index = 0;
while (jsframe_index >= 0) {
FrameDescription* frame = output_[frame_index];
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
jsframe_index--;
}
frame_index++;
}
return frame_index - 1;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
CHECK(frame->is_optimized());
CHECK(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
// Get the function and code from the frame.
JSFunction* function = frame->function();
Code* code = frame->LookupCode();
// Locate the deoptimization point in the code. As we are at a call the
// return address must be at a place in the code with deoptimization support.
SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
int deoptimization_index = safepoint_entry.deoptimization_index();
CHECK_NE(deoptimization_index, Safepoint::kNoDeoptimizationIndex);
// Always use the actual stack slots when calculating the fp to sp
// delta adding two for the function and context.
unsigned stack_slots = code->stack_slots();
unsigned arguments_stack_height =
Deoptimizer::ComputeOutgoingArgumentSize(code, deoptimization_index);
unsigned fp_to_sp_delta = (stack_slots * kPointerSize) +
StandardFrameConstants::kFixedFrameSizeFromFp +
arguments_stack_height;
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
Deoptimizer::DEBUGGER,
deoptimization_index,
frame->pc(),
fp_to_sp_delta,
code);
Address tos = frame->fp() - fp_to_sp_delta;
deoptimizer->FillInputFrame(tos, frame);
// Calculate the output frames.
Deoptimizer::ComputeOutputFrames(deoptimizer);
// Create the GC safe output frame information and register it for GC
// handling.
CHECK_LT(jsframe_index, deoptimizer->jsframe_count());
// Convert JS frame index into frame index.
int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
bool has_arguments_adaptor =
frame_index > 0 &&
deoptimizer->output_[frame_index - 1]->GetFrameType() ==
StackFrame::ARGUMENTS_ADAPTOR;
int construct_offset = has_arguments_adaptor ? 2 : 1;
bool has_construct_stub =
frame_index >= construct_offset &&
deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
StackFrame::CONSTRUCT;
DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
frame_index,
has_arguments_adaptor,
has_construct_stub);
isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
// Done with the GC-unsafe frame descriptions. This re-enables allocation.
deoptimizer->DeleteFrameDescriptions();
// Allocate a heap number for the doubles belonging to this frame.
deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
frame_index, info->parameters_count(), info->expression_count(), info);
// Finished using the deoptimizer instance.
delete deoptimizer;
return info;
}
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate) {
CHECK_EQ(isolate->deoptimizer_data()->deoptimized_frame_info_, info);
delete info;
isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
CHECK(context->IsNativeContext());
visitor->EnterContext(context);
// Visit the list of optimized functions, removing elements that
// no longer refer to optimized code.
JSFunction* prev = NULL;
Object* element = context->OptimizedFunctionsListHead();
while (!element->IsUndefined()) {
JSFunction* function = JSFunction::cast(element);
Object* next = function->next_function_link();
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
(visitor->VisitFunction(function),
function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
// The function no longer refers to optimized code, or the visitor
// changed the code to which it refers to no longer be optimized code.
// Remove the function from this list.
if (prev != NULL) {
prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER);
} else {
context->SetOptimizedFunctionsListHead(next);
}
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// Set the next function link to undefined to indicate it is no longer
// in the optimized functions list.
function->set_next_function_link(context->GetHeap()->undefined_value(),
SKIP_WRITE_BARRIER);
} else {
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// preserve this element.
prev = function;
}
element = next;
}
visitor->LeaveContext(context);
}
void Deoptimizer::VisitAllOptimizedFunctions(
Isolate* isolate,
OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
// Run through the list of all native contexts.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
// Unlink functions referring to code marked for deoptimization, then move
// marked code from the optimized code list to the deoptimized code list,
// and patch code for lazy deopt.
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
DisallowHeapAllocation no_allocation;
// A "closure" that unlinks optimized code that is going to be
// deoptimized from the functions that refer to it.
class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
public:
virtual void EnterContext(Context* context) { } // Don't care.
virtual void LeaveContext(Context* context) { } // Don't care.
virtual void VisitFunction(JSFunction* function) {
Code* code = function->code();
if (!code->marked_for_deoptimization()) return;
// Unlink this function and evict from optimized code map.
SharedFunctionInfo* shared = function->shared();
function->set_code(shared->code());
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer unlinked: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
}
};
// Unlink all functions that refer to marked code.
SelectedCodeUnlinker unlinker;
VisitAllOptimizedFunctionsForContext(context, &unlinker);
Isolate* isolate = context->GetHeap()->isolate();
#ifdef DEBUG
Code* topmost_optimized_code = NULL;
bool safe_to_deopt_topmost_optimized_code = false;
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top());
!it.done(); it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int deopt_index = safepoint.deoptimization_index();
// Turbofan deopt is checked when we are patching addresses on stack.
bool turbofanned = code->is_turbofanned() &&
function->shared()->asm_function() &&
!FLAG_turbo_asm_deoptimization;
bool safe_to_deopt =
deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned);
if (topmost_optimized_code == NULL) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_to_deopt;
}
}
}
#endif
// Move marked code from the optimized code list to the deoptimized
// code list, collecting them into a ZoneList.
Zone zone;
ZoneList<Code*> codes(10, &zone);
// Walk over all optimized code objects in this native context.
Code* prev = NULL;
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Object* next = code->next_code_link();
if (code->marked_for_deoptimization()) {
// Put the code into the list for later patching.
codes.Add(code, &zone);
if (prev != NULL) {
// Skip this code in the optimized code list.
prev->set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
context->SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code->set_next_code_link(context->DeoptimizedCodeListHead());
context->SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
// TODO(titzer): we need a handle scope only because of the macro assembler,
// which is only used in EnsureCodeForDeoptimizationEntry.
HandleScope scope(isolate);
// Now patch all the codes for deoptimization.
for (int i = 0; i < codes.length(); i++) {
#ifdef DEBUG
if (codes[i] == topmost_optimized_code) {
DCHECK(safe_to_deopt_topmost_optimized_code);
}
#endif
// It is finally time to die, code object.
// Remove the code from optimized code map.
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(codes[i]->deoptimization_data());
SharedFunctionInfo* shared =
SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
// Do platform-specific patching to force any activations to lazy deopt.
PatchCodeForDeoptimization(isolate, codes[i]);
// We might be in the middle of incremental marking with compaction.
// Tell collector to treat this code object in a special way and
// ignore all slots that might have been recorded on it.
isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
}
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::MarkAllCodeForContext(Context* context) {
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
code->set_marked_for_deoptimization(true);
element = code->next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
Code* code = function->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code->set_marked_for_deoptimization(true);
DeoptimizeMarkedCodeForContext(function->context()->native_context());
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
StackFrame::Type frame_type) {
switch (deopt_type) {
case EAGER:
case SOFT:
case LAZY:
case DEBUGGER:
return (frame_type == StackFrame::STUB)
? FLAG_trace_stub_failures
: FLAG_trace_deopt;
}
FATAL("Unsupported deopt type");
return false;
}
const char* Deoptimizer::MessageFor(BailoutType type) {
switch (type) {
case EAGER: return "eager";
case SOFT: return "soft";
case LAZY: return "lazy";
case DEBUGGER: return "debugger";
}
FATAL("Unsupported deopt type");
return NULL;
}
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
BailoutType type, unsigned bailout_id, Address from,
int fp_to_sp_delta, Code* optimized_code)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
has_alignment_padding_(0),
input_(nullptr),
output_count_(0),
jsframe_count_(0),
output_(nullptr),
trace_scope_(nullptr) {
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
// indicating an internal frame.
if (function->IsSmi()) {
function = nullptr;
}
DCHECK(from != nullptr);
if (function != nullptr && function->IsOptimized()) {
function->shared()->increment_deopt_count();
if (bailout_type_ == Deoptimizer::SOFT) {
isolate->counters()->soft_deopts_executed()->Increment();
// Soft deopts shouldn't count against the overall re-optimization count
// that can eventually lead to disabling optimization for a function.
int opt_count = function->shared()->opt_count();
if (opt_count > 0) opt_count--;
function->shared()->set_opt_count(opt_count);
}
}
compiled_code_ = FindOptimizedCode(function, optimized_code);
#if DEBUG
DCHECK(compiled_code_ != NULL);
if (type == EAGER || type == SOFT || type == LAZY) {
DCHECK(compiled_code_->kind() != Code::FUNCTION);
}
#endif
StackFrame::Type frame_type = function == NULL
? StackFrame::STUB
: StackFrame::JAVA_SCRIPT;
trace_scope_ = TraceEnabledFor(type, frame_type) ?
new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
#ifdef DEBUG
CHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_));
}
unsigned size = ComputeInputFrameSize();
input_ = new(size) FrameDescription(size, function);
input_->SetFrameType(frame_type);
}
Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
Code* optimized_code) {
switch (bailout_type_) {
case Deoptimizer::SOFT:
case Deoptimizer::EAGER:
case Deoptimizer::LAZY: {
Code* compiled_code = FindDeoptimizingCode(from_);
return (compiled_code == NULL)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
case Deoptimizer::DEBUGGER:
DCHECK(optimized_code->contains(from_));
return optimized_code;
}
FATAL("Could not find code for optimized function");
return NULL;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsJSFunction()) {
function_->ShortPrint(trace_scope_->file());
} else {
PrintF(trace_scope_->file(),
"%s", Code::Kind2String(compiled_code_->kind()));
}
}
Deoptimizer::~Deoptimizer() {
DCHECK(input_ == NULL && output_ == NULL);
DCHECK(disallow_heap_allocation_ == NULL);
delete trace_scope_;
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = NULL;
output_ = NULL;
#ifdef DEBUG
CHECK(!AllowHeapAllocation::IsAllowed());
CHECK(disallow_heap_allocation_ != NULL);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = NULL;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
int id,
BailoutType type,
GetEntryMode mode) {
CHECK_GE(id, 0);
if (id >= kMaxNumberOfEntries) return NULL;
if (mode == ENSURE_ENTRY_CODE) {
EnsureCodeForDeoptimizationEntry(isolate, type, id);
} else {
CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
}
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LT(type, kBailoutTypesWithCodeEntry);
MemoryChunk* base = data->deopt_entry_code_[type];
return base->area_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type) {
DeoptimizerData* data = isolate->deoptimizer_data();
MemoryChunk* base = data->deopt_entry_code_[type];
Address start = base->area_start();
if (addr < start ||
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
DCHECK_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
BailoutId id,
SharedFunctionInfo* shared) {
// TODO(kasperl): For now, we do a simple linear search for the PC
// offset associated with the given node id. This should probably be
// changed to a binary search.
int length = data->DeoptPoints();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == id) {
return data->PcAndState(i)->value();
}
}
OFStream os(stderr);
os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
<< "[method: " << shared->DebugName()->ToCString().get() << "]\n"
<< "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl;
shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared,
0xfefefeff);
FATAL("unable to find pc offset during deoptimization");
return -1;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
length++;
element = code->next_code_link();
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
return length;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
if (trace_scope_ != NULL) {
timer.Start();
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" (opt #%d) @%d, FP to SP delta: %d]\n",
input_data->OptimizationId()->value(),
bailout_id_,
fp_to_sp_delta_);
if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
(compiled_code_->is_hydrogen_stub())) {
compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_);
}
}
BailoutId node_id = input_data->AstId(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
TranslationIterator state_iterator(translations, translation_index);
translated_state_.Init(
input_->GetFramePointerAddress(), &state_iterator,
input_data->LiteralArray(), input_->GetRegisterValues(),
trace_scope_ == nullptr ? nullptr : trace_scope_->file());
// Do the input frame to output frame(s) translation.
size_t count = translated_state_.frames().size();
DCHECK(output_ == NULL);
output_ = new FrameDescription*[count];
for (size_t i = 0; i < count; ++i) {
output_[i] = NULL;
}
output_count_ = static_cast<int>(count);
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = reinterpret_cast<Address>(
input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize);
// Translate each output frame.
for (size_t i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
int frame_index = static_cast<int>(i);
switch (translated_state_.frames()[i].kind()) {
case TranslatedFrame::kFunction:
DoComputeJSFrame(frame_index);
jsframe_count_++;
break;
case TranslatedFrame::kArgumentsAdaptor:
DoComputeArgumentsAdaptorFrame(frame_index);
break;
case TranslatedFrame::kConstructStub:
DoComputeConstructStubFrame(frame_index);
break;
case TranslatedFrame::kGetter:
DoComputeAccessorStubFrame(frame_index, false);
break;
case TranslatedFrame::kSetter:
DoComputeAccessorStubFrame(frame_index, true);
break;
case TranslatedFrame::kCompiledStub:
DoComputeCompiledStubFrame(frame_index);
break;
case TranslatedFrame::kInvalid:
FATAL("invalid frame");
break;
}
}
// Print some helpful diagnostic information.
if (trace_scope_ != NULL) {
double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
" took %0.3f ms]\n",
bailout_id_,
node_id.ToInt(),
output_[index]->GetPc(),
FullCodeGenerator::State2String(
static_cast<FullCodeGenerator::State>(
output_[index]->GetState()->value())),
has_alignment_padding_ ? "with padding" : "no padding",
ms);
}
}
void Deoptimizer::DoComputeJSFrame(int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
BailoutId node_id = translated_frame->node_id();
unsigned height =
translated_frame->height() - 1; // Do not count the context.
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(), " translating frame ");
function->PrintName(trace_scope_->file());
PrintF(trace_scope_->file(),
" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by JavaScriptFrameConstants.
unsigned fixed_frame_size = ComputeFixedSize(function);
unsigned input_frame_size = input_->GetFrameSize();
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address for the bottommost output frame can be computed from
// the input frame pointer and the output frame's height. For all
// subsequent output frames, it can be computed from the previous one's
// top address and the current frame's size.
Register fp_reg = JavaScriptFrame::fp_register();
intptr_t top_address;
if (is_bottommost) {
// Determine whether the input frame contains alignment padding.
has_alignment_padding_ =
(!compiled_code_->is_turbofanned() && HasAlignmentPadding(function))
? 1
: 0;
// 2 = context and function in the frame.
// If the optimized frame had alignment padding, adjust the frame pointer
// to point to the new position of the old frame pointer after padding
// is removed. Subtract 2 * kPointerSize for the context and function slots.
top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp -
height_in_bytes + has_alignment_padding_ * kPointerSize;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count =
function->shared()->internal_formal_parameter_count() + 1;
unsigned output_offset = output_frame_size;
unsigned input_offset = input_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
input_offset -= (parameter_count * kPointerSize);
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Synthesize their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPCOnStackSize;
input_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kFPOnStackSize;
input_offset -= kFPOnStackSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
DCHECK(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize) == fp_value);
output_frame->SetFp(fp_value);
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
DCHECK(!is_bottommost || !has_alignment_padding_ ||
(fp_value & kPointerSize) != 0);
if (FLAG_enable_embedded_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
Register context_reg = JavaScriptFrame::context_register();
output_offset -= kPointerSize;
input_offset -= kPointerSize;
// Read the context from the translations.
Object* context = value_iterator->GetRawValue();
// The context should not be a placeholder for a materialized object.
CHECK(context != isolate_->heap()->arguments_marker());
if (context == isolate_->heap()->undefined_value()) {
// If the context was optimized away, just use the context from
// the activation. This should only apply to Crankshaft code.
CHECK(!compiled_code_->is_turbofanned());
context =
is_bottommost
? reinterpret_cast<Object*>(input_->GetFrameSlot(input_offset))
: function->context();
}
value = reinterpret_cast<intptr_t>(context);
output_frame->SetContext(value);
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
WriteValueToOutput(context, input_index, frame_index, output_offset,
"context ");
value_iterator++;
input_index++;
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
// The function for the bottommost output frame should also agree with the
// input frame.
DCHECK(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
// Translate the rest of the frame.
for (unsigned i = 0; i < height; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
CHECK_EQ(0u, output_offset);
// Compute this frame's PC, state, and continuation.
Code* non_optimized_code = function->shared()->code();
FixedArray* raw_data = non_optimized_code->deoptimization_data();
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
Address start = non_optimized_code->instruction_start();
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
FullCodeGenerator::State state =
FullCodeGenerator::StateField::decode(pc_and_state);
output_frame->SetState(Smi::FromInt(state));
// Set the continuation for the topmost frame.
if (is_topmost && bailout_type_ != DEBUGGER) {
Builtins* builtins = isolate_->builtins();
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
if (bailout_type_ == LAZY) {
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
} else if (bailout_type_ == SOFT) {
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
} else {
CHECK_EQ(bailout_type_, EAGER);
}
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
// Arguments adaptor can not be topmost or bottommost.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// A marker value is used in place of the context.
output_offset -= kPointerSize;
intptr_t context = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
output_frame->SetFrameSlot(output_offset, context);
DebugPrintOutputSlot(context, frame_index, output_offset,
"context (adaptor sentinel)\n");
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
DCHECK(0 == output_offset);
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = reinterpret_cast<intptr_t>(
adaptor_trampoline->instruction_start() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeConstructStubFrame(int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating construct stub => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::CONSTRUCT);
// Construct stub can not be topmost or bottommost.
DCHECK(frame_index > 0 && frame_index < output_count_ - 1);
DCHECK(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, override the slot address for a captured object.
WriteTranslatedValueToOutput(
&value_iterator, &input_index, frame_index, output_offset, nullptr,
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"function (construct sentinel)\n");
// The output frame reflects a JSConstructStubGeneric frame.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(construct_stub);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
// The allocation site.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value());
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "allocation site\n");
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
// The new target.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value());
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "new.target\n");
// The newly allocated object was passed as receiver in the artificial
// constructor stub environment created by HEnvironment::CopyForInlining().
output_offset -= kPointerSize;
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"allocated receiver\n");
CHECK_EQ(0u, output_offset);
intptr_t pc = reinterpret_cast<intptr_t>(
construct_stub->instruction_start() +
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
output_frame->SetPc(pc);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeAccessorStubFrame(int frame_index,
bool is_setter_stub_frame) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
JSFunction* accessor = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
// The receiver (and the implicit return value, if any) are expected in
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
// frame. This means that we have to use a height of 0.
unsigned height = 0;
unsigned height_in_bytes = height * kPointerSize;
const char* kind = is_setter_stub_frame ? "setter" : "getter";
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s stub => height=%u\n", kind, height_in_bytes);
}
// We need 1 stack entry for the return address and enough entries for the
// StackFrame::INTERNAL (FP, context, frame type, code object and constant
// pool (if enabled)- see MacroAssembler::EnterFrame).
// For a setter stub frame we need one additional entry for the implicit
// return value, see StoreStubCompiler::CompileStoreViaSetter.
unsigned fixed_frame_entries =
(StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
(is_setter_stub_frame ? 1 : 0);
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, accessor);
output_frame->SetFrameType(StackFrame::INTERNAL);
// A frame for an accessor stub can not be the topmost or bottommost one.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "function ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%s sentinel)\n", kind);
}
// Get Code object from accessor stub.
output_offset -= kPointerSize;
Builtins::Name name = is_setter_stub_frame ?
Builtins::kStoreIC_Setter_ForDeopt :
Builtins::kLoadIC_Getter_ForDeopt;
Code* accessor_stub = isolate_->builtins()->builtin(name);
value = reinterpret_cast<intptr_t>(accessor_stub);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
// Skip receiver.
value_iterator++;
input_index++;
if (is_setter_stub_frame) {
// The implicit return value was part of the artificial setter stub
// environment.
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
CHECK_EQ(0u, output_offset);
Smi* offset = is_setter_stub_frame ?
isolate_->heap()->setter_stub_deopt_pc_offset() :
isolate_->heap()->getter_stub_deopt_pc_offset();
intptr_t pc = reinterpret_cast<intptr_t>(
accessor_stub->instruction_start() + offset->value());
output_frame->SetPc(pc);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeCompiledStubFrame(int frame_index) {
//
// FROM TO
// | .... | | .... |
// +-------------------------+ +-------------------------+
// | JSFunction continuation | | JSFunction continuation |
// +-------------------------+ +-------------------------+
// | | saved frame (FP) | | saved frame (FP) |
// | +=========================+<-fpreg +=========================+<-fpreg
// | |constant pool (if ool_cp)| |constant pool (if ool_cp)|
// | +-------------------------+ +-------------------------|
// | | JSFunction context | | JSFunction context |
// v +-------------------------+ +-------------------------|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
// +-------------------------+ +-------------------------+
// | | | caller args.arguments_ |
// | ... | +-------------------------+
// | | | caller args.length_ |
// |-------------------------|<-spreg +-------------------------+
// | caller args pointer |
// +-------------------------+
// | caller stack param 1 |
// parameters in registers +-------------------------+
// and spilled to stack | .... |
// +-------------------------+
// | caller stack param n |
// +-------------------------+<-spreg
// reg = number of parameters
// reg = failure handler address
// reg = saved frame
// reg = JSFunction context
//
// Caller stack params contain the register parameters to the stub first,
// and then, if the descriptor specifies a constant number of stack
// parameters, the stack parameters as well.
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
CHECK(compiled_code_->is_hydrogen_stub());
int major_key = CodeStub::GetMajorKey(compiled_code_);
CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
// The output frame must have room for all pushed register parameters
// and the standard stack frame slots. Include space for an argument
// object to the callee and optionally the space to pass the argument
// object to the stub failure handler.
int param_count = descriptor.GetRegisterParameterCount();
int stack_param_count = descriptor.GetStackParameterCount();
CHECK_EQ(translated_frame->height(), param_count);
CHECK_GE(param_count, 0);
int height_in_bytes = kPointerSize * (param_count + stack_param_count) +
sizeof(Arguments) + kPointerSize;
int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
int input_frame_size = input_->GetFrameSize();
int output_frame_size = height_in_bytes + fixed_frame_size;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s => StubFailureTrampolineStub, height=%d\n",
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key)),
height_in_bytes);
}
// The stub failure trampoline is a single frame.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, NULL);
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
CHECK_EQ(frame_index, 0);
output_[frame_index] = output_frame;
// The top address for the output frame can be computed from the input
// frame pointer and the output frame's height. Subtract space for the
// context and function slots.
Register fp_reg = StubFailureTrampolineFrame::fp_register();
intptr_t top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
output_frame->SetTop(top_address);
// Read caller's PC (JSFunction continuation) from the input frame.
unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
intptr_t value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetCallerPc(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's pc\n");
// Read caller's FP from the input frame, and set this frame's FP.
input_frame_offset -= kFPOnStackSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kFPOnStackSize;
output_frame->SetCallerFp(output_frame_offset, value);
intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
output_frame->SetRegister(fp_reg.code(), frame_ptr);
output_frame->SetFp(frame_ptr);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the input frame.
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kPointerSize;
output_frame->SetCallerConstantPool(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the input frame.
Register context_reg = StubFailureTrampolineFrame::context_register();
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetRegister(context_reg.code(), value);
output_frame_offset -= kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
CHECK(reinterpret_cast<Object*>(value)->IsContext());
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "context\n");
// A marker value is used in place of the function.
output_frame_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"function (stub failure sentinel)\n");
intptr_t caller_arg_count = stack_param_count;
bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
// Build the Arguments object for the caller's parameters and a pointer to it.
output_frame_offset -= kPointerSize;
int args_arguments_offset = output_frame_offset;
intptr_t the_hole = reinterpret_cast<intptr_t>(
isolate_->heap()->the_hole_value());
if (arg_count_known) {
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
} else {
value = the_hole;
}
output_frame->SetFrameSlot(args_arguments_offset, value);
DebugPrintOutputSlot(
value, frame_index, args_arguments_offset,
arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n");
output_frame_offset -= kPointerSize;
int length_frame_offset = output_frame_offset;
value = arg_count_known ? caller_arg_count : the_hole;
output_frame->SetFrameSlot(length_frame_offset, value);
DebugPrintOutputSlot(
value, frame_index, length_frame_offset,
arg_count_known ? "args.length\n" : "args.length (the hole)\n");
output_frame_offset -= kPointerSize;
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
(output_frame_size - output_frame_offset) + kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n");
// Copy the register parameters to the failure frame.
int arguments_length_offset = -1;
for (int i = 0; i < param_count; ++i) {
output_frame_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, 0,
output_frame_offset);
if (!arg_count_known &&
descriptor.GetRegisterParameter(i)
.is(descriptor.stack_parameter_count())) {
arguments_length_offset = output_frame_offset;
}
}
// Copy constant stack parameters to the failure frame. If the number of stack
// parameters is not known in the descriptor, the arguments object is the way
// to access them.
for (int i = 0; i < stack_param_count; i++) {
output_frame_offset -= kPointerSize;
Object** stack_parameter = reinterpret_cast<Object**>(
frame_ptr + StandardFrameConstants::kCallerSPOffset +
(stack_param_count - i - 1) * kPointerSize);
value = reinterpret_cast<intptr_t>(*stack_parameter);
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"stack parameter\n");
}
CHECK_EQ(0u, output_frame_offset);
if (!arg_count_known) {
CHECK_GE(arguments_length_offset, 0);
// We know it's a smi because 1) the code stub guarantees the stack
// parameter count is in smi range, and 2) the DoTranslateCommand in the
// parameter loop above translated that to a tagged value.
Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
output_frame->GetFrameSlot(arguments_length_offset));
caller_arg_count = smi_caller_arg_count->value();
output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset,
"args.length\n");
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
output_frame->SetFrameSlot(args_arguments_offset, value);
DebugPrintOutputSlot(value, frame_index, args_arguments_offset,
"args.arguments");
}
// Copy the double registers from the input into the output frame.
CopyDoubleRegisters(output_frame);
// Fill registers containing handler and number of parameters.
SetPlatformCompiledStubRegisters(output_frame, &descriptor);
// Compute this frame's PC, state, and continuation.
Code* trampoline = NULL;
StubFunctionMode function_mode = descriptor.function_mode();
StubFailureTrampolineStub(isolate_, function_mode)
.FindCodeInCache(&trampoline);
DCHECK(trampoline != NULL);
output_frame->SetPc(reinterpret_cast<intptr_t>(
trampoline->instruction_start()));
if (FLAG_enable_embedded_constant_pool) {
Register constant_pool_reg =
StubFailureTrampolineFrame::constant_pool_pointer_register();
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
Code* notify_failure =
isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(notify_failure->entry()));
}
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
DCHECK_NE(DEBUGGER, bailout_type_);
// Walk to the last JavaScript output frame to find out if it has
// adapted arguments.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
}
translated_state_.Prepare(it->frame()->has_adapted_arguments(), stack_fp_);
for (auto& materialization : values_to_materialize_) {
Handle<Object> value = materialization.value_->GetValue();
if (trace_scope_ != nullptr) {
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
reinterpret_cast<intptr_t>(*value));
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
reinterpret_cast<intptr_t>(*value);
}
isolate_->materialized_object_store()->Remove(stack_fp_);
}
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
int frame_index, int parameter_count, int expression_count,
DeoptimizedFrameInfo* info) {
CHECK_EQ(DEBUGGER, bailout_type_);
translated_state_.Prepare(false, nullptr);
TranslatedFrame* frame = &(translated_state_.frames()[frame_index]);
CHECK(frame->kind() == TranslatedFrame::kFunction);
int frame_arg_count = frame->shared_info()->internal_formal_parameter_count();
// The height is #expressions + 1 for context.
CHECK_EQ(expression_count + 1, frame->height());
TranslatedFrame* argument_frame = frame;
if (frame_index > 0) {
TranslatedFrame* previous_frame =
&(translated_state_.frames()[frame_index - 1]);
if (previous_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
argument_frame = previous_frame;
CHECK_EQ(parameter_count, argument_frame->height() - 1);
} else {
CHECK_EQ(frame_arg_count, parameter_count);
}
} else {
CHECK_EQ(frame_arg_count, parameter_count);
}
TranslatedFrame::iterator arg_iter = argument_frame->begin();
arg_iter++; // Skip the function.
arg_iter++; // Skip the receiver.
for (int i = 0; i < parameter_count; i++, arg_iter++) {
if (!arg_iter->IsMaterializedObject()) {
info->SetParameter(i, *(arg_iter->GetValue()));
}
}
TranslatedFrame::iterator iter = frame->begin();
// Skip the function, receiver, context and arguments.
for (int i = 0; i < frame_arg_count + 3; i++, iter++) {
}
for (int i = 0; i < expression_count; i++, iter++) {
if (!iter->IsMaterializedObject()) {
info->SetExpression(i, *(iter->GetValue()));
}
}
}
void Deoptimizer::WriteTranslatedValueToOutput(
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
unsigned output_offset, const char* debug_hint_string,
Address output_address_for_materialization) {
Object* value = (*iterator)->GetRawValue();
WriteValueToOutput(value, *input_index, frame_index, output_offset,
debug_hint_string);
if (value == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
if (output_address_for_materialization == nullptr) {
output_address_for_materialization = output_address;
}
values_to_materialize_.push_back(
{output_address_for_materialization, *iterator});
}
(*iterator)++;
(*input_index)++;
}
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
int frame_index, unsigned output_offset,
const char* debug_hint_string) {
output_[frame_index]->SetFrameSlot(output_offset,
reinterpret_cast<intptr_t>(value));
if (trace_scope_ != nullptr) {
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
output_offset, debug_hint_string);
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
}
}
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
unsigned output_offset,
const char* debug_hint_string) {
if (trace_scope_ != nullptr) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
reinterpret_cast<intptr_t>(output_address), output_offset, value,
debug_hint_string == nullptr ? "" : debug_hint_string);
}
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
unsigned fixed_size = ComputeFixedSize(function_);
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned result = fixed_size + fp_to_sp_delta_ -
StandardFrameConstants::kFixedFrameSizeFromFp;
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size =
ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
CHECK(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
}
return result;
}
unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, and all the incoming arguments.
return ComputeIncomingArgumentSize(function) +
StandardFrameConstants::kFixedFrameSize;
}
unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
// The incoming arguments is the values for formal parameters and
// the receiver. Every slot contains a pointer.
if (function->IsSmi()) {
CHECK_EQ(Smi::cast(function), Smi::FromInt(StackFrame::STUB));
return 0;
}
unsigned arguments =
function->shared()->internal_formal_parameter_count() + 1;
return arguments * kPointerSize;
}
// static
unsigned Deoptimizer::ComputeOutgoingArgumentSize(Code* code,
unsigned bailout_id) {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(code->deoptimization_data());
unsigned height = data->ArgumentsStackHeight(bailout_id)->value();
return height * kPointerSize;
}
Object* Deoptimizer::ComputeLiteral(int index) const {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
FixedArray* literals = data->LiteralArray();
return literals->get(index);
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type,
int max_entry_id) {
// We cannot run this if the serializer is enabled because this will
// cause us to emit relocation information for the external
// references. This is fine because the deoptimizer's code section
// isn't meant to be serialized at all.
CHECK(type == EAGER || type == SOFT || type == LAZY);
DeoptimizerData* data = isolate->deoptimizer_data();
int entry_count = data->deopt_entry_code_entries_[type];
if (max_entry_id < entry_count) return;
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
while (max_entry_id >= entry_count) entry_count *= 2;
CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
MacroAssembler masm(isolate, NULL, 16 * KB);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, entry_count, type);
CodeDesc desc;
masm.GetCode(&desc);
DCHECK(!RelocInfo::RequiresRelocation(desc));
MemoryChunk* chunk = data->deopt_entry_code_[type];
CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
desc.instr_size);
if (!chunk->CommitArea(desc.instr_size)) {
V8::FatalProcessOutOfMemory(
"Deoptimizer::EnsureCodeForDeoptimizationEntry");
}
CopyBytes(chunk->area_start(), desc.buffer,
static_cast<size_t>(desc.instr_size));
Assembler::FlushICache(isolate, chunk->area_start(), desc.instr_size);
data->deopt_entry_code_entries_[type] = entry_count;
}
FrameDescription::FrameDescription(uint32_t frame_size,
JSFunction* function)
: frame_size_(frame_size),
function_(function),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
int FrameDescription::ComputeFixedSize() {
return StandardFrameConstants::kFixedFrameSize +
(ComputeParametersCount() + 1) * kPointerSize;
}
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
if (slot_index >= 0) {
// Local or spill slots. Skip the fixed part of the frame
// including all arguments.
unsigned base = GetFrameSize() - ComputeFixedSize();
return base - ((slot_index + 1) * kPointerSize);
} else {
// Incoming parameter.
int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
unsigned base = GetFrameSize() - arg_size;
return base - ((slot_index + 1) * kPointerSize);
}
}
int FrameDescription::ComputeParametersCount() {
switch (type_) {
case StackFrame::JAVA_SCRIPT:
return function_->shared()->internal_formal_parameter_count();
case StackFrame::ARGUMENTS_ADAPTOR: {
// Last slot contains number of incomming arguments as a smi.
// Can't use GetExpression(0) because it would cause infinite recursion.
return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
}
case StackFrame::STUB:
return -1; // Minus receiver.
default:
FATAL("Unexpected stack frame type");
return 0;
}
}
Object* FrameDescription::GetParameter(int index) {
CHECK_GE(index, 0);
CHECK_LT(index, ComputeParametersCount());
// The slot indexes for incoming arguments are negative.
unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
unsigned FrameDescription::GetExpressionCount() {
CHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned size = GetFrameSize() - ComputeFixedSize();
return size / kPointerSize;
}
Object* FrameDescription::GetExpression(int index) {
DCHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned offset = GetOffsetFromSlotIndex(index);
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
void TranslationBuffer::Add(int32_t value, Zone* zone) {
// This wouldn't handle kMinInt correctly if it ever encountered it.
DCHECK(value != kMinInt);
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
bits = next;
} while (bits != 0);
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
DCHECK(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
int length = contents_.length();
Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
return result;
}
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginGetterStubFrame(int literal_id) {
buffer_->Add(GETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginSetterStubFrame(int literal_id) {
buffer_->Add(SETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginJSFrame(BailoutId node_id,
int literal_id,
unsigned height) {
buffer_->Add(JS_FRAME, zone());
buffer_->Add(node_id.ToInt(), zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginCompiledStubFrame(int height) {
buffer_->Add(COMPILED_STUB_FRAME, zone());
buffer_->Add(height, zone());
}
void Translation::BeginArgumentsObject(int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_length, zone());
}
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT, zone());
buffer_->Add(length, zone());
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT, zone());
buffer_->Add(object_index, zone());
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreBoolRegister(Register reg) {
buffer_->Add(BOOL_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreBoolStackSlot(int index) {
buffer_->Add(BOOL_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL, zone());
buffer_->Add(literal_id, zone());
}
void Translation::StoreArgumentsObject(bool args_known,
int args_index,
int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_known, zone());
buffer_->Add(args_index, zone());
buffer_->Add(args_length, zone());
}
void Translation::StoreJSFrameFunction() {
buffer_->Add(JS_FRAME_FUNCTION, zone());
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case JS_FRAME_FUNCTION:
return 0;
case GETTER_STUB_FRAME:
case SETTER_STUB_FRAME:
case DUPLICATED_OBJECT:
case ARGUMENTS_OBJECT:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case BOOL_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case BOOL_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
case COMPILED_STUB_FRAME:
return 1;
case BEGIN:
case ARGUMENTS_ADAPTOR_FRAME:
case CONSTRUCT_STUB_FRAME:
return 2;
case JS_FRAME:
return 3;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
switch (opcode) {
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
}
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
return "";
}
#endif
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = frame_fps_.length();
frame_fps_.Add(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
bool MaterializedObjectStore::Remove(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return false;
}
CHECK_GE(index, 0);
frame_fps_.Remove(index);
FixedArray* array = isolate()->heap()->materialized_objects();
CHECK_LT(index, array->length());
for (int i = index; i < frame_fps_.length(); i++) {
array->set(i, array->get(i + 1));
}
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
return true;
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
for (int i = 0; i < frame_fps_.length(); i++) {
if (frame_fps_[i] == fp) {
return i;
}
}
return -1;
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
for (int i = array->length(); i < length; i++) {
new_array->set(i, isolate()->heap()->undefined_value());
}
isolate()->heap()->SetRootMaterializedObjects(*new_array);
return new_array;
}
DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub) {
FrameDescription* output_frame = deoptimizer->output_[frame_index];
function_ = output_frame->GetFunction();
context_ = reinterpret_cast<Object*>(output_frame->GetContext());
has_construct_stub_ = has_construct_stub;
expression_count_ = output_frame->GetExpressionCount();
expression_stack_ = new Object* [expression_count_];
// Get the source position using the unoptimized code.
Address pc = reinterpret_cast<Address>(output_frame->GetPc());
Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
source_position_ = code->SourcePosition(pc);
for (int i = 0; i < expression_count_; i++) {
Object* value = output_frame->GetExpression(i);
// Replace materialization markers with the undefined value.
if (value == deoptimizer->isolate()->heap()->arguments_marker()) {
value = deoptimizer->isolate()->heap()->undefined_value();
}
SetExpression(i, value);
}
if (has_arguments_adaptor) {
output_frame = deoptimizer->output_[frame_index - 1];
CHECK_EQ(output_frame->GetFrameType(), StackFrame::ARGUMENTS_ADAPTOR);
}
parameters_count_ = output_frame->ComputeParametersCount();
parameters_ = new Object* [parameters_count_];
for (int i = 0; i < parameters_count_; i++) {
Object* value = output_frame->GetParameter(i);
// Replace materialization markers with the undefined value.
if (value == deoptimizer->isolate()->heap()->arguments_marker()) {
value = deoptimizer->isolate()->heap()->undefined_value();
}
SetParameter(i, value);
}
}
DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
delete[] expression_stack_;
delete[] parameters_;
}
void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
v->VisitPointer(bit_cast<Object**>(&function_));
v->VisitPointer(&context_);
v->VisitPointers(parameters_, parameters_ + parameters_count_);
v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}
const char* Deoptimizer::GetDeoptReason(DeoptReason deopt_reason) {
DCHECK(deopt_reason < kLastDeoptReason);
#define DEOPT_MESSAGES_TEXTS(C, T) T,
static const char* deopt_messages_[] = {
DEOPT_MESSAGES_LIST(DEOPT_MESSAGES_TEXTS)};
#undef DEOPT_MESSAGES_TEXTS
return deopt_messages_[deopt_reason];
}
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
SourcePosition last_position = SourcePosition::Unknown();
Deoptimizer::DeoptReason last_reason = Deoptimizer::kNoReason;
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
RelocInfo::ModeMask(RelocInfo::POSITION);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() >= pc) return DeoptInfo(last_position, NULL, last_reason);
if (info->rmode() == RelocInfo::POSITION) {
int raw_position = static_cast<int>(info->data());
last_position = raw_position ? SourcePosition::FromRaw(raw_position)
: SourcePosition::Unknown();
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
last_reason = static_cast<Deoptimizer::DeoptReason>(info->data());
}
}
return DeoptInfo(SourcePosition::Unknown(), NULL, Deoptimizer::kNoReason);
}
// static
TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kArgumentsObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
double value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object* literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object* TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
double TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject ||
kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object* TranslatedValue::GetRawValue() const {
// If we have a value, return it.
Handle<Object> result_handle;
if (value_.ToHandle(&result_handle)) {
return *result_handle;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return isolate()->heap()->false_value();
} else {
CHECK_EQ(1U, uint32_value());
return isolate()->heap()->true_value();
}
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return isolate()->heap()->arguments_marker();
}
Handle<Object> TranslatedValue::GetValue() {
Handle<Object> result;
// If we already have a value, then get it.
if (value_.ToHandle(&result)) return result;
// Otherwise we have to materialize.
switch (kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kDouble: {
MaterializeSimple();
return value_.ToHandleChecked();
}
case TranslatedValue::kArgumentsObject:
case TranslatedValue::kCapturedObject:
case TranslatedValue::kDuplicatedObject:
return container_->MaterializeObjectAt(object_index());
case TranslatedValue::kInvalid:
FATAL("unexpected case");
return Handle<Object>::null();
}
FATAL("internal error: value missing");
return Handle<Object>::null();
}
void TranslatedValue::MaterializeSimple() {
// If we already have materialized, return.
if (!value_.is_null()) return;
Object* raw_value = GetRawValue();
if (raw_value != isolate()->heap()->arguments_marker()) {
// We can get the value without allocation, just return it here.
value_ = Handle<Object>(raw_value, isolate());
return;
}
switch (kind()) {
case kInt32: {
value_ = Handle<Object>(isolate()->factory()->NewNumber(int32_value()));
return;
}
case kUInt32:
value_ = Handle<Object>(isolate()->factory()->NewNumber(uint32_value()));
return;
case kDouble:
value_ = Handle<Object>(isolate()->factory()->NewNumber(double_value()));
return;
case kCapturedObject:
case kDuplicatedObject:
case kArgumentsObject:
case kInvalid:
case kTagged:
case kBoolBit:
FATAL("internal error: unexpected materialization.");
break;
}
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
case kArgumentsObject:
return true;
default:
return false;
}
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject || kind() == kArgumentsObject) {
return object_length();
} else {
return 0;
}
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory::uint32_at(address + kIntSize);
#else
return Memory::uint32_at(address);
#endif
}
void TranslatedValue::Handlify() {
if (kind() == kTagged) {
value_ = Handle<Object>(raw_literal(), isolate());
raw_literal_ = nullptr;
}
}
TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id,
SharedFunctionInfo* shared_info,
int height) {
TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info,
height);
frame.node_id_ = node_id;
return frame;
}
TranslatedFrame TranslatedFrame::AccessorFrame(
Kind kind, SharedFunctionInfo* shared_info) {
DCHECK(kind == kSetter || kind == kGetter);
return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info);
}
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
SharedFunctionInfo* shared_info, int height) {
return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(),
shared_info, height);
}
TranslatedFrame TranslatedFrame::ConstructStubFrame(
SharedFunctionInfo* shared_info, int height) {
return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info,
height);
}
int TranslatedFrame::GetValueCount() {
switch (kind()) {
case kFunction: {
int parameter_count =
raw_shared_info_->internal_formal_parameter_count() + 1;
return height_ + parameter_count + 1;
}
case kGetter:
return 2; // Function and receiver.
case kSetter:
return 3; // Function, receiver and the value to set.
case kArgumentsAdaptor:
case kConstructStub:
return 1 + height_;
case kCompiledStub:
return height_;
case kInvalid:
UNREACHABLE();
break;
}
UNREACHABLE();
return -1;
}
void TranslatedFrame::Handlify() {
if (raw_shared_info_ != nullptr) {
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
raw_shared_info_ = nullptr;
}
for (auto& value : values_) {
value.Handlify();
}
}
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
FILE* trace_file) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::JS_FRAME: {
BailoutId node_id = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
base::SmartArrayPointer<char> name =
shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading input frame %s", name.get());
int arg_count = shared_info->internal_formal_parameter_count() + 1;
PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n",
node_id.ToInt(), arg_count, height);
}
return TranslatedFrame::JSFrame(node_id, shared_info, height);
}
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
base::SmartArrayPointer<char> name =
shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
}
case Translation::CONSTRUCT_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
base::SmartArrayPointer<char> name =
shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading construct stub frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ConstructStubFrame(shared_info, height);
}
case Translation::GETTER_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
if (trace_file != nullptr) {
base::SmartArrayPointer<char> name =
shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading getter frame %s; inputs:\n", name.get());
}
return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter,
shared_info);
}
case Translation::SETTER_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
if (trace_file != nullptr) {
base::SmartArrayPointer<char> name =
shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading setter frame %s; inputs:\n", name.get());
}
return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter,
shared_info);
}
case Translation::COMPILED_STUB_FRAME: {
int height = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file,
" reading compiler stub frame => height=%d; inputs:\n", height);
}
return TranslatedFrame::CompiledStubFrame(height,
literal_array->GetIsolate());
}
case Translation::BEGIN:
case Translation::DUPLICATED_OBJECT:
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::BOOL_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::BOOL_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
case Translation::JS_FRAME_FUNCTION:
break;
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedFrame::InvalidFrame();
}
// static
void TranslatedFrame::AdvanceIterator(
std::deque<TranslatedValue>::iterator* iter) {
int values_to_skip = 1;
while (values_to_skip > 0) {
// Consume the current element.
values_to_skip--;
// Add all the children.
values_to_skip += (*iter)->GetChildrenCount();
(*iter)++;
}
}
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
TranslatedValue TranslatedState::CreateNextTranslatedValue(
int frame_index, int value_index, TranslationIterator* iterator,
FixedArray* literal_array, Address fp, RegisterValues* registers,
FILE* trace_file) {
disasm::NameConverter converter;
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
int object_id = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file, "duplicated object #%d", object_id);
}
object_positions_.push_back(object_positions_[object_id]);
return TranslatedValue::NewDuplicateObject(this, object_id);
}
case Translation::ARGUMENTS_OBJECT: {
int arg_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "argumets object #%d (length = %d)", object_index,
arg_count);
}
object_positions_.push_back({frame_index, value_index});
return TranslatedValue::NewArgumentsObject(this, arg_count, object_index);
}
case Translation::CAPTURED_OBJECT: {
int field_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
field_count);
}
object_positions_.push_back({frame_index, value_index});
return TranslatedValue::NewDeferredObject(this, field_count,
object_index);
}
case Translation::REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
}
return TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
}
case Translation::BOOL_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
converter.NameOfCPURegister(input_reg));
}
return TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
double value = registers->GetDoubleRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (bool)", value,
DoubleRegister::from_code(input_reg).ToString());
}
return TranslatedValue::NewDouble(this, value);
}
case Translation::STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
case Translation::INT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
return TranslatedValue::NewInt32(this, value);
}
case Translation::UINT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewUInt32(this, value);
}
case Translation::BOOL_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewBool(this, value);
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
double value = ReadDoubleValue(fp + slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewDouble(this, value);
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
Object* value = literal_array->get(literal_index);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
reinterpret_cast<intptr_t>(value), literal_index);
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, value);
}
case Translation::JS_FRAME_FUNCTION: {
int slot_offset = JavaScriptFrameConstants::kFunctionOffset;
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (frame function) ", value);
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedValue(nullptr, TranslatedValue::kInvalid);
}
TranslatedState::TranslatedState(JavaScriptFrame* frame)
: isolate_(nullptr),
stack_frame_pointer_(nullptr),
has_adapted_arguments_(false) {
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
nullptr /* trace file */);
}
TranslatedState::TranslatedState()
: isolate_(nullptr),
stack_frame_pointer_(nullptr),
has_adapted_arguments_(false) {}
void TranslatedState::Init(Address input_frame_pointer,
TranslationIterator* iterator,
FixedArray* literal_array, RegisterValues* registers,
FILE* trace_file) {
DCHECK(frames_.empty());
isolate_ = literal_array->GetIsolate();
// Read out the 'header' translation.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
CHECK(opcode == Translation::BEGIN);
int count = iterator->Next();
iterator->Next(); // Drop JS frames count.
frames_.reserve(count);
std::stack<int> nested_counts;
// Read the frames
for (int i = 0; i < count; i++) {
// Read the frame descriptor.
frames_.push_back(CreateNextTranslatedFrame(
iterator, literal_array, input_frame_pointer, trace_file));
TranslatedFrame& frame = frames_.back();
// Read the values.
int values_to_process = frame.GetValueCount();
while (values_to_process > 0 || !nested_counts.empty()) {
if (trace_file != nullptr) {
if (nested_counts.empty()) {
// For top level values, print the value number.
PrintF(trace_file, " %3i: ",
frame.GetValueCount() - values_to_process);
} else {
// Take care of indenting for nested values.
PrintF(trace_file, " ");
for (size_t j = 0; j < nested_counts.size(); j++) {
PrintF(trace_file, " ");
}
}
}
TranslatedValue value = CreateNextTranslatedValue(
i, static_cast<int>(frame.values_.size()), iterator, literal_array,
input_frame_pointer, registers, trace_file);
frame.Add(value);
if (trace_file != nullptr) {
PrintF(trace_file, "\n");
}
// Update the value count and resolve the nesting.
values_to_process--;
int children_count = value.GetChildrenCount();
if (children_count > 0) {
nested_counts.push(values_to_process);
values_to_process = children_count;
} else {
while (values_to_process == 0 && !nested_counts.empty()) {
values_to_process = nested_counts.top();
nested_counts.pop();
}
}
}
}
CHECK(!iterator->HasNext() ||
static_cast<Translation::Opcode>(iterator->Next()) ==
Translation::BEGIN);
}
void TranslatedState::Prepare(bool has_adapted_arguments,
Address stack_frame_pointer) {
for (auto& frame : frames_) frame.Handlify();
stack_frame_pointer_ = stack_frame_pointer;
has_adapted_arguments_ = has_adapted_arguments;
UpdateFromPreviouslyMaterializedObjects();
}
Handle<Object> TranslatedState::MaterializeAt(int frame_index,
int* value_index) {
TranslatedFrame* frame = &(frames_[frame_index]);
DCHECK(static_cast<size_t>(*value_index) < frame->values_.size());
TranslatedValue* slot = &(frame->values_[*value_index]);
(*value_index)++;
switch (slot->kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kDouble: {
slot->MaterializeSimple();
Handle<Object> value = slot->GetValue();
if (value->IsMutableHeapNumber()) {
HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map());
}
return value;
}
case TranslatedValue::kArgumentsObject: {
int length = slot->GetChildrenCount();
Handle<JSObject> arguments;
if (GetAdaptedArguments(&arguments, frame_index)) {
// Store the materialized object and consume the nested values.
for (int i = 0; i < length; ++i) {
MaterializeAt(frame_index, value_index);
}
} else {
Handle<JSFunction> function =
Handle<JSFunction>::cast(frame->front().GetValue());
arguments = isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
DCHECK_EQ(array->length(), length);
arguments->set_elements(*array);
for (int i = 0; i < length; ++i) {
Handle<Object> value = MaterializeAt(frame_index, value_index);
array->set(i, *value);
}
}
slot->value_ = arguments;
return arguments;
}
case TranslatedValue::kCapturedObject: {
int length = slot->GetChildrenCount();
// The map must be a tagged object.
CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged);
Handle<Object> result;
if (slot->value_.ToHandle(&result)) {
// This has been previously materialized, return the previous value.
// We still need to skip all the nested objects.
for (int i = 0; i < length; i++) {
MaterializeAt(frame_index, value_index);
}
return result;
}
Handle<Object> map_object = MaterializeAt(frame_index, value_index);
Handle<Map> map =
Map::GeneralizeAllFieldRepresentations(Handle<Map>::cast(map_object));
switch (map->instance_type()) {
case MUTABLE_HEAP_NUMBER_TYPE:
case HEAP_NUMBER_TYPE: {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly.
Handle<Object> object = MaterializeAt(frame_index, value_index);
slot->value_ = object;
// On 32-bit architectures, there is an extra slot there because
// the escape analysis calculates the number of slots as
// object-size/pointer-size. To account for this, we read out
// any extra slots.
for (int i = 0; i < length - 2; i++) {
MaterializeAt(frame_index, value_index);
}
return object;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED);
slot->value_ = object;
Handle<Object> properties = MaterializeAt(frame_index, value_index);
Handle<Object> elements = MaterializeAt(frame_index, value_index);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
for (int i = 0; i < length - 3; ++i) {
Handle<Object> value = MaterializeAt(frame_index, value_index);
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
object->FastPropertyAtPut(index, *value);
}
return object;
}
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate_->factory()->NewJSArray(0, map->elements_kind());
slot->value_ = object;
Handle<Object> properties = MaterializeAt(frame_index, value_index);
Handle<Object> elements = MaterializeAt(frame_index, value_index);
Handle<Object> length = MaterializeAt(frame_index, value_index);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
object->set_length(*length);
return object;
}
default:
PrintF(stderr, "[couldn't handle instance type %d]\n",
map->instance_type());
FATAL("unreachable");
return Handle<Object>::null();
}
UNREACHABLE();
break;
}
case TranslatedValue::kDuplicatedObject: {
int object_index = slot->object_index();
TranslatedState::ObjectPosition pos = object_positions_[object_index];
// Make sure the duplicate is refering to a previous object.
DCHECK(pos.frame_index_ < frame_index ||
(pos.frame_index_ == frame_index &&
pos.value_index_ < *value_index - 1));
Handle<Object> object =
frames_[pos.frame_index_].values_[pos.value_index_].GetValue();
// The object should have a (non-sentinel) value.
DCHECK(!object.is_null() &&
!object.is_identical_to(isolate_->factory()->arguments_marker()));
slot->value_ = object;
return object;
}
case TranslatedValue::kInvalid:
UNREACHABLE();
break;
}
FATAL("We should never get here - unexpected deopt slot kind.");
return Handle<Object>::null();
}
Handle<Object> TranslatedState::MaterializeObjectAt(int object_index) {
TranslatedState::ObjectPosition pos = object_positions_[object_index];
return MaterializeAt(pos.frame_index_, &(pos.value_index_));
}
bool TranslatedState::GetAdaptedArguments(Handle<JSObject>* result,
int frame_index) {
if (frame_index == 0) {
// Top level frame -> we need to go to the parent frame on the stack.
if (!has_adapted_arguments_) return false;
// This is top level frame, so we need to go to the stack to get
// this function's argument. (Note that this relies on not inlining
// recursive functions!)
Handle<JSFunction> function =
Handle<JSFunction>::cast(frames_[frame_index].front().GetValue());
*result = Handle<JSObject>::cast(Accessors::FunctionGetArguments(function));
return true;
} else {
TranslatedFrame* previous_frame = &(frames_[frame_index]);
if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) {
return false;
}
// We get the adapted arguments from the parent translation.
int length = previous_frame->height();
Handle<JSFunction> function =
Handle<JSFunction>::cast(previous_frame->front().GetValue());
Handle<JSObject> arguments =
isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
arguments->set_elements(*array);
TranslatedFrame::iterator arg_iterator = previous_frame->begin();
arg_iterator++; // Skip function.
for (int i = 0; i < length; ++i) {
Handle<Object> value = arg_iterator->GetValue();
array->set(i, *value);
arg_iterator++;
}
CHECK(arg_iterator == previous_frame->end());
*result = arguments;
return true;
}
}
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
int jsframe_index, int* args_count) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kFunction) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
// We have the JS function frame, now check if it has arguments adaptor.
if (i > 0 &&
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
*args_count = frames_[i - 1].height();
return &(frames_[i - 1]);
}
*args_count =
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
return &(frames_[i]);
}
}
}
return nullptr;
}
void TranslatedState::StoreMaterializedValuesAndDeopt() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
bool new_store = false;
if (previously_materialized_objects.is_null()) {
previously_materialized_objects =
isolate_->factory()->NewFixedArray(length);
for (int i = 0; i < length; i++) {
previously_materialized_objects->set(i, *marker);
}
new_store = true;
}
DCHECK_EQ(length, previously_materialized_objects->length());
bool value_changed = false;
for (int i = 0; i < length; i++) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
DCHECK(value_info->IsMaterializedObject());
Handle<Object> value(value_info->GetRawValue(), isolate_);
if (!value.is_identical_to(marker)) {
if (previously_materialized_objects->get(i) == *marker) {
previously_materialized_objects->set(i, *value);
value_changed = true;
} else {
DCHECK(previously_materialized_objects->get(i) == *value);
}
}
}
if (new_store && value_changed) {
materialized_store->Set(stack_frame_pointer_,
previously_materialized_objects);
DCHECK_EQ(TranslatedFrame::kFunction, frames_[0].kind());
Object* const function = frames_[0].front().GetRawValue();
Deoptimizer::DeoptimizeFunction(JSFunction::cast(function));
}
}
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
// If we have no previously materialized objects, there is nothing to do.
if (previously_materialized_objects.is_null()) return;
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
DCHECK_EQ(length, previously_materialized_objects->length());
for (int i = 0; i < length; i++) {
// For a previously materialized objects, inject their value into the
// translated values.
if (previously_materialized_objects->get(i) != *marker) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
DCHECK(value_info->IsMaterializedObject());
value_info->value_ =
Handle<Object>(previously_materialized_objects->get(i), isolate_);
}
}
}
} // namespace internal
} // namespace v8