v8/test/cctest/compiler/test-gap-resolver.cc
bbudge 8730875b2b [Turbofan] Fix GapResolver tests.
Fixes bug in test-gap-resolver.cc that didn't test different move reps.
Fixes test canonicalization so all slots have the same type (non-float).
Improve test failure text output.

LOG=N
BUG=v8:5187

Review-Url: https://codereview.chromium.org/2169493002
Cr-Commit-Position: refs/heads/master@{#37915}
2016-07-20 19:09:51 +00:00

266 lines
8.1 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
void ExecuteInParallel(const ParallelMove* moves) {
InterpreterState copy(*this);
for (const auto m : *moves) {
if (!m->IsRedundant()) write(m->destination(), copy.read(m->source()));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
bool operator!=(const InterpreterState& other) const {
return values_ != other.values_;
}
private:
struct Key {
bool is_constant;
MachineRepresentation rep;
LocationOperand::LocationKind kind;
int index;
bool operator<(const Key& other) const {
if (this->is_constant != other.is_constant) {
return this->is_constant;
}
if (this->rep != other.rep) {
return static_cast<int>(this->rep) < static_cast<int>(other.rep);
}
if (this->kind != other.kind) {
return this->kind < other.kind;
}
return this->index < other.index;
}
bool operator==(const Key& other) const {
return this->is_constant == other.is_constant && this->rep == other.rep &&
this->kind == other.kind && this->index == other.index;
}
};
// Internally, the state is a normalized permutation of (kind,index) pairs.
typedef Key Value;
typedef std::map<Key, Value> OperandMap;
Value read(const InstructionOperand& op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand& op, Value v) {
if (v == ValueFor(op)) {
values_.erase(KeyFor(op));
} else {
values_[KeyFor(op)] = v;
}
}
static Key KeyFor(const InstructionOperand& op) {
bool is_constant = op.IsConstant();
MachineRepresentation rep =
v8::internal::compiler::InstructionSequence::DefaultRepresentation();
LocationOperand::LocationKind kind;
int index;
if (!is_constant) {
const LocationOperand& loc_op = LocationOperand::cast(op);
if (loc_op.IsAnyRegister()) {
if (loc_op.IsFPRegister()) {
rep = kSimpleFPAliasing ? MachineRepresentation::kFloat64
: loc_op.representation();
}
index = loc_op.register_code();
} else {
index = loc_op.index();
}
kind = loc_op.location_kind();
} else {
index = ConstantOperand::cast(op).virtual_register();
kind = LocationOperand::REGISTER;
}
Key key = {is_constant, rep, kind, index};
return key;
}
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
static InstructionOperand FromKey(Key key) {
if (key.is_constant) {
return ConstantOperand(key.index);
}
return AllocatedOperand(key.kind, key.rep, key.index);
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
for (OperandMap::const_iterator it = is.values_.begin();
it != is.values_.end(); ++it) {
if (it != is.values_.begin()) os << " ";
InstructionOperand source = FromKey(it->second);
InstructionOperand destination = FromKey(it->first);
MoveOperands mo(source, destination);
PrintableMoveOperands pmo = {RegisterConfiguration::Turbofan(), &mo};
os << pmo;
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
state_.ExecuteInParallel(moves);
}
void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
moves->AddMove(*destination, *source);
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* moves) {
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
Zone* const zone_;
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
ParallelMove* Create(int size) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
std::set<InstructionOperand, CompareOperandModuloType> seen;
for (int i = 0; i < size; ++i) {
MachineRepresentation rep = RandomRepresentation();
MoveOperands mo(CreateRandomOperand(true, rep),
CreateRandomOperand(false, rep));
if (!mo.IsRedundant() && seen.find(mo.destination()) == seen.end()) {
parallel_move->AddMove(mo.source(), mo.destination());
seen.insert(mo.destination());
}
}
return parallel_move;
}
private:
MachineRepresentation RandomRepresentation() {
int index = rng_->NextInt(5);
switch (index) {
case 0:
return MachineRepresentation::kWord32;
case 1:
return MachineRepresentation::kWord64;
case 2:
// TODO(bbudge) Re-enable float operands when GapResolver correctly
// handles FP aliasing.
return kSimpleFPAliasing ? MachineRepresentation::kFloat32
: MachineRepresentation::kFloat64;
case 3:
return MachineRepresentation::kFloat64;
case 4:
return MachineRepresentation::kTagged;
}
UNREACHABLE();
return MachineRepresentation::kNone;
}
InstructionOperand CreateRandomOperand(bool is_source,
MachineRepresentation rep) {
auto conf = RegisterConfiguration::Turbofan();
auto GetRegisterCode = [&conf](MachineRepresentation rep, int index) {
switch (rep) {
case MachineRepresentation::kFloat32:
case MachineRepresentation::kFloat64:
return conf->RegisterConfiguration::GetAllocatableDoubleCode(index);
break;
default:
return conf->RegisterConfiguration::GetAllocatableGeneralCode(index);
break;
}
UNREACHABLE();
return static_cast<int>(Register::kCode_no_reg);
};
int index = rng_->NextInt(7);
// destination can't be Constant.
switch (rng_->NextInt(is_source ? 5 : 4)) {
case 0:
return AllocatedOperand(LocationOperand::STACK_SLOT, rep, index);
case 1:
return AllocatedOperand(LocationOperand::REGISTER, rep, index);
case 2:
return ExplicitOperand(LocationOperand::REGISTER, rep,
GetRegisterCode(rep, 1));
case 3:
return ExplicitOperand(LocationOperand::STACK_SLOT, rep,
GetRegisterCode(rep, index));
case 4:
return ConstantOperand(index);
}
UNREACHABLE();
return InstructionOperand();
}
private:
v8::base::RandomNumberGenerator* rng_;
};
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 20; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
ParallelMove* pm = pmc.Create(size);
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1(pmc.main_zone());
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2(pmc.main_zone());
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK_EQ(mi1.state(), mi2.state());
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8