d80d85bfc1
R=mlippautz@chromium.org Change-Id: Ie5ff0347d7c849e1941f8c8237a0bd56fdb68a4e Reviewed-on: https://chromium-review.googlesource.com/768672 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Commit-Queue: Michael Starzinger <mstarzinger@chromium.org> Cr-Commit-Position: refs/heads/master@{#49372}
1293 lines
46 KiB
C++
1293 lines
46 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#if V8_TARGET_ARCH_X64
|
|
|
|
#include "src/api-arguments.h"
|
|
#include "src/bootstrapper.h"
|
|
#include "src/code-stubs.h"
|
|
#include "src/counters.h"
|
|
#include "src/double.h"
|
|
#include "src/frame-constants.h"
|
|
#include "src/frames.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/ic/ic.h"
|
|
#include "src/ic/stub-cache.h"
|
|
#include "src/isolate.h"
|
|
#include "src/objects-inl.h"
|
|
#include "src/objects/regexp-match-info.h"
|
|
#include "src/regexp/jsregexp.h"
|
|
#include "src/regexp/regexp-macro-assembler.h"
|
|
#include "src/runtime/runtime.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
|
|
__ popq(rcx);
|
|
__ movq(MemOperand(rsp, rax, times_8, 0), rdi);
|
|
__ pushq(rdi);
|
|
__ pushq(rbx);
|
|
__ pushq(rcx);
|
|
__ addq(rax, Immediate(3));
|
|
__ TailCallRuntime(Runtime::kNewArray);
|
|
}
|
|
|
|
|
|
void DoubleToIStub::Generate(MacroAssembler* masm) {
|
|
Register final_result_reg = this->destination();
|
|
|
|
Label check_negative, process_64_bits, done;
|
|
|
|
// Account for return address and saved regs.
|
|
const int kArgumentOffset = 3 * kRegisterSize;
|
|
|
|
MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
|
|
MemOperand exponent_operand(
|
|
MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));
|
|
|
|
Register scratch1 = no_reg;
|
|
Register scratch_candidates[3] = { rbx, rdx, rdi };
|
|
for (int i = 0; i < 3; i++) {
|
|
scratch1 = scratch_candidates[i];
|
|
if (final_result_reg != scratch1) break;
|
|
}
|
|
|
|
// Since we must use rcx for shifts below, use some other register (rax)
|
|
// to calculate the result if ecx is the requested return register.
|
|
Register result_reg = final_result_reg == rcx ? rax : final_result_reg;
|
|
// Save ecx if it isn't the return register and therefore volatile, or if it
|
|
// is the return register, then save the temp register we use in its stead
|
|
// for the result.
|
|
Register save_reg = final_result_reg == rcx ? rax : rcx;
|
|
__ pushq(scratch1);
|
|
__ pushq(save_reg);
|
|
|
|
__ movl(scratch1, mantissa_operand);
|
|
__ Movsd(kScratchDoubleReg, mantissa_operand);
|
|
__ movl(rcx, exponent_operand);
|
|
|
|
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
|
|
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
|
|
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
|
|
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
|
|
__ j(below, &process_64_bits);
|
|
|
|
// Result is entirely in lower 32-bits of mantissa
|
|
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
|
|
__ subl(rcx, Immediate(delta));
|
|
__ xorl(result_reg, result_reg);
|
|
__ cmpl(rcx, Immediate(31));
|
|
__ j(above, &done);
|
|
__ shll_cl(scratch1);
|
|
__ jmp(&check_negative);
|
|
|
|
__ bind(&process_64_bits);
|
|
__ Cvttsd2siq(result_reg, kScratchDoubleReg);
|
|
__ jmp(&done, Label::kNear);
|
|
|
|
// If the double was negative, negate the integer result.
|
|
__ bind(&check_negative);
|
|
__ movl(result_reg, scratch1);
|
|
__ negl(result_reg);
|
|
__ cmpl(exponent_operand, Immediate(0));
|
|
__ cmovl(greater, result_reg, scratch1);
|
|
|
|
// Restore registers
|
|
__ bind(&done);
|
|
if (final_result_reg != result_reg) {
|
|
DCHECK(final_result_reg == rcx);
|
|
__ movl(final_result_reg, result_reg);
|
|
}
|
|
__ popq(save_reg);
|
|
__ popq(scratch1);
|
|
__ ret(0);
|
|
}
|
|
|
|
void MathPowStub::Generate(MacroAssembler* masm) {
|
|
const Register exponent = MathPowTaggedDescriptor::exponent();
|
|
DCHECK(exponent == rdx);
|
|
const Register scratch = rcx;
|
|
const XMMRegister double_result = xmm3;
|
|
const XMMRegister double_base = xmm2;
|
|
const XMMRegister double_exponent = xmm1;
|
|
const XMMRegister double_scratch = xmm4;
|
|
|
|
Label call_runtime, done, exponent_not_smi, int_exponent;
|
|
|
|
// Save 1 in double_result - we need this several times later on.
|
|
__ movp(scratch, Immediate(1));
|
|
__ Cvtlsi2sd(double_result, scratch);
|
|
|
|
if (exponent_type() == TAGGED) {
|
|
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
|
|
__ SmiToInteger32(exponent, exponent);
|
|
__ jmp(&int_exponent);
|
|
|
|
__ bind(&exponent_not_smi);
|
|
__ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
|
|
}
|
|
|
|
if (exponent_type() != INTEGER) {
|
|
Label fast_power, try_arithmetic_simplification;
|
|
// Detect integer exponents stored as double.
|
|
__ DoubleToI(exponent, double_exponent, double_scratch,
|
|
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
|
|
&try_arithmetic_simplification,
|
|
&try_arithmetic_simplification);
|
|
__ jmp(&int_exponent);
|
|
|
|
__ bind(&try_arithmetic_simplification);
|
|
__ Cvttsd2si(exponent, double_exponent);
|
|
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
|
|
__ cmpl(exponent, Immediate(0x1));
|
|
__ j(overflow, &call_runtime);
|
|
|
|
// Using FPU instructions to calculate power.
|
|
Label fast_power_failed;
|
|
__ bind(&fast_power);
|
|
__ fnclex(); // Clear flags to catch exceptions later.
|
|
// Transfer (B)ase and (E)xponent onto the FPU register stack.
|
|
__ subp(rsp, Immediate(kDoubleSize));
|
|
__ Movsd(Operand(rsp, 0), double_exponent);
|
|
__ fld_d(Operand(rsp, 0)); // E
|
|
__ Movsd(Operand(rsp, 0), double_base);
|
|
__ fld_d(Operand(rsp, 0)); // B, E
|
|
|
|
// Exponent is in st(1) and base is in st(0)
|
|
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
|
|
// FYL2X calculates st(1) * log2(st(0))
|
|
__ fyl2x(); // X
|
|
__ fld(0); // X, X
|
|
__ frndint(); // rnd(X), X
|
|
__ fsub(1); // rnd(X), X-rnd(X)
|
|
__ fxch(1); // X - rnd(X), rnd(X)
|
|
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
|
|
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
|
|
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
|
|
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
|
|
// FSCALE calculates st(0) * 2^st(1)
|
|
__ fscale(); // 2^X, rnd(X)
|
|
__ fstp(1);
|
|
// Bail out to runtime in case of exceptions in the status word.
|
|
__ fnstsw_ax();
|
|
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
|
|
__ j(not_zero, &fast_power_failed, Label::kNear);
|
|
__ fstp_d(Operand(rsp, 0));
|
|
__ Movsd(double_result, Operand(rsp, 0));
|
|
__ addp(rsp, Immediate(kDoubleSize));
|
|
__ jmp(&done);
|
|
|
|
__ bind(&fast_power_failed);
|
|
__ fninit();
|
|
__ addp(rsp, Immediate(kDoubleSize));
|
|
__ jmp(&call_runtime);
|
|
}
|
|
|
|
// Calculate power with integer exponent.
|
|
__ bind(&int_exponent);
|
|
const XMMRegister double_scratch2 = double_exponent;
|
|
// Back up exponent as we need to check if exponent is negative later.
|
|
__ movp(scratch, exponent); // Back up exponent.
|
|
__ Movsd(double_scratch, double_base); // Back up base.
|
|
__ Movsd(double_scratch2, double_result); // Load double_exponent with 1.
|
|
|
|
// Get absolute value of exponent.
|
|
Label no_neg, while_true, while_false;
|
|
__ testl(scratch, scratch);
|
|
__ j(positive, &no_neg, Label::kNear);
|
|
__ negl(scratch);
|
|
__ bind(&no_neg);
|
|
|
|
__ j(zero, &while_false, Label::kNear);
|
|
__ shrl(scratch, Immediate(1));
|
|
// Above condition means CF==0 && ZF==0. This means that the
|
|
// bit that has been shifted out is 0 and the result is not 0.
|
|
__ j(above, &while_true, Label::kNear);
|
|
__ Movsd(double_result, double_scratch);
|
|
__ j(zero, &while_false, Label::kNear);
|
|
|
|
__ bind(&while_true);
|
|
__ shrl(scratch, Immediate(1));
|
|
__ Mulsd(double_scratch, double_scratch);
|
|
__ j(above, &while_true, Label::kNear);
|
|
__ Mulsd(double_result, double_scratch);
|
|
__ j(not_zero, &while_true);
|
|
|
|
__ bind(&while_false);
|
|
// If the exponent is negative, return 1/result.
|
|
__ testl(exponent, exponent);
|
|
__ j(greater, &done);
|
|
__ Divsd(double_scratch2, double_result);
|
|
__ Movsd(double_result, double_scratch2);
|
|
// Test whether result is zero. Bail out to check for subnormal result.
|
|
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
|
|
__ Xorpd(double_scratch2, double_scratch2);
|
|
__ Ucomisd(double_scratch2, double_result);
|
|
// double_exponent aliased as double_scratch2 has already been overwritten
|
|
// and may not have contained the exponent value in the first place when the
|
|
// input was a smi. We reset it with exponent value before bailing out.
|
|
__ j(not_equal, &done);
|
|
__ Cvtlsi2sd(double_exponent, exponent);
|
|
|
|
// Returning or bailing out.
|
|
__ bind(&call_runtime);
|
|
// Move base to the correct argument register. Exponent is already in xmm1.
|
|
__ Movsd(xmm0, double_base);
|
|
DCHECK(double_exponent == xmm1);
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
__ PrepareCallCFunction(2);
|
|
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
|
|
2);
|
|
}
|
|
// Return value is in xmm0.
|
|
__ Movsd(double_result, xmm0);
|
|
|
|
__ bind(&done);
|
|
__ ret(0);
|
|
}
|
|
|
|
Movability CEntryStub::NeedsImmovableCode() { return kMovable; }
|
|
|
|
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
CEntryStub::GenerateAheadOfTime(isolate);
|
|
// It is important that the store buffer overflow stubs are generated first.
|
|
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
|
|
StoreFastElementStub::GenerateAheadOfTime(isolate);
|
|
}
|
|
|
|
|
|
void CodeStub::GenerateFPStubs(Isolate* isolate) {
|
|
}
|
|
|
|
|
|
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
|
|
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
|
|
stub.GetCode();
|
|
CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
|
|
save_doubles.GetCode();
|
|
}
|
|
|
|
|
|
void CEntryStub::Generate(MacroAssembler* masm) {
|
|
// rax: number of arguments including receiver
|
|
// rbx: pointer to C function (C callee-saved)
|
|
// rbp: frame pointer of calling JS frame (restored after C call)
|
|
// rsp: stack pointer (restored after C call)
|
|
// rsi: current context (restored)
|
|
//
|
|
// If argv_in_register():
|
|
// r15: pointer to the first argument
|
|
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
#ifdef _WIN64
|
|
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
|
|
// stack to be aligned to 16 bytes. It only allows a single-word to be
|
|
// returned in register rax. Larger return sizes must be written to an address
|
|
// passed as a hidden first argument.
|
|
const Register kCCallArg0 = rcx;
|
|
const Register kCCallArg1 = rdx;
|
|
const Register kCCallArg2 = r8;
|
|
const Register kCCallArg3 = r9;
|
|
const int kArgExtraStackSpace = 2;
|
|
const int kMaxRegisterResultSize = 1;
|
|
#else
|
|
// GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
|
|
// are returned in rax, and a struct of two pointers are returned in rax+rdx.
|
|
// Larger return sizes must be written to an address passed as a hidden first
|
|
// argument.
|
|
const Register kCCallArg0 = rdi;
|
|
const Register kCCallArg1 = rsi;
|
|
const Register kCCallArg2 = rdx;
|
|
const Register kCCallArg3 = rcx;
|
|
const int kArgExtraStackSpace = 0;
|
|
const int kMaxRegisterResultSize = 2;
|
|
#endif // _WIN64
|
|
|
|
// Enter the exit frame that transitions from JavaScript to C++.
|
|
int arg_stack_space =
|
|
kArgExtraStackSpace +
|
|
(result_size() <= kMaxRegisterResultSize ? 0 : result_size());
|
|
if (argv_in_register()) {
|
|
DCHECK(!save_doubles());
|
|
DCHECK(!is_builtin_exit());
|
|
__ EnterApiExitFrame(arg_stack_space);
|
|
// Move argc into r14 (argv is already in r15).
|
|
__ movp(r14, rax);
|
|
} else {
|
|
__ EnterExitFrame(
|
|
arg_stack_space, save_doubles(),
|
|
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
|
|
}
|
|
|
|
// rbx: pointer to builtin function (C callee-saved).
|
|
// rbp: frame pointer of exit frame (restored after C call).
|
|
// rsp: stack pointer (restored after C call).
|
|
// r14: number of arguments including receiver (C callee-saved).
|
|
// r15: argv pointer (C callee-saved).
|
|
|
|
// Check stack alignment.
|
|
if (FLAG_debug_code) {
|
|
__ CheckStackAlignment();
|
|
}
|
|
|
|
// Call C function. The arguments object will be created by stubs declared by
|
|
// DECLARE_RUNTIME_FUNCTION().
|
|
if (result_size() <= kMaxRegisterResultSize) {
|
|
// Pass a pointer to the Arguments object as the first argument.
|
|
// Return result in single register (rax), or a register pair (rax, rdx).
|
|
__ movp(kCCallArg0, r14); // argc.
|
|
__ movp(kCCallArg1, r15); // argv.
|
|
__ Move(kCCallArg2, ExternalReference::isolate_address(isolate()));
|
|
} else {
|
|
DCHECK_LE(result_size(), 2);
|
|
// Pass a pointer to the result location as the first argument.
|
|
__ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
|
|
// Pass a pointer to the Arguments object as the second argument.
|
|
__ movp(kCCallArg1, r14); // argc.
|
|
__ movp(kCCallArg2, r15); // argv.
|
|
__ Move(kCCallArg3, ExternalReference::isolate_address(isolate()));
|
|
}
|
|
__ call(rbx);
|
|
|
|
if (result_size() > kMaxRegisterResultSize) {
|
|
// Read result values stored on stack. Result is stored
|
|
// above the the two Arguments object slots on Win64.
|
|
DCHECK_LE(result_size(), 2);
|
|
__ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
|
|
__ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
|
|
}
|
|
// Result is in rax or rdx:rax - do not destroy these registers!
|
|
|
|
// Check result for exception sentinel.
|
|
Label exception_returned;
|
|
__ CompareRoot(rax, Heap::kExceptionRootIndex);
|
|
__ j(equal, &exception_returned);
|
|
|
|
// Check that there is no pending exception, otherwise we
|
|
// should have returned the exception sentinel.
|
|
if (FLAG_debug_code) {
|
|
Label okay;
|
|
__ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
|
|
ExternalReference pending_exception_address(
|
|
IsolateAddressId::kPendingExceptionAddress, isolate());
|
|
Operand pending_exception_operand =
|
|
masm->ExternalOperand(pending_exception_address);
|
|
__ cmpp(r14, pending_exception_operand);
|
|
__ j(equal, &okay, Label::kNear);
|
|
__ int3();
|
|
__ bind(&okay);
|
|
}
|
|
|
|
// Exit the JavaScript to C++ exit frame.
|
|
__ LeaveExitFrame(save_doubles(), !argv_in_register());
|
|
__ ret(0);
|
|
|
|
// Handling of exception.
|
|
__ bind(&exception_returned);
|
|
|
|
ExternalReference pending_handler_context_address(
|
|
IsolateAddressId::kPendingHandlerContextAddress, isolate());
|
|
ExternalReference pending_handler_entrypoint_address(
|
|
IsolateAddressId::kPendingHandlerEntrypointAddress, isolate());
|
|
ExternalReference pending_handler_fp_address(
|
|
IsolateAddressId::kPendingHandlerFPAddress, isolate());
|
|
ExternalReference pending_handler_sp_address(
|
|
IsolateAddressId::kPendingHandlerSPAddress, isolate());
|
|
|
|
// Ask the runtime for help to determine the handler. This will set rax to
|
|
// contain the current pending exception, don't clobber it.
|
|
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
|
|
isolate());
|
|
{
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ movp(arg_reg_1, Immediate(0)); // argc.
|
|
__ movp(arg_reg_2, Immediate(0)); // argv.
|
|
__ Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
|
|
__ PrepareCallCFunction(3);
|
|
__ CallCFunction(find_handler, 3);
|
|
}
|
|
// Retrieve the handler context, SP and FP.
|
|
__ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
|
|
__ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
|
|
__ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
|
|
|
|
// If the handler is a JS frame, restore the context to the frame. Note that
|
|
// the context will be set to (rsi == 0) for non-JS frames.
|
|
Label skip;
|
|
__ testp(rsi, rsi);
|
|
__ j(zero, &skip, Label::kNear);
|
|
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
|
|
__ bind(&skip);
|
|
|
|
// Compute the handler entry address and jump to it.
|
|
__ movp(rdi, masm->ExternalOperand(pending_handler_entrypoint_address));
|
|
__ jmp(rdi);
|
|
}
|
|
|
|
|
|
void JSEntryStub::Generate(MacroAssembler* masm) {
|
|
Label invoke, handler_entry, exit;
|
|
Label not_outermost_js, not_outermost_js_2;
|
|
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
{ // NOLINT. Scope block confuses linter.
|
|
MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
|
|
// Set up frame.
|
|
__ pushq(rbp);
|
|
__ movp(rbp, rsp);
|
|
|
|
// Push the stack frame type.
|
|
__ Push(Immediate(StackFrame::TypeToMarker(type()))); // context slot
|
|
ExternalReference context_address(IsolateAddressId::kContextAddress,
|
|
isolate());
|
|
__ Load(kScratchRegister, context_address);
|
|
__ Push(kScratchRegister); // context
|
|
// Save callee-saved registers (X64/X32/Win64 calling conventions).
|
|
__ pushq(r12);
|
|
__ pushq(r13);
|
|
__ pushq(r14);
|
|
__ pushq(r15);
|
|
#ifdef _WIN64
|
|
__ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
|
__ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
|
#endif
|
|
__ pushq(rbx);
|
|
|
|
#ifdef _WIN64
|
|
// On Win64 XMM6-XMM15 are callee-save
|
|
__ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
|
|
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
|
|
#endif
|
|
|
|
// Set up the roots and smi constant registers.
|
|
// Needs to be done before any further smi loads.
|
|
__ InitializeRootRegister();
|
|
}
|
|
|
|
// Save copies of the top frame descriptor on the stack.
|
|
ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate());
|
|
{
|
|
Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
|
|
__ Push(c_entry_fp_operand);
|
|
}
|
|
|
|
// If this is the outermost JS call, set js_entry_sp value.
|
|
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate());
|
|
__ Load(rax, js_entry_sp);
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_outermost_js);
|
|
__ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ movp(rax, rbp);
|
|
__ Store(js_entry_sp, rax);
|
|
Label cont;
|
|
__ jmp(&cont);
|
|
__ bind(¬_outermost_js);
|
|
__ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
|
|
__ bind(&cont);
|
|
|
|
// Jump to a faked try block that does the invoke, with a faked catch
|
|
// block that sets the pending exception.
|
|
__ jmp(&invoke);
|
|
__ bind(&handler_entry);
|
|
handler_offset_ = handler_entry.pos();
|
|
// Caught exception: Store result (exception) in the pending exception
|
|
// field in the JSEnv and return a failure sentinel.
|
|
ExternalReference pending_exception(
|
|
IsolateAddressId::kPendingExceptionAddress, isolate());
|
|
__ Store(pending_exception, rax);
|
|
__ LoadRoot(rax, Heap::kExceptionRootIndex);
|
|
__ jmp(&exit);
|
|
|
|
// Invoke: Link this frame into the handler chain.
|
|
__ bind(&invoke);
|
|
__ PushStackHandler();
|
|
|
|
// Invoke the function by calling through JS entry trampoline builtin and
|
|
// pop the faked function when we return. We load the address from an
|
|
// external reference instead of inlining the call target address directly
|
|
// in the code, because the builtin stubs may not have been generated yet
|
|
// at the time this code is generated.
|
|
if (type() == StackFrame::CONSTRUCT_ENTRY) {
|
|
__ Call(BUILTIN_CODE(isolate(), JSConstructEntryTrampoline),
|
|
RelocInfo::CODE_TARGET);
|
|
} else {
|
|
__ Call(BUILTIN_CODE(isolate(), JSEntryTrampoline), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
// Unlink this frame from the handler chain.
|
|
__ PopStackHandler();
|
|
|
|
__ bind(&exit);
|
|
// Check if the current stack frame is marked as the outermost JS frame.
|
|
__ Pop(rbx);
|
|
__ cmpp(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
|
|
__ j(not_equal, ¬_outermost_js_2);
|
|
__ Move(kScratchRegister, js_entry_sp);
|
|
__ movp(Operand(kScratchRegister, 0), Immediate(0));
|
|
__ bind(¬_outermost_js_2);
|
|
|
|
// Restore the top frame descriptor from the stack.
|
|
{ Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
|
|
__ Pop(c_entry_fp_operand);
|
|
}
|
|
|
|
// Restore callee-saved registers (X64 conventions).
|
|
#ifdef _WIN64
|
|
// On Win64 XMM6-XMM15 are callee-save
|
|
__ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
|
|
__ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
|
|
__ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
|
|
__ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
|
|
__ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
|
|
__ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
|
|
__ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
|
|
__ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
|
|
__ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
|
|
__ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
|
|
__ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
|
|
#endif
|
|
|
|
__ popq(rbx);
|
|
#ifdef _WIN64
|
|
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
|
|
__ popq(rsi);
|
|
__ popq(rdi);
|
|
#endif
|
|
__ popq(r15);
|
|
__ popq(r14);
|
|
__ popq(r13);
|
|
__ popq(r12);
|
|
__ addp(rsp, Immediate(2 * kPointerSize)); // remove markers
|
|
|
|
// Restore frame pointer and return.
|
|
__ popq(rbp);
|
|
__ ret(0);
|
|
}
|
|
|
|
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
|
|
if (masm->isolate()->function_entry_hook() != nullptr) {
|
|
ProfileEntryHookStub stub(masm->isolate());
|
|
masm->CallStub(&stub);
|
|
}
|
|
}
|
|
|
|
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
|
|
Zone* zone) {
|
|
if (tasm->isolate()->function_entry_hook() != nullptr) {
|
|
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
|
|
}
|
|
}
|
|
|
|
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
|
|
// This stub can be called from essentially anywhere, so it needs to save
|
|
// all volatile and callee-save registers.
|
|
const size_t kNumSavedRegisters = 2;
|
|
__ pushq(arg_reg_1);
|
|
__ pushq(arg_reg_2);
|
|
|
|
// Calculate the original stack pointer and store it in the second arg.
|
|
__ leap(arg_reg_2,
|
|
Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
|
|
|
|
// Calculate the function address to the first arg.
|
|
__ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
|
|
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
|
|
|
|
// Save the remainder of the volatile registers.
|
|
masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
|
|
|
|
// Call the entry hook function.
|
|
__ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
|
|
Assembler::RelocInfoNone());
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
const int kArgumentCount = 2;
|
|
__ PrepareCallCFunction(kArgumentCount);
|
|
__ CallCFunction(rax, kArgumentCount);
|
|
|
|
// Restore volatile regs.
|
|
masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
|
|
__ popq(arg_reg_2);
|
|
__ popq(arg_reg_1);
|
|
|
|
__ Ret();
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void CreateArrayDispatch(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
|
|
__ TailCallStub(&stub);
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
int last_index =
|
|
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
__ cmpl(rdx, Immediate(kind));
|
|
__ j(not_equal, &next);
|
|
T stub(masm->isolate(), kind);
|
|
__ TailCallStub(&stub);
|
|
__ bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
|
|
AllocationSiteOverrideMode mode) {
|
|
// rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
|
|
// rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
|
|
// rax - number of arguments
|
|
// rdi - constructor?
|
|
// rsp[0] - return address
|
|
// rsp[8] - last argument
|
|
|
|
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(PACKED_ELEMENTS == 2);
|
|
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
|
|
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
|
|
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
|
|
|
|
if (mode == DISABLE_ALLOCATION_SITES) {
|
|
ElementsKind initial = GetInitialFastElementsKind();
|
|
ElementsKind holey_initial = GetHoleyElementsKind(initial);
|
|
|
|
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
|
|
holey_initial,
|
|
DISABLE_ALLOCATION_SITES);
|
|
__ TailCallStub(&stub_holey);
|
|
} else if (mode == DONT_OVERRIDE) {
|
|
// is the low bit set? If so, we are holey and that is good.
|
|
Label normal_sequence;
|
|
__ testb(rdx, Immediate(1));
|
|
__ j(not_zero, &normal_sequence);
|
|
|
|
// We are going to create a holey array, but our kind is non-holey.
|
|
// Fix kind and retry (only if we have an allocation site in the slot).
|
|
__ incl(rdx);
|
|
|
|
if (FLAG_debug_code) {
|
|
Handle<Map> allocation_site_map =
|
|
masm->isolate()->factory()->allocation_site_map();
|
|
__ Cmp(FieldOperand(rbx, 0), allocation_site_map);
|
|
__ Assert(equal, kExpectedAllocationSite);
|
|
}
|
|
|
|
// Save the resulting elements kind in type info. We can't just store r3
|
|
// in the AllocationSite::transition_info field because elements kind is
|
|
// restricted to a portion of the field...upper bits need to be left alone.
|
|
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
|
__ SmiAddConstant(
|
|
FieldOperand(rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset),
|
|
Smi::FromInt(kFastElementsKindPackedToHoley));
|
|
|
|
__ bind(&normal_sequence);
|
|
int last_index =
|
|
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= last_index; ++i) {
|
|
Label next;
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
__ cmpl(rdx, Immediate(kind));
|
|
__ j(not_equal, &next);
|
|
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
|
|
__ TailCallStub(&stub);
|
|
__ bind(&next);
|
|
}
|
|
|
|
// If we reached this point there is a problem.
|
|
__ Abort(kUnexpectedElementsKindInArrayConstructor);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
template<class T>
|
|
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
|
|
int to_index =
|
|
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
for (int i = 0; i <= to_index; ++i) {
|
|
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
|
|
T stub(isolate, kind);
|
|
stub.GetCode();
|
|
if (AllocationSite::ShouldTrack(kind)) {
|
|
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
|
|
stub1.GetCode();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
|
|
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
|
|
isolate);
|
|
ArrayNArgumentsConstructorStub stub(isolate);
|
|
stub.GetCode();
|
|
|
|
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
|
|
for (int i = 0; i < 2; i++) {
|
|
// For internal arrays we only need a few things
|
|
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
|
|
stubh1.GetCode();
|
|
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
|
|
stubh2.GetCode();
|
|
}
|
|
}
|
|
|
|
void ArrayConstructorStub::GenerateDispatchToArrayStub(
|
|
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
|
|
Label not_zero_case, not_one_case;
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_zero_case);
|
|
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
|
|
|
|
__ bind(¬_zero_case);
|
|
__ cmpl(rax, Immediate(1));
|
|
__ j(greater, ¬_one_case);
|
|
CreateArrayDispatchOneArgument(masm, mode);
|
|
|
|
__ bind(¬_one_case);
|
|
ArrayNArgumentsConstructorStub stub(masm->isolate());
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : argc
|
|
// -- rbx : AllocationSite or undefined
|
|
// -- rdi : constructor
|
|
// -- rdx : new target
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -----------------------------------
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a nullptr and a Smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
|
|
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(rcx, MAP_TYPE, rcx);
|
|
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
|
|
|
|
// We should either have undefined in rbx or a valid AllocationSite
|
|
__ AssertUndefinedOrAllocationSite(rbx);
|
|
}
|
|
|
|
// Enter the context of the Array function.
|
|
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
|
|
|
|
Label subclassing;
|
|
__ cmpp(rdi, rdx);
|
|
__ j(not_equal, &subclassing);
|
|
|
|
Label no_info;
|
|
// If the feedback vector is the undefined value call an array constructor
|
|
// that doesn't use AllocationSites.
|
|
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
|
|
__ j(equal, &no_info);
|
|
|
|
// Only look at the lower 16 bits of the transition info.
|
|
__ movp(rdx, FieldOperand(
|
|
rbx, AllocationSite::kTransitionInfoOrBoilerplateOffset));
|
|
__ SmiToInteger32(rdx, rdx);
|
|
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
|
|
__ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
|
|
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
|
|
|
|
__ bind(&no_info);
|
|
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
|
|
|
|
// Subclassing
|
|
__ bind(&subclassing);
|
|
StackArgumentsAccessor args(rsp, rax);
|
|
__ movp(args.GetReceiverOperand(), rdi);
|
|
__ addp(rax, Immediate(3));
|
|
__ PopReturnAddressTo(rcx);
|
|
__ Push(rdx);
|
|
__ Push(rbx);
|
|
__ PushReturnAddressFrom(rcx);
|
|
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::GenerateCase(
|
|
MacroAssembler* masm, ElementsKind kind) {
|
|
Label not_zero_case, not_one_case;
|
|
Label normal_sequence;
|
|
|
|
__ testp(rax, rax);
|
|
__ j(not_zero, ¬_zero_case);
|
|
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
|
|
__ TailCallStub(&stub0);
|
|
|
|
__ bind(¬_zero_case);
|
|
__ cmpl(rax, Immediate(1));
|
|
__ j(greater, ¬_one_case);
|
|
|
|
if (IsFastPackedElementsKind(kind)) {
|
|
// We might need to create a holey array
|
|
// look at the first argument
|
|
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
__ movp(rcx, args.GetArgumentOperand(0));
|
|
__ testp(rcx, rcx);
|
|
__ j(zero, &normal_sequence);
|
|
|
|
InternalArraySingleArgumentConstructorStub
|
|
stub1_holey(isolate(), GetHoleyElementsKind(kind));
|
|
__ TailCallStub(&stub1_holey);
|
|
}
|
|
|
|
__ bind(&normal_sequence);
|
|
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
|
|
__ TailCallStub(&stub1);
|
|
|
|
__ bind(¬_one_case);
|
|
ArrayNArgumentsConstructorStub stubN(isolate());
|
|
__ TailCallStub(&stubN);
|
|
}
|
|
|
|
|
|
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rax : argc
|
|
// -- rdi : constructor
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -----------------------------------
|
|
|
|
if (FLAG_debug_code) {
|
|
// The array construct code is only set for the global and natives
|
|
// builtin Array functions which always have maps.
|
|
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a nullptr and a Smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
|
|
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(rcx, MAP_TYPE, rcx);
|
|
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
|
|
}
|
|
|
|
// Figure out the right elements kind
|
|
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// Load the map's "bit field 2" into |result|. We only need the first byte,
|
|
// but the following masking takes care of that anyway.
|
|
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
|
|
// Retrieve elements_kind from bit field 2.
|
|
__ DecodeField<Map::ElementsKindBits>(rcx);
|
|
|
|
if (FLAG_debug_code) {
|
|
Label done;
|
|
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
|
|
__ j(equal, &done);
|
|
__ cmpl(rcx, Immediate(HOLEY_ELEMENTS));
|
|
__ Assert(equal,
|
|
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
|
|
__ bind(&done);
|
|
}
|
|
|
|
Label fast_elements_case;
|
|
__ cmpl(rcx, Immediate(PACKED_ELEMENTS));
|
|
__ j(equal, &fast_elements_case);
|
|
GenerateCase(masm, HOLEY_ELEMENTS);
|
|
|
|
__ bind(&fast_elements_case);
|
|
GenerateCase(masm, PACKED_ELEMENTS);
|
|
}
|
|
|
|
static int Offset(ExternalReference ref0, ExternalReference ref1) {
|
|
int64_t offset = (ref0.address() - ref1.address());
|
|
// Check that fits into int.
|
|
DCHECK(static_cast<int>(offset) == offset);
|
|
return static_cast<int>(offset);
|
|
}
|
|
|
|
// Prepares stack to put arguments (aligns and so on). WIN64 calling convention
|
|
// requires to put the pointer to the return value slot into rcx (rcx must be
|
|
// preserverd until CallApiFunctionAndReturn). Clobbers rax. Allocates
|
|
// arg_stack_space * kPointerSize inside the exit frame (not GCed) accessible
|
|
// via StackSpaceOperand.
|
|
static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) {
|
|
__ EnterApiExitFrame(arg_stack_space);
|
|
}
|
|
|
|
|
|
// Calls an API function. Allocates HandleScope, extracts returned value
|
|
// from handle and propagates exceptions. Clobbers r14, r15, rbx and
|
|
// caller-save registers. Restores context. On return removes
|
|
// stack_space * kPointerSize (GCed).
|
|
static void CallApiFunctionAndReturn(MacroAssembler* masm,
|
|
Register function_address,
|
|
ExternalReference thunk_ref,
|
|
Register thunk_last_arg, int stack_space,
|
|
Operand* stack_space_operand,
|
|
Operand return_value_operand) {
|
|
Label prologue;
|
|
Label promote_scheduled_exception;
|
|
Label delete_allocated_handles;
|
|
Label leave_exit_frame;
|
|
Label write_back;
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
Factory* factory = isolate->factory();
|
|
ExternalReference next_address =
|
|
ExternalReference::handle_scope_next_address(isolate);
|
|
const int kNextOffset = 0;
|
|
const int kLimitOffset = Offset(
|
|
ExternalReference::handle_scope_limit_address(isolate), next_address);
|
|
const int kLevelOffset = Offset(
|
|
ExternalReference::handle_scope_level_address(isolate), next_address);
|
|
ExternalReference scheduled_exception_address =
|
|
ExternalReference::scheduled_exception_address(isolate);
|
|
|
|
DCHECK(rdx == function_address || r8 == function_address);
|
|
// Allocate HandleScope in callee-save registers.
|
|
Register prev_next_address_reg = r14;
|
|
Register prev_limit_reg = rbx;
|
|
Register base_reg = r15;
|
|
__ Move(base_reg, next_address);
|
|
__ movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
|
|
__ movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
|
|
__ addl(Operand(base_reg, kLevelOffset), Immediate(1));
|
|
|
|
if (FLAG_log_timer_events) {
|
|
FrameScope frame(masm, StackFrame::MANUAL);
|
|
__ PushSafepointRegisters();
|
|
__ PrepareCallCFunction(1);
|
|
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
|
|
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
|
|
1);
|
|
__ PopSafepointRegisters();
|
|
}
|
|
|
|
Label profiler_disabled;
|
|
Label end_profiler_check;
|
|
__ Move(rax, ExternalReference::is_profiling_address(isolate));
|
|
__ cmpb(Operand(rax, 0), Immediate(0));
|
|
__ j(zero, &profiler_disabled);
|
|
|
|
// Third parameter is the address of the actual getter function.
|
|
__ Move(thunk_last_arg, function_address);
|
|
__ Move(rax, thunk_ref);
|
|
__ jmp(&end_profiler_check);
|
|
|
|
__ bind(&profiler_disabled);
|
|
// Call the api function!
|
|
__ Move(rax, function_address);
|
|
|
|
__ bind(&end_profiler_check);
|
|
|
|
// Call the api function!
|
|
__ call(rax);
|
|
|
|
if (FLAG_log_timer_events) {
|
|
FrameScope frame(masm, StackFrame::MANUAL);
|
|
__ PushSafepointRegisters();
|
|
__ PrepareCallCFunction(1);
|
|
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
|
|
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
|
|
1);
|
|
__ PopSafepointRegisters();
|
|
}
|
|
|
|
// Load the value from ReturnValue
|
|
__ movp(rax, return_value_operand);
|
|
__ bind(&prologue);
|
|
|
|
// No more valid handles (the result handle was the last one). Restore
|
|
// previous handle scope.
|
|
__ subl(Operand(base_reg, kLevelOffset), Immediate(1));
|
|
__ movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
|
|
__ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
|
|
__ j(not_equal, &delete_allocated_handles);
|
|
|
|
// Leave the API exit frame.
|
|
__ bind(&leave_exit_frame);
|
|
if (stack_space_operand != nullptr) {
|
|
__ movp(rbx, *stack_space_operand);
|
|
}
|
|
__ LeaveApiExitFrame();
|
|
|
|
// Check if the function scheduled an exception.
|
|
__ Move(rdi, scheduled_exception_address);
|
|
__ Cmp(Operand(rdi, 0), factory->the_hole_value());
|
|
__ j(not_equal, &promote_scheduled_exception);
|
|
|
|
#if DEBUG
|
|
// Check if the function returned a valid JavaScript value.
|
|
Label ok;
|
|
Register return_value = rax;
|
|
Register map = rcx;
|
|
|
|
__ JumpIfSmi(return_value, &ok, Label::kNear);
|
|
__ movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
|
|
|
|
__ CmpInstanceType(map, LAST_NAME_TYPE);
|
|
__ j(below_equal, &ok, Label::kNear);
|
|
|
|
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
|
|
__ j(above_equal, &ok, Label::kNear);
|
|
|
|
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
|
|
__ j(equal, &ok, Label::kNear);
|
|
|
|
__ CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
|
|
__ j(equal, &ok, Label::kNear);
|
|
|
|
__ CompareRoot(return_value, Heap::kTrueValueRootIndex);
|
|
__ j(equal, &ok, Label::kNear);
|
|
|
|
__ CompareRoot(return_value, Heap::kFalseValueRootIndex);
|
|
__ j(equal, &ok, Label::kNear);
|
|
|
|
__ CompareRoot(return_value, Heap::kNullValueRootIndex);
|
|
__ j(equal, &ok, Label::kNear);
|
|
|
|
__ Abort(kAPICallReturnedInvalidObject);
|
|
|
|
__ bind(&ok);
|
|
#endif
|
|
|
|
if (stack_space_operand != nullptr) {
|
|
DCHECK_EQ(stack_space, 0);
|
|
__ PopReturnAddressTo(rcx);
|
|
__ addq(rsp, rbx);
|
|
__ jmp(rcx);
|
|
} else {
|
|
__ ret(stack_space * kPointerSize);
|
|
}
|
|
|
|
// Re-throw by promoting a scheduled exception.
|
|
__ bind(&promote_scheduled_exception);
|
|
__ TailCallRuntime(Runtime::kPromoteScheduledException);
|
|
|
|
// HandleScope limit has changed. Delete allocated extensions.
|
|
__ bind(&delete_allocated_handles);
|
|
__ movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
|
|
__ movp(prev_limit_reg, rax);
|
|
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
|
|
__ LoadAddress(rax,
|
|
ExternalReference::delete_handle_scope_extensions(isolate));
|
|
__ call(rax);
|
|
__ movp(rax, prev_limit_reg);
|
|
__ jmp(&leave_exit_frame);
|
|
}
|
|
|
|
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- rbx : call_data
|
|
// -- rcx : holder
|
|
// -- rdx : api_function_address
|
|
// -- rsi : context
|
|
// -- rax : number of arguments if argc is a register
|
|
// -- rsp[0] : return address
|
|
// -- rsp[8] : last argument
|
|
// -- ...
|
|
// -- rsp[argc * 8] : first argument
|
|
// -- rsp[(argc + 1) * 8] : receiver
|
|
// -----------------------------------
|
|
|
|
Register call_data = rbx;
|
|
Register holder = rcx;
|
|
Register api_function_address = rdx;
|
|
Register return_address = r8;
|
|
|
|
typedef FunctionCallbackArguments FCA;
|
|
|
|
STATIC_ASSERT(FCA::kArgsLength == 6);
|
|
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
|
|
STATIC_ASSERT(FCA::kDataIndex == 4);
|
|
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
|
|
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
|
|
STATIC_ASSERT(FCA::kIsolateIndex == 1);
|
|
STATIC_ASSERT(FCA::kHolderIndex == 0);
|
|
|
|
__ PopReturnAddressTo(return_address);
|
|
|
|
// new target
|
|
__ PushRoot(Heap::kUndefinedValueRootIndex);
|
|
|
|
// call data
|
|
__ Push(call_data);
|
|
|
|
// return value
|
|
__ PushRoot(Heap::kUndefinedValueRootIndex);
|
|
// return value default
|
|
__ PushRoot(Heap::kUndefinedValueRootIndex);
|
|
// isolate
|
|
Register scratch = call_data;
|
|
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
|
|
__ Push(scratch);
|
|
// holder
|
|
__ Push(holder);
|
|
|
|
int argc = this->argc();
|
|
|
|
__ movp(scratch, rsp);
|
|
// Push return address back on stack.
|
|
__ PushReturnAddressFrom(return_address);
|
|
|
|
// Allocate the v8::Arguments structure in the arguments' space since
|
|
// it's not controlled by GC.
|
|
const int kApiStackSpace = 3;
|
|
|
|
PrepareCallApiFunction(masm, kApiStackSpace);
|
|
|
|
// FunctionCallbackInfo::implicit_args_.
|
|
__ movp(StackSpaceOperand(0), scratch);
|
|
__ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
|
|
// FunctionCallbackInfo::values_.
|
|
__ movp(StackSpaceOperand(1), scratch);
|
|
// FunctionCallbackInfo::length_.
|
|
__ Set(StackSpaceOperand(2), argc);
|
|
|
|
#if defined(__MINGW64__) || defined(_WIN64)
|
|
Register arguments_arg = rcx;
|
|
Register callback_arg = rdx;
|
|
#else
|
|
Register arguments_arg = rdi;
|
|
Register callback_arg = rsi;
|
|
#endif
|
|
|
|
// It's okay if api_function_address == callback_arg
|
|
// but not arguments_arg
|
|
DCHECK(api_function_address != arguments_arg);
|
|
|
|
// v8::InvocationCallback's argument.
|
|
__ leap(arguments_arg, StackSpaceOperand(0));
|
|
|
|
ExternalReference thunk_ref =
|
|
ExternalReference::invoke_function_callback(masm->isolate());
|
|
|
|
// Accessor for FunctionCallbackInfo and first js arg.
|
|
StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
|
|
ARGUMENTS_DONT_CONTAIN_RECEIVER);
|
|
Operand return_value_operand = args_from_rbp.GetArgumentOperand(
|
|
FCA::kArgsLength - FCA::kReturnValueOffset);
|
|
const int stack_space = argc + FCA::kArgsLength + 1;
|
|
Operand* stack_space_operand = nullptr;
|
|
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
|
|
stack_space, stack_space_operand,
|
|
return_value_operand);
|
|
}
|
|
|
|
|
|
void CallApiGetterStub::Generate(MacroAssembler* masm) {
|
|
#if defined(__MINGW64__) || defined(_WIN64)
|
|
Register getter_arg = r8;
|
|
Register accessor_info_arg = rdx;
|
|
Register name_arg = rcx;
|
|
#else
|
|
Register getter_arg = rdx;
|
|
Register accessor_info_arg = rsi;
|
|
Register name_arg = rdi;
|
|
#endif
|
|
Register api_function_address = r8;
|
|
Register receiver = ApiGetterDescriptor::ReceiverRegister();
|
|
Register holder = ApiGetterDescriptor::HolderRegister();
|
|
Register callback = ApiGetterDescriptor::CallbackRegister();
|
|
Register scratch = rax;
|
|
DCHECK(!AreAliased(receiver, holder, callback, scratch));
|
|
|
|
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
|
|
// name below the exit frame to make GC aware of them.
|
|
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
|
|
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
|
|
|
|
// Insert additional parameters into the stack frame above return address.
|
|
__ PopReturnAddressTo(scratch);
|
|
__ Push(receiver);
|
|
__ Push(FieldOperand(callback, AccessorInfo::kDataOffset));
|
|
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
|
|
__ Push(kScratchRegister); // return value
|
|
__ Push(kScratchRegister); // return value default
|
|
__ PushAddress(ExternalReference::isolate_address(isolate()));
|
|
__ Push(holder);
|
|
__ Push(Smi::kZero); // should_throw_on_error -> false
|
|
__ Push(FieldOperand(callback, AccessorInfo::kNameOffset));
|
|
__ PushReturnAddressFrom(scratch);
|
|
|
|
// v8::PropertyCallbackInfo::args_ array and name handle.
|
|
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
|
|
|
|
// Allocate v8::PropertyCallbackInfo in non-GCed stack space.
|
|
const int kArgStackSpace = 1;
|
|
|
|
// Load address of v8::PropertyAccessorInfo::args_ array.
|
|
__ leap(scratch, Operand(rsp, 2 * kPointerSize));
|
|
|
|
PrepareCallApiFunction(masm, kArgStackSpace);
|
|
// Create v8::PropertyCallbackInfo object on the stack and initialize
|
|
// it's args_ field.
|
|
Operand info_object = StackSpaceOperand(0);
|
|
__ movp(info_object, scratch);
|
|
|
|
__ leap(name_arg, Operand(scratch, -kPointerSize));
|
|
// The context register (rsi) has been saved in PrepareCallApiFunction and
|
|
// could be used to pass arguments.
|
|
__ leap(accessor_info_arg, info_object);
|
|
|
|
ExternalReference thunk_ref =
|
|
ExternalReference::invoke_accessor_getter_callback(isolate());
|
|
|
|
// It's okay if api_function_address == getter_arg
|
|
// but not accessor_info_arg or name_arg
|
|
DCHECK(api_function_address != accessor_info_arg);
|
|
DCHECK(api_function_address != name_arg);
|
|
__ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
|
|
__ movp(api_function_address,
|
|
FieldOperand(scratch, Foreign::kForeignAddressOffset));
|
|
|
|
// +3 is to skip prolog, return address and name handle.
|
|
Operand return_value_operand(
|
|
rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
|
|
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
|
|
kStackUnwindSpace, nullptr, return_value_operand);
|
|
}
|
|
|
|
#undef __
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_X64
|