d4b533d41b
R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/259183002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@21035 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
247 lines
6.8 KiB
JavaScript
247 lines
6.8 KiB
JavaScript
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
'use strict';
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.28.
|
|
function MathSign(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x > 0) return 1;
|
|
if (x < 0) return -1;
|
|
if (x === 0) return x;
|
|
return NAN;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.34.
|
|
function MathTrunc(x) {
|
|
x = TO_NUMBER_INLINE(x);
|
|
if (x > 0) return MathFloor(x);
|
|
if (x < 0) return MathCeil(x);
|
|
if (x === 0) return x;
|
|
return NAN;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.30.
|
|
function MathSinh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for NaN, +/-0 and +/-Infinity.
|
|
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
return (MathExp(x) - MathExp(-x)) / 2;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.12.
|
|
function MathCosh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (!NUMBER_IS_FINITE(x)) return MathAbs(x);
|
|
return (MathExp(x) + MathExp(-x)) / 2;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.33.
|
|
function MathTanh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns +/-1 for +/-Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return MathSign(x);
|
|
var exp1 = MathExp(x);
|
|
var exp2 = MathExp(-x);
|
|
return (exp1 - exp2) / (exp1 + exp2);
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.5.
|
|
function MathAsinh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for NaN, +/-0 and +/-Infinity.
|
|
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
if (x > 0) return MathLog(x + MathSqrt(x * x + 1));
|
|
// This is to prevent numerical errors caused by large negative x.
|
|
return -MathLog(-x + MathSqrt(x * x + 1));
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.3.
|
|
function MathAcosh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (x < 1) return NAN;
|
|
// Idempotent for NaN and +Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return x;
|
|
return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.7.
|
|
function MathAtanh(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
// Idempotent for +/-0.
|
|
if (x === 0) return x;
|
|
// Returns NaN for NaN and +/- Infinity.
|
|
if (!NUMBER_IS_FINITE(x)) return NAN;
|
|
return 0.5 * MathLog((1 + x) / (1 - x));
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.21.
|
|
function MathLog10(x) {
|
|
return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.22.
|
|
function MathLog2(x) {
|
|
return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.17.
|
|
function MathHypot(x, y) { // Function length is 2.
|
|
// We may want to introduce fast paths for two arguments and when
|
|
// normalization to avoid overflow is not necessary. For now, we
|
|
// simply assume the general case.
|
|
var length = %_ArgumentsLength();
|
|
var args = new InternalArray(length);
|
|
var max = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = %_Arguments(i);
|
|
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
|
|
if (n === INFINITY || n === -INFINITY) return INFINITY;
|
|
n = MathAbs(n);
|
|
if (n > max) max = n;
|
|
args[i] = n;
|
|
}
|
|
|
|
// Kahan summation to avoid rounding errors.
|
|
// Normalize the numbers to the largest one to avoid overflow.
|
|
if (max === 0) max = 1;
|
|
var sum = 0;
|
|
var compensation = 0;
|
|
for (var i = 0; i < length; i++) {
|
|
var n = args[i] / max;
|
|
var summand = n * n - compensation;
|
|
var preliminary = sum + summand;
|
|
compensation = (preliminary - sum) - summand;
|
|
sum = preliminary;
|
|
}
|
|
return MathSqrt(sum) * max;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.16.
|
|
function MathFround(x) {
|
|
return %MathFround(TO_NUMBER_INLINE(x));
|
|
}
|
|
|
|
|
|
function MathClz32(x) {
|
|
x = ToUint32(TO_NUMBER_INLINE(x));
|
|
if (x == 0) return 32;
|
|
var result = 0;
|
|
// Binary search.
|
|
if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; };
|
|
if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; };
|
|
if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; };
|
|
if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; };
|
|
if ((x & 0x80000000) === 0) { x <<= 1; result += 1; };
|
|
return result;
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.9.
|
|
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
|
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
|
// of Newton's method.
|
|
function MathCbrt(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
|
|
return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
|
|
}
|
|
|
|
macro NEWTON_ITERATION_CBRT(x, approx)
|
|
(1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
|
|
endmacro
|
|
|
|
function CubeRoot(x) {
|
|
var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893;
|
|
var approx = %_ConstructDouble(approx_hi, 0);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
approx = NEWTON_ITERATION_CBRT(x, approx);
|
|
return NEWTON_ITERATION_CBRT(x, approx);
|
|
}
|
|
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.14.
|
|
// Use Taylor series to approximate.
|
|
// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
|
// == x/1! + x^2/2! + x^3/3! + ...
|
|
// The closer x is to 0, the fewer terms are required.
|
|
function MathExpm1(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
var xabs = MathAbs(x);
|
|
if (xabs < 2E-7) {
|
|
return x * (1 + x * (1/2));
|
|
} else if (xabs < 6E-5) {
|
|
return x * (1 + x * (1/2 + x * (1/6)));
|
|
} else if (xabs < 2E-2) {
|
|
return x * (1 + x * (1/2 + x * (1/6 +
|
|
x * (1/24 + x * (1/120 + x * (1/720))))));
|
|
} else { // Use regular exp if not close enough to 0.
|
|
return MathExp(x) - 1;
|
|
}
|
|
}
|
|
|
|
|
|
// ES6 draft 09-27-13, section 20.2.2.20.
|
|
// Use Taylor series to approximate. With y = x + 1;
|
|
// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
|
// == 0 + x - x^2/2 + x^3/3 ...
|
|
// The closer x is to 0, the fewer terms are required.
|
|
function MathLog1p(x) {
|
|
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
|
var xabs = MathAbs(x);
|
|
if (xabs < 1E-7) {
|
|
return x * (1 - x * (1/2));
|
|
} else if (xabs < 3E-5) {
|
|
return x * (1 - x * (1/2 - x * (1/3)));
|
|
} else if (xabs < 7E-3) {
|
|
return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 -
|
|
x * (1/5 - x * (1/6 - x * (1/7)))))));
|
|
} else { // Use regular log if not close enough to 0.
|
|
return MathLog(1 + x);
|
|
}
|
|
}
|
|
|
|
|
|
function ExtendMath() {
|
|
%CheckIsBootstrapping();
|
|
|
|
// Set up the non-enumerable functions on the Math object.
|
|
InstallFunctions($Math, DONT_ENUM, $Array(
|
|
"sign", MathSign,
|
|
"trunc", MathTrunc,
|
|
"sinh", MathSinh,
|
|
"cosh", MathCosh,
|
|
"tanh", MathTanh,
|
|
"asinh", MathAsinh,
|
|
"acosh", MathAcosh,
|
|
"atanh", MathAtanh,
|
|
"log10", MathLog10,
|
|
"log2", MathLog2,
|
|
"hypot", MathHypot,
|
|
"fround", MathFround,
|
|
"clz32", MathClz32,
|
|
"cbrt", MathCbrt,
|
|
"log1p", MathLog1p,
|
|
"expm1", MathExpm1
|
|
));
|
|
}
|
|
|
|
|
|
ExtendMath();
|