v8/src/harmony-math.js

247 lines
6.8 KiB
JavaScript

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
'use strict';
// ES6 draft 09-27-13, section 20.2.2.28.
function MathSign(x) {
x = TO_NUMBER_INLINE(x);
if (x > 0) return 1;
if (x < 0) return -1;
if (x === 0) return x;
return NAN;
}
// ES6 draft 09-27-13, section 20.2.2.34.
function MathTrunc(x) {
x = TO_NUMBER_INLINE(x);
if (x > 0) return MathFloor(x);
if (x < 0) return MathCeil(x);
if (x === 0) return x;
return NAN;
}
// ES6 draft 09-27-13, section 20.2.2.30.
function MathSinh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
// Idempotent for NaN, +/-0 and +/-Infinity.
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
return (MathExp(x) - MathExp(-x)) / 2;
}
// ES6 draft 09-27-13, section 20.2.2.12.
function MathCosh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
if (!NUMBER_IS_FINITE(x)) return MathAbs(x);
return (MathExp(x) + MathExp(-x)) / 2;
}
// ES6 draft 09-27-13, section 20.2.2.33.
function MathTanh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
// Idempotent for +/-0.
if (x === 0) return x;
// Returns +/-1 for +/-Infinity.
if (!NUMBER_IS_FINITE(x)) return MathSign(x);
var exp1 = MathExp(x);
var exp2 = MathExp(-x);
return (exp1 - exp2) / (exp1 + exp2);
}
// ES6 draft 09-27-13, section 20.2.2.5.
function MathAsinh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
// Idempotent for NaN, +/-0 and +/-Infinity.
if (x === 0 || !NUMBER_IS_FINITE(x)) return x;
if (x > 0) return MathLog(x + MathSqrt(x * x + 1));
// This is to prevent numerical errors caused by large negative x.
return -MathLog(-x + MathSqrt(x * x + 1));
}
// ES6 draft 09-27-13, section 20.2.2.3.
function MathAcosh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
if (x < 1) return NAN;
// Idempotent for NaN and +Infinity.
if (!NUMBER_IS_FINITE(x)) return x;
return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
}
// ES6 draft 09-27-13, section 20.2.2.7.
function MathAtanh(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
// Idempotent for +/-0.
if (x === 0) return x;
// Returns NaN for NaN and +/- Infinity.
if (!NUMBER_IS_FINITE(x)) return NAN;
return 0.5 * MathLog((1 + x) / (1 - x));
}
// ES6 draft 09-27-13, section 20.2.2.21.
function MathLog10(x) {
return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
}
// ES6 draft 09-27-13, section 20.2.2.22.
function MathLog2(x) {
return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
}
// ES6 draft 09-27-13, section 20.2.2.17.
function MathHypot(x, y) { // Function length is 2.
// We may want to introduce fast paths for two arguments and when
// normalization to avoid overflow is not necessary. For now, we
// simply assume the general case.
var length = %_ArgumentsLength();
var args = new InternalArray(length);
var max = 0;
for (var i = 0; i < length; i++) {
var n = %_Arguments(i);
if (!IS_NUMBER(n)) n = NonNumberToNumber(n);
if (n === INFINITY || n === -INFINITY) return INFINITY;
n = MathAbs(n);
if (n > max) max = n;
args[i] = n;
}
// Kahan summation to avoid rounding errors.
// Normalize the numbers to the largest one to avoid overflow.
if (max === 0) max = 1;
var sum = 0;
var compensation = 0;
for (var i = 0; i < length; i++) {
var n = args[i] / max;
var summand = n * n - compensation;
var preliminary = sum + summand;
compensation = (preliminary - sum) - summand;
sum = preliminary;
}
return MathSqrt(sum) * max;
}
// ES6 draft 09-27-13, section 20.2.2.16.
function MathFround(x) {
return %MathFround(TO_NUMBER_INLINE(x));
}
function MathClz32(x) {
x = ToUint32(TO_NUMBER_INLINE(x));
if (x == 0) return 32;
var result = 0;
// Binary search.
if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; };
if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; };
if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; };
if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; };
if ((x & 0x80000000) === 0) { x <<= 1; result += 1; };
return result;
}
// ES6 draft 09-27-13, section 20.2.2.9.
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
// of Newton's method.
function MathCbrt(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
if (x == 0 || !NUMBER_IS_FINITE(x)) return x;
return x >= 0 ? CubeRoot(x) : -CubeRoot(-x);
}
macro NEWTON_ITERATION_CBRT(x, approx)
(1.0 / 3.0) * (x / (approx * approx) + 2 * approx);
endmacro
function CubeRoot(x) {
var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893;
var approx = %_ConstructDouble(approx_hi, 0);
approx = NEWTON_ITERATION_CBRT(x, approx);
approx = NEWTON_ITERATION_CBRT(x, approx);
approx = NEWTON_ITERATION_CBRT(x, approx);
return NEWTON_ITERATION_CBRT(x, approx);
}
// ES6 draft 09-27-13, section 20.2.2.14.
// Use Taylor series to approximate.
// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
// == x/1! + x^2/2! + x^3/3! + ...
// The closer x is to 0, the fewer terms are required.
function MathExpm1(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
var xabs = MathAbs(x);
if (xabs < 2E-7) {
return x * (1 + x * (1/2));
} else if (xabs < 6E-5) {
return x * (1 + x * (1/2 + x * (1/6)));
} else if (xabs < 2E-2) {
return x * (1 + x * (1/2 + x * (1/6 +
x * (1/24 + x * (1/120 + x * (1/720))))));
} else { // Use regular exp if not close enough to 0.
return MathExp(x) - 1;
}
}
// ES6 draft 09-27-13, section 20.2.2.20.
// Use Taylor series to approximate. With y = x + 1;
// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
// == 0 + x - x^2/2 + x^3/3 ...
// The closer x is to 0, the fewer terms are required.
function MathLog1p(x) {
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
var xabs = MathAbs(x);
if (xabs < 1E-7) {
return x * (1 - x * (1/2));
} else if (xabs < 3E-5) {
return x * (1 - x * (1/2 - x * (1/3)));
} else if (xabs < 7E-3) {
return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 -
x * (1/5 - x * (1/6 - x * (1/7)))))));
} else { // Use regular log if not close enough to 0.
return MathLog(1 + x);
}
}
function ExtendMath() {
%CheckIsBootstrapping();
// Set up the non-enumerable functions on the Math object.
InstallFunctions($Math, DONT_ENUM, $Array(
"sign", MathSign,
"trunc", MathTrunc,
"sinh", MathSinh,
"cosh", MathCosh,
"tanh", MathTanh,
"asinh", MathAsinh,
"acosh", MathAcosh,
"atanh", MathAtanh,
"log10", MathLog10,
"log2", MathLog2,
"hypot", MathHypot,
"fround", MathFround,
"clz32", MathClz32,
"cbrt", MathCbrt,
"log1p", MathLog1p,
"expm1", MathExpm1
));
}
ExtendMath();