a19c3ffb8f
With very few exceptions, this verifies all skipped write-barriers in CSA and Torque, showing that the MemoryOptimizer together with some type information on the stored value are enough to avoid unsafe skipped write-barriers. Changes to CSA: SKIP_WRITE_BARRIER and Store*NoWriteBarrier are verified by the MemoryOptimizer by default. Type information about the stored values (TNode<Smi>) is exploited to safely skip write barriers for stored Smi values. In some cases, the code is re-structured to make it easier to consume for the MemoryOptimizer (manual branch and load elimination). Changes to the MemoryOptimizer: Improve the MemoryOptimizer to remove write barriers: - When the store happens to a CSA-generated InnerAllocate, by ignoring Bitcasts and additions. - When the stored value is the HeapConstant of an immortal immovable root. - When the stored value is a SmiConstant (recognized by BitcastToTaggedSigned). - Fast C-calls are treated as non-allocating. - Runtime calls can be white-listed as non-allocating. Remaining missing cases: - C++-style iterator loops with inner pointers. - Inner allocates that are reloaded from a field where they were just stored (for example an elements backing store). Load elimination would fix that. - Safe stored value types that cannot be expressed in CSA (e.g., Smi|Hole). We could handle that in Torque. - Double-aligned allocations, which are not lowered in the MemoryOptimizer but in CSA. Drive-by change: Avoid Smi suffix for StoreFixedArrayElement since this can be handled by overload resolution (in Torque and C++). Reland Change: Support pointer compression operands. R=jarin@chromium.org TBR=mvstanton@chromium.org Bug: v8:7793 Change-Id: I84e1831eb6bf9be14f36db3f8b485ee4fab6b22e Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1612904 Auto-Submit: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Michael Stanton <mvstanton@chromium.org> Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#61522}
13895 lines
521 KiB
C++
13895 lines
521 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/code-stub-assembler.h"
|
|
|
|
#include "src/code-factory.h"
|
|
#include "src/counters.h"
|
|
#include "src/frames-inl.h"
|
|
#include "src/frames.h"
|
|
#include "src/function-kind.h"
|
|
#include "src/heap/heap-inl.h" // For Page/MemoryChunk. TODO(jkummerow): Drop.
|
|
#include "src/objects/api-callbacks.h"
|
|
#include "src/objects/cell.h"
|
|
#include "src/objects/descriptor-array.h"
|
|
#include "src/objects/heap-number.h"
|
|
#include "src/objects/oddball.h"
|
|
#include "src/objects/ordered-hash-table-inl.h"
|
|
#include "src/objects/property-cell.h"
|
|
#include "src/wasm/wasm-objects.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
using compiler::Node;
|
|
template <class T>
|
|
using TNode = compiler::TNode<T>;
|
|
template <class T>
|
|
using SloppyTNode = compiler::SloppyTNode<T>;
|
|
|
|
CodeStubAssembler::CodeStubAssembler(compiler::CodeAssemblerState* state)
|
|
: compiler::CodeAssembler(state),
|
|
TorqueGeneratedBaseBuiltinsAssembler(state) {
|
|
if (DEBUG_BOOL && FLAG_csa_trap_on_node != nullptr) {
|
|
HandleBreakOnNode();
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::HandleBreakOnNode() {
|
|
// FLAG_csa_trap_on_node should be in a form "STUB,NODE" where STUB is a
|
|
// string specifying the name of a stub and NODE is number specifying node id.
|
|
const char* name = state()->name();
|
|
size_t name_length = strlen(name);
|
|
if (strncmp(FLAG_csa_trap_on_node, name, name_length) != 0) {
|
|
// Different name.
|
|
return;
|
|
}
|
|
size_t option_length = strlen(FLAG_csa_trap_on_node);
|
|
if (option_length < name_length + 2 ||
|
|
FLAG_csa_trap_on_node[name_length] != ',') {
|
|
// Option is too short.
|
|
return;
|
|
}
|
|
const char* start = &FLAG_csa_trap_on_node[name_length + 1];
|
|
char* end;
|
|
int node_id = static_cast<int>(strtol(start, &end, 10));
|
|
if (start == end) {
|
|
// Bad node id.
|
|
return;
|
|
}
|
|
BreakOnNode(node_id);
|
|
}
|
|
|
|
void CodeStubAssembler::Assert(const BranchGenerator& branch,
|
|
const char* message, const char* file, int line,
|
|
Node* extra_node1, const char* extra_node1_name,
|
|
Node* extra_node2, const char* extra_node2_name,
|
|
Node* extra_node3, const char* extra_node3_name,
|
|
Node* extra_node4, const char* extra_node4_name,
|
|
Node* extra_node5,
|
|
const char* extra_node5_name) {
|
|
#if defined(DEBUG)
|
|
if (FLAG_debug_code) {
|
|
Check(branch, message, file, line, extra_node1, extra_node1_name,
|
|
extra_node2, extra_node2_name, extra_node3, extra_node3_name,
|
|
extra_node4, extra_node4_name, extra_node5, extra_node5_name);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CodeStubAssembler::Assert(const NodeGenerator& condition_body,
|
|
const char* message, const char* file, int line,
|
|
Node* extra_node1, const char* extra_node1_name,
|
|
Node* extra_node2, const char* extra_node2_name,
|
|
Node* extra_node3, const char* extra_node3_name,
|
|
Node* extra_node4, const char* extra_node4_name,
|
|
Node* extra_node5,
|
|
const char* extra_node5_name) {
|
|
#if defined(DEBUG)
|
|
if (FLAG_debug_code) {
|
|
Check(condition_body, message, file, line, extra_node1, extra_node1_name,
|
|
extra_node2, extra_node2_name, extra_node3, extra_node3_name,
|
|
extra_node4, extra_node4_name, extra_node5, extra_node5_name);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
namespace {
|
|
void MaybePrintNodeWithName(CodeStubAssembler* csa, Node* node,
|
|
const char* node_name) {
|
|
if (node != nullptr) {
|
|
csa->CallRuntime(Runtime::kPrintWithNameForAssert, csa->SmiConstant(0),
|
|
csa->StringConstant(node_name), node);
|
|
}
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
void CodeStubAssembler::Check(const BranchGenerator& branch,
|
|
const char* message, const char* file, int line,
|
|
Node* extra_node1, const char* extra_node1_name,
|
|
Node* extra_node2, const char* extra_node2_name,
|
|
Node* extra_node3, const char* extra_node3_name,
|
|
Node* extra_node4, const char* extra_node4_name,
|
|
Node* extra_node5, const char* extra_node5_name) {
|
|
Label ok(this);
|
|
Label not_ok(this, Label::kDeferred);
|
|
if (message != nullptr && FLAG_code_comments) {
|
|
Comment("[ Assert: ", message);
|
|
} else {
|
|
Comment("[ Assert");
|
|
}
|
|
branch(&ok, ¬_ok);
|
|
|
|
BIND(¬_ok);
|
|
FailAssert(message, file, line, extra_node1, extra_node1_name, extra_node2,
|
|
extra_node2_name, extra_node3, extra_node3_name, extra_node4,
|
|
extra_node4_name, extra_node5, extra_node5_name);
|
|
|
|
BIND(&ok);
|
|
Comment("] Assert");
|
|
}
|
|
|
|
void CodeStubAssembler::Check(const NodeGenerator& condition_body,
|
|
const char* message, const char* file, int line,
|
|
Node* extra_node1, const char* extra_node1_name,
|
|
Node* extra_node2, const char* extra_node2_name,
|
|
Node* extra_node3, const char* extra_node3_name,
|
|
Node* extra_node4, const char* extra_node4_name,
|
|
Node* extra_node5, const char* extra_node5_name) {
|
|
BranchGenerator branch = [=](Label* ok, Label* not_ok) {
|
|
Node* condition = condition_body();
|
|
DCHECK_NOT_NULL(condition);
|
|
Branch(condition, ok, not_ok);
|
|
};
|
|
|
|
Check(branch, message, file, line, extra_node1, extra_node1_name, extra_node2,
|
|
extra_node2_name, extra_node3, extra_node3_name, extra_node4,
|
|
extra_node4_name, extra_node5, extra_node5_name);
|
|
}
|
|
|
|
void CodeStubAssembler::FastCheck(TNode<BoolT> condition) {
|
|
Label ok(this), not_ok(this, Label::kDeferred);
|
|
Branch(condition, &ok, ¬_ok);
|
|
BIND(¬_ok);
|
|
{
|
|
DebugBreak();
|
|
Goto(&ok);
|
|
}
|
|
BIND(&ok);
|
|
}
|
|
|
|
void CodeStubAssembler::FailAssert(
|
|
const char* message, const char* file, int line, Node* extra_node1,
|
|
const char* extra_node1_name, Node* extra_node2,
|
|
const char* extra_node2_name, Node* extra_node3,
|
|
const char* extra_node3_name, Node* extra_node4,
|
|
const char* extra_node4_name, Node* extra_node5,
|
|
const char* extra_node5_name) {
|
|
DCHECK_NOT_NULL(message);
|
|
EmbeddedVector<char, 1024> chars;
|
|
if (file != nullptr) {
|
|
SNPrintF(chars, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line);
|
|
} else {
|
|
SNPrintF(chars, "CSA_ASSERT failed: %s\n", message);
|
|
}
|
|
Node* message_node = StringConstant(chars.begin());
|
|
|
|
#ifdef DEBUG
|
|
// Only print the extra nodes in debug builds.
|
|
MaybePrintNodeWithName(this, extra_node1, extra_node1_name);
|
|
MaybePrintNodeWithName(this, extra_node2, extra_node2_name);
|
|
MaybePrintNodeWithName(this, extra_node3, extra_node3_name);
|
|
MaybePrintNodeWithName(this, extra_node4, extra_node4_name);
|
|
MaybePrintNodeWithName(this, extra_node5, extra_node5_name);
|
|
#endif
|
|
|
|
DebugAbort(message_node);
|
|
Unreachable();
|
|
}
|
|
|
|
Node* CodeStubAssembler::SelectImpl(TNode<BoolT> condition,
|
|
const NodeGenerator& true_body,
|
|
const NodeGenerator& false_body,
|
|
MachineRepresentation rep) {
|
|
VARIABLE(value, rep);
|
|
Label vtrue(this), vfalse(this), end(this);
|
|
Branch(condition, &vtrue, &vfalse);
|
|
|
|
BIND(&vtrue);
|
|
{
|
|
value.Bind(true_body());
|
|
Goto(&end);
|
|
}
|
|
BIND(&vfalse);
|
|
{
|
|
value.Bind(false_body());
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return value.value();
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::SelectInt32Constant(
|
|
SloppyTNode<BoolT> condition, int true_value, int false_value) {
|
|
return SelectConstant<Int32T>(condition, Int32Constant(true_value),
|
|
Int32Constant(false_value));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::SelectIntPtrConstant(
|
|
SloppyTNode<BoolT> condition, int true_value, int false_value) {
|
|
return SelectConstant<IntPtrT>(condition, IntPtrConstant(true_value),
|
|
IntPtrConstant(false_value));
|
|
}
|
|
|
|
TNode<Oddball> CodeStubAssembler::SelectBooleanConstant(
|
|
SloppyTNode<BoolT> condition) {
|
|
return SelectConstant<Oddball>(condition, TrueConstant(), FalseConstant());
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SelectSmiConstant(SloppyTNode<BoolT> condition,
|
|
Smi true_value,
|
|
Smi false_value) {
|
|
return SelectConstant<Smi>(condition, SmiConstant(true_value),
|
|
SmiConstant(false_value));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::NoContextConstant() {
|
|
return SmiConstant(Context::kNoContext);
|
|
}
|
|
|
|
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
|
|
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
|
|
std::declval<Heap>().rootAccessorName())>::type>::type> \
|
|
CodeStubAssembler::name##Constant() { \
|
|
return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \
|
|
std::declval<Heap>().rootAccessorName())>::type>::type>( \
|
|
LoadRoot(RootIndex::k##rootIndexName)); \
|
|
}
|
|
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
|
|
#undef HEAP_CONSTANT_ACCESSOR
|
|
|
|
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
|
|
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
|
|
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
|
|
CodeStubAssembler::name##Constant() { \
|
|
return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \
|
|
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type>( \
|
|
LoadRoot(RootIndex::k##rootIndexName)); \
|
|
}
|
|
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
|
|
#undef HEAP_CONSTANT_ACCESSOR
|
|
|
|
#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
|
|
compiler::TNode<BoolT> CodeStubAssembler::Is##name( \
|
|
SloppyTNode<Object> value) { \
|
|
return WordEqual(value, name##Constant()); \
|
|
} \
|
|
compiler::TNode<BoolT> CodeStubAssembler::IsNot##name( \
|
|
SloppyTNode<Object> value) { \
|
|
return WordNotEqual(value, name##Constant()); \
|
|
}
|
|
HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
|
|
#undef HEAP_CONSTANT_TEST
|
|
|
|
Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) {
|
|
if (mode == SMI_PARAMETERS) {
|
|
return SmiConstant(value);
|
|
} else {
|
|
DCHECK_EQ(INTPTR_PARAMETERS, mode);
|
|
return IntPtrConstant(value);
|
|
}
|
|
}
|
|
|
|
bool CodeStubAssembler::IsIntPtrOrSmiConstantZero(Node* test,
|
|
ParameterMode mode) {
|
|
int32_t constant_test;
|
|
Smi smi_test;
|
|
if (mode == INTPTR_PARAMETERS) {
|
|
if (ToInt32Constant(test, constant_test) && constant_test == 0) {
|
|
return true;
|
|
}
|
|
} else {
|
|
DCHECK_EQ(mode, SMI_PARAMETERS);
|
|
if (ToSmiConstant(test, &smi_test) && smi_test->value() == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CodeStubAssembler::TryGetIntPtrOrSmiConstantValue(Node* maybe_constant,
|
|
int* value,
|
|
ParameterMode mode) {
|
|
int32_t int32_constant;
|
|
if (mode == INTPTR_PARAMETERS) {
|
|
if (ToInt32Constant(maybe_constant, int32_constant)) {
|
|
*value = int32_constant;
|
|
return true;
|
|
}
|
|
} else {
|
|
DCHECK_EQ(mode, SMI_PARAMETERS);
|
|
Smi smi_constant;
|
|
if (ToSmiConstant(maybe_constant, &smi_constant)) {
|
|
*value = Smi::ToInt(smi_constant);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(
|
|
TNode<IntPtrT> value) {
|
|
Comment("IntPtrRoundUpToPowerOfTwo32");
|
|
CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u)));
|
|
value = Signed(IntPtrSub(value, IntPtrConstant(1)));
|
|
for (int i = 1; i <= 16; i *= 2) {
|
|
value = Signed(WordOr(value, WordShr(value, IntPtrConstant(i))));
|
|
}
|
|
return Signed(IntPtrAdd(value, IntPtrConstant(1)));
|
|
}
|
|
|
|
Node* CodeStubAssembler::MatchesParameterMode(Node* value, ParameterMode mode) {
|
|
if (mode == SMI_PARAMETERS) {
|
|
return TaggedIsSmi(value);
|
|
} else {
|
|
return Int32Constant(1);
|
|
}
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::WordIsPowerOfTwo(SloppyTNode<IntPtrT> value) {
|
|
// value && !(value & (value - 1))
|
|
return WordEqual(
|
|
Select<IntPtrT>(
|
|
WordEqual(value, IntPtrConstant(0)),
|
|
[=] { return IntPtrConstant(1); },
|
|
[=] { return WordAnd(value, IntPtrSub(value, IntPtrConstant(1))); }),
|
|
IntPtrConstant(0));
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::Float64Round(SloppyTNode<Float64T> x) {
|
|
Node* one = Float64Constant(1.0);
|
|
Node* one_half = Float64Constant(0.5);
|
|
|
|
Label return_x(this);
|
|
|
|
// Round up {x} towards Infinity.
|
|
VARIABLE(var_x, MachineRepresentation::kFloat64, Float64Ceil(x));
|
|
|
|
GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
|
|
&return_x);
|
|
var_x.Bind(Float64Sub(var_x.value(), one));
|
|
Goto(&return_x);
|
|
|
|
BIND(&return_x);
|
|
return TNode<Float64T>::UncheckedCast(var_x.value());
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::Float64Ceil(SloppyTNode<Float64T> x) {
|
|
if (IsFloat64RoundUpSupported()) {
|
|
return Float64RoundUp(x);
|
|
}
|
|
|
|
Node* one = Float64Constant(1.0);
|
|
Node* zero = Float64Constant(0.0);
|
|
Node* two_52 = Float64Constant(4503599627370496.0E0);
|
|
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
|
|
|
|
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
|
|
Label return_x(this), return_minus_x(this);
|
|
|
|
// Check if {x} is greater than zero.
|
|
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
|
|
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
|
|
&if_xnotgreaterthanzero);
|
|
|
|
BIND(&if_xgreaterthanzero);
|
|
{
|
|
// Just return {x} unless it's in the range ]0,2^52[.
|
|
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
|
|
|
|
// Round positive {x} towards Infinity.
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
|
|
GotoIfNot(Float64LessThan(var_x.value(), x), &return_x);
|
|
var_x.Bind(Float64Add(var_x.value(), one));
|
|
Goto(&return_x);
|
|
}
|
|
|
|
BIND(&if_xnotgreaterthanzero);
|
|
{
|
|
// Just return {x} unless it's in the range ]-2^52,0[
|
|
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
|
|
GotoIfNot(Float64LessThan(x, zero), &return_x);
|
|
|
|
// Round negated {x} towards Infinity and return the result negated.
|
|
Node* minus_x = Float64Neg(x);
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
|
|
GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
|
|
var_x.Bind(Float64Sub(var_x.value(), one));
|
|
Goto(&return_minus_x);
|
|
}
|
|
|
|
BIND(&return_minus_x);
|
|
var_x.Bind(Float64Neg(var_x.value()));
|
|
Goto(&return_x);
|
|
|
|
BIND(&return_x);
|
|
return TNode<Float64T>::UncheckedCast(var_x.value());
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::Float64Floor(SloppyTNode<Float64T> x) {
|
|
if (IsFloat64RoundDownSupported()) {
|
|
return Float64RoundDown(x);
|
|
}
|
|
|
|
Node* one = Float64Constant(1.0);
|
|
Node* zero = Float64Constant(0.0);
|
|
Node* two_52 = Float64Constant(4503599627370496.0E0);
|
|
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
|
|
|
|
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
|
|
Label return_x(this), return_minus_x(this);
|
|
|
|
// Check if {x} is greater than zero.
|
|
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
|
|
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
|
|
&if_xnotgreaterthanzero);
|
|
|
|
BIND(&if_xgreaterthanzero);
|
|
{
|
|
// Just return {x} unless it's in the range ]0,2^52[.
|
|
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
|
|
|
|
// Round positive {x} towards -Infinity.
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
|
|
GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x);
|
|
var_x.Bind(Float64Sub(var_x.value(), one));
|
|
Goto(&return_x);
|
|
}
|
|
|
|
BIND(&if_xnotgreaterthanzero);
|
|
{
|
|
// Just return {x} unless it's in the range ]-2^52,0[
|
|
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
|
|
GotoIfNot(Float64LessThan(x, zero), &return_x);
|
|
|
|
// Round negated {x} towards -Infinity and return the result negated.
|
|
Node* minus_x = Float64Neg(x);
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
|
|
GotoIfNot(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
|
|
var_x.Bind(Float64Add(var_x.value(), one));
|
|
Goto(&return_minus_x);
|
|
}
|
|
|
|
BIND(&return_minus_x);
|
|
var_x.Bind(Float64Neg(var_x.value()));
|
|
Goto(&return_x);
|
|
|
|
BIND(&return_x);
|
|
return TNode<Float64T>::UncheckedCast(var_x.value());
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::Float64RoundToEven(SloppyTNode<Float64T> x) {
|
|
if (IsFloat64RoundTiesEvenSupported()) {
|
|
return Float64RoundTiesEven(x);
|
|
}
|
|
// See ES#sec-touint8clamp for details.
|
|
Node* f = Float64Floor(x);
|
|
Node* f_and_half = Float64Add(f, Float64Constant(0.5));
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kFloat64);
|
|
Label return_f(this), return_f_plus_one(this), done(this);
|
|
|
|
GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one);
|
|
GotoIf(Float64LessThan(x, f_and_half), &return_f);
|
|
{
|
|
Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0));
|
|
Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f,
|
|
&return_f_plus_one);
|
|
}
|
|
|
|
BIND(&return_f);
|
|
var_result.Bind(f);
|
|
Goto(&done);
|
|
|
|
BIND(&return_f_plus_one);
|
|
var_result.Bind(Float64Add(f, Float64Constant(1.0)));
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return TNode<Float64T>::UncheckedCast(var_result.value());
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::Float64Trunc(SloppyTNode<Float64T> x) {
|
|
if (IsFloat64RoundTruncateSupported()) {
|
|
return Float64RoundTruncate(x);
|
|
}
|
|
|
|
Node* one = Float64Constant(1.0);
|
|
Node* zero = Float64Constant(0.0);
|
|
Node* two_52 = Float64Constant(4503599627370496.0E0);
|
|
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
|
|
|
|
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
|
|
Label return_x(this), return_minus_x(this);
|
|
|
|
// Check if {x} is greater than 0.
|
|
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
|
|
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
|
|
&if_xnotgreaterthanzero);
|
|
|
|
BIND(&if_xgreaterthanzero);
|
|
{
|
|
if (IsFloat64RoundDownSupported()) {
|
|
var_x.Bind(Float64RoundDown(x));
|
|
} else {
|
|
// Just return {x} unless it's in the range ]0,2^52[.
|
|
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
|
|
|
|
// Round positive {x} towards -Infinity.
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
|
|
GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x);
|
|
var_x.Bind(Float64Sub(var_x.value(), one));
|
|
}
|
|
Goto(&return_x);
|
|
}
|
|
|
|
BIND(&if_xnotgreaterthanzero);
|
|
{
|
|
if (IsFloat64RoundUpSupported()) {
|
|
var_x.Bind(Float64RoundUp(x));
|
|
Goto(&return_x);
|
|
} else {
|
|
// Just return {x} unless its in the range ]-2^52,0[.
|
|
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
|
|
GotoIfNot(Float64LessThan(x, zero), &return_x);
|
|
|
|
// Round negated {x} towards -Infinity and return result negated.
|
|
Node* minus_x = Float64Neg(x);
|
|
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
|
|
GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
|
|
var_x.Bind(Float64Sub(var_x.value(), one));
|
|
Goto(&return_minus_x);
|
|
}
|
|
}
|
|
|
|
BIND(&return_minus_x);
|
|
var_x.Bind(Float64Neg(var_x.value()));
|
|
Goto(&return_x);
|
|
|
|
BIND(&return_x);
|
|
return TNode<Float64T>::UncheckedCast(var_x.value());
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsValidSmi(TNode<Smi> smi) {
|
|
if (SmiValuesAre31Bits() && kSystemPointerSize == kInt64Size) {
|
|
// Check that the Smi value is properly sign-extended.
|
|
TNode<IntPtrT> value = Signed(BitcastTaggedToWord(smi));
|
|
return WordEqual(value, ChangeInt32ToIntPtr(TruncateIntPtrToInt32(value)));
|
|
}
|
|
return Int32TrueConstant();
|
|
}
|
|
|
|
Node* CodeStubAssembler::SmiShiftBitsConstant() {
|
|
return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SmiFromInt32(SloppyTNode<Int32T> value) {
|
|
TNode<IntPtrT> value_intptr = ChangeInt32ToIntPtr(value);
|
|
TNode<Smi> smi =
|
|
BitcastWordToTaggedSigned(WordShl(value_intptr, SmiShiftBitsConstant()));
|
|
return smi;
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsValidPositiveSmi(TNode<IntPtrT> value) {
|
|
intptr_t constant_value;
|
|
if (ToIntPtrConstant(value, constant_value)) {
|
|
return (static_cast<uintptr_t>(constant_value) <=
|
|
static_cast<uintptr_t>(Smi::kMaxValue))
|
|
? Int32TrueConstant()
|
|
: Int32FalseConstant();
|
|
}
|
|
|
|
return UintPtrLessThanOrEqual(value, IntPtrConstant(Smi::kMaxValue));
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SmiTag(SloppyTNode<IntPtrT> value) {
|
|
int32_t constant_value;
|
|
if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
|
|
return SmiConstant(constant_value);
|
|
}
|
|
TNode<Smi> smi =
|
|
BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
|
|
return smi;
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::SmiUntag(SloppyTNode<Smi> value) {
|
|
intptr_t constant_value;
|
|
if (ToIntPtrConstant(value, constant_value)) {
|
|
return IntPtrConstant(constant_value >> (kSmiShiftSize + kSmiTagSize));
|
|
}
|
|
return Signed(WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::SmiToInt32(SloppyTNode<Smi> value) {
|
|
TNode<IntPtrT> result = SmiUntag(value);
|
|
return TruncateIntPtrToInt32(result);
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::SmiToFloat64(SloppyTNode<Smi> value) {
|
|
return ChangeInt32ToFloat64(SmiToInt32(value));
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SmiMax(TNode<Smi> a, TNode<Smi> b) {
|
|
return SelectConstant<Smi>(SmiLessThan(a, b), b, a);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SmiMin(TNode<Smi> a, TNode<Smi> b) {
|
|
return SelectConstant<Smi>(SmiLessThan(a, b), a, b);
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::TryIntPtrAdd(TNode<IntPtrT> a,
|
|
TNode<IntPtrT> b,
|
|
Label* if_overflow) {
|
|
TNode<PairT<IntPtrT, BoolT>> pair = IntPtrAddWithOverflow(a, b);
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
GotoIf(overflow, if_overflow);
|
|
return Projection<0>(pair);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::TrySmiAdd(TNode<Smi> lhs, TNode<Smi> rhs,
|
|
Label* if_overflow) {
|
|
if (SmiValuesAre32Bits()) {
|
|
return BitcastWordToTaggedSigned(TryIntPtrAdd(
|
|
BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs), if_overflow));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
TNode<PairT<Int32T, BoolT>> pair =
|
|
Int32AddWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)),
|
|
TruncateIntPtrToInt32(BitcastTaggedToWord(rhs)));
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
GotoIf(overflow, if_overflow);
|
|
TNode<Int32T> result = Projection<0>(pair);
|
|
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result));
|
|
}
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::TrySmiSub(TNode<Smi> lhs, TNode<Smi> rhs,
|
|
Label* if_overflow) {
|
|
if (SmiValuesAre32Bits()) {
|
|
TNode<PairT<IntPtrT, BoolT>> pair = IntPtrSubWithOverflow(
|
|
BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs));
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
GotoIf(overflow, if_overflow);
|
|
TNode<IntPtrT> result = Projection<0>(pair);
|
|
return BitcastWordToTaggedSigned(result);
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
TNode<PairT<Int32T, BoolT>> pair =
|
|
Int32SubWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)),
|
|
TruncateIntPtrToInt32(BitcastTaggedToWord(rhs)));
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
GotoIf(overflow, if_overflow);
|
|
TNode<Int32T> result = Projection<0>(pair);
|
|
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result));
|
|
}
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberMax(SloppyTNode<Number> a,
|
|
SloppyTNode<Number> b) {
|
|
// TODO(danno): This could be optimized by specifically handling smi cases.
|
|
TVARIABLE(Number, result);
|
|
Label done(this), greater_than_equal_a(this), greater_than_equal_b(this);
|
|
GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a);
|
|
GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b);
|
|
result = NanConstant();
|
|
Goto(&done);
|
|
BIND(&greater_than_equal_a);
|
|
result = a;
|
|
Goto(&done);
|
|
BIND(&greater_than_equal_b);
|
|
result = b;
|
|
Goto(&done);
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberMin(SloppyTNode<Number> a,
|
|
SloppyTNode<Number> b) {
|
|
// TODO(danno): This could be optimized by specifically handling smi cases.
|
|
TVARIABLE(Number, result);
|
|
Label done(this), greater_than_equal_a(this), greater_than_equal_b(this);
|
|
GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a);
|
|
GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b);
|
|
result = NanConstant();
|
|
Goto(&done);
|
|
BIND(&greater_than_equal_a);
|
|
result = b;
|
|
Goto(&done);
|
|
BIND(&greater_than_equal_b);
|
|
result = a;
|
|
Goto(&done);
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::ConvertToRelativeIndex(
|
|
TNode<Context> context, TNode<Object> index, TNode<IntPtrT> length) {
|
|
TVARIABLE(IntPtrT, result);
|
|
|
|
TNode<Number> const index_int =
|
|
ToInteger_Inline(context, index, CodeStubAssembler::kTruncateMinusZero);
|
|
TNode<IntPtrT> zero = IntPtrConstant(0);
|
|
|
|
Label done(this);
|
|
Label if_issmi(this), if_isheapnumber(this, Label::kDeferred);
|
|
Branch(TaggedIsSmi(index_int), &if_issmi, &if_isheapnumber);
|
|
|
|
BIND(&if_issmi);
|
|
{
|
|
TNode<Smi> const index_smi = CAST(index_int);
|
|
result = Select<IntPtrT>(
|
|
IntPtrLessThan(SmiUntag(index_smi), zero),
|
|
[=] { return IntPtrMax(IntPtrAdd(length, SmiUntag(index_smi)), zero); },
|
|
[=] { return IntPtrMin(SmiUntag(index_smi), length); });
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_isheapnumber);
|
|
{
|
|
// If {index} is a heap number, it is definitely out of bounds. If it is
|
|
// negative, {index} = max({length} + {index}),0) = 0'. If it is positive,
|
|
// set {index} to {length}.
|
|
TNode<HeapNumber> const index_hn = CAST(index_int);
|
|
TNode<Float64T> const float_zero = Float64Constant(0.);
|
|
TNode<Float64T> const index_float = LoadHeapNumberValue(index_hn);
|
|
result = SelectConstant<IntPtrT>(Float64LessThan(index_float, float_zero),
|
|
zero, length);
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::SmiMod(TNode<Smi> a, TNode<Smi> b) {
|
|
TVARIABLE(Number, var_result);
|
|
Label return_result(this, &var_result),
|
|
return_minuszero(this, Label::kDeferred),
|
|
return_nan(this, Label::kDeferred);
|
|
|
|
// Untag {a} and {b}.
|
|
TNode<Int32T> int_a = SmiToInt32(a);
|
|
TNode<Int32T> int_b = SmiToInt32(b);
|
|
|
|
// Return NaN if {b} is zero.
|
|
GotoIf(Word32Equal(int_b, Int32Constant(0)), &return_nan);
|
|
|
|
// Check if {a} is non-negative.
|
|
Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred);
|
|
Branch(Int32LessThanOrEqual(Int32Constant(0), int_a), &if_aisnotnegative,
|
|
&if_aisnegative);
|
|
|
|
BIND(&if_aisnotnegative);
|
|
{
|
|
// Fast case, don't need to check any other edge cases.
|
|
TNode<Int32T> r = Int32Mod(int_a, int_b);
|
|
var_result = SmiFromInt32(r);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_aisnegative);
|
|
{
|
|
if (SmiValuesAre32Bits()) {
|
|
// Check if {a} is kMinInt and {b} is -1 (only relevant if the
|
|
// kMinInt is actually representable as a Smi).
|
|
Label join(this);
|
|
GotoIfNot(Word32Equal(int_a, Int32Constant(kMinInt)), &join);
|
|
GotoIf(Word32Equal(int_b, Int32Constant(-1)), &return_minuszero);
|
|
Goto(&join);
|
|
BIND(&join);
|
|
}
|
|
|
|
// Perform the integer modulus operation.
|
|
TNode<Int32T> r = Int32Mod(int_a, int_b);
|
|
|
|
// Check if {r} is zero, and if so return -0, because we have to
|
|
// take the sign of the left hand side {a}, which is negative.
|
|
GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero);
|
|
|
|
// The remainder {r} can be outside the valid Smi range on 32bit
|
|
// architectures, so we cannot just say SmiFromInt32(r) here.
|
|
var_result = ChangeInt32ToTagged(r);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_minuszero);
|
|
var_result = MinusZeroConstant();
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_nan);
|
|
var_result = NanConstant();
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::SmiMul(TNode<Smi> a, TNode<Smi> b) {
|
|
TVARIABLE(Number, var_result);
|
|
VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64);
|
|
VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64);
|
|
Label return_result(this, &var_result);
|
|
|
|
// Both {a} and {b} are Smis. Convert them to integers and multiply.
|
|
Node* lhs32 = SmiToInt32(a);
|
|
Node* rhs32 = SmiToInt32(b);
|
|
Node* pair = Int32MulWithOverflow(lhs32, rhs32);
|
|
|
|
Node* overflow = Projection(1, pair);
|
|
|
|
// Check if the multiplication overflowed.
|
|
Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
|
|
Branch(overflow, &if_overflow, &if_notoverflow);
|
|
BIND(&if_notoverflow);
|
|
{
|
|
// If the answer is zero, we may need to return -0.0, depending on the
|
|
// input.
|
|
Label answer_zero(this), answer_not_zero(this);
|
|
Node* answer = Projection(0, pair);
|
|
Node* zero = Int32Constant(0);
|
|
Branch(Word32Equal(answer, zero), &answer_zero, &answer_not_zero);
|
|
BIND(&answer_not_zero);
|
|
{
|
|
var_result = ChangeInt32ToTagged(answer);
|
|
Goto(&return_result);
|
|
}
|
|
BIND(&answer_zero);
|
|
{
|
|
Node* or_result = Word32Or(lhs32, rhs32);
|
|
Label if_should_be_negative_zero(this), if_should_be_zero(this);
|
|
Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero,
|
|
&if_should_be_zero);
|
|
BIND(&if_should_be_negative_zero);
|
|
{
|
|
var_result = MinusZeroConstant();
|
|
Goto(&return_result);
|
|
}
|
|
BIND(&if_should_be_zero);
|
|
{
|
|
var_result = SmiConstant(0);
|
|
Goto(&return_result);
|
|
}
|
|
}
|
|
}
|
|
BIND(&if_overflow);
|
|
{
|
|
var_lhs_float64.Bind(SmiToFloat64(a));
|
|
var_rhs_float64.Bind(SmiToFloat64(b));
|
|
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
|
|
var_result = AllocateHeapNumberWithValue(value);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor,
|
|
Label* bailout) {
|
|
// Both {a} and {b} are Smis. Bailout to floating point division if {divisor}
|
|
// is zero.
|
|
GotoIf(WordEqual(divisor, SmiConstant(0)), bailout);
|
|
|
|
// Do floating point division if {dividend} is zero and {divisor} is
|
|
// negative.
|
|
Label dividend_is_zero(this), dividend_is_not_zero(this);
|
|
Branch(WordEqual(dividend, SmiConstant(0)), ÷nd_is_zero,
|
|
÷nd_is_not_zero);
|
|
|
|
BIND(÷nd_is_zero);
|
|
{
|
|
GotoIf(SmiLessThan(divisor, SmiConstant(0)), bailout);
|
|
Goto(÷nd_is_not_zero);
|
|
}
|
|
BIND(÷nd_is_not_zero);
|
|
|
|
TNode<Int32T> untagged_divisor = SmiToInt32(divisor);
|
|
TNode<Int32T> untagged_dividend = SmiToInt32(dividend);
|
|
|
|
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
|
|
// if the Smi size is 31) and {divisor} is -1.
|
|
Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
|
|
Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
|
|
&divisor_is_minus_one, &divisor_is_not_minus_one);
|
|
|
|
BIND(&divisor_is_minus_one);
|
|
{
|
|
GotoIf(Word32Equal(
|
|
untagged_dividend,
|
|
Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))),
|
|
bailout);
|
|
Goto(&divisor_is_not_minus_one);
|
|
}
|
|
BIND(&divisor_is_not_minus_one);
|
|
|
|
TNode<Int32T> untagged_result = Int32Div(untagged_dividend, untagged_divisor);
|
|
TNode<Int32T> truncated = Signed(Int32Mul(untagged_result, untagged_divisor));
|
|
|
|
// Do floating point division if the remainder is not 0.
|
|
GotoIf(Word32NotEqual(untagged_dividend, truncated), bailout);
|
|
|
|
return SmiFromInt32(untagged_result);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::SmiLexicographicCompare(TNode<Smi> x,
|
|
TNode<Smi> y) {
|
|
TNode<ExternalReference> smi_lexicographic_compare =
|
|
ExternalConstant(ExternalReference::smi_lexicographic_compare_function());
|
|
TNode<ExternalReference> isolate_ptr =
|
|
ExternalConstant(ExternalReference::isolate_address(isolate()));
|
|
return CAST(CallCFunction(smi_lexicographic_compare, MachineType::AnyTagged(),
|
|
std::make_pair(MachineType::Pointer(), isolate_ptr),
|
|
std::make_pair(MachineType::AnyTagged(), x),
|
|
std::make_pair(MachineType::AnyTagged(), y)));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::TruncateIntPtrToInt32(
|
|
SloppyTNode<IntPtrT> value) {
|
|
if (Is64()) {
|
|
return TruncateInt64ToInt32(ReinterpretCast<Int64T>(value));
|
|
}
|
|
return ReinterpretCast<Int32T>(value);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedIsSmi(SloppyTNode<Object> a) {
|
|
return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
|
|
IntPtrConstant(0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedIsSmi(TNode<MaybeObject> a) {
|
|
return WordEqual(
|
|
WordAnd(BitcastMaybeObjectToWord(a), IntPtrConstant(kSmiTagMask)),
|
|
IntPtrConstant(0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedIsNotSmi(SloppyTNode<Object> a) {
|
|
return WordNotEqual(
|
|
WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
|
|
IntPtrConstant(0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedIsPositiveSmi(SloppyTNode<Object> a) {
|
|
return WordEqual(WordAnd(BitcastTaggedToWord(a),
|
|
IntPtrConstant(kSmiTagMask | kSmiSignMask)),
|
|
IntPtrConstant(0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::WordIsAligned(SloppyTNode<WordT> word,
|
|
size_t alignment) {
|
|
DCHECK(base::bits::IsPowerOfTwo(alignment));
|
|
return WordEqual(IntPtrConstant(0),
|
|
WordAnd(word, IntPtrConstant(alignment - 1)));
|
|
}
|
|
|
|
#if DEBUG
|
|
void CodeStubAssembler::Bind(Label* label, AssemblerDebugInfo debug_info) {
|
|
CodeAssembler::Bind(label, debug_info);
|
|
}
|
|
#endif // DEBUG
|
|
|
|
void CodeStubAssembler::Bind(Label* label) { CodeAssembler::Bind(label); }
|
|
|
|
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
|
|
TNode<FixedDoubleArray> array, TNode<Smi> index, Label* if_hole) {
|
|
return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0,
|
|
SMI_PARAMETERS, if_hole);
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
|
|
TNode<FixedDoubleArray> array, TNode<IntPtrT> index, Label* if_hole) {
|
|
return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0,
|
|
INTPTR_PARAMETERS, if_hole);
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfPrototypesHaveNoElements(
|
|
Node* receiver_map, Label* definitely_no_elements,
|
|
Label* possibly_elements) {
|
|
CSA_SLOW_ASSERT(this, IsMap(receiver_map));
|
|
VARIABLE(var_map, MachineRepresentation::kTagged, receiver_map);
|
|
Label loop_body(this, &var_map);
|
|
Node* empty_fixed_array = LoadRoot(RootIndex::kEmptyFixedArray);
|
|
Node* empty_slow_element_dictionary =
|
|
LoadRoot(RootIndex::kEmptySlowElementDictionary);
|
|
Goto(&loop_body);
|
|
|
|
BIND(&loop_body);
|
|
{
|
|
Node* map = var_map.value();
|
|
Node* prototype = LoadMapPrototype(map);
|
|
GotoIf(IsNull(prototype), definitely_no_elements);
|
|
Node* prototype_map = LoadMap(prototype);
|
|
TNode<Int32T> prototype_instance_type = LoadMapInstanceType(prototype_map);
|
|
|
|
// Pessimistically assume elements if a Proxy, Special API Object,
|
|
// or JSValue wrapper is found on the prototype chain. After this
|
|
// instance type check, it's not necessary to check for interceptors or
|
|
// access checks.
|
|
Label if_custom(this, Label::kDeferred), if_notcustom(this);
|
|
Branch(IsCustomElementsReceiverInstanceType(prototype_instance_type),
|
|
&if_custom, &if_notcustom);
|
|
|
|
BIND(&if_custom);
|
|
{
|
|
// For string JSValue wrappers we still support the checks as long
|
|
// as they wrap the empty string.
|
|
GotoIfNot(InstanceTypeEqual(prototype_instance_type, JS_VALUE_TYPE),
|
|
possibly_elements);
|
|
Node* prototype_value = LoadJSValueValue(prototype);
|
|
Branch(IsEmptyString(prototype_value), &if_notcustom, possibly_elements);
|
|
}
|
|
|
|
BIND(&if_notcustom);
|
|
{
|
|
Node* prototype_elements = LoadElements(prototype);
|
|
var_map.Bind(prototype_map);
|
|
GotoIf(WordEqual(prototype_elements, empty_fixed_array), &loop_body);
|
|
Branch(WordEqual(prototype_elements, empty_slow_element_dictionary),
|
|
&loop_body, possibly_elements);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true,
|
|
Label* if_false) {
|
|
GotoIf(TaggedIsSmi(object), if_false);
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
Branch(IsJSReceiver(object), if_true, if_false);
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfForceSlowPath(Label* if_true) {
|
|
#ifdef V8_ENABLE_FORCE_SLOW_PATH
|
|
Node* const force_slow_path_addr =
|
|
ExternalConstant(ExternalReference::force_slow_path(isolate()));
|
|
Node* const force_slow = Load(MachineType::Uint8(), force_slow_path_addr);
|
|
|
|
GotoIf(force_slow, if_true);
|
|
#endif
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfDebugExecutionModeChecksSideEffects(
|
|
Label* if_true) {
|
|
STATIC_ASSERT(sizeof(DebugInfo::ExecutionMode) >= sizeof(int32_t));
|
|
|
|
TNode<ExternalReference> execution_mode_address = ExternalConstant(
|
|
ExternalReference::debug_execution_mode_address(isolate()));
|
|
TNode<Int32T> execution_mode =
|
|
UncheckedCast<Int32T>(Load(MachineType::Int32(), execution_mode_address));
|
|
|
|
GotoIf(Word32Equal(execution_mode, Int32Constant(DebugInfo::kSideEffects)),
|
|
if_true);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::AllocateRaw(TNode<IntPtrT> size_in_bytes,
|
|
AllocationFlags flags,
|
|
TNode<RawPtrT> top_address,
|
|
TNode<RawPtrT> limit_address) {
|
|
Label if_out_of_memory(this, Label::kDeferred);
|
|
|
|
// TODO(jgruber,jkummerow): Extract the slow paths (= probably everything
|
|
// but bump pointer allocation) into a builtin to save code space. The
|
|
// size_in_bytes check may be moved there as well since a non-smi
|
|
// size_in_bytes probably doesn't fit into the bump pointer region
|
|
// (double-check that).
|
|
|
|
intptr_t size_in_bytes_constant;
|
|
bool size_in_bytes_is_constant = false;
|
|
if (ToIntPtrConstant(size_in_bytes, size_in_bytes_constant)) {
|
|
size_in_bytes_is_constant = true;
|
|
CHECK(Internals::IsValidSmi(size_in_bytes_constant));
|
|
CHECK_GT(size_in_bytes_constant, 0);
|
|
} else {
|
|
GotoIfNot(IsValidPositiveSmi(size_in_bytes), &if_out_of_memory);
|
|
}
|
|
|
|
TNode<RawPtrT> top =
|
|
UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), top_address));
|
|
TNode<RawPtrT> limit =
|
|
UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), limit_address));
|
|
|
|
// If there's not enough space, call the runtime.
|
|
TVARIABLE(Object, result);
|
|
Label runtime_call(this, Label::kDeferred), no_runtime_call(this), out(this);
|
|
|
|
bool needs_double_alignment = flags & kDoubleAlignment;
|
|
|
|
if (flags & kAllowLargeObjectAllocation) {
|
|
Label next(this);
|
|
GotoIf(IsRegularHeapObjectSize(size_in_bytes), &next);
|
|
|
|
if (FLAG_young_generation_large_objects) {
|
|
result = CallRuntime(Runtime::kAllocateInYoungGeneration,
|
|
NoContextConstant(), SmiTag(size_in_bytes));
|
|
} else {
|
|
TNode<Smi> alignment_flag = SmiConstant(Smi::FromInt(
|
|
AllocateDoubleAlignFlag::encode(needs_double_alignment)));
|
|
result =
|
|
CallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
|
|
SmiTag(size_in_bytes), alignment_flag);
|
|
}
|
|
Goto(&out);
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
TVARIABLE(IntPtrT, adjusted_size, size_in_bytes);
|
|
|
|
if (needs_double_alignment) {
|
|
Label next(this);
|
|
GotoIfNot(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &next);
|
|
|
|
adjusted_size = IntPtrAdd(size_in_bytes, IntPtrConstant(4));
|
|
Goto(&next);
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
TNode<IntPtrT> new_top =
|
|
IntPtrAdd(UncheckedCast<IntPtrT>(top), adjusted_size.value());
|
|
|
|
Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
|
|
&no_runtime_call);
|
|
|
|
BIND(&runtime_call);
|
|
{
|
|
if (flags & kPretenured) {
|
|
TNode<Smi> runtime_flags = SmiConstant(Smi::FromInt(
|
|
AllocateDoubleAlignFlag::encode(needs_double_alignment)));
|
|
result =
|
|
CallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
|
|
SmiTag(size_in_bytes), runtime_flags);
|
|
} else {
|
|
result = CallRuntime(Runtime::kAllocateInYoungGeneration,
|
|
NoContextConstant(), SmiTag(size_in_bytes));
|
|
}
|
|
Goto(&out);
|
|
}
|
|
|
|
// When there is enough space, return `top' and bump it up.
|
|
BIND(&no_runtime_call);
|
|
{
|
|
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
|
|
new_top);
|
|
|
|
TVARIABLE(IntPtrT, address, UncheckedCast<IntPtrT>(top));
|
|
|
|
if (needs_double_alignment) {
|
|
Label next(this);
|
|
GotoIf(IntPtrEqual(adjusted_size.value(), size_in_bytes), &next);
|
|
|
|
// Store a filler and increase the address by 4.
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, top,
|
|
LoadRoot(RootIndex::kOnePointerFillerMap));
|
|
address = IntPtrAdd(UncheckedCast<IntPtrT>(top), IntPtrConstant(4));
|
|
Goto(&next);
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
result = BitcastWordToTagged(
|
|
IntPtrAdd(address.value(), IntPtrConstant(kHeapObjectTag)));
|
|
Goto(&out);
|
|
}
|
|
|
|
if (!size_in_bytes_is_constant) {
|
|
BIND(&if_out_of_memory);
|
|
CallRuntime(Runtime::kFatalProcessOutOfMemoryInAllocateRaw,
|
|
NoContextConstant());
|
|
Unreachable();
|
|
}
|
|
|
|
BIND(&out);
|
|
return UncheckedCast<HeapObject>(result.value());
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::AllocateRawUnaligned(
|
|
TNode<IntPtrT> size_in_bytes, AllocationFlags flags,
|
|
TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) {
|
|
DCHECK_EQ(flags & kDoubleAlignment, 0);
|
|
return AllocateRaw(size_in_bytes, flags, top_address, limit_address);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::AllocateRawDoubleAligned(
|
|
TNode<IntPtrT> size_in_bytes, AllocationFlags flags,
|
|
TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) {
|
|
#if defined(V8_HOST_ARCH_32_BIT)
|
|
return AllocateRaw(size_in_bytes, flags | kDoubleAlignment, top_address,
|
|
limit_address);
|
|
#elif defined(V8_HOST_ARCH_64_BIT)
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
// TODO(ishell, v8:8875): Consider using aligned allocations once the
|
|
// allocation alignment inconsistency is fixed. For now we keep using
|
|
// unaligned access since both x64 and arm64 architectures (where pointer
|
|
// compression is supported) allow unaligned access to doubles and full words.
|
|
#endif // V8_COMPRESS_POINTERS
|
|
// Allocation on 64 bit machine is naturally double aligned
|
|
return AllocateRaw(size_in_bytes, flags & ~kDoubleAlignment, top_address,
|
|
limit_address);
|
|
#else
|
|
#error Architecture not supported
|
|
#endif
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace(
|
|
TNode<IntPtrT> size_in_bytes, AllocationFlags flags) {
|
|
DCHECK(flags == kNone || flags == kDoubleAlignment);
|
|
CSA_ASSERT(this, IsRegularHeapObjectSize(size_in_bytes));
|
|
return Allocate(size_in_bytes, flags);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::Allocate(TNode<IntPtrT> size_in_bytes,
|
|
AllocationFlags flags) {
|
|
Comment("Allocate");
|
|
bool const new_space = !(flags & kPretenured);
|
|
bool const allow_large_objects = flags & kAllowLargeObjectAllocation;
|
|
// For optimized allocations, we don't allow the allocation to happen in a
|
|
// different generation than requested.
|
|
bool const always_allocated_in_requested_space =
|
|
!new_space || !allow_large_objects || FLAG_young_generation_large_objects;
|
|
if (!allow_large_objects) {
|
|
intptr_t size_constant;
|
|
if (ToIntPtrConstant(size_in_bytes, size_constant)) {
|
|
CHECK_LE(size_constant, kMaxRegularHeapObjectSize);
|
|
}
|
|
}
|
|
if (!(flags & kDoubleAlignment) && always_allocated_in_requested_space) {
|
|
return OptimizedAllocate(
|
|
size_in_bytes,
|
|
new_space ? AllocationType::kYoung : AllocationType::kOld,
|
|
allow_large_objects ? AllowLargeObjects::kTrue
|
|
: AllowLargeObjects::kFalse);
|
|
}
|
|
TNode<ExternalReference> top_address = ExternalConstant(
|
|
new_space
|
|
? ExternalReference::new_space_allocation_top_address(isolate())
|
|
: ExternalReference::old_space_allocation_top_address(isolate()));
|
|
DCHECK_EQ(kSystemPointerSize,
|
|
ExternalReference::new_space_allocation_limit_address(isolate())
|
|
.address() -
|
|
ExternalReference::new_space_allocation_top_address(isolate())
|
|
.address());
|
|
DCHECK_EQ(kSystemPointerSize,
|
|
ExternalReference::old_space_allocation_limit_address(isolate())
|
|
.address() -
|
|
ExternalReference::old_space_allocation_top_address(isolate())
|
|
.address());
|
|
TNode<IntPtrT> limit_address =
|
|
IntPtrAdd(ReinterpretCast<IntPtrT>(top_address),
|
|
IntPtrConstant(kSystemPointerSize));
|
|
|
|
if (flags & kDoubleAlignment) {
|
|
return AllocateRawDoubleAligned(size_in_bytes, flags,
|
|
ReinterpretCast<RawPtrT>(top_address),
|
|
ReinterpretCast<RawPtrT>(limit_address));
|
|
} else {
|
|
return AllocateRawUnaligned(size_in_bytes, flags,
|
|
ReinterpretCast<RawPtrT>(top_address),
|
|
ReinterpretCast<RawPtrT>(limit_address));
|
|
}
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace(int size_in_bytes,
|
|
AllocationFlags flags) {
|
|
CHECK(flags == kNone || flags == kDoubleAlignment);
|
|
DCHECK_LE(size_in_bytes, kMaxRegularHeapObjectSize);
|
|
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::Allocate(int size_in_bytes,
|
|
AllocationFlags flags) {
|
|
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous,
|
|
TNode<IntPtrT> offset) {
|
|
return UncheckedCast<HeapObject>(
|
|
BitcastWordToTagged(IntPtrAdd(BitcastTaggedToWord(previous), offset)));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous,
|
|
int offset) {
|
|
return InnerAllocate(previous, IntPtrConstant(offset));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsRegularHeapObjectSize(TNode<IntPtrT> size) {
|
|
return UintPtrLessThanOrEqual(size,
|
|
IntPtrConstant(kMaxRegularHeapObjectSize));
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true,
|
|
Label* if_false) {
|
|
Label if_smi(this), if_notsmi(this), if_heapnumber(this, Label::kDeferred),
|
|
if_bigint(this, Label::kDeferred);
|
|
// Rule out false {value}.
|
|
GotoIf(WordEqual(value, FalseConstant()), if_false);
|
|
|
|
// Check if {value} is a Smi or a HeapObject.
|
|
Branch(TaggedIsSmi(value), &if_smi, &if_notsmi);
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
// The {value} is a Smi, only need to check against zero.
|
|
BranchIfSmiEqual(CAST(value), SmiConstant(0), if_false, if_true);
|
|
}
|
|
|
|
BIND(&if_notsmi);
|
|
{
|
|
// Check if {value} is the empty string.
|
|
GotoIf(IsEmptyString(value), if_false);
|
|
|
|
// The {value} is a HeapObject, load its map.
|
|
Node* value_map = LoadMap(value);
|
|
|
|
// Only null, undefined and document.all have the undetectable bit set,
|
|
// so we can return false immediately when that bit is set.
|
|
GotoIf(IsUndetectableMap(value_map), if_false);
|
|
|
|
// We still need to handle numbers specially, but all other {value}s
|
|
// that make it here yield true.
|
|
GotoIf(IsHeapNumberMap(value_map), &if_heapnumber);
|
|
Branch(IsBigInt(value), &if_bigint, if_true);
|
|
|
|
BIND(&if_heapnumber);
|
|
{
|
|
// Load the floating point value of {value}.
|
|
Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset,
|
|
MachineType::Float64());
|
|
|
|
// Check if the floating point {value} is neither 0.0, -0.0 nor NaN.
|
|
Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)),
|
|
if_true, if_false);
|
|
}
|
|
|
|
BIND(&if_bigint);
|
|
{
|
|
TNode<BigInt> bigint = CAST(value);
|
|
TNode<Word32T> bitfield = LoadBigIntBitfield(bigint);
|
|
TNode<Uint32T> length = DecodeWord32<BigIntBase::LengthBits>(bitfield);
|
|
Branch(Word32Equal(length, Int32Constant(0)), if_false, if_true);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType type) {
|
|
Node* frame_pointer = LoadParentFramePointer();
|
|
return Load(type, frame_pointer, IntPtrConstant(offset));
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
|
|
MachineType type) {
|
|
return Load(type, buffer, IntPtrConstant(offset));
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object,
|
|
int offset, MachineType type) {
|
|
CSA_ASSERT(this, IsStrong(object));
|
|
return Load(type, object, IntPtrConstant(offset - kHeapObjectTag));
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object,
|
|
SloppyTNode<IntPtrT> offset,
|
|
MachineType type) {
|
|
CSA_ASSERT(this, IsStrong(object));
|
|
return Load(type, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagObjectField(
|
|
SloppyTNode<HeapObject> object, int offset) {
|
|
if (SmiValuesAre32Bits()) {
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
offset += 4;
|
|
#endif
|
|
return ChangeInt32ToIntPtr(
|
|
LoadObjectField(object, offset, MachineType::Int32()));
|
|
} else {
|
|
return SmiToIntPtr(
|
|
LoadObjectField(object, offset, MachineType::AnyTagged()));
|
|
}
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object,
|
|
int offset) {
|
|
if (SmiValuesAre32Bits()) {
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
offset += 4;
|
|
#endif
|
|
return UncheckedCast<Int32T>(
|
|
LoadObjectField(object, offset, MachineType::Int32()));
|
|
} else {
|
|
return SmiToInt32(
|
|
LoadObjectField(object, offset, MachineType::AnyTagged()));
|
|
}
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) {
|
|
if (SmiValuesAre32Bits()) {
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
index += 4;
|
|
#endif
|
|
return ChangeInt32ToIntPtr(
|
|
Load(MachineType::Int32(), base, IntPtrConstant(index)));
|
|
} else {
|
|
return SmiToIntPtr(
|
|
Load(MachineType::AnyTagged(), base, IntPtrConstant(index)));
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::StoreAndTagSmi(Node* base, int offset, Node* value) {
|
|
if (SmiValuesAre32Bits()) {
|
|
int zero_offset = offset + 4;
|
|
int payload_offset = offset;
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
std::swap(zero_offset, payload_offset);
|
|
#endif
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
|
|
IntPtrConstant(zero_offset), Int32Constant(0));
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
|
|
IntPtrConstant(payload_offset),
|
|
TruncateInt64ToInt32(value));
|
|
} else {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, base,
|
|
IntPtrConstant(offset), SmiTag(value));
|
|
}
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::LoadHeapNumberValue(
|
|
SloppyTNode<HeapNumber> object) {
|
|
return TNode<Float64T>::UncheckedCast(LoadObjectField(
|
|
object, HeapNumber::kValueOffset, MachineType::Float64()));
|
|
}
|
|
|
|
TNode<Map> CodeStubAssembler::LoadMap(SloppyTNode<HeapObject> object) {
|
|
return UncheckedCast<Map>(LoadObjectField(object, HeapObject::kMapOffset,
|
|
MachineType::TaggedPointer()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadInstanceType(
|
|
SloppyTNode<HeapObject> object) {
|
|
return LoadMapInstanceType(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::HasInstanceType(SloppyTNode<HeapObject> object,
|
|
InstanceType instance_type) {
|
|
return InstanceTypeEqual(LoadInstanceType(object), instance_type);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::DoesntHaveInstanceType(
|
|
SloppyTNode<HeapObject> object, InstanceType instance_type) {
|
|
return Word32NotEqual(LoadInstanceType(object), Int32Constant(instance_type));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedDoesntHaveInstanceType(
|
|
SloppyTNode<HeapObject> any_tagged, InstanceType type) {
|
|
/* return Phi <TaggedIsSmi(val), DoesntHaveInstanceType(val, type)> */
|
|
TNode<BoolT> tagged_is_smi = TaggedIsSmi(any_tagged);
|
|
return Select<BoolT>(
|
|
tagged_is_smi, [=]() { return tagged_is_smi; },
|
|
[=]() { return DoesntHaveInstanceType(any_tagged, type); });
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::LoadFastProperties(
|
|
SloppyTNode<JSObject> object) {
|
|
CSA_SLOW_ASSERT(this, Word32BinaryNot(IsDictionaryMap(LoadMap(object))));
|
|
TNode<Object> properties = LoadJSReceiverPropertiesOrHash(object);
|
|
return Select<HeapObject>(TaggedIsSmi(properties),
|
|
[=] { return EmptyFixedArrayConstant(); },
|
|
[=] { return CAST(properties); });
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::LoadSlowProperties(
|
|
SloppyTNode<JSObject> object) {
|
|
CSA_SLOW_ASSERT(this, IsDictionaryMap(LoadMap(object)));
|
|
TNode<Object> properties = LoadJSReceiverPropertiesOrHash(object);
|
|
return Select<HeapObject>(TaggedIsSmi(properties),
|
|
[=] { return EmptyPropertyDictionaryConstant(); },
|
|
[=] { return CAST(properties); });
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::LoadJSArrayLength(SloppyTNode<JSArray> array) {
|
|
CSA_ASSERT(this, IsJSArray(array));
|
|
return CAST(LoadObjectField(array, JSArray::kLengthOffset));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadJSArgumentsObjectWithLength(
|
|
SloppyTNode<JSArgumentsObjectWithLength> array) {
|
|
return LoadObjectField(array, JSArgumentsObjectWithLength::kLengthOffset);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::LoadFastJSArrayLength(
|
|
SloppyTNode<JSArray> array) {
|
|
TNode<Object> length = LoadJSArrayLength(array);
|
|
CSA_ASSERT(this, Word32Or(IsFastElementsKind(LoadElementsKind(array)),
|
|
IsElementsKindInRange(LoadElementsKind(array),
|
|
PACKED_SEALED_ELEMENTS,
|
|
HOLEY_FROZEN_ELEMENTS)));
|
|
// JSArray length is always a positive Smi for fast arrays.
|
|
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
|
|
return UncheckedCast<Smi>(length);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::LoadFixedArrayBaseLength(
|
|
SloppyTNode<FixedArrayBase> array) {
|
|
CSA_SLOW_ASSERT(this, IsNotWeakFixedArraySubclass(array));
|
|
return CAST(LoadObjectField(array, FixedArrayBase::kLengthOffset));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(
|
|
SloppyTNode<FixedArrayBase> array) {
|
|
return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset);
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadFeedbackVectorLength(
|
|
TNode<FeedbackVector> vector) {
|
|
return ChangeInt32ToIntPtr(
|
|
LoadObjectField<Int32T>(vector, FeedbackVector::kLengthOffset));
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::LoadWeakFixedArrayLength(
|
|
TNode<WeakFixedArray> array) {
|
|
return CAST(LoadObjectField(array, WeakFixedArray::kLengthOffset));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagWeakFixedArrayLength(
|
|
SloppyTNode<WeakFixedArray> array) {
|
|
return LoadAndUntagObjectField(array, WeakFixedArray::kLengthOffset);
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadNumberOfDescriptors(
|
|
TNode<DescriptorArray> array) {
|
|
return UncheckedCast<Int32T>(
|
|
LoadObjectField(array, DescriptorArray::kNumberOfDescriptorsOffset,
|
|
MachineType::Int16()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadMapBitField(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return UncheckedCast<Int32T>(
|
|
LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadMapBitField2(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return UncheckedCast<Int32T>(
|
|
LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8()));
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadMapBitField3(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return UncheckedCast<Uint32T>(
|
|
LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadMapInstanceType(SloppyTNode<Map> map) {
|
|
return UncheckedCast<Int32T>(
|
|
LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint16()));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadMapElementsKind(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
Node* bit_field2 = LoadMapBitField2(map);
|
|
return Signed(DecodeWord32<Map::ElementsKindBits>(bit_field2));
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadElementsKind(
|
|
SloppyTNode<HeapObject> object) {
|
|
return LoadMapElementsKind(LoadMap(object));
|
|
}
|
|
|
|
TNode<DescriptorArray> CodeStubAssembler::LoadMapDescriptors(
|
|
SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return CAST(LoadObjectField(map, Map::kDescriptorsOffset));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::LoadMapPrototype(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return CAST(LoadObjectField(map, Map::kPrototypeOffset));
|
|
}
|
|
|
|
TNode<PrototypeInfo> CodeStubAssembler::LoadMapPrototypeInfo(
|
|
SloppyTNode<Map> map, Label* if_no_proto_info) {
|
|
Label if_strong_heap_object(this);
|
|
CSA_ASSERT(this, IsMap(map));
|
|
TNode<MaybeObject> maybe_prototype_info =
|
|
LoadMaybeWeakObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
|
|
TVARIABLE(Object, prototype_info);
|
|
DispatchMaybeObject(maybe_prototype_info, if_no_proto_info, if_no_proto_info,
|
|
if_no_proto_info, &if_strong_heap_object,
|
|
&prototype_info);
|
|
|
|
BIND(&if_strong_heap_object);
|
|
GotoIfNot(WordEqual(LoadMap(CAST(prototype_info.value())),
|
|
LoadRoot(RootIndex::kPrototypeInfoMap)),
|
|
if_no_proto_info);
|
|
return CAST(prototype_info.value());
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadMapInstanceSizeInWords(
|
|
SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
return ChangeInt32ToIntPtr(LoadObjectField(
|
|
map, Map::kInstanceSizeInWordsOffset, MachineType::Uint8()));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadMapInobjectPropertiesStartInWords(
|
|
SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
// See Map::GetInObjectPropertiesStartInWords() for details.
|
|
CSA_ASSERT(this, IsJSObjectMap(map));
|
|
return ChangeInt32ToIntPtr(LoadObjectField(
|
|
map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset,
|
|
MachineType::Uint8()));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadMapConstructorFunctionIndex(
|
|
SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
// See Map::GetConstructorFunctionIndex() for details.
|
|
CSA_ASSERT(this, IsPrimitiveInstanceType(LoadMapInstanceType(map)));
|
|
return ChangeInt32ToIntPtr(LoadObjectField(
|
|
map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset,
|
|
MachineType::Uint8()));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadMapConstructor(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
TVARIABLE(Object, result,
|
|
LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
|
|
|
|
Label done(this), loop(this, &result);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
GotoIf(TaggedIsSmi(result.value()), &done);
|
|
Node* is_map_type =
|
|
InstanceTypeEqual(LoadInstanceType(CAST(result.value())), MAP_TYPE);
|
|
GotoIfNot(is_map_type, &done);
|
|
result = LoadObjectField(CAST(result.value()),
|
|
Map::kConstructorOrBackPointerOffset);
|
|
Goto(&loop);
|
|
}
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadMapEnumLength(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
Node* bit_field3 = LoadMapBitField3(map);
|
|
return DecodeWordFromWord32<Map::EnumLengthBits>(bit_field3);
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadMapBackPointer(SloppyTNode<Map> map) {
|
|
TNode<HeapObject> object =
|
|
CAST(LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
|
|
return Select<Object>(IsMap(object), [=] { return object; },
|
|
[=] { return UndefinedConstant(); });
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::EnsureOnlyHasSimpleProperties(
|
|
TNode<Map> map, TNode<Int32T> instance_type, Label* bailout) {
|
|
// This check can have false positives, since it applies to any JSValueType.
|
|
GotoIf(IsCustomElementsReceiverInstanceType(instance_type), bailout);
|
|
|
|
TNode<Uint32T> bit_field3 = LoadMapBitField3(map);
|
|
GotoIf(IsSetWord32(bit_field3, Map::IsDictionaryMapBit::kMask |
|
|
Map::HasHiddenPrototypeBit::kMask),
|
|
bailout);
|
|
|
|
return bit_field3;
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadJSReceiverIdentityHash(
|
|
SloppyTNode<Object> receiver, Label* if_no_hash) {
|
|
TVARIABLE(IntPtrT, var_hash);
|
|
Label done(this), if_smi(this), if_property_array(this),
|
|
if_property_dictionary(this), if_fixed_array(this);
|
|
|
|
TNode<Object> properties_or_hash =
|
|
LoadObjectField(TNode<HeapObject>::UncheckedCast(receiver),
|
|
JSReceiver::kPropertiesOrHashOffset);
|
|
GotoIf(TaggedIsSmi(properties_or_hash), &if_smi);
|
|
|
|
TNode<HeapObject> properties =
|
|
TNode<HeapObject>::UncheckedCast(properties_or_hash);
|
|
TNode<Int32T> properties_instance_type = LoadInstanceType(properties);
|
|
|
|
GotoIf(InstanceTypeEqual(properties_instance_type, PROPERTY_ARRAY_TYPE),
|
|
&if_property_array);
|
|
Branch(InstanceTypeEqual(properties_instance_type, NAME_DICTIONARY_TYPE),
|
|
&if_property_dictionary, &if_fixed_array);
|
|
|
|
BIND(&if_fixed_array);
|
|
{
|
|
var_hash = IntPtrConstant(PropertyArray::kNoHashSentinel);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
var_hash = SmiUntag(TNode<Smi>::UncheckedCast(properties_or_hash));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_property_array);
|
|
{
|
|
TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField(
|
|
properties, PropertyArray::kLengthAndHashOffset);
|
|
var_hash = TNode<IntPtrT>::UncheckedCast(
|
|
DecodeWord<PropertyArray::HashField>(length_and_hash));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_property_dictionary);
|
|
{
|
|
var_hash = SmiUntag(CAST(LoadFixedArrayElement(
|
|
CAST(properties), NameDictionary::kObjectHashIndex)));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
if (if_no_hash != nullptr) {
|
|
GotoIf(IntPtrEqual(var_hash.value(),
|
|
IntPtrConstant(PropertyArray::kNoHashSentinel)),
|
|
if_no_hash);
|
|
}
|
|
return var_hash.value();
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadNameHashField(SloppyTNode<Name> name) {
|
|
CSA_ASSERT(this, IsName(name));
|
|
return LoadObjectField<Uint32T>(name, Name::kHashFieldOffset);
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadNameHash(SloppyTNode<Name> name,
|
|
Label* if_hash_not_computed) {
|
|
TNode<Uint32T> hash_field = LoadNameHashField(name);
|
|
if (if_hash_not_computed != nullptr) {
|
|
GotoIf(IsSetWord32(hash_field, Name::kHashNotComputedMask),
|
|
if_hash_not_computed);
|
|
}
|
|
return Unsigned(Word32Shr(hash_field, Int32Constant(Name::kHashShift)));
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::LoadStringLengthAsSmi(
|
|
SloppyTNode<String> string) {
|
|
return SmiFromIntPtr(LoadStringLengthAsWord(string));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadStringLengthAsWord(
|
|
SloppyTNode<String> string) {
|
|
return Signed(ChangeUint32ToWord(LoadStringLengthAsWord32(string)));
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadStringLengthAsWord32(
|
|
SloppyTNode<String> string) {
|
|
CSA_ASSERT(this, IsString(string));
|
|
return LoadObjectField<Uint32T>(string, String::kLengthOffset);
|
|
}
|
|
|
|
Node* CodeStubAssembler::PointerToSeqStringData(Node* seq_string) {
|
|
CSA_ASSERT(this, IsString(seq_string));
|
|
CSA_ASSERT(this,
|
|
IsSequentialStringInstanceType(LoadInstanceType(seq_string)));
|
|
STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
|
return IntPtrAdd(
|
|
BitcastTaggedToWord(seq_string),
|
|
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag));
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadJSValueValue(Node* object) {
|
|
CSA_ASSERT(this, IsJSValue(object));
|
|
return LoadObjectField(object, JSValue::kValueOffset);
|
|
}
|
|
|
|
void CodeStubAssembler::DispatchMaybeObject(TNode<MaybeObject> maybe_object,
|
|
Label* if_smi, Label* if_cleared,
|
|
Label* if_weak, Label* if_strong,
|
|
TVariable<Object>* extracted) {
|
|
Label inner_if_smi(this), inner_if_strong(this);
|
|
|
|
GotoIf(TaggedIsSmi(maybe_object), &inner_if_smi);
|
|
|
|
GotoIf(IsCleared(maybe_object), if_cleared);
|
|
|
|
GotoIf(Word32Equal(Word32And(TruncateIntPtrToInt32(
|
|
BitcastMaybeObjectToWord(maybe_object)),
|
|
Int32Constant(kHeapObjectTagMask)),
|
|
Int32Constant(kHeapObjectTag)),
|
|
&inner_if_strong);
|
|
|
|
*extracted =
|
|
BitcastWordToTagged(WordAnd(BitcastMaybeObjectToWord(maybe_object),
|
|
IntPtrConstant(~kWeakHeapObjectMask)));
|
|
Goto(if_weak);
|
|
|
|
BIND(&inner_if_smi);
|
|
*extracted = CAST(maybe_object);
|
|
Goto(if_smi);
|
|
|
|
BIND(&inner_if_strong);
|
|
*extracted = CAST(maybe_object);
|
|
Goto(if_strong);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsStrong(TNode<MaybeObject> value) {
|
|
return WordEqual(WordAnd(BitcastMaybeObjectToWord(value),
|
|
IntPtrConstant(kHeapObjectTagMask)),
|
|
IntPtrConstant(kHeapObjectTag));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::GetHeapObjectIfStrong(
|
|
TNode<MaybeObject> value, Label* if_not_strong) {
|
|
GotoIfNot(IsStrong(value), if_not_strong);
|
|
return CAST(value);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsWeakOrCleared(TNode<MaybeObject> value) {
|
|
return Word32Equal(
|
|
Word32And(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
|
|
Int32Constant(kHeapObjectTagMask)),
|
|
Int32Constant(kWeakHeapObjectTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCleared(TNode<MaybeObject> value) {
|
|
return Word32Equal(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
|
|
Int32Constant(kClearedWeakHeapObjectLower32));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNotCleared(TNode<MaybeObject> value) {
|
|
return Word32NotEqual(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
|
|
Int32Constant(kClearedWeakHeapObjectLower32));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak(
|
|
TNode<MaybeObject> value) {
|
|
CSA_ASSERT(this, IsWeakOrCleared(value));
|
|
CSA_ASSERT(this, IsNotCleared(value));
|
|
return UncheckedCast<HeapObject>(BitcastWordToTagged(WordAnd(
|
|
BitcastMaybeObjectToWord(value), IntPtrConstant(~kWeakHeapObjectMask))));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak(
|
|
TNode<MaybeObject> value, Label* if_cleared) {
|
|
GotoIf(IsCleared(value), if_cleared);
|
|
return GetHeapObjectAssumeWeak(value);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsWeakReferenceTo(TNode<MaybeObject> object,
|
|
TNode<Object> value) {
|
|
return WordEqual(WordAnd(BitcastMaybeObjectToWord(object),
|
|
IntPtrConstant(~kWeakHeapObjectMask)),
|
|
BitcastTaggedToWord(value));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsStrongReferenceTo(TNode<MaybeObject> object,
|
|
TNode<Object> value) {
|
|
return WordEqual(BitcastMaybeObjectToWord(object),
|
|
BitcastTaggedToWord(value));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNotWeakReferenceTo(TNode<MaybeObject> object,
|
|
TNode<Object> value) {
|
|
return WordNotEqual(WordAnd(BitcastMaybeObjectToWord(object),
|
|
IntPtrConstant(~kWeakHeapObjectMask)),
|
|
BitcastTaggedToWord(value));
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::MakeWeak(TNode<HeapObject> value) {
|
|
return ReinterpretCast<MaybeObject>(BitcastWordToTagged(
|
|
WordOr(BitcastTaggedToWord(value), IntPtrConstant(kWeakHeapObjectTag))));
|
|
}
|
|
|
|
template <>
|
|
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<FixedArray> array) {
|
|
return LoadAndUntagFixedArrayBaseLength(array);
|
|
}
|
|
|
|
template <>
|
|
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<WeakFixedArray> array) {
|
|
return LoadAndUntagWeakFixedArrayLength(array);
|
|
}
|
|
|
|
template <>
|
|
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<PropertyArray> array) {
|
|
return LoadPropertyArrayLength(array);
|
|
}
|
|
|
|
template <>
|
|
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(
|
|
TNode<DescriptorArray> array) {
|
|
return IntPtrMul(ChangeInt32ToIntPtr(LoadNumberOfDescriptors(array)),
|
|
IntPtrConstant(DescriptorArray::kEntrySize));
|
|
}
|
|
|
|
template <>
|
|
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(
|
|
TNode<TransitionArray> array) {
|
|
return LoadAndUntagWeakFixedArrayLength(array);
|
|
}
|
|
|
|
template <typename Array>
|
|
TNode<MaybeObject> CodeStubAssembler::LoadArrayElement(
|
|
TNode<Array> array, int array_header_size, Node* index_node,
|
|
int additional_offset, ParameterMode parameter_mode,
|
|
LoadSensitivity needs_poisoning) {
|
|
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(
|
|
ParameterToIntPtr(index_node, parameter_mode),
|
|
IntPtrConstant(0)));
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
int32_t header_size = array_header_size + additional_offset - kHeapObjectTag;
|
|
TNode<IntPtrT> offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
|
|
parameter_mode, header_size);
|
|
CSA_ASSERT(this, IsOffsetInBounds(offset, LoadArrayLength(array),
|
|
array_header_size));
|
|
return UncheckedCast<MaybeObject>(
|
|
Load(MachineType::AnyTagged(), array, offset, needs_poisoning));
|
|
}
|
|
|
|
template TNode<MaybeObject>
|
|
CodeStubAssembler::LoadArrayElement<TransitionArray>(TNode<TransitionArray>,
|
|
int, Node*, int,
|
|
ParameterMode,
|
|
LoadSensitivity);
|
|
|
|
template TNode<MaybeObject>
|
|
CodeStubAssembler::LoadArrayElement<DescriptorArray>(TNode<DescriptorArray>,
|
|
int, Node*, int,
|
|
ParameterMode,
|
|
LoadSensitivity);
|
|
|
|
void CodeStubAssembler::FixedArrayBoundsCheck(TNode<FixedArrayBase> array,
|
|
Node* index,
|
|
int additional_offset,
|
|
ParameterMode parameter_mode) {
|
|
if (!FLAG_fixed_array_bounds_checks) return;
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
if (parameter_mode == ParameterMode::SMI_PARAMETERS) {
|
|
TNode<Smi> effective_index;
|
|
Smi constant_index;
|
|
bool index_is_constant = ToSmiConstant(index, &constant_index);
|
|
if (index_is_constant) {
|
|
effective_index = SmiConstant(Smi::ToInt(constant_index) +
|
|
additional_offset / kTaggedSize);
|
|
} else if (additional_offset != 0) {
|
|
effective_index =
|
|
SmiAdd(CAST(index), SmiConstant(additional_offset / kTaggedSize));
|
|
} else {
|
|
effective_index = CAST(index);
|
|
}
|
|
CSA_CHECK(this, SmiBelow(effective_index, LoadFixedArrayBaseLength(array)));
|
|
} else {
|
|
// IntPtrAdd does constant-folding automatically.
|
|
TNode<IntPtrT> effective_index =
|
|
IntPtrAdd(UncheckedCast<IntPtrT>(index),
|
|
IntPtrConstant(additional_offset / kTaggedSize));
|
|
CSA_CHECK(this, UintPtrLessThan(effective_index,
|
|
LoadAndUntagFixedArrayBaseLength(array)));
|
|
}
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadFixedArrayElement(
|
|
TNode<FixedArray> object, Node* index_node, int additional_offset,
|
|
ParameterMode parameter_mode, LoadSensitivity needs_poisoning,
|
|
CheckBounds check_bounds) {
|
|
CSA_ASSERT(this, IsFixedArraySubclass(object));
|
|
CSA_ASSERT(this, IsNotWeakFixedArraySubclass(object));
|
|
if (NeedsBoundsCheck(check_bounds)) {
|
|
FixedArrayBoundsCheck(object, index_node, additional_offset,
|
|
parameter_mode);
|
|
}
|
|
TNode<MaybeObject> element =
|
|
LoadArrayElement(object, FixedArray::kHeaderSize, index_node,
|
|
additional_offset, parameter_mode, needs_poisoning);
|
|
return CAST(element);
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadPropertyArrayElement(
|
|
TNode<PropertyArray> object, SloppyTNode<IntPtrT> index) {
|
|
int additional_offset = 0;
|
|
ParameterMode parameter_mode = INTPTR_PARAMETERS;
|
|
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe;
|
|
return CAST(LoadArrayElement(object, PropertyArray::kHeaderSize, index,
|
|
additional_offset, parameter_mode,
|
|
needs_poisoning));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::LoadPropertyArrayLength(
|
|
TNode<PropertyArray> object) {
|
|
TNode<IntPtrT> value =
|
|
LoadAndUntagObjectField(object, PropertyArray::kLengthAndHashOffset);
|
|
return Signed(DecodeWord<PropertyArray::LengthField>(value));
|
|
}
|
|
|
|
TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayBackingStore(
|
|
TNode<FixedTypedArrayBase> typed_array) {
|
|
// Backing store = external_pointer + base_pointer.
|
|
Node* external_pointer =
|
|
LoadObjectField(typed_array, FixedTypedArrayBase::kExternalPointerOffset,
|
|
MachineType::Pointer());
|
|
Node* base_pointer =
|
|
LoadObjectField(typed_array, FixedTypedArrayBase::kBasePointerOffset);
|
|
return UncheckedCast<RawPtrT>(
|
|
IntPtrAdd(external_pointer, BitcastTaggedToWord(base_pointer)));
|
|
}
|
|
|
|
TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayOnHeapBackingStore(
|
|
TNode<FixedTypedArrayBase> typed_array) {
|
|
// This is specialized method of retrieving the backing store pointer for on
|
|
// heap allocated typed array buffer. On heap allocated buffer's backing
|
|
// stores are a fixed offset from the pointer to a typed array's elements. See
|
|
// TypedArrayBuiltinsAssembler::AllocateOnHeapElements().
|
|
TNode<WordT> backing_store =
|
|
IntPtrAdd(BitcastTaggedToWord(typed_array),
|
|
IntPtrConstant(
|
|
FixedTypedArrayBase::ExternalPointerValueForOnHeapArray()));
|
|
|
|
#ifdef DEBUG
|
|
// Verify that this is an on heap backing store.
|
|
TNode<RawPtrT> expected_backing_store_pointer =
|
|
LoadFixedTypedArrayBackingStore(typed_array);
|
|
CSA_ASSERT(this, WordEqual(backing_store, expected_backing_store_pointer));
|
|
#endif
|
|
|
|
return UncheckedCast<RawPtrT>(backing_store);
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadFixedBigInt64ArrayElementAsTagged(
|
|
Node* data_pointer, Node* offset) {
|
|
if (Is64()) {
|
|
TNode<IntPtrT> value = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::IntPtr(), data_pointer, offset));
|
|
return BigIntFromInt64(value);
|
|
} else {
|
|
DCHECK(!Is64());
|
|
#if defined(V8_TARGET_BIG_ENDIAN)
|
|
TNode<IntPtrT> high = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer, offset));
|
|
TNode<IntPtrT> low = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer,
|
|
Int32Add(offset, Int32Constant(kSystemPointerSize))));
|
|
#else
|
|
TNode<IntPtrT> low = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer, offset));
|
|
TNode<IntPtrT> high = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer,
|
|
Int32Add(offset, Int32Constant(kSystemPointerSize))));
|
|
#endif
|
|
return BigIntFromInt32Pair(low, high);
|
|
}
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::BigIntFromInt32Pair(TNode<IntPtrT> low,
|
|
TNode<IntPtrT> high) {
|
|
DCHECK(!Is64());
|
|
TVARIABLE(BigInt, var_result);
|
|
TVARIABLE(Word32T, var_sign, Int32Constant(BigInt::SignBits::encode(false)));
|
|
TVARIABLE(IntPtrT, var_high, high);
|
|
TVARIABLE(IntPtrT, var_low, low);
|
|
Label high_zero(this), negative(this), allocate_one_digit(this),
|
|
allocate_two_digits(this), if_zero(this), done(this);
|
|
|
|
GotoIf(WordEqual(var_high.value(), IntPtrConstant(0)), &high_zero);
|
|
Branch(IntPtrLessThan(var_high.value(), IntPtrConstant(0)), &negative,
|
|
&allocate_two_digits);
|
|
|
|
BIND(&high_zero);
|
|
Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &if_zero,
|
|
&allocate_one_digit);
|
|
|
|
BIND(&negative);
|
|
{
|
|
var_sign = Int32Constant(BigInt::SignBits::encode(true));
|
|
// We must negate the value by computing "0 - (high|low)", performing
|
|
// both parts of the subtraction separately and manually taking care
|
|
// of the carry bit (which is 1 iff low != 0).
|
|
var_high = IntPtrSub(IntPtrConstant(0), var_high.value());
|
|
Label carry(this), no_carry(this);
|
|
Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &no_carry, &carry);
|
|
BIND(&carry);
|
|
var_high = IntPtrSub(var_high.value(), IntPtrConstant(1));
|
|
Goto(&no_carry);
|
|
BIND(&no_carry);
|
|
var_low = IntPtrSub(IntPtrConstant(0), var_low.value());
|
|
// var_high was non-zero going into this block, but subtracting the
|
|
// carry bit from it could bring us back onto the "one digit" path.
|
|
Branch(WordEqual(var_high.value(), IntPtrConstant(0)), &allocate_one_digit,
|
|
&allocate_two_digits);
|
|
}
|
|
|
|
BIND(&allocate_one_digit);
|
|
{
|
|
var_result = AllocateRawBigInt(IntPtrConstant(1));
|
|
StoreBigIntBitfield(var_result.value(),
|
|
Word32Or(var_sign.value(),
|
|
Int32Constant(BigInt::LengthBits::encode(1))));
|
|
StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value()));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&allocate_two_digits);
|
|
{
|
|
var_result = AllocateRawBigInt(IntPtrConstant(2));
|
|
StoreBigIntBitfield(var_result.value(),
|
|
Word32Or(var_sign.value(),
|
|
Int32Constant(BigInt::LengthBits::encode(2))));
|
|
StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value()));
|
|
StoreBigIntDigit(var_result.value(), 1, Unsigned(var_high.value()));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(0));
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::BigIntFromInt64(TNode<IntPtrT> value) {
|
|
DCHECK(Is64());
|
|
TVARIABLE(BigInt, var_result);
|
|
Label done(this), if_positive(this), if_negative(this), if_zero(this);
|
|
GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero);
|
|
var_result = AllocateRawBigInt(IntPtrConstant(1));
|
|
Branch(IntPtrGreaterThan(value, IntPtrConstant(0)), &if_positive,
|
|
&if_negative);
|
|
|
|
BIND(&if_positive);
|
|
{
|
|
StoreBigIntBitfield(var_result.value(),
|
|
Int32Constant(BigInt::SignBits::encode(false) |
|
|
BigInt::LengthBits::encode(1)));
|
|
StoreBigIntDigit(var_result.value(), 0, Unsigned(value));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_negative);
|
|
{
|
|
StoreBigIntBitfield(var_result.value(),
|
|
Int32Constant(BigInt::SignBits::encode(true) |
|
|
BigInt::LengthBits::encode(1)));
|
|
StoreBigIntDigit(var_result.value(), 0,
|
|
Unsigned(IntPtrSub(IntPtrConstant(0), value)));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_zero);
|
|
{
|
|
var_result = AllocateBigInt(IntPtrConstant(0));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadFixedBigUint64ArrayElementAsTagged(
|
|
Node* data_pointer, Node* offset) {
|
|
Label if_zero(this), done(this);
|
|
if (Is64()) {
|
|
TNode<UintPtrT> value = UncheckedCast<UintPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer, offset));
|
|
return BigIntFromUint64(value);
|
|
} else {
|
|
DCHECK(!Is64());
|
|
#if defined(V8_TARGET_BIG_ENDIAN)
|
|
TNode<UintPtrT> high = UncheckedCast<UintPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer, offset));
|
|
TNode<UintPtrT> low = UncheckedCast<UintPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer,
|
|
Int32Add(offset, Int32Constant(kSystemPointerSize))));
|
|
#else
|
|
TNode<UintPtrT> low = UncheckedCast<UintPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer, offset));
|
|
TNode<UintPtrT> high = UncheckedCast<UintPtrT>(
|
|
Load(MachineType::UintPtr(), data_pointer,
|
|
Int32Add(offset, Int32Constant(kSystemPointerSize))));
|
|
#endif
|
|
return BigIntFromUint32Pair(low, high);
|
|
}
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::BigIntFromUint32Pair(TNode<UintPtrT> low,
|
|
TNode<UintPtrT> high) {
|
|
DCHECK(!Is64());
|
|
TVARIABLE(BigInt, var_result);
|
|
Label high_zero(this), if_zero(this), done(this);
|
|
|
|
GotoIf(WordEqual(high, IntPtrConstant(0)), &high_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(2));
|
|
StoreBigIntDigit(var_result.value(), 0, low);
|
|
StoreBigIntDigit(var_result.value(), 1, high);
|
|
Goto(&done);
|
|
|
|
BIND(&high_zero);
|
|
GotoIf(WordEqual(low, IntPtrConstant(0)), &if_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(1));
|
|
StoreBigIntDigit(var_result.value(), 0, low);
|
|
Goto(&done);
|
|
|
|
BIND(&if_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(0));
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::BigIntFromUint64(TNode<UintPtrT> value) {
|
|
DCHECK(Is64());
|
|
TVARIABLE(BigInt, var_result);
|
|
Label done(this), if_zero(this);
|
|
GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(1));
|
|
StoreBigIntDigit(var_result.value(), 0, value);
|
|
Goto(&done);
|
|
|
|
BIND(&if_zero);
|
|
var_result = AllocateBigInt(IntPtrConstant(0));
|
|
Goto(&done);
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadFixedTypedArrayElementAsTagged(
|
|
Node* data_pointer, Node* index_node, ElementsKind elements_kind,
|
|
ParameterMode parameter_mode) {
|
|
Node* offset =
|
|
ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
|
|
switch (elements_kind) {
|
|
case UINT8_ELEMENTS: /* fall through */
|
|
case UINT8_CLAMPED_ELEMENTS:
|
|
return SmiFromInt32(Load(MachineType::Uint8(), data_pointer, offset));
|
|
case INT8_ELEMENTS:
|
|
return SmiFromInt32(Load(MachineType::Int8(), data_pointer, offset));
|
|
case UINT16_ELEMENTS:
|
|
return SmiFromInt32(Load(MachineType::Uint16(), data_pointer, offset));
|
|
case INT16_ELEMENTS:
|
|
return SmiFromInt32(Load(MachineType::Int16(), data_pointer, offset));
|
|
case UINT32_ELEMENTS:
|
|
return ChangeUint32ToTagged(
|
|
Load(MachineType::Uint32(), data_pointer, offset));
|
|
case INT32_ELEMENTS:
|
|
return ChangeInt32ToTagged(
|
|
Load(MachineType::Int32(), data_pointer, offset));
|
|
case FLOAT32_ELEMENTS:
|
|
return AllocateHeapNumberWithValue(ChangeFloat32ToFloat64(
|
|
Load(MachineType::Float32(), data_pointer, offset)));
|
|
case FLOAT64_ELEMENTS:
|
|
return AllocateHeapNumberWithValue(
|
|
Load(MachineType::Float64(), data_pointer, offset));
|
|
case BIGINT64_ELEMENTS:
|
|
return LoadFixedBigInt64ArrayElementAsTagged(data_pointer, offset);
|
|
case BIGUINT64_ELEMENTS:
|
|
return LoadFixedBigUint64ArrayElementAsTagged(data_pointer, offset);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
TNode<Numeric> CodeStubAssembler::LoadFixedTypedArrayElementAsTagged(
|
|
TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind) {
|
|
TVARIABLE(Numeric, var_result);
|
|
Label done(this), if_unknown_type(this, Label::kDeferred);
|
|
int32_t elements_kinds[] = {
|
|
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) TYPE##_ELEMENTS,
|
|
TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
|
#undef TYPED_ARRAY_CASE
|
|
};
|
|
|
|
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) Label if_##type##array(this);
|
|
TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
|
#undef TYPED_ARRAY_CASE
|
|
|
|
Label* elements_kind_labels[] = {
|
|
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) &if_##type##array,
|
|
TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
|
#undef TYPED_ARRAY_CASE
|
|
};
|
|
STATIC_ASSERT(arraysize(elements_kinds) == arraysize(elements_kind_labels));
|
|
|
|
Switch(elements_kind, &if_unknown_type, elements_kinds, elements_kind_labels,
|
|
arraysize(elements_kinds));
|
|
|
|
BIND(&if_unknown_type);
|
|
Unreachable();
|
|
|
|
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
|
|
BIND(&if_##type##array); \
|
|
{ \
|
|
var_result = CAST(LoadFixedTypedArrayElementAsTagged( \
|
|
data_pointer, index, TYPE##_ELEMENTS, SMI_PARAMETERS)); \
|
|
Goto(&done); \
|
|
}
|
|
TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
|
#undef TYPED_ARRAY_CASE
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFixedTypedArrayElementFromTagged(
|
|
TNode<Context> context, TNode<FixedTypedArrayBase> elements,
|
|
TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
|
|
ParameterMode parameter_mode) {
|
|
TNode<RawPtrT> data_pointer = LoadFixedTypedArrayBackingStore(elements);
|
|
switch (elements_kind) {
|
|
case UINT8_ELEMENTS:
|
|
case UINT8_CLAMPED_ELEMENTS:
|
|
case INT8_ELEMENTS:
|
|
case UINT16_ELEMENTS:
|
|
case INT16_ELEMENTS:
|
|
StoreElement(data_pointer, elements_kind, index_node,
|
|
SmiToInt32(CAST(value)), parameter_mode);
|
|
break;
|
|
case UINT32_ELEMENTS:
|
|
case INT32_ELEMENTS:
|
|
StoreElement(data_pointer, elements_kind, index_node,
|
|
TruncateTaggedToWord32(context, value), parameter_mode);
|
|
break;
|
|
case FLOAT32_ELEMENTS:
|
|
StoreElement(data_pointer, elements_kind, index_node,
|
|
TruncateFloat64ToFloat32(LoadHeapNumberValue(CAST(value))),
|
|
parameter_mode);
|
|
break;
|
|
case FLOAT64_ELEMENTS:
|
|
StoreElement(data_pointer, elements_kind, index_node,
|
|
LoadHeapNumberValue(CAST(value)), parameter_mode);
|
|
break;
|
|
case BIGUINT64_ELEMENTS:
|
|
case BIGINT64_ELEMENTS: {
|
|
TNode<IntPtrT> offset =
|
|
ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
|
|
EmitBigTypedArrayElementStore(elements, data_pointer, offset,
|
|
CAST(value));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::LoadFeedbackVectorSlot(
|
|
Node* object, Node* slot_index_node, int additional_offset,
|
|
ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(this, IsFeedbackVector(object));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode));
|
|
int32_t header_size =
|
|
FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag;
|
|
Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS,
|
|
parameter_mode, header_size);
|
|
CSA_SLOW_ASSERT(
|
|
this, IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)),
|
|
FeedbackVector::kHeaderSize));
|
|
return UncheckedCast<MaybeObject>(
|
|
Load(MachineType::AnyTagged(), object, offset));
|
|
}
|
|
|
|
template <typename Array>
|
|
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ArrayElement(
|
|
TNode<Array> object, int array_header_size, Node* index_node,
|
|
int additional_offset, ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
int endian_correction = 0;
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
if (SmiValuesAre32Bits()) endian_correction = 4;
|
|
#endif
|
|
int32_t header_size = array_header_size + additional_offset - kHeapObjectTag +
|
|
endian_correction;
|
|
Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
|
|
parameter_mode, header_size);
|
|
CSA_ASSERT(this, IsOffsetInBounds(offset, LoadArrayLength(object),
|
|
array_header_size + endian_correction));
|
|
if (SmiValuesAre32Bits()) {
|
|
return UncheckedCast<Int32T>(Load(MachineType::Int32(), object, offset));
|
|
} else {
|
|
return SmiToInt32(Load(MachineType::AnyTagged(), object, offset));
|
|
}
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement(
|
|
TNode<FixedArray> object, Node* index_node, int additional_offset,
|
|
ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(this, IsFixedArraySubclass(object));
|
|
return LoadAndUntagToWord32ArrayElement(object, FixedArray::kHeaderSize,
|
|
index_node, additional_offset,
|
|
parameter_mode);
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::LoadWeakFixedArrayElement(
|
|
TNode<WeakFixedArray> object, Node* index, int additional_offset,
|
|
ParameterMode parameter_mode, LoadSensitivity needs_poisoning) {
|
|
return LoadArrayElement(object, WeakFixedArray::kHeaderSize, index,
|
|
additional_offset, parameter_mode, needs_poisoning);
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::LoadFixedDoubleArrayElement(
|
|
SloppyTNode<FixedDoubleArray> object, Node* index_node,
|
|
MachineType machine_type, int additional_offset,
|
|
ParameterMode parameter_mode, Label* if_hole) {
|
|
CSA_ASSERT(this, IsFixedDoubleArray(object));
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
|
|
int32_t header_size =
|
|
FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag;
|
|
TNode<IntPtrT> offset = ElementOffsetFromIndex(
|
|
index_node, HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size);
|
|
CSA_ASSERT(this, IsOffsetInBounds(
|
|
offset, LoadAndUntagFixedArrayBaseLength(object),
|
|
FixedDoubleArray::kHeaderSize, HOLEY_DOUBLE_ELEMENTS));
|
|
return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type);
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadFixedArrayBaseElementAsTagged(
|
|
TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
|
|
TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole) {
|
|
TVARIABLE(Object, var_result);
|
|
Label done(this), if_packed(this), if_holey(this), if_packed_double(this),
|
|
if_holey_double(this), if_dictionary(this, Label::kDeferred);
|
|
|
|
int32_t kinds[] = {// Handled by if_packed.
|
|
PACKED_SMI_ELEMENTS, PACKED_ELEMENTS,
|
|
PACKED_SEALED_ELEMENTS, PACKED_FROZEN_ELEMENTS,
|
|
// Handled by if_holey.
|
|
HOLEY_SMI_ELEMENTS, HOLEY_ELEMENTS, HOLEY_SEALED_ELEMENTS,
|
|
HOLEY_FROZEN_ELEMENTS,
|
|
// Handled by if_packed_double.
|
|
PACKED_DOUBLE_ELEMENTS,
|
|
// Handled by if_holey_double.
|
|
HOLEY_DOUBLE_ELEMENTS};
|
|
Label* labels[] = {// PACKED_{SMI,}_ELEMENTS
|
|
&if_packed, &if_packed, &if_packed, &if_packed,
|
|
// HOLEY_{SMI,}_ELEMENTS
|
|
&if_holey, &if_holey, &if_holey, &if_holey,
|
|
// PACKED_DOUBLE_ELEMENTS
|
|
&if_packed_double,
|
|
// HOLEY_DOUBLE_ELEMENTS
|
|
&if_holey_double};
|
|
Switch(elements_kind, &if_dictionary, kinds, labels, arraysize(kinds));
|
|
|
|
BIND(&if_packed);
|
|
{
|
|
var_result = LoadFixedArrayElement(CAST(elements), index, 0);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_holey);
|
|
{
|
|
var_result = LoadFixedArrayElement(CAST(elements), index);
|
|
Branch(WordEqual(var_result.value(), TheHoleConstant()), if_hole, &done);
|
|
}
|
|
|
|
BIND(&if_packed_double);
|
|
{
|
|
var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement(
|
|
CAST(elements), index, MachineType::Float64()));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_holey_double);
|
|
{
|
|
var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement(
|
|
CAST(elements), index, MachineType::Float64(), 0, INTPTR_PARAMETERS,
|
|
if_hole));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_dictionary);
|
|
{
|
|
CSA_ASSERT(this, IsDictionaryElementsKind(elements_kind));
|
|
var_result = BasicLoadNumberDictionaryElement(CAST(elements), index,
|
|
if_accessor, if_hole);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
|
|
SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
|
|
MachineType machine_type) {
|
|
if (if_hole) {
|
|
// TODO(ishell): Compare only the upper part for the hole once the
|
|
// compiler is able to fold addition of already complex |offset| with
|
|
// |kIeeeDoubleExponentWordOffset| into one addressing mode.
|
|
if (Is64()) {
|
|
Node* element = Load(MachineType::Uint64(), base, offset);
|
|
GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole);
|
|
} else {
|
|
Node* element_upper = Load(
|
|
MachineType::Uint32(), base,
|
|
IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset)));
|
|
GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)),
|
|
if_hole);
|
|
}
|
|
}
|
|
if (machine_type.IsNone()) {
|
|
// This means the actual value is not needed.
|
|
return TNode<Float64T>();
|
|
}
|
|
return UncheckedCast<Float64T>(Load(machine_type, base, offset));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadContextElement(
|
|
SloppyTNode<Context> context, int slot_index) {
|
|
int offset = Context::SlotOffset(slot_index);
|
|
return UncheckedCast<Object>(
|
|
Load(MachineType::AnyTagged(), context, IntPtrConstant(offset)));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadContextElement(
|
|
SloppyTNode<Context> context, SloppyTNode<IntPtrT> slot_index) {
|
|
Node* offset = ElementOffsetFromIndex(
|
|
slot_index, PACKED_ELEMENTS, INTPTR_PARAMETERS, Context::SlotOffset(0));
|
|
return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadContextElement(TNode<Context> context,
|
|
TNode<Smi> slot_index) {
|
|
Node* offset = ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS,
|
|
SMI_PARAMETERS, Context::SlotOffset(0));
|
|
return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset));
|
|
}
|
|
|
|
void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context,
|
|
int slot_index,
|
|
SloppyTNode<Object> value) {
|
|
int offset = Context::SlotOffset(slot_index);
|
|
Store(context, IntPtrConstant(offset), value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context,
|
|
SloppyTNode<IntPtrT> slot_index,
|
|
SloppyTNode<Object> value) {
|
|
Node* offset = IntPtrAdd(TimesTaggedSize(slot_index),
|
|
IntPtrConstant(Context::SlotOffset(0)));
|
|
Store(context, offset, value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreContextElementNoWriteBarrier(
|
|
SloppyTNode<Context> context, int slot_index, SloppyTNode<Object> value) {
|
|
int offset = Context::SlotOffset(slot_index);
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, context,
|
|
IntPtrConstant(offset), value);
|
|
}
|
|
|
|
TNode<Context> CodeStubAssembler::LoadNativeContext(
|
|
SloppyTNode<Context> context) {
|
|
return UncheckedCast<Context>(
|
|
LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX));
|
|
}
|
|
|
|
TNode<Context> CodeStubAssembler::LoadModuleContext(
|
|
SloppyTNode<Context> context) {
|
|
Node* module_map = LoadRoot(RootIndex::kModuleContextMap);
|
|
Variable cur_context(this, MachineRepresentation::kTaggedPointer);
|
|
cur_context.Bind(context);
|
|
|
|
Label context_found(this);
|
|
|
|
Variable* context_search_loop_variables[1] = {&cur_context};
|
|
Label context_search(this, 1, context_search_loop_variables);
|
|
|
|
// Loop until cur_context->map() is module_map.
|
|
Goto(&context_search);
|
|
BIND(&context_search);
|
|
{
|
|
CSA_ASSERT(this, Word32BinaryNot(IsNativeContext(cur_context.value())));
|
|
GotoIf(WordEqual(LoadMap(cur_context.value()), module_map), &context_found);
|
|
|
|
cur_context.Bind(
|
|
LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX));
|
|
Goto(&context_search);
|
|
}
|
|
|
|
BIND(&context_found);
|
|
return UncheckedCast<Context>(cur_context.value());
|
|
}
|
|
|
|
TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap(
|
|
SloppyTNode<Int32T> kind, SloppyTNode<Context> native_context) {
|
|
CSA_ASSERT(this, IsFastElementsKind(kind));
|
|
CSA_ASSERT(this, IsNativeContext(native_context));
|
|
Node* offset = IntPtrAdd(IntPtrConstant(Context::FIRST_JS_ARRAY_MAP_SLOT),
|
|
ChangeInt32ToIntPtr(kind));
|
|
return UncheckedCast<Map>(LoadContextElement(native_context, offset));
|
|
}
|
|
|
|
TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap(
|
|
ElementsKind kind, SloppyTNode<Context> native_context) {
|
|
CSA_ASSERT(this, IsNativeContext(native_context));
|
|
return UncheckedCast<Map>(
|
|
LoadContextElement(native_context, Context::ArrayMapIndex(kind)));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsGeneratorFunction(
|
|
TNode<JSFunction> function) {
|
|
TNode<SharedFunctionInfo> const shared_function_info =
|
|
CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset));
|
|
|
|
TNode<Uint32T> const function_kind =
|
|
DecodeWord32<SharedFunctionInfo::FunctionKindBits>(LoadObjectField(
|
|
shared_function_info, SharedFunctionInfo::kFlagsOffset,
|
|
MachineType::Uint32()));
|
|
|
|
return TNode<BoolT>::UncheckedCast(Word32Or(
|
|
Word32Or(
|
|
Word32Or(
|
|
Word32Equal(function_kind,
|
|
Int32Constant(FunctionKind::kAsyncGeneratorFunction)),
|
|
Word32Equal(
|
|
function_kind,
|
|
Int32Constant(FunctionKind::kAsyncConciseGeneratorMethod))),
|
|
Word32Equal(function_kind,
|
|
Int32Constant(FunctionKind::kGeneratorFunction))),
|
|
Word32Equal(function_kind,
|
|
Int32Constant(FunctionKind::kConciseGeneratorMethod))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::HasPrototypeProperty(TNode<JSFunction> function,
|
|
TNode<Map> map) {
|
|
// (has_prototype_slot() && IsConstructor()) ||
|
|
// IsGeneratorFunction(shared()->kind())
|
|
uint32_t mask =
|
|
Map::HasPrototypeSlotBit::kMask | Map::IsConstructorBit::kMask;
|
|
return TNode<BoolT>::UncheckedCast(
|
|
Word32Or(IsAllSetWord32(LoadMapBitField(map), mask),
|
|
IsGeneratorFunction(function)));
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfPrototypeRequiresRuntimeLookup(
|
|
TNode<JSFunction> function, TNode<Map> map, Label* runtime) {
|
|
// !has_prototype_property() || has_non_instance_prototype()
|
|
GotoIfNot(HasPrototypeProperty(function, map), runtime);
|
|
GotoIf(IsSetWord32<Map::HasNonInstancePrototypeBit>(LoadMapBitField(map)),
|
|
runtime);
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadJSFunctionPrototype(Node* function,
|
|
Label* if_bailout) {
|
|
CSA_ASSERT(this, TaggedIsNotSmi(function));
|
|
CSA_ASSERT(this, IsJSFunction(function));
|
|
CSA_ASSERT(this, IsFunctionWithPrototypeSlotMap(LoadMap(function)));
|
|
CSA_ASSERT(this, IsClearWord32<Map::HasNonInstancePrototypeBit>(
|
|
LoadMapBitField(LoadMap(function))));
|
|
Node* proto_or_map =
|
|
LoadObjectField(function, JSFunction::kPrototypeOrInitialMapOffset);
|
|
GotoIf(IsTheHole(proto_or_map), if_bailout);
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged, proto_or_map);
|
|
Label done(this, &var_result);
|
|
GotoIfNot(IsMap(proto_or_map), &done);
|
|
|
|
var_result.Bind(LoadMapPrototype(proto_or_map));
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BytecodeArray> CodeStubAssembler::LoadSharedFunctionInfoBytecodeArray(
|
|
SloppyTNode<SharedFunctionInfo> shared) {
|
|
Node* function_data =
|
|
LoadObjectField(shared, SharedFunctionInfo::kFunctionDataOffset);
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged, function_data);
|
|
Label done(this, &var_result);
|
|
|
|
GotoIfNot(HasInstanceType(function_data, INTERPRETER_DATA_TYPE), &done);
|
|
Node* bytecode_array =
|
|
LoadObjectField(function_data, InterpreterData::kBytecodeArrayOffset);
|
|
var_result.Bind(bytecode_array);
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectByteNoWriteBarrier(TNode<HeapObject> object,
|
|
int offset,
|
|
TNode<Word32T> value) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord8, object,
|
|
IntPtrConstant(offset - kHeapObjectTag), value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
|
|
SloppyTNode<Float64T> value) {
|
|
StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value,
|
|
MachineRepresentation::kFloat64);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreMutableHeapNumberValue(
|
|
SloppyTNode<MutableHeapNumber> object, SloppyTNode<Float64T> value) {
|
|
StoreObjectFieldNoWriteBarrier(object, MutableHeapNumber::kValueOffset, value,
|
|
MachineRepresentation::kFloat64);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectField(Node* object, int offset,
|
|
Node* value) {
|
|
DCHECK_NE(HeapObject::kMapOffset, offset); // Use StoreMap instead.
|
|
|
|
OptimizedStoreField(MachineRepresentation::kTagged,
|
|
UncheckedCast<HeapObject>(object), offset, value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectField(Node* object, Node* offset,
|
|
Node* value) {
|
|
int const_offset;
|
|
if (ToInt32Constant(offset, const_offset)) {
|
|
StoreObjectField(object, const_offset, value);
|
|
} else {
|
|
Store(object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
|
|
Node* object, int offset, Node* value, MachineRepresentation rep) {
|
|
if (CanBeTaggedPointer(rep)) {
|
|
OptimizedStoreFieldAssertNoWriteBarrier(
|
|
rep, UncheckedCast<HeapObject>(object), offset, value);
|
|
} else {
|
|
OptimizedStoreFieldUnsafeNoWriteBarrier(
|
|
rep, UncheckedCast<HeapObject>(object), offset, value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::UnsafeStoreObjectFieldNoWriteBarrier(
|
|
TNode<HeapObject> object, int offset, TNode<Object> value) {
|
|
OptimizedStoreFieldUnsafeNoWriteBarrier(MachineRepresentation::kTagged,
|
|
object, offset, value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
|
|
Node* object, SloppyTNode<IntPtrT> offset, Node* value,
|
|
MachineRepresentation rep) {
|
|
int const_offset;
|
|
if (ToInt32Constant(offset, const_offset)) {
|
|
return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep);
|
|
}
|
|
StoreNoWriteBarrier(rep, object,
|
|
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreMap(Node* object, Node* map) {
|
|
OptimizedStoreMap(UncheckedCast<HeapObject>(object), CAST(map));
|
|
}
|
|
|
|
void CodeStubAssembler::StoreMapNoWriteBarrier(Node* object,
|
|
RootIndex map_root_index) {
|
|
StoreMapNoWriteBarrier(object, LoadRoot(map_root_index));
|
|
}
|
|
|
|
void CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
OptimizedStoreFieldAssertNoWriteBarrier(MachineRepresentation::kTaggedPointer,
|
|
UncheckedCast<HeapObject>(object),
|
|
HeapObject::kMapOffset, map);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset,
|
|
RootIndex root_index) {
|
|
if (RootsTable::IsImmortalImmovable(root_index)) {
|
|
return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index));
|
|
} else {
|
|
return StoreObjectField(object, offset, LoadRoot(root_index));
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::StoreJSArrayLength(TNode<JSArray> array,
|
|
TNode<Smi> length) {
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreElements(TNode<Object> object,
|
|
TNode<FixedArrayBase> elements) {
|
|
StoreObjectField(object, JSObject::kElementsOffset, elements);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement(
|
|
Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode,
|
|
int additional_offset, ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(
|
|
this, Word32Or(IsFixedArraySubclass(object), IsPropertyArray(object)));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
|
|
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
|
|
barrier_mode == UNSAFE_SKIP_WRITE_BARRIER ||
|
|
barrier_mode == UPDATE_WRITE_BARRIER ||
|
|
barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER);
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
STATIC_ASSERT(static_cast<int>(FixedArray::kHeaderSize) ==
|
|
static_cast<int>(PropertyArray::kHeaderSize));
|
|
int header_size =
|
|
FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
|
|
Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
|
|
parameter_mode, header_size);
|
|
STATIC_ASSERT(static_cast<int>(FixedArrayBase::kLengthOffset) ==
|
|
static_cast<int>(WeakFixedArray::kLengthOffset));
|
|
STATIC_ASSERT(static_cast<int>(FixedArrayBase::kLengthOffset) ==
|
|
static_cast<int>(PropertyArray::kLengthAndHashOffset));
|
|
// Check that index_node + additional_offset <= object.length.
|
|
// TODO(cbruni): Use proper LoadXXLength helpers
|
|
CSA_ASSERT(
|
|
this,
|
|
IsOffsetInBounds(
|
|
offset,
|
|
Select<IntPtrT>(
|
|
IsPropertyArray(object),
|
|
[=] {
|
|
TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField(
|
|
object, PropertyArray::kLengthAndHashOffset);
|
|
return TNode<IntPtrT>::UncheckedCast(
|
|
DecodeWord<PropertyArray::LengthField>(length_and_hash));
|
|
},
|
|
[=] {
|
|
return LoadAndUntagObjectField(object,
|
|
FixedArrayBase::kLengthOffset);
|
|
}),
|
|
FixedArray::kHeaderSize));
|
|
if (barrier_mode == SKIP_WRITE_BARRIER) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value);
|
|
} else if (barrier_mode == UNSAFE_SKIP_WRITE_BARRIER) {
|
|
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
|
|
value);
|
|
} else if (barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER) {
|
|
StoreEphemeronKey(object, offset, value);
|
|
} else {
|
|
Store(object, offset, value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFixedDoubleArrayElement(
|
|
TNode<FixedDoubleArray> object, Node* index_node, TNode<Float64T> value,
|
|
ParameterMode parameter_mode, CheckBounds check_bounds) {
|
|
CSA_ASSERT(this, IsFixedDoubleArray(object));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
|
|
if (NeedsBoundsCheck(check_bounds)) {
|
|
FixedArrayBoundsCheck(object, index_node, 0, parameter_mode);
|
|
}
|
|
Node* offset =
|
|
ElementOffsetFromIndex(index_node, PACKED_DOUBLE_ELEMENTS, parameter_mode,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
MachineRepresentation rep = MachineRepresentation::kFloat64;
|
|
// Make sure we do not store signalling NaNs into double arrays.
|
|
TNode<Float64T> value_silenced = Float64SilenceNaN(value);
|
|
StoreNoWriteBarrier(rep, object, offset, value_silenced);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFeedbackVectorSlot(Node* object,
|
|
Node* slot_index_node,
|
|
Node* value,
|
|
WriteBarrierMode barrier_mode,
|
|
int additional_offset,
|
|
ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(this, IsFeedbackVector(object));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode));
|
|
DCHECK(IsAligned(additional_offset, kTaggedSize));
|
|
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
|
|
barrier_mode == UNSAFE_SKIP_WRITE_BARRIER ||
|
|
barrier_mode == UPDATE_WRITE_BARRIER);
|
|
int header_size =
|
|
FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag;
|
|
Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS,
|
|
parameter_mode, header_size);
|
|
// Check that slot_index_node <= object.length.
|
|
CSA_ASSERT(this,
|
|
IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)),
|
|
FeedbackVector::kHeaderSize));
|
|
if (barrier_mode == SKIP_WRITE_BARRIER) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value);
|
|
} else if (barrier_mode == UNSAFE_SKIP_WRITE_BARRIER) {
|
|
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
|
|
value);
|
|
} else {
|
|
Store(object, offset, value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::EnsureArrayLengthWritable(TNode<Map> map,
|
|
Label* bailout) {
|
|
// Don't support arrays in dictionary named property mode.
|
|
GotoIf(IsDictionaryMap(map), bailout);
|
|
|
|
// Check whether the length property is writable. The length property is the
|
|
// only default named property on arrays. It's nonconfigurable, hence is
|
|
// guaranteed to stay the first property.
|
|
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
|
|
|
|
int length_index = JSArray::kLengthDescriptorIndex;
|
|
#ifdef DEBUG
|
|
TNode<Name> maybe_length =
|
|
LoadKeyByDescriptorEntry(descriptors, length_index);
|
|
CSA_ASSERT(this,
|
|
WordEqual(maybe_length, LoadRoot(RootIndex::klength_string)));
|
|
#endif
|
|
|
|
TNode<Uint32T> details =
|
|
LoadDetailsByDescriptorEntry(descriptors, length_index);
|
|
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
|
|
bailout);
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::EnsureArrayPushable(TNode<Map> map,
|
|
Label* bailout) {
|
|
// Disallow pushing onto prototypes. It might be the JSArray prototype.
|
|
// Disallow pushing onto non-extensible objects.
|
|
Comment("Disallow pushing onto prototypes");
|
|
Node* bit_field2 = LoadMapBitField2(map);
|
|
int mask = Map::IsPrototypeMapBit::kMask | Map::IsExtensibleBit::kMask;
|
|
Node* test = Word32And(bit_field2, Int32Constant(mask));
|
|
GotoIf(Word32NotEqual(test, Int32Constant(Map::IsExtensibleBit::kMask)),
|
|
bailout);
|
|
|
|
EnsureArrayLengthWritable(map, bailout);
|
|
|
|
TNode<Uint32T> kind = DecodeWord32<Map::ElementsKindBits>(bit_field2);
|
|
return Signed(kind);
|
|
}
|
|
|
|
void CodeStubAssembler::PossiblyGrowElementsCapacity(
|
|
ParameterMode mode, ElementsKind kind, Node* array, Node* length,
|
|
Variable* var_elements, Node* growth, Label* bailout) {
|
|
Label fits(this, var_elements);
|
|
Node* capacity =
|
|
TaggedToParameter(LoadFixedArrayBaseLength(var_elements->value()), mode);
|
|
// length and growth nodes are already in a ParameterMode appropriate
|
|
// representation.
|
|
Node* new_length = IntPtrOrSmiAdd(growth, length, mode);
|
|
GotoIfNot(IntPtrOrSmiGreaterThan(new_length, capacity, mode), &fits);
|
|
Node* new_capacity = CalculateNewElementsCapacity(new_length, mode);
|
|
var_elements->Bind(GrowElementsCapacity(array, var_elements->value(), kind,
|
|
kind, capacity, new_capacity, mode,
|
|
bailout));
|
|
Goto(&fits);
|
|
BIND(&fits);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::BuildAppendJSArray(ElementsKind kind,
|
|
SloppyTNode<JSArray> array,
|
|
CodeStubArguments* args,
|
|
TVariable<IntPtrT>* arg_index,
|
|
Label* bailout) {
|
|
CSA_SLOW_ASSERT(this, IsJSArray(array));
|
|
Comment("BuildAppendJSArray: ", ElementsKindToString(kind));
|
|
Label pre_bailout(this);
|
|
Label success(this);
|
|
TVARIABLE(Smi, var_tagged_length);
|
|
ParameterMode mode = OptimalParameterMode();
|
|
VARIABLE(var_length, OptimalParameterRepresentation(),
|
|
TaggedToParameter(LoadFastJSArrayLength(array), mode));
|
|
VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array));
|
|
|
|
// Resize the capacity of the fixed array if it doesn't fit.
|
|
TNode<IntPtrT> first = arg_index->value();
|
|
Node* growth = IntPtrToParameter(
|
|
IntPtrSub(UncheckedCast<IntPtrT>(args->GetLength(INTPTR_PARAMETERS)),
|
|
first),
|
|
mode);
|
|
PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(),
|
|
&var_elements, growth, &pre_bailout);
|
|
|
|
// Push each argument onto the end of the array now that there is enough
|
|
// capacity.
|
|
CodeStubAssembler::VariableList push_vars({&var_length}, zone());
|
|
Node* elements = var_elements.value();
|
|
args->ForEach(
|
|
push_vars,
|
|
[this, kind, mode, elements, &var_length, &pre_bailout](Node* arg) {
|
|
TryStoreArrayElement(kind, mode, &pre_bailout, elements,
|
|
var_length.value(), arg);
|
|
Increment(&var_length, 1, mode);
|
|
},
|
|
first, nullptr);
|
|
{
|
|
TNode<Smi> length = ParameterToTagged(var_length.value(), mode);
|
|
var_tagged_length = length;
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
Goto(&success);
|
|
}
|
|
|
|
BIND(&pre_bailout);
|
|
{
|
|
TNode<Smi> length = ParameterToTagged(var_length.value(), mode);
|
|
var_tagged_length = length;
|
|
Node* diff = SmiSub(length, LoadFastJSArrayLength(array));
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
*arg_index = IntPtrAdd(arg_index->value(), SmiUntag(diff));
|
|
Goto(bailout);
|
|
}
|
|
|
|
BIND(&success);
|
|
return var_tagged_length.value();
|
|
}
|
|
|
|
void CodeStubAssembler::TryStoreArrayElement(ElementsKind kind,
|
|
ParameterMode mode, Label* bailout,
|
|
Node* elements, Node* index,
|
|
Node* value) {
|
|
if (IsSmiElementsKind(kind)) {
|
|
GotoIf(TaggedIsNotSmi(value), bailout);
|
|
} else if (IsDoubleElementsKind(kind)) {
|
|
GotoIfNotNumber(value, bailout);
|
|
}
|
|
if (IsDoubleElementsKind(kind)) {
|
|
value = ChangeNumberToFloat64(value);
|
|
}
|
|
StoreElement(elements, kind, index, value, mode);
|
|
}
|
|
|
|
void CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, Node* array,
|
|
Node* value, Label* bailout) {
|
|
CSA_SLOW_ASSERT(this, IsJSArray(array));
|
|
Comment("BuildAppendJSArray: ", ElementsKindToString(kind));
|
|
ParameterMode mode = OptimalParameterMode();
|
|
VARIABLE(var_length, OptimalParameterRepresentation(),
|
|
TaggedToParameter(LoadFastJSArrayLength(array), mode));
|
|
VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array));
|
|
|
|
// Resize the capacity of the fixed array if it doesn't fit.
|
|
Node* growth = IntPtrOrSmiConstant(1, mode);
|
|
PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(),
|
|
&var_elements, growth, bailout);
|
|
|
|
// Push each argument onto the end of the array now that there is enough
|
|
// capacity.
|
|
TryStoreArrayElement(kind, mode, bailout, var_elements.value(),
|
|
var_length.value(), value);
|
|
Increment(&var_length, 1, mode);
|
|
|
|
Node* length = ParameterToTagged(var_length.value(), mode);
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocateCellWithValue(Node* value,
|
|
WriteBarrierMode mode) {
|
|
Node* result = Allocate(Cell::kSize, kNone);
|
|
StoreMapNoWriteBarrier(result, RootIndex::kCellMap);
|
|
StoreCellValue(result, value, mode);
|
|
return result;
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadCellValue(Node* cell) {
|
|
CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE));
|
|
return LoadObjectField(cell, Cell::kValueOffset);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreCellValue(Node* cell, Node* value,
|
|
WriteBarrierMode mode) {
|
|
CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE));
|
|
DCHECK(mode == SKIP_WRITE_BARRIER || mode == UPDATE_WRITE_BARRIER);
|
|
|
|
if (mode == UPDATE_WRITE_BARRIER) {
|
|
StoreObjectField(cell, Cell::kValueOffset, value);
|
|
} else {
|
|
StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, value);
|
|
}
|
|
}
|
|
|
|
TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumber() {
|
|
Node* result = Allocate(HeapNumber::kSize, kNone);
|
|
RootIndex heap_map_index = RootIndex::kHeapNumberMap;
|
|
StoreMapNoWriteBarrier(result, heap_map_index);
|
|
return UncheckedCast<HeapNumber>(result);
|
|
}
|
|
|
|
TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumberWithValue(
|
|
SloppyTNode<Float64T> value) {
|
|
TNode<HeapNumber> result = AllocateHeapNumber();
|
|
StoreHeapNumberValue(result, value);
|
|
return result;
|
|
}
|
|
|
|
TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumber() {
|
|
Node* result = Allocate(MutableHeapNumber::kSize, kNone);
|
|
RootIndex heap_map_index = RootIndex::kMutableHeapNumberMap;
|
|
StoreMapNoWriteBarrier(result, heap_map_index);
|
|
return UncheckedCast<MutableHeapNumber>(result);
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::CloneIfMutablePrimitive(TNode<Object> object) {
|
|
TVARIABLE(Object, result, object);
|
|
Label done(this);
|
|
|
|
GotoIf(TaggedIsSmi(object), &done);
|
|
GotoIfNot(IsMutableHeapNumber(UncheckedCast<HeapObject>(object)), &done);
|
|
{
|
|
// Mutable heap number found --- allocate a clone.
|
|
TNode<Float64T> value =
|
|
LoadHeapNumberValue(UncheckedCast<HeapNumber>(object));
|
|
result = AllocateMutableHeapNumberWithValue(value);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumberWithValue(
|
|
SloppyTNode<Float64T> value) {
|
|
TNode<MutableHeapNumber> result = AllocateMutableHeapNumber();
|
|
StoreMutableHeapNumberValue(result, value);
|
|
return result;
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::AllocateBigInt(TNode<IntPtrT> length) {
|
|
TNode<BigInt> result = AllocateRawBigInt(length);
|
|
StoreBigIntBitfield(result,
|
|
Word32Shl(TruncateIntPtrToInt32(length),
|
|
Int32Constant(BigInt::LengthBits::kShift)));
|
|
return result;
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::AllocateRawBigInt(TNode<IntPtrT> length) {
|
|
// This is currently used only for 64-bit wide BigInts. If more general
|
|
// applicability is required, a large-object check must be added.
|
|
CSA_ASSERT(this, UintPtrLessThan(length, IntPtrConstant(3)));
|
|
|
|
TNode<IntPtrT> size =
|
|
IntPtrAdd(IntPtrConstant(BigInt::kHeaderSize),
|
|
Signed(WordShl(length, kSystemPointerSizeLog2)));
|
|
Node* raw_result = Allocate(size, kNone);
|
|
StoreMapNoWriteBarrier(raw_result, RootIndex::kBigIntMap);
|
|
if (FIELD_SIZE(BigInt::kOptionalPaddingOffset) != 0) {
|
|
DCHECK_EQ(4, FIELD_SIZE(BigInt::kOptionalPaddingOffset));
|
|
StoreObjectFieldNoWriteBarrier(raw_result, BigInt::kOptionalPaddingOffset,
|
|
Int32Constant(0),
|
|
MachineRepresentation::kWord32);
|
|
}
|
|
return UncheckedCast<BigInt>(raw_result);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreBigIntBitfield(TNode<BigInt> bigint,
|
|
TNode<Word32T> bitfield) {
|
|
StoreObjectFieldNoWriteBarrier(bigint, BigInt::kBitfieldOffset, bitfield,
|
|
MachineRepresentation::kWord32);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
|
|
TNode<UintPtrT> digit) {
|
|
StoreObjectFieldNoWriteBarrier(
|
|
bigint, BigInt::kDigitsOffset + digit_index * kSystemPointerSize, digit,
|
|
UintPtrT::kMachineRepresentation);
|
|
}
|
|
|
|
TNode<Word32T> CodeStubAssembler::LoadBigIntBitfield(TNode<BigInt> bigint) {
|
|
return UncheckedCast<Word32T>(
|
|
LoadObjectField(bigint, BigInt::kBitfieldOffset, MachineType::Uint32()));
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::LoadBigIntDigit(TNode<BigInt> bigint,
|
|
int digit_index) {
|
|
return UncheckedCast<UintPtrT>(LoadObjectField(
|
|
bigint, BigInt::kDigitsOffset + digit_index * kSystemPointerSize,
|
|
MachineType::UintPtr()));
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSeqOneByteString(
|
|
uint32_t length, AllocationFlags flags) {
|
|
Comment("AllocateSeqOneByteString");
|
|
if (length == 0) {
|
|
return CAST(LoadRoot(RootIndex::kempty_string));
|
|
}
|
|
Node* result = Allocate(SeqOneByteString::SizeFor(length), flags);
|
|
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap));
|
|
StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
|
|
Uint32Constant(length),
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
return CAST(result);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsZeroOrContext(SloppyTNode<Object> object) {
|
|
return Select<BoolT>(WordEqual(object, SmiConstant(0)),
|
|
[=] { return Int32TrueConstant(); },
|
|
[=] { return IsContext(CAST(object)); });
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSeqOneByteString(
|
|
Node* context, TNode<Uint32T> length, AllocationFlags flags) {
|
|
Comment("AllocateSeqOneByteString");
|
|
CSA_SLOW_ASSERT(this, IsZeroOrContext(context));
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
|
|
// Compute the SeqOneByteString size and check if it fits into new space.
|
|
Label if_lengthiszero(this), if_sizeissmall(this),
|
|
if_notsizeissmall(this, Label::kDeferred), if_join(this);
|
|
GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero);
|
|
|
|
Node* raw_size = GetArrayAllocationSize(
|
|
Signed(ChangeUint32ToWord(length)), UINT8_ELEMENTS, INTPTR_PARAMETERS,
|
|
SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
|
|
TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
|
|
Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
|
|
&if_sizeissmall, &if_notsizeissmall);
|
|
|
|
BIND(&if_sizeissmall);
|
|
{
|
|
// Just allocate the SeqOneByteString in new space.
|
|
TNode<Object> result =
|
|
AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags);
|
|
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap));
|
|
StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
|
|
length, MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
var_result.Bind(result);
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_notsizeissmall);
|
|
{
|
|
// We might need to allocate in large object space, go to the runtime.
|
|
Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context,
|
|
ChangeUint32ToTagged(length));
|
|
var_result.Bind(result);
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_lengthiszero);
|
|
{
|
|
var_result.Bind(LoadRoot(RootIndex::kempty_string));
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_join);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSeqTwoByteString(
|
|
uint32_t length, AllocationFlags flags) {
|
|
Comment("AllocateSeqTwoByteString");
|
|
if (length == 0) {
|
|
return CAST(LoadRoot(RootIndex::kempty_string));
|
|
}
|
|
Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags);
|
|
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap));
|
|
StoreMapNoWriteBarrier(result, RootIndex::kStringMap);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
|
|
Uint32Constant(length),
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
return CAST(result);
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSeqTwoByteString(
|
|
Node* context, TNode<Uint32T> length, AllocationFlags flags) {
|
|
CSA_SLOW_ASSERT(this, IsZeroOrContext(context));
|
|
Comment("AllocateSeqTwoByteString");
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
|
|
// Compute the SeqTwoByteString size and check if it fits into new space.
|
|
Label if_lengthiszero(this), if_sizeissmall(this),
|
|
if_notsizeissmall(this, Label::kDeferred), if_join(this);
|
|
GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero);
|
|
|
|
Node* raw_size = GetArrayAllocationSize(
|
|
Signed(ChangeUint32ToWord(length)), UINT16_ELEMENTS, INTPTR_PARAMETERS,
|
|
SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
|
|
TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
|
|
Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
|
|
&if_sizeissmall, &if_notsizeissmall);
|
|
|
|
BIND(&if_sizeissmall);
|
|
{
|
|
// Just allocate the SeqTwoByteString in new space.
|
|
TNode<Object> result =
|
|
AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags);
|
|
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap));
|
|
StoreMapNoWriteBarrier(result, RootIndex::kStringMap);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
|
|
length, MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
var_result.Bind(result);
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_notsizeissmall);
|
|
{
|
|
// We might need to allocate in large object space, go to the runtime.
|
|
Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context,
|
|
ChangeUint32ToTagged(length));
|
|
var_result.Bind(result);
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_lengthiszero);
|
|
{
|
|
var_result.Bind(LoadRoot(RootIndex::kempty_string));
|
|
Goto(&if_join);
|
|
}
|
|
|
|
BIND(&if_join);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSlicedString(RootIndex map_root_index,
|
|
TNode<Uint32T> length,
|
|
TNode<String> parent,
|
|
TNode<Smi> offset) {
|
|
DCHECK(map_root_index == RootIndex::kSlicedOneByteStringMap ||
|
|
map_root_index == RootIndex::kSlicedStringMap);
|
|
Node* result = Allocate(SlicedString::kSize);
|
|
DCHECK(RootsTable::IsImmortalImmovable(map_root_index));
|
|
StoreMapNoWriteBarrier(result, map_root_index);
|
|
StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length,
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent,
|
|
MachineRepresentation::kTagged);
|
|
StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset,
|
|
MachineRepresentation::kTagged);
|
|
return CAST(result);
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSlicedOneByteString(
|
|
TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) {
|
|
return AllocateSlicedString(RootIndex::kSlicedOneByteStringMap, length,
|
|
parent, offset);
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateSlicedTwoByteString(
|
|
TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) {
|
|
return AllocateSlicedString(RootIndex::kSlicedStringMap, length, parent,
|
|
offset);
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::AllocateConsString(TNode<Uint32T> length,
|
|
TNode<String> left,
|
|
TNode<String> right) {
|
|
// Added string can be a cons string.
|
|
Comment("Allocating ConsString");
|
|
Node* left_instance_type = LoadInstanceType(left);
|
|
Node* right_instance_type = LoadInstanceType(right);
|
|
|
|
// Determine the resulting ConsString map to use depending on whether
|
|
// any of {left} or {right} has two byte encoding.
|
|
STATIC_ASSERT(kOneByteStringTag != 0);
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
Node* combined_instance_type =
|
|
Word32And(left_instance_type, right_instance_type);
|
|
TNode<Map> result_map = CAST(Select<Object>(
|
|
IsSetWord32(combined_instance_type, kStringEncodingMask),
|
|
[=] { return LoadRoot(RootIndex::kConsOneByteStringMap); },
|
|
[=] { return LoadRoot(RootIndex::kConsStringMap); }));
|
|
Node* result = AllocateInNewSpace(ConsString::kSize);
|
|
StoreMapNoWriteBarrier(result, result_map);
|
|
StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length,
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset,
|
|
Int32Constant(String::kEmptyHashField),
|
|
MachineRepresentation::kWord32);
|
|
StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, left);
|
|
StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, right);
|
|
return CAST(result);
|
|
}
|
|
|
|
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary(
|
|
int at_least_space_for) {
|
|
return AllocateNameDictionary(IntPtrConstant(at_least_space_for));
|
|
}
|
|
|
|
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary(
|
|
TNode<IntPtrT> at_least_space_for) {
|
|
CSA_ASSERT(this, UintPtrLessThanOrEqual(
|
|
at_least_space_for,
|
|
IntPtrConstant(NameDictionary::kMaxCapacity)));
|
|
TNode<IntPtrT> capacity = HashTableComputeCapacity(at_least_space_for);
|
|
return AllocateNameDictionaryWithCapacity(capacity);
|
|
}
|
|
|
|
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionaryWithCapacity(
|
|
TNode<IntPtrT> capacity) {
|
|
CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
|
|
CSA_ASSERT(this, IntPtrGreaterThan(capacity, IntPtrConstant(0)));
|
|
TNode<IntPtrT> length = EntryToIndex<NameDictionary>(capacity);
|
|
TNode<IntPtrT> store_size = IntPtrAdd(
|
|
TimesTaggedSize(length), IntPtrConstant(NameDictionary::kHeaderSize));
|
|
|
|
TNode<NameDictionary> result =
|
|
UncheckedCast<NameDictionary>(AllocateInNewSpace(store_size));
|
|
Comment("Initialize NameDictionary");
|
|
// Initialize FixedArray fields.
|
|
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kNameDictionaryMap));
|
|
StoreMapNoWriteBarrier(result, RootIndex::kNameDictionaryMap);
|
|
StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
|
|
SmiFromIntPtr(length));
|
|
// Initialized HashTable fields.
|
|
TNode<Smi> zero = SmiConstant(0);
|
|
StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero,
|
|
SKIP_WRITE_BARRIER);
|
|
StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex,
|
|
zero, SKIP_WRITE_BARRIER);
|
|
StoreFixedArrayElement(result, NameDictionary::kCapacityIndex,
|
|
SmiTag(capacity), SKIP_WRITE_BARRIER);
|
|
// Initialize Dictionary fields.
|
|
TNode<HeapObject> filler = UndefinedConstant();
|
|
StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex,
|
|
SmiConstant(PropertyDetails::kInitialIndex),
|
|
SKIP_WRITE_BARRIER);
|
|
StoreFixedArrayElement(result, NameDictionary::kObjectHashIndex,
|
|
SmiConstant(PropertyArray::kNoHashSentinel),
|
|
SKIP_WRITE_BARRIER);
|
|
|
|
// Initialize NameDictionary elements.
|
|
TNode<WordT> result_word = BitcastTaggedToWord(result);
|
|
TNode<WordT> start_address = IntPtrAdd(
|
|
result_word, IntPtrConstant(NameDictionary::OffsetOfElementAt(
|
|
NameDictionary::kElementsStartIndex) -
|
|
kHeapObjectTag));
|
|
TNode<WordT> end_address = IntPtrAdd(
|
|
result_word, IntPtrSub(store_size, IntPtrConstant(kHeapObjectTag)));
|
|
StoreFieldsNoWriteBarrier(start_address, end_address, filler);
|
|
return result;
|
|
}
|
|
|
|
TNode<NameDictionary> CodeStubAssembler::CopyNameDictionary(
|
|
TNode<NameDictionary> dictionary, Label* large_object_fallback) {
|
|
Comment("Copy boilerplate property dict");
|
|
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NameDictionary>(dictionary));
|
|
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(capacity, IntPtrConstant(0)));
|
|
GotoIf(UintPtrGreaterThan(
|
|
capacity, IntPtrConstant(NameDictionary::kMaxRegularCapacity)),
|
|
large_object_fallback);
|
|
TNode<NameDictionary> properties =
|
|
AllocateNameDictionaryWithCapacity(capacity);
|
|
TNode<IntPtrT> length = SmiUntag(LoadFixedArrayBaseLength(dictionary));
|
|
CopyFixedArrayElements(PACKED_ELEMENTS, dictionary, properties, length,
|
|
SKIP_WRITE_BARRIER, INTPTR_PARAMETERS);
|
|
return properties;
|
|
}
|
|
|
|
template <typename CollectionType>
|
|
Node* CodeStubAssembler::AllocateOrderedHashTable() {
|
|
static const int kCapacity = CollectionType::kMinCapacity;
|
|
static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
|
|
static const int kDataTableLength = kCapacity * CollectionType::kEntrySize;
|
|
static const int kFixedArrayLength =
|
|
CollectionType::HashTableStartIndex() + kBucketCount + kDataTableLength;
|
|
static const int kDataTableStartIndex =
|
|
CollectionType::HashTableStartIndex() + kBucketCount;
|
|
|
|
STATIC_ASSERT(base::bits::IsPowerOfTwo(kCapacity));
|
|
STATIC_ASSERT(kCapacity <= CollectionType::MaxCapacity());
|
|
|
|
// Allocate the table and add the proper map.
|
|
const ElementsKind elements_kind = HOLEY_ELEMENTS;
|
|
TNode<IntPtrT> length_intptr = IntPtrConstant(kFixedArrayLength);
|
|
TNode<Map> fixed_array_map =
|
|
CAST(LoadRoot(CollectionType::GetMapRootIndex()));
|
|
TNode<FixedArray> table =
|
|
CAST(AllocateFixedArray(elements_kind, length_intptr,
|
|
kAllowLargeObjectAllocation, fixed_array_map));
|
|
|
|
// Initialize the OrderedHashTable fields.
|
|
const WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER;
|
|
StoreFixedArrayElement(table, CollectionType::NumberOfElementsIndex(),
|
|
SmiConstant(0), barrier_mode);
|
|
StoreFixedArrayElement(table, CollectionType::NumberOfDeletedElementsIndex(),
|
|
SmiConstant(0), barrier_mode);
|
|
StoreFixedArrayElement(table, CollectionType::NumberOfBucketsIndex(),
|
|
SmiConstant(kBucketCount), barrier_mode);
|
|
|
|
// Fill the buckets with kNotFound.
|
|
TNode<Smi> not_found = SmiConstant(CollectionType::kNotFound);
|
|
STATIC_ASSERT(CollectionType::HashTableStartIndex() ==
|
|
CollectionType::NumberOfBucketsIndex() + 1);
|
|
STATIC_ASSERT((CollectionType::HashTableStartIndex() + kBucketCount) ==
|
|
kDataTableStartIndex);
|
|
for (int i = 0; i < kBucketCount; i++) {
|
|
StoreFixedArrayElement(table, CollectionType::HashTableStartIndex() + i,
|
|
not_found, barrier_mode);
|
|
}
|
|
|
|
// Fill the data table with undefined.
|
|
STATIC_ASSERT(kDataTableStartIndex + kDataTableLength == kFixedArrayLength);
|
|
for (int i = 0; i < kDataTableLength; i++) {
|
|
StoreFixedArrayElement(table, kDataTableStartIndex + i, UndefinedConstant(),
|
|
barrier_mode);
|
|
}
|
|
|
|
return table;
|
|
}
|
|
|
|
template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashMap>();
|
|
template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashSet>();
|
|
|
|
template <typename CollectionType>
|
|
TNode<CollectionType> CodeStubAssembler::AllocateSmallOrderedHashTable(
|
|
TNode<IntPtrT> capacity) {
|
|
CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
|
|
CSA_ASSERT(this, IntPtrLessThan(
|
|
capacity, IntPtrConstant(CollectionType::kMaxCapacity)));
|
|
|
|
TNode<IntPtrT> data_table_start_offset =
|
|
IntPtrConstant(CollectionType::DataTableStartOffset());
|
|
|
|
TNode<IntPtrT> data_table_size = IntPtrMul(
|
|
capacity, IntPtrConstant(CollectionType::kEntrySize * kTaggedSize));
|
|
|
|
TNode<Int32T> hash_table_size =
|
|
Int32Div(TruncateIntPtrToInt32(capacity),
|
|
Int32Constant(CollectionType::kLoadFactor));
|
|
|
|
TNode<IntPtrT> hash_table_start_offset =
|
|
IntPtrAdd(data_table_start_offset, data_table_size);
|
|
|
|
TNode<IntPtrT> hash_table_and_chain_table_size =
|
|
IntPtrAdd(ChangeInt32ToIntPtr(hash_table_size), capacity);
|
|
|
|
TNode<IntPtrT> total_size =
|
|
IntPtrAdd(hash_table_start_offset, hash_table_and_chain_table_size);
|
|
|
|
TNode<IntPtrT> total_size_word_aligned =
|
|
IntPtrAdd(total_size, IntPtrConstant(kTaggedSize - 1));
|
|
total_size_word_aligned = ChangeInt32ToIntPtr(
|
|
Int32Div(TruncateIntPtrToInt32(total_size_word_aligned),
|
|
Int32Constant(kTaggedSize)));
|
|
total_size_word_aligned =
|
|
UncheckedCast<IntPtrT>(TimesTaggedSize(total_size_word_aligned));
|
|
|
|
// Allocate the table and add the proper map.
|
|
TNode<Map> small_ordered_hash_map =
|
|
CAST(LoadRoot(CollectionType::GetMapRootIndex()));
|
|
TNode<Object> table_obj = AllocateInNewSpace(total_size_word_aligned);
|
|
StoreMapNoWriteBarrier(table_obj, small_ordered_hash_map);
|
|
TNode<CollectionType> table = UncheckedCast<CollectionType>(table_obj);
|
|
|
|
// Initialize the SmallOrderedHashTable fields.
|
|
StoreObjectByteNoWriteBarrier(
|
|
table, CollectionType::NumberOfBucketsOffset(),
|
|
Word32And(Int32Constant(0xFF), hash_table_size));
|
|
StoreObjectByteNoWriteBarrier(table, CollectionType::NumberOfElementsOffset(),
|
|
Int32Constant(0));
|
|
StoreObjectByteNoWriteBarrier(
|
|
table, CollectionType::NumberOfDeletedElementsOffset(), Int32Constant(0));
|
|
|
|
TNode<IntPtrT> table_address =
|
|
IntPtrSub(BitcastTaggedToWord(table), IntPtrConstant(kHeapObjectTag));
|
|
TNode<IntPtrT> hash_table_start_address =
|
|
IntPtrAdd(table_address, hash_table_start_offset);
|
|
|
|
// Initialize the HashTable part.
|
|
Node* memset = ExternalConstant(ExternalReference::libc_memset_function());
|
|
CallCFunction(
|
|
memset, MachineType::AnyTagged(),
|
|
std::make_pair(MachineType::Pointer(), hash_table_start_address),
|
|
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0xFF)),
|
|
std::make_pair(MachineType::UintPtr(), hash_table_and_chain_table_size));
|
|
|
|
// Initialize the DataTable part.
|
|
TNode<HeapObject> filler = TheHoleConstant();
|
|
TNode<WordT> data_table_start_address =
|
|
IntPtrAdd(table_address, data_table_start_offset);
|
|
TNode<WordT> data_table_end_address =
|
|
IntPtrAdd(data_table_start_address, data_table_size);
|
|
StoreFieldsNoWriteBarrier(data_table_start_address, data_table_end_address,
|
|
filler);
|
|
|
|
return table;
|
|
}
|
|
|
|
template V8_EXPORT_PRIVATE TNode<SmallOrderedHashMap>
|
|
CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
|
|
TNode<IntPtrT> capacity);
|
|
template V8_EXPORT_PRIVATE TNode<SmallOrderedHashSet>
|
|
CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
|
|
TNode<IntPtrT> capacity);
|
|
|
|
template <typename CollectionType>
|
|
void CodeStubAssembler::FindOrderedHashTableEntry(
|
|
Node* table, Node* hash,
|
|
const std::function<void(Node*, Label*, Label*)>& key_compare,
|
|
Variable* entry_start_position, Label* entry_found, Label* not_found) {
|
|
// Get the index of the bucket.
|
|
Node* const number_of_buckets = SmiUntag(CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(table), CollectionType::NumberOfBucketsIndex())));
|
|
Node* const bucket =
|
|
WordAnd(hash, IntPtrSub(number_of_buckets, IntPtrConstant(1)));
|
|
Node* const first_entry = SmiUntag(CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(table), bucket,
|
|
CollectionType::HashTableStartIndex() * kTaggedSize)));
|
|
|
|
// Walk the bucket chain.
|
|
Node* entry_start;
|
|
Label if_key_found(this);
|
|
{
|
|
VARIABLE(var_entry, MachineType::PointerRepresentation(), first_entry);
|
|
Label loop(this, {&var_entry, entry_start_position}),
|
|
continue_next_entry(this);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
|
|
// If the entry index is the not-found sentinel, we are done.
|
|
GotoIf(
|
|
WordEqual(var_entry.value(), IntPtrConstant(CollectionType::kNotFound)),
|
|
not_found);
|
|
|
|
// Make sure the entry index is within range.
|
|
CSA_ASSERT(
|
|
this,
|
|
UintPtrLessThan(
|
|
var_entry.value(),
|
|
SmiUntag(SmiAdd(
|
|
CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(table), CollectionType::NumberOfElementsIndex())),
|
|
CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(table),
|
|
CollectionType::NumberOfDeletedElementsIndex()))))));
|
|
|
|
// Compute the index of the entry relative to kHashTableStartIndex.
|
|
entry_start =
|
|
IntPtrAdd(IntPtrMul(var_entry.value(),
|
|
IntPtrConstant(CollectionType::kEntrySize)),
|
|
number_of_buckets);
|
|
|
|
// Load the key from the entry.
|
|
Node* const candidate_key = UnsafeLoadFixedArrayElement(
|
|
CAST(table), entry_start,
|
|
CollectionType::HashTableStartIndex() * kTaggedSize);
|
|
|
|
key_compare(candidate_key, &if_key_found, &continue_next_entry);
|
|
|
|
BIND(&continue_next_entry);
|
|
// Load the index of the next entry in the bucket chain.
|
|
var_entry.Bind(SmiUntag(CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(table), entry_start,
|
|
(CollectionType::HashTableStartIndex() + CollectionType::kChainOffset) *
|
|
kTaggedSize))));
|
|
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&if_key_found);
|
|
entry_start_position->Bind(entry_start);
|
|
Goto(entry_found);
|
|
}
|
|
|
|
template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashMap>(
|
|
Node* table, Node* hash,
|
|
const std::function<void(Node*, Label*, Label*)>& key_compare,
|
|
Variable* entry_start_position, Label* entry_found, Label* not_found);
|
|
template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashSet>(
|
|
Node* table, Node* hash,
|
|
const std::function<void(Node*, Label*, Label*)>& key_compare,
|
|
Variable* entry_start_position, Label* entry_found, Label* not_found);
|
|
|
|
Node* CodeStubAssembler::AllocateStruct(Node* map, AllocationFlags flags) {
|
|
Comment("AllocateStruct");
|
|
CSA_ASSERT(this, IsMap(map));
|
|
TNode<IntPtrT> size = TimesTaggedSize(LoadMapInstanceSizeInWords(map));
|
|
TNode<Object> object = Allocate(size, flags);
|
|
StoreMapNoWriteBarrier(object, map);
|
|
InitializeStructBody(object, map, size, Struct::kHeaderSize);
|
|
return object;
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeStructBody(Node* object, Node* map,
|
|
Node* size, int start_offset) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
Comment("InitializeStructBody");
|
|
Node* filler = UndefinedConstant();
|
|
// Calculate the untagged field addresses.
|
|
object = BitcastTaggedToWord(object);
|
|
Node* start_address =
|
|
IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag));
|
|
Node* end_address =
|
|
IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag));
|
|
StoreFieldsNoWriteBarrier(start_address, end_address, filler);
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocateJSObjectFromMap(
|
|
Node* map, Node* properties, Node* elements, AllocationFlags flags,
|
|
SlackTrackingMode slack_tracking_mode) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
CSA_ASSERT(this, Word32BinaryNot(IsJSFunctionMap(map)));
|
|
CSA_ASSERT(this, Word32BinaryNot(InstanceTypeEqual(LoadMapInstanceType(map),
|
|
JS_GLOBAL_OBJECT_TYPE)));
|
|
TNode<IntPtrT> instance_size =
|
|
TimesTaggedSize(LoadMapInstanceSizeInWords(map));
|
|
TNode<Object> object = AllocateInNewSpace(instance_size, flags);
|
|
StoreMapNoWriteBarrier(object, map);
|
|
InitializeJSObjectFromMap(object, map, instance_size, properties, elements,
|
|
slack_tracking_mode);
|
|
return object;
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeJSObjectFromMap(
|
|
Node* object, Node* map, Node* instance_size, Node* properties,
|
|
Node* elements, SlackTrackingMode slack_tracking_mode) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
// This helper assumes that the object is in new-space, as guarded by the
|
|
// check in AllocatedJSObjectFromMap.
|
|
if (properties == nullptr) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map))));
|
|
StoreObjectFieldRoot(object, JSObject::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
} else {
|
|
CSA_ASSERT(this, Word32Or(Word32Or(IsPropertyArray(properties),
|
|
IsNameDictionary(properties)),
|
|
IsEmptyFixedArray(properties)));
|
|
StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOrHashOffset,
|
|
properties);
|
|
}
|
|
if (elements == nullptr) {
|
|
StoreObjectFieldRoot(object, JSObject::kElementsOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
} else {
|
|
CSA_ASSERT(this, IsFixedArray(elements));
|
|
StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements);
|
|
}
|
|
if (slack_tracking_mode == kNoSlackTracking) {
|
|
InitializeJSObjectBodyNoSlackTracking(object, map, instance_size);
|
|
} else {
|
|
DCHECK_EQ(slack_tracking_mode, kWithSlackTracking);
|
|
InitializeJSObjectBodyWithSlackTracking(object, map, instance_size);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeJSObjectBodyNoSlackTracking(
|
|
Node* object, Node* map, Node* instance_size, int start_offset) {
|
|
STATIC_ASSERT(Map::kNoSlackTracking == 0);
|
|
CSA_ASSERT(
|
|
this, IsClearWord32<Map::ConstructionCounterBits>(LoadMapBitField3(map)));
|
|
InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), instance_size,
|
|
RootIndex::kUndefinedValue);
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeJSObjectBodyWithSlackTracking(
|
|
Node* object, Node* map, Node* instance_size) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
Comment("InitializeJSObjectBodyNoSlackTracking");
|
|
|
|
// Perform in-object slack tracking if requested.
|
|
int start_offset = JSObject::kHeaderSize;
|
|
Node* bit_field3 = LoadMapBitField3(map);
|
|
Label end(this), slack_tracking(this), complete(this, Label::kDeferred);
|
|
STATIC_ASSERT(Map::kNoSlackTracking == 0);
|
|
GotoIf(IsSetWord32<Map::ConstructionCounterBits>(bit_field3),
|
|
&slack_tracking);
|
|
Comment("No slack tracking");
|
|
InitializeJSObjectBodyNoSlackTracking(object, map, instance_size);
|
|
Goto(&end);
|
|
|
|
BIND(&slack_tracking);
|
|
{
|
|
Comment("Decrease construction counter");
|
|
// Slack tracking is only done on initial maps.
|
|
CSA_ASSERT(this, IsUndefined(LoadMapBackPointer(map)));
|
|
STATIC_ASSERT(Map::ConstructionCounterBits::kNext == 32);
|
|
Node* new_bit_field3 = Int32Sub(
|
|
bit_field3, Int32Constant(1 << Map::ConstructionCounterBits::kShift));
|
|
StoreObjectFieldNoWriteBarrier(map, Map::kBitField3Offset, new_bit_field3,
|
|
MachineRepresentation::kWord32);
|
|
STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
|
|
|
|
// The object still has in-object slack therefore the |unsed_or_unused|
|
|
// field contain the "used" value.
|
|
Node* used_size = TimesTaggedSize(ChangeUint32ToWord(
|
|
LoadObjectField(map, Map::kUsedOrUnusedInstanceSizeInWordsOffset,
|
|
MachineType::Uint8())));
|
|
|
|
Comment("iInitialize filler fields");
|
|
InitializeFieldsWithRoot(object, used_size, instance_size,
|
|
RootIndex::kOnePointerFillerMap);
|
|
|
|
Comment("Initialize undefined fields");
|
|
InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), used_size,
|
|
RootIndex::kUndefinedValue);
|
|
|
|
STATIC_ASSERT(Map::kNoSlackTracking == 0);
|
|
GotoIf(IsClearWord32<Map::ConstructionCounterBits>(new_bit_field3),
|
|
&complete);
|
|
Goto(&end);
|
|
}
|
|
|
|
// Finalize the instance size.
|
|
BIND(&complete);
|
|
{
|
|
// ComplextInobjectSlackTracking doesn't allocate and thus doesn't need a
|
|
// context.
|
|
CallRuntime(Runtime::kCompleteInobjectSlackTrackingForMap,
|
|
NoContextConstant(), map);
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address,
|
|
Node* end_address,
|
|
Node* value) {
|
|
Comment("StoreFieldsNoWriteBarrier");
|
|
CSA_ASSERT(this, WordIsAligned(start_address, kTaggedSize));
|
|
CSA_ASSERT(this, WordIsAligned(end_address, kTaggedSize));
|
|
BuildFastLoop(
|
|
start_address, end_address,
|
|
[this, value](Node* current) {
|
|
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, current,
|
|
value);
|
|
},
|
|
kTaggedSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsValidFastJSArrayCapacity(
|
|
Node* capacity, ParameterMode capacity_mode) {
|
|
return UncheckedCast<BoolT>(
|
|
UintPtrLessThanOrEqual(ParameterToIntPtr(capacity, capacity_mode),
|
|
IntPtrConstant(JSArray::kMaxFastArrayLength)));
|
|
}
|
|
|
|
TNode<JSArray> CodeStubAssembler::AllocateJSArray(
|
|
TNode<Map> array_map, TNode<FixedArrayBase> elements, TNode<Smi> length,
|
|
Node* allocation_site) {
|
|
Comment("begin allocation of JSArray passing in elements");
|
|
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
|
|
|
|
int base_size = JSArray::kSize;
|
|
if (allocation_site != nullptr) {
|
|
base_size += AllocationMemento::kSize;
|
|
}
|
|
|
|
TNode<IntPtrT> size = IntPtrConstant(base_size);
|
|
TNode<JSArray> result =
|
|
AllocateUninitializedJSArray(array_map, length, allocation_site, size);
|
|
StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, elements);
|
|
return result;
|
|
}
|
|
|
|
std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
|
|
CodeStubAssembler::AllocateUninitializedJSArrayWithElements(
|
|
ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
|
|
Node* allocation_site, Node* capacity, ParameterMode capacity_mode,
|
|
AllocationFlags allocation_flags) {
|
|
Comment("begin allocation of JSArray with elements");
|
|
CHECK_EQ(allocation_flags & ~kAllowLargeObjectAllocation, 0);
|
|
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
|
|
|
|
TVARIABLE(JSArray, array);
|
|
TVARIABLE(FixedArrayBase, elements);
|
|
|
|
Label out(this), empty(this), nonempty(this);
|
|
|
|
int capacity_int;
|
|
if (TryGetIntPtrOrSmiConstantValue(capacity, &capacity_int, capacity_mode)) {
|
|
if (capacity_int == 0) {
|
|
TNode<FixedArrayBase> empty_array = EmptyFixedArrayConstant();
|
|
array = AllocateJSArray(array_map, empty_array, length, allocation_site);
|
|
return {array.value(), empty_array};
|
|
} else {
|
|
Goto(&nonempty);
|
|
}
|
|
} else {
|
|
Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)),
|
|
&empty, &nonempty);
|
|
|
|
BIND(&empty);
|
|
{
|
|
TNode<FixedArrayBase> empty_array = EmptyFixedArrayConstant();
|
|
array = AllocateJSArray(array_map, empty_array, length, allocation_site);
|
|
elements = empty_array;
|
|
Goto(&out);
|
|
}
|
|
}
|
|
|
|
BIND(&nonempty);
|
|
{
|
|
int base_size = JSArray::kSize;
|
|
if (allocation_site != nullptr) base_size += AllocationMemento::kSize;
|
|
|
|
const int elements_offset = base_size;
|
|
|
|
// Compute space for elements
|
|
base_size += FixedArray::kHeaderSize;
|
|
TNode<IntPtrT> size =
|
|
ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size);
|
|
|
|
// For very large arrays in which the requested allocation exceeds the
|
|
// maximal size of a regular heap object, we cannot use the allocation
|
|
// folding trick. Instead, we first allocate the elements in large object
|
|
// space, and then allocate the JSArray (and possibly the allocation
|
|
// memento) in new space.
|
|
if (allocation_flags & kAllowLargeObjectAllocation) {
|
|
Label next(this);
|
|
GotoIf(IsRegularHeapObjectSize(size), &next);
|
|
|
|
CSA_CHECK(this, IsValidFastJSArrayCapacity(capacity, capacity_mode));
|
|
|
|
// Allocate and initialize the elements first. Full initialization is
|
|
// needed because the upcoming JSArray allocation could trigger GC.
|
|
elements =
|
|
AllocateFixedArray(kind, capacity, capacity_mode, allocation_flags);
|
|
|
|
if (IsDoubleElementsKind(kind)) {
|
|
FillFixedDoubleArrayWithZero(
|
|
CAST(elements.value()), ParameterToIntPtr(capacity, capacity_mode));
|
|
} else {
|
|
FillFixedArrayWithSmiZero(CAST(elements.value()),
|
|
ParameterToIntPtr(capacity, capacity_mode));
|
|
}
|
|
|
|
// The JSArray and possibly allocation memento next. Note that
|
|
// allocation_flags are *not* passed on here and the resulting JSArray
|
|
// will always be in new space.
|
|
array =
|
|
AllocateJSArray(array_map, elements.value(), length, allocation_site);
|
|
|
|
Goto(&out);
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
// Fold all objects into a single new space allocation.
|
|
array =
|
|
AllocateUninitializedJSArray(array_map, length, allocation_site, size);
|
|
elements = UncheckedCast<FixedArrayBase>(
|
|
InnerAllocate(array.value(), elements_offset));
|
|
|
|
StoreObjectFieldNoWriteBarrier(array.value(), JSObject::kElementsOffset,
|
|
elements.value());
|
|
|
|
// Setup elements object.
|
|
STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kTaggedSize);
|
|
RootIndex elements_map_index = IsDoubleElementsKind(kind)
|
|
? RootIndex::kFixedDoubleArrayMap
|
|
: RootIndex::kFixedArrayMap;
|
|
DCHECK(RootsTable::IsImmortalImmovable(elements_map_index));
|
|
StoreMapNoWriteBarrier(elements.value(), elements_map_index);
|
|
|
|
TNode<Smi> capacity_smi = ParameterToTagged(capacity, capacity_mode);
|
|
CSA_ASSERT(this, SmiGreaterThan(capacity_smi, SmiConstant(0)));
|
|
StoreObjectFieldNoWriteBarrier(elements.value(), FixedArray::kLengthOffset,
|
|
capacity_smi);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&out);
|
|
return {array.value(), elements.value()};
|
|
}
|
|
|
|
TNode<JSArray> CodeStubAssembler::AllocateUninitializedJSArray(
|
|
TNode<Map> array_map, TNode<Smi> length, Node* allocation_site,
|
|
TNode<IntPtrT> size_in_bytes) {
|
|
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
|
|
|
|
// Allocate space for the JSArray and the elements FixedArray in one go.
|
|
TNode<Object> array = AllocateInNewSpace(size_in_bytes);
|
|
|
|
StoreMapNoWriteBarrier(array, array_map);
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
|
|
if (allocation_site != nullptr) {
|
|
InitializeAllocationMemento(array, IntPtrConstant(JSArray::kSize),
|
|
allocation_site);
|
|
}
|
|
|
|
return CAST(array);
|
|
}
|
|
|
|
TNode<JSArray> CodeStubAssembler::AllocateJSArray(
|
|
ElementsKind kind, TNode<Map> array_map, Node* capacity, TNode<Smi> length,
|
|
Node* allocation_site, ParameterMode capacity_mode,
|
|
AllocationFlags allocation_flags) {
|
|
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, capacity_mode));
|
|
|
|
TNode<JSArray> array;
|
|
TNode<FixedArrayBase> elements;
|
|
|
|
std::tie(array, elements) = AllocateUninitializedJSArrayWithElements(
|
|
kind, array_map, length, allocation_site, capacity, capacity_mode,
|
|
allocation_flags);
|
|
|
|
Label out(this), nonempty(this);
|
|
|
|
Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)),
|
|
&out, &nonempty);
|
|
|
|
BIND(&nonempty);
|
|
{
|
|
FillFixedArrayWithValue(kind, elements,
|
|
IntPtrOrSmiConstant(0, capacity_mode), capacity,
|
|
RootIndex::kTheHoleValue, capacity_mode);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&out);
|
|
return array;
|
|
}
|
|
|
|
Node* CodeStubAssembler::ExtractFastJSArray(Node* context, Node* array,
|
|
Node* begin, Node* count,
|
|
ParameterMode mode, Node* capacity,
|
|
Node* allocation_site) {
|
|
Node* original_array_map = LoadMap(array);
|
|
Node* elements_kind = LoadMapElementsKind(original_array_map);
|
|
|
|
// Use the cannonical map for the Array's ElementsKind
|
|
Node* native_context = LoadNativeContext(context);
|
|
TNode<Map> array_map = LoadJSArrayElementsMap(elements_kind, native_context);
|
|
|
|
TNode<FixedArrayBase> new_elements = ExtractFixedArray(
|
|
LoadElements(array), begin, count, capacity,
|
|
ExtractFixedArrayFlag::kAllFixedArrays, mode, nullptr, elements_kind);
|
|
|
|
TNode<Object> result = AllocateJSArray(
|
|
array_map, new_elements, ParameterToTagged(count, mode), allocation_site);
|
|
return result;
|
|
}
|
|
|
|
Node* CodeStubAssembler::CloneFastJSArray(Node* context, Node* array,
|
|
ParameterMode mode,
|
|
Node* allocation_site,
|
|
HoleConversionMode convert_holes) {
|
|
// TODO(dhai): we should be able to assert IsFastJSArray(array) here, but this
|
|
// function is also used to copy boilerplates even when the no-elements
|
|
// protector is invalid. This function should be renamed to reflect its uses.
|
|
CSA_ASSERT(this, IsJSArray(array));
|
|
|
|
Node* length = LoadJSArrayLength(array);
|
|
Node* new_elements = nullptr;
|
|
VARIABLE(var_new_elements, MachineRepresentation::kTagged);
|
|
TVARIABLE(Int32T, var_elements_kind, LoadMapElementsKind(LoadMap(array)));
|
|
|
|
Label allocate_jsarray(this), holey_extract(this);
|
|
|
|
bool need_conversion =
|
|
convert_holes == HoleConversionMode::kConvertToUndefined;
|
|
if (need_conversion) {
|
|
// We need to take care of holes, if the array is of holey elements kind.
|
|
GotoIf(IsHoleyFastElementsKind(var_elements_kind.value()), &holey_extract);
|
|
}
|
|
|
|
// Simple extraction that preserves holes.
|
|
new_elements =
|
|
ExtractFixedArray(LoadElements(array), IntPtrOrSmiConstant(0, mode),
|
|
TaggedToParameter(length, mode), nullptr,
|
|
ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW, mode,
|
|
nullptr, var_elements_kind.value());
|
|
var_new_elements.Bind(new_elements);
|
|
Goto(&allocate_jsarray);
|
|
|
|
if (need_conversion) {
|
|
BIND(&holey_extract);
|
|
// Convert holes to undefined.
|
|
TVARIABLE(BoolT, var_holes_converted, Int32FalseConstant());
|
|
// Copy |array|'s elements store. The copy will be compatible with the
|
|
// original elements kind unless there are holes in the source. Any holes
|
|
// get converted to undefined, hence in that case the copy is compatible
|
|
// only with PACKED_ELEMENTS and HOLEY_ELEMENTS, and we will choose
|
|
// PACKED_ELEMENTS. Also, if we want to replace holes, we must not use
|
|
// ExtractFixedArrayFlag::kDontCopyCOW.
|
|
new_elements = ExtractFixedArray(
|
|
LoadElements(array), IntPtrOrSmiConstant(0, mode),
|
|
TaggedToParameter(length, mode), nullptr,
|
|
ExtractFixedArrayFlag::kAllFixedArrays, mode, &var_holes_converted);
|
|
var_new_elements.Bind(new_elements);
|
|
// If the array type didn't change, use the original elements kind.
|
|
GotoIfNot(var_holes_converted.value(), &allocate_jsarray);
|
|
// Otherwise use PACKED_ELEMENTS for the target's elements kind.
|
|
var_elements_kind = Int32Constant(PACKED_ELEMENTS);
|
|
Goto(&allocate_jsarray);
|
|
}
|
|
|
|
BIND(&allocate_jsarray);
|
|
// Use the cannonical map for the chosen elements kind.
|
|
Node* native_context = LoadNativeContext(context);
|
|
TNode<Map> array_map =
|
|
LoadJSArrayElementsMap(var_elements_kind.value(), native_context);
|
|
|
|
TNode<Object> result = AllocateJSArray(
|
|
array_map, CAST(var_new_elements.value()), CAST(length), allocation_site);
|
|
return result;
|
|
}
|
|
|
|
TNode<FixedArrayBase> CodeStubAssembler::AllocateFixedArray(
|
|
ElementsKind kind, Node* capacity, ParameterMode mode,
|
|
AllocationFlags flags, SloppyTNode<Map> fixed_array_map) {
|
|
Comment("AllocateFixedArray");
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
|
|
CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity,
|
|
IntPtrOrSmiConstant(0, mode), mode));
|
|
|
|
const intptr_t kMaxLength = IsDoubleElementsKind(kind)
|
|
? FixedDoubleArray::kMaxLength
|
|
: FixedArray::kMaxLength;
|
|
intptr_t capacity_constant;
|
|
if (ToParameterConstant(capacity, &capacity_constant, mode)) {
|
|
CHECK_LE(capacity_constant, kMaxLength);
|
|
} else {
|
|
Label if_out_of_memory(this, Label::kDeferred), next(this);
|
|
Branch(IntPtrOrSmiGreaterThan(
|
|
capacity,
|
|
IntPtrOrSmiConstant(static_cast<int>(kMaxLength), mode), mode),
|
|
&if_out_of_memory, &next);
|
|
|
|
BIND(&if_out_of_memory);
|
|
CallRuntime(Runtime::kFatalProcessOutOfMemoryInvalidArrayLength,
|
|
NoContextConstant());
|
|
Unreachable();
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
TNode<IntPtrT> total_size = GetFixedArrayAllocationSize(capacity, kind, mode);
|
|
|
|
if (IsDoubleElementsKind(kind)) flags |= kDoubleAlignment;
|
|
// Allocate both array and elements object, and initialize the JSArray.
|
|
Node* array = Allocate(total_size, flags);
|
|
if (fixed_array_map != nullptr) {
|
|
// Conservatively only skip the write barrier if there are no allocation
|
|
// flags, this ensures that the object hasn't ended up in LOS. Note that the
|
|
// fixed array map is currently always immortal and technically wouldn't
|
|
// need the write barrier even in LOS, but it's better to not take chances
|
|
// in case this invariant changes later, since it's difficult to enforce
|
|
// locally here.
|
|
if (flags == CodeStubAssembler::kNone) {
|
|
StoreMapNoWriteBarrier(array, fixed_array_map);
|
|
} else {
|
|
StoreMap(array, fixed_array_map);
|
|
}
|
|
} else {
|
|
RootIndex map_index = IsDoubleElementsKind(kind)
|
|
? RootIndex::kFixedDoubleArrayMap
|
|
: RootIndex::kFixedArrayMap;
|
|
DCHECK(RootsTable::IsImmortalImmovable(map_index));
|
|
StoreMapNoWriteBarrier(array, map_index);
|
|
}
|
|
StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset,
|
|
ParameterToTagged(capacity, mode));
|
|
return UncheckedCast<FixedArray>(array);
|
|
}
|
|
|
|
TNode<FixedArray> CodeStubAssembler::ExtractToFixedArray(
|
|
Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
|
|
ElementsKind from_kind, AllocationFlags allocation_flags,
|
|
ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode,
|
|
HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted,
|
|
Node* source_elements_kind) {
|
|
DCHECK_NE(first, nullptr);
|
|
DCHECK_NE(count, nullptr);
|
|
DCHECK_NE(capacity, nullptr);
|
|
DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays);
|
|
CSA_ASSERT(this,
|
|
WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity));
|
|
CSA_ASSERT(this, WordEqual(source_map, LoadMap(source)));
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
VARIABLE(var_target_map, MachineRepresentation::kTagged, source_map);
|
|
|
|
Label done(this, {&var_result}), is_cow(this),
|
|
new_space_check(this, {&var_target_map});
|
|
|
|
// If source_map is either FixedDoubleArrayMap, or FixedCOWArrayMap but
|
|
// we can't just use COW, use FixedArrayMap as the target map. Otherwise, use
|
|
// source_map as the target map.
|
|
if (IsDoubleElementsKind(from_kind)) {
|
|
CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map));
|
|
var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap));
|
|
Goto(&new_space_check);
|
|
} else {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsFixedDoubleArrayMap(source_map)));
|
|
Branch(WordEqual(var_target_map.value(),
|
|
LoadRoot(RootIndex::kFixedCOWArrayMap)),
|
|
&is_cow, &new_space_check);
|
|
|
|
BIND(&is_cow);
|
|
{
|
|
// |source| is a COW array, so we don't actually need to allocate a new
|
|
// array unless:
|
|
// 1) |extract_flags| forces us to, or
|
|
// 2) we're asked to extract only part of the |source| (|first| != 0).
|
|
if (extract_flags & ExtractFixedArrayFlag::kDontCopyCOW) {
|
|
Branch(WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), first),
|
|
&new_space_check, [&] {
|
|
var_result.Bind(source);
|
|
Goto(&done);
|
|
});
|
|
} else {
|
|
var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap));
|
|
Goto(&new_space_check);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&new_space_check);
|
|
{
|
|
bool handle_old_space = !FLAG_young_generation_large_objects;
|
|
if (handle_old_space) {
|
|
if (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) {
|
|
handle_old_space = false;
|
|
CSA_ASSERT(this, Word32BinaryNot(FixedArraySizeDoesntFitInNewSpace(
|
|
count, FixedArray::kHeaderSize, parameter_mode)));
|
|
} else {
|
|
int constant_count;
|
|
handle_old_space =
|
|
!TryGetIntPtrOrSmiConstantValue(count, &constant_count,
|
|
parameter_mode) ||
|
|
(constant_count >
|
|
FixedArray::GetMaxLengthForNewSpaceAllocation(PACKED_ELEMENTS));
|
|
}
|
|
}
|
|
|
|
Label old_space(this, Label::kDeferred);
|
|
if (handle_old_space) {
|
|
GotoIfFixedArraySizeDoesntFitInNewSpace(
|
|
capacity, &old_space, FixedArray::kHeaderSize, parameter_mode);
|
|
}
|
|
|
|
Comment("Copy FixedArray in young generation");
|
|
// We use PACKED_ELEMENTS to tell AllocateFixedArray and
|
|
// CopyFixedArrayElements that we want a FixedArray.
|
|
const ElementsKind to_kind = PACKED_ELEMENTS;
|
|
TNode<FixedArrayBase> to_elements =
|
|
AllocateFixedArray(to_kind, capacity, parameter_mode, allocation_flags,
|
|
var_target_map.value());
|
|
var_result.Bind(to_elements);
|
|
|
|
#ifdef DEBUG
|
|
TNode<IntPtrT> object_word = BitcastTaggedToWord(to_elements);
|
|
TNode<IntPtrT> object_page = PageFromAddress(object_word);
|
|
TNode<IntPtrT> page_flags =
|
|
UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page,
|
|
IntPtrConstant(Page::kFlagsOffset)));
|
|
CSA_ASSERT(
|
|
this,
|
|
WordNotEqual(
|
|
WordAnd(page_flags,
|
|
IntPtrConstant(MemoryChunk::kIsInYoungGenerationMask)),
|
|
IntPtrConstant(0)));
|
|
#endif
|
|
|
|
if (convert_holes == HoleConversionMode::kDontConvert &&
|
|
!IsDoubleElementsKind(from_kind)) {
|
|
// We can use CopyElements (memcpy) because we don't need to replace or
|
|
// convert any values. Since {to_elements} is in new-space, CopyElements
|
|
// will efficiently use memcpy.
|
|
FillFixedArrayWithValue(to_kind, to_elements, count, capacity,
|
|
RootIndex::kTheHoleValue, parameter_mode);
|
|
CopyElements(to_kind, to_elements, IntPtrConstant(0), CAST(source),
|
|
ParameterToIntPtr(first, parameter_mode),
|
|
ParameterToIntPtr(count, parameter_mode),
|
|
SKIP_WRITE_BARRIER);
|
|
} else {
|
|
CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first,
|
|
count, capacity, SKIP_WRITE_BARRIER,
|
|
parameter_mode, convert_holes,
|
|
var_holes_converted);
|
|
}
|
|
Goto(&done);
|
|
|
|
if (handle_old_space) {
|
|
BIND(&old_space);
|
|
{
|
|
Comment("Copy FixedArray in old generation");
|
|
Label copy_one_by_one(this);
|
|
|
|
// Try to use memcpy if we don't need to convert holes to undefined.
|
|
if (convert_holes == HoleConversionMode::kDontConvert &&
|
|
source_elements_kind != nullptr) {
|
|
// Only try memcpy if we're not copying object pointers.
|
|
GotoIfNot(IsFastSmiElementsKind(source_elements_kind),
|
|
©_one_by_one);
|
|
|
|
const ElementsKind to_smi_kind = PACKED_SMI_ELEMENTS;
|
|
to_elements =
|
|
AllocateFixedArray(to_smi_kind, capacity, parameter_mode,
|
|
allocation_flags, var_target_map.value());
|
|
var_result.Bind(to_elements);
|
|
|
|
FillFixedArrayWithValue(to_smi_kind, to_elements, count, capacity,
|
|
RootIndex::kTheHoleValue, parameter_mode);
|
|
// CopyElements will try to use memcpy if it's not conflicting with
|
|
// GC. Otherwise it will copy elements by elements, but skip write
|
|
// barriers (since we're copying smis to smis).
|
|
CopyElements(to_smi_kind, to_elements, IntPtrConstant(0),
|
|
CAST(source), ParameterToIntPtr(first, parameter_mode),
|
|
ParameterToIntPtr(count, parameter_mode),
|
|
SKIP_WRITE_BARRIER);
|
|
Goto(&done);
|
|
} else {
|
|
Goto(©_one_by_one);
|
|
}
|
|
|
|
BIND(©_one_by_one);
|
|
{
|
|
to_elements =
|
|
AllocateFixedArray(to_kind, capacity, parameter_mode,
|
|
allocation_flags, var_target_map.value());
|
|
var_result.Bind(to_elements);
|
|
CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first,
|
|
count, capacity, UPDATE_WRITE_BARRIER,
|
|
parameter_mode, convert_holes,
|
|
var_holes_converted);
|
|
Goto(&done);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&done);
|
|
return UncheckedCast<FixedArray>(var_result.value());
|
|
}
|
|
|
|
TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedDoubleArrayFillingHoles(
|
|
Node* from_array, Node* first, Node* count, Node* capacity,
|
|
Node* fixed_array_map, TVariable<BoolT>* var_holes_converted,
|
|
AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags,
|
|
ParameterMode mode) {
|
|
DCHECK_NE(first, nullptr);
|
|
DCHECK_NE(count, nullptr);
|
|
DCHECK_NE(capacity, nullptr);
|
|
DCHECK_NE(var_holes_converted, nullptr);
|
|
CSA_ASSERT(this, IsFixedDoubleArrayMap(fixed_array_map));
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
const ElementsKind kind = PACKED_DOUBLE_ELEMENTS;
|
|
Node* to_elements = AllocateFixedArray(kind, capacity, mode, allocation_flags,
|
|
fixed_array_map);
|
|
var_result.Bind(to_elements);
|
|
// We first try to copy the FixedDoubleArray to a new FixedDoubleArray.
|
|
// |var_holes_converted| is set to False preliminarily.
|
|
*var_holes_converted = Int32FalseConstant();
|
|
|
|
// The construction of the loop and the offsets for double elements is
|
|
// extracted from CopyFixedArrayElements.
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(count, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, kind));
|
|
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
|
|
|
|
Comment("[ ExtractFixedDoubleArrayFillingHoles");
|
|
|
|
// This copy can trigger GC, so we pre-initialize the array with holes.
|
|
FillFixedArrayWithValue(kind, to_elements, IntPtrOrSmiConstant(0, mode),
|
|
capacity, RootIndex::kTheHoleValue, mode);
|
|
|
|
const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
|
|
Node* first_from_element_offset =
|
|
ElementOffsetFromIndex(first, kind, mode, 0);
|
|
Node* limit_offset = IntPtrAdd(first_from_element_offset,
|
|
IntPtrConstant(first_element_offset));
|
|
VARIABLE(var_from_offset, MachineType::PointerRepresentation(),
|
|
ElementOffsetFromIndex(IntPtrOrSmiAdd(first, count, mode), kind,
|
|
mode, first_element_offset));
|
|
|
|
Label decrement(this, {&var_from_offset}), done(this);
|
|
Node* to_array_adjusted =
|
|
IntPtrSub(BitcastTaggedToWord(to_elements), first_from_element_offset);
|
|
|
|
Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
|
|
|
|
BIND(&decrement);
|
|
{
|
|
Node* from_offset =
|
|
IntPtrSub(var_from_offset.value(), IntPtrConstant(kDoubleSize));
|
|
var_from_offset.Bind(from_offset);
|
|
|
|
Node* to_offset = from_offset;
|
|
|
|
Label if_hole(this);
|
|
|
|
Node* value = LoadElementAndPrepareForStore(
|
|
from_array, var_from_offset.value(), kind, kind, &if_hole);
|
|
|
|
StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted,
|
|
to_offset, value);
|
|
|
|
Node* compare = WordNotEqual(from_offset, limit_offset);
|
|
Branch(compare, &decrement, &done);
|
|
|
|
BIND(&if_hole);
|
|
// We are unlucky: there are holes! We need to restart the copy, this time
|
|
// we will copy the FixedDoubleArray to a new FixedArray with undefined
|
|
// replacing holes. We signal this to the caller through
|
|
// |var_holes_converted|.
|
|
*var_holes_converted = Int32TrueConstant();
|
|
to_elements =
|
|
ExtractToFixedArray(from_array, first, count, capacity, fixed_array_map,
|
|
kind, allocation_flags, extract_flags, mode,
|
|
HoleConversionMode::kConvertToUndefined);
|
|
var_result.Bind(to_elements);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
Comment("] ExtractFixedDoubleArrayFillingHoles");
|
|
return UncheckedCast<FixedArrayBase>(var_result.value());
|
|
}
|
|
|
|
TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedArray(
|
|
Node* source, Node* first, Node* count, Node* capacity,
|
|
ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode,
|
|
TVariable<BoolT>* var_holes_converted, Node* source_runtime_kind) {
|
|
DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays ||
|
|
extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays);
|
|
// If we want to replace holes, ExtractFixedArrayFlag::kDontCopyCOW should not
|
|
// be used, because that disables the iteration which detects holes.
|
|
DCHECK_IMPLIES(var_holes_converted != nullptr,
|
|
!(extract_flags & ExtractFixedArrayFlag::kDontCopyCOW));
|
|
HoleConversionMode convert_holes =
|
|
var_holes_converted != nullptr ? HoleConversionMode::kConvertToUndefined
|
|
: HoleConversionMode::kDontConvert;
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
const AllocationFlags allocation_flags =
|
|
(extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly)
|
|
? CodeStubAssembler::kNone
|
|
: CodeStubAssembler::kAllowLargeObjectAllocation;
|
|
if (first == nullptr) {
|
|
first = IntPtrOrSmiConstant(0, parameter_mode);
|
|
}
|
|
if (count == nullptr) {
|
|
count = IntPtrOrSmiSub(
|
|
TaggedToParameter(LoadFixedArrayBaseLength(source), parameter_mode),
|
|
first, parameter_mode);
|
|
|
|
CSA_ASSERT(
|
|
this, IntPtrOrSmiLessThanOrEqual(IntPtrOrSmiConstant(0, parameter_mode),
|
|
count, parameter_mode));
|
|
}
|
|
if (capacity == nullptr) {
|
|
capacity = count;
|
|
} else {
|
|
CSA_ASSERT(this, Word32BinaryNot(IntPtrOrSmiGreaterThan(
|
|
IntPtrOrSmiAdd(first, count, parameter_mode), capacity,
|
|
parameter_mode)));
|
|
}
|
|
|
|
Label if_fixed_double_array(this), empty(this), done(this, {&var_result});
|
|
Node* source_map = LoadMap(source);
|
|
GotoIf(WordEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity), &empty);
|
|
|
|
if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) {
|
|
if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) {
|
|
GotoIf(IsFixedDoubleArrayMap(source_map), &if_fixed_double_array);
|
|
} else {
|
|
CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map));
|
|
}
|
|
}
|
|
|
|
if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) {
|
|
// Here we can only get |source| as FixedArray, never FixedDoubleArray.
|
|
// PACKED_ELEMENTS is used to signify that the source is a FixedArray.
|
|
Node* to_elements = ExtractToFixedArray(
|
|
source, first, count, capacity, source_map, PACKED_ELEMENTS,
|
|
allocation_flags, extract_flags, parameter_mode, convert_holes,
|
|
var_holes_converted, source_runtime_kind);
|
|
var_result.Bind(to_elements);
|
|
Goto(&done);
|
|
}
|
|
|
|
if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) {
|
|
BIND(&if_fixed_double_array);
|
|
Comment("Copy FixedDoubleArray");
|
|
|
|
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
|
|
Node* to_elements = ExtractFixedDoubleArrayFillingHoles(
|
|
source, first, count, capacity, source_map, var_holes_converted,
|
|
allocation_flags, extract_flags, parameter_mode);
|
|
var_result.Bind(to_elements);
|
|
} else {
|
|
// We use PACKED_DOUBLE_ELEMENTS to signify that both the source and
|
|
// the target are FixedDoubleArray. That it is PACKED or HOLEY does not
|
|
// matter.
|
|
ElementsKind kind = PACKED_DOUBLE_ELEMENTS;
|
|
TNode<FixedArrayBase> to_elements = AllocateFixedArray(
|
|
kind, capacity, parameter_mode, allocation_flags, source_map);
|
|
FillFixedArrayWithValue(kind, to_elements, count, capacity,
|
|
RootIndex::kTheHoleValue, parameter_mode);
|
|
CopyElements(kind, to_elements, IntPtrConstant(0), CAST(source),
|
|
ParameterToIntPtr(first, parameter_mode),
|
|
ParameterToIntPtr(count, parameter_mode));
|
|
var_result.Bind(to_elements);
|
|
}
|
|
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&empty);
|
|
{
|
|
Comment("Copy empty array");
|
|
|
|
var_result.Bind(EmptyFixedArrayConstant());
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return UncheckedCast<FixedArray>(var_result.value());
|
|
}
|
|
|
|
void CodeStubAssembler::InitializePropertyArrayLength(Node* property_array,
|
|
Node* length,
|
|
ParameterMode mode) {
|
|
CSA_SLOW_ASSERT(this, IsPropertyArray(property_array));
|
|
CSA_ASSERT(
|
|
this, IntPtrOrSmiGreaterThan(length, IntPtrOrSmiConstant(0, mode), mode));
|
|
CSA_ASSERT(
|
|
this,
|
|
IntPtrOrSmiLessThanOrEqual(
|
|
length, IntPtrOrSmiConstant(PropertyArray::LengthField::kMax, mode),
|
|
mode));
|
|
StoreObjectFieldNoWriteBarrier(
|
|
property_array, PropertyArray::kLengthAndHashOffset,
|
|
ParameterToTagged(length, mode), MachineRepresentation::kTaggedSigned);
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocatePropertyArray(Node* capacity_node,
|
|
ParameterMode mode,
|
|
AllocationFlags flags) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity_node, mode));
|
|
CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity_node,
|
|
IntPtrOrSmiConstant(0, mode), mode));
|
|
TNode<IntPtrT> total_size =
|
|
GetPropertyArrayAllocationSize(capacity_node, mode);
|
|
|
|
TNode<Object> array = Allocate(total_size, flags);
|
|
RootIndex map_index = RootIndex::kPropertyArrayMap;
|
|
DCHECK(RootsTable::IsImmortalImmovable(map_index));
|
|
StoreMapNoWriteBarrier(array, map_index);
|
|
InitializePropertyArrayLength(array, capacity_node, mode);
|
|
return array;
|
|
}
|
|
|
|
void CodeStubAssembler::FillPropertyArrayWithUndefined(Node* array,
|
|
Node* from_node,
|
|
Node* to_node,
|
|
ParameterMode mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode));
|
|
CSA_SLOW_ASSERT(this, IsPropertyArray(array));
|
|
ElementsKind kind = PACKED_ELEMENTS;
|
|
Node* value = UndefinedConstant();
|
|
BuildFastFixedArrayForEach(array, kind, from_node, to_node,
|
|
[this, value](Node* array, Node* offset) {
|
|
StoreNoWriteBarrier(
|
|
MachineRepresentation::kTagged, array,
|
|
offset, value);
|
|
},
|
|
mode);
|
|
}
|
|
|
|
void CodeStubAssembler::FillFixedArrayWithValue(ElementsKind kind, Node* array,
|
|
Node* from_node, Node* to_node,
|
|
RootIndex value_root_index,
|
|
ParameterMode mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKind(array, kind));
|
|
DCHECK(value_root_index == RootIndex::kTheHoleValue ||
|
|
value_root_index == RootIndex::kUndefinedValue);
|
|
|
|
// Determine the value to initialize the {array} based
|
|
// on the {value_root_index} and the elements {kind}.
|
|
Node* value = LoadRoot(value_root_index);
|
|
if (IsDoubleElementsKind(kind)) {
|
|
value = LoadHeapNumberValue(value);
|
|
}
|
|
|
|
BuildFastFixedArrayForEach(
|
|
array, kind, from_node, to_node,
|
|
[this, value, kind](Node* array, Node* offset) {
|
|
if (IsDoubleElementsKind(kind)) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kFloat64, array, offset,
|
|
value);
|
|
} else {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset,
|
|
value);
|
|
}
|
|
},
|
|
mode);
|
|
}
|
|
|
|
void CodeStubAssembler::StoreFixedDoubleArrayHole(
|
|
TNode<FixedDoubleArray> array, Node* index, ParameterMode parameter_mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index, parameter_mode));
|
|
Node* offset =
|
|
ElementOffsetFromIndex(index, PACKED_DOUBLE_ELEMENTS, parameter_mode,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
CSA_ASSERT(this, IsOffsetInBounds(
|
|
offset, LoadAndUntagFixedArrayBaseLength(array),
|
|
FixedDoubleArray::kHeaderSize, PACKED_DOUBLE_ELEMENTS));
|
|
Node* double_hole =
|
|
Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64))
|
|
: ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32));
|
|
// TODO(danno): When we have a Float32/Float64 wrapper class that
|
|
// preserves double bits during manipulation, remove this code/change
|
|
// this to an indexed Float64 store.
|
|
if (Is64()) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset,
|
|
double_hole);
|
|
} else {
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset,
|
|
double_hole);
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, array,
|
|
IntPtrAdd(offset, IntPtrConstant(kInt32Size)),
|
|
double_hole);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::FillFixedArrayWithSmiZero(TNode<FixedArray> array,
|
|
TNode<IntPtrT> length) {
|
|
CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array)));
|
|
|
|
TNode<IntPtrT> byte_length = TimesTaggedSize(length);
|
|
CSA_ASSERT(this, UintPtrLessThan(length, byte_length));
|
|
|
|
static const int32_t fa_base_data_offset =
|
|
FixedArray::kHeaderSize - kHeapObjectTag;
|
|
TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array),
|
|
IntPtrConstant(fa_base_data_offset));
|
|
|
|
// Call out to memset to perform initialization.
|
|
TNode<ExternalReference> memset =
|
|
ExternalConstant(ExternalReference::libc_memset_function());
|
|
STATIC_ASSERT(kSizetSize == kIntptrSize);
|
|
CallCFunction(memset, MachineType::Pointer(),
|
|
std::make_pair(MachineType::Pointer(), backing_store),
|
|
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0)),
|
|
std::make_pair(MachineType::UintPtr(), byte_length));
|
|
}
|
|
|
|
void CodeStubAssembler::FillFixedDoubleArrayWithZero(
|
|
TNode<FixedDoubleArray> array, TNode<IntPtrT> length) {
|
|
CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array)));
|
|
|
|
TNode<IntPtrT> byte_length = TimesDoubleSize(length);
|
|
CSA_ASSERT(this, UintPtrLessThan(length, byte_length));
|
|
|
|
static const int32_t fa_base_data_offset =
|
|
FixedDoubleArray::kHeaderSize - kHeapObjectTag;
|
|
TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array),
|
|
IntPtrConstant(fa_base_data_offset));
|
|
|
|
// Call out to memset to perform initialization.
|
|
TNode<ExternalReference> memset =
|
|
ExternalConstant(ExternalReference::libc_memset_function());
|
|
STATIC_ASSERT(kSizetSize == kIntptrSize);
|
|
CallCFunction(memset, MachineType::Pointer(),
|
|
std::make_pair(MachineType::Pointer(), backing_store),
|
|
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0)),
|
|
std::make_pair(MachineType::UintPtr(), byte_length));
|
|
}
|
|
|
|
void CodeStubAssembler::JumpIfPointersFromHereAreInteresting(
|
|
TNode<Object> object, Label* interesting) {
|
|
Label finished(this);
|
|
TNode<IntPtrT> object_word = BitcastTaggedToWord(object);
|
|
TNode<IntPtrT> object_page = PageFromAddress(object_word);
|
|
TNode<IntPtrT> page_flags = UncheckedCast<IntPtrT>(Load(
|
|
MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset)));
|
|
Branch(
|
|
WordEqual(WordAnd(page_flags,
|
|
IntPtrConstant(
|
|
MemoryChunk::kPointersFromHereAreInterestingMask)),
|
|
IntPtrConstant(0)),
|
|
&finished, interesting);
|
|
BIND(&finished);
|
|
}
|
|
|
|
void CodeStubAssembler::MoveElements(ElementsKind kind,
|
|
TNode<FixedArrayBase> elements,
|
|
TNode<IntPtrT> dst_index,
|
|
TNode<IntPtrT> src_index,
|
|
TNode<IntPtrT> length) {
|
|
Label finished(this);
|
|
Label needs_barrier(this);
|
|
const bool needs_barrier_check = !IsDoubleElementsKind(kind);
|
|
|
|
DCHECK(IsFastElementsKind(kind));
|
|
CSA_ASSERT(this, IsFixedArrayWithKind(elements, kind));
|
|
CSA_ASSERT(this,
|
|
IntPtrLessThanOrEqual(IntPtrAdd(dst_index, length),
|
|
LoadAndUntagFixedArrayBaseLength(elements)));
|
|
CSA_ASSERT(this,
|
|
IntPtrLessThanOrEqual(IntPtrAdd(src_index, length),
|
|
LoadAndUntagFixedArrayBaseLength(elements)));
|
|
|
|
// The write barrier can be ignored if {dst_elements} is in new space, or if
|
|
// the elements pointer is FixedDoubleArray.
|
|
if (needs_barrier_check) {
|
|
JumpIfPointersFromHereAreInteresting(elements, &needs_barrier);
|
|
}
|
|
|
|
const TNode<IntPtrT> source_byte_length =
|
|
IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind)));
|
|
static const int32_t fa_base_data_offset =
|
|
FixedArrayBase::kHeaderSize - kHeapObjectTag;
|
|
TNode<IntPtrT> elements_intptr = BitcastTaggedToWord(elements);
|
|
TNode<IntPtrT> target_data_ptr =
|
|
IntPtrAdd(elements_intptr,
|
|
ElementOffsetFromIndex(dst_index, kind, INTPTR_PARAMETERS,
|
|
fa_base_data_offset));
|
|
TNode<IntPtrT> source_data_ptr =
|
|
IntPtrAdd(elements_intptr,
|
|
ElementOffsetFromIndex(src_index, kind, INTPTR_PARAMETERS,
|
|
fa_base_data_offset));
|
|
TNode<ExternalReference> memmove =
|
|
ExternalConstant(ExternalReference::libc_memmove_function());
|
|
CallCFunction(memmove, MachineType::Pointer(),
|
|
std::make_pair(MachineType::Pointer(), target_data_ptr),
|
|
std::make_pair(MachineType::Pointer(), source_data_ptr),
|
|
std::make_pair(MachineType::UintPtr(), source_byte_length));
|
|
|
|
if (needs_barrier_check) {
|
|
Goto(&finished);
|
|
|
|
BIND(&needs_barrier);
|
|
{
|
|
const TNode<IntPtrT> begin = src_index;
|
|
const TNode<IntPtrT> end = IntPtrAdd(begin, length);
|
|
|
|
// If dst_index is less than src_index, then walk forward.
|
|
const TNode<IntPtrT> delta =
|
|
IntPtrMul(IntPtrSub(dst_index, begin),
|
|
IntPtrConstant(ElementsKindToByteSize(kind)));
|
|
auto loop_body = [&](Node* array, Node* offset) {
|
|
Node* const element = Load(MachineType::AnyTagged(), array, offset);
|
|
Node* const delta_offset = IntPtrAdd(offset, delta);
|
|
Store(array, delta_offset, element);
|
|
};
|
|
|
|
Label iterate_forward(this);
|
|
Label iterate_backward(this);
|
|
Branch(IntPtrLessThan(delta, IntPtrConstant(0)), &iterate_forward,
|
|
&iterate_backward);
|
|
BIND(&iterate_forward);
|
|
{
|
|
// Make a loop for the stores.
|
|
BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body,
|
|
INTPTR_PARAMETERS,
|
|
ForEachDirection::kForward);
|
|
Goto(&finished);
|
|
}
|
|
|
|
BIND(&iterate_backward);
|
|
{
|
|
BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body,
|
|
INTPTR_PARAMETERS,
|
|
ForEachDirection::kReverse);
|
|
Goto(&finished);
|
|
}
|
|
}
|
|
BIND(&finished);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::CopyElements(ElementsKind kind,
|
|
TNode<FixedArrayBase> dst_elements,
|
|
TNode<IntPtrT> dst_index,
|
|
TNode<FixedArrayBase> src_elements,
|
|
TNode<IntPtrT> src_index,
|
|
TNode<IntPtrT> length,
|
|
WriteBarrierMode write_barrier) {
|
|
Label finished(this);
|
|
Label needs_barrier(this);
|
|
const bool needs_barrier_check = !IsDoubleElementsKind(kind);
|
|
|
|
DCHECK(IsFastElementsKind(kind));
|
|
CSA_ASSERT(this, IsFixedArrayWithKind(dst_elements, kind));
|
|
CSA_ASSERT(this, IsFixedArrayWithKind(src_elements, kind));
|
|
CSA_ASSERT(this, IntPtrLessThanOrEqual(
|
|
IntPtrAdd(dst_index, length),
|
|
LoadAndUntagFixedArrayBaseLength(dst_elements)));
|
|
CSA_ASSERT(this, IntPtrLessThanOrEqual(
|
|
IntPtrAdd(src_index, length),
|
|
LoadAndUntagFixedArrayBaseLength(src_elements)));
|
|
CSA_ASSERT(this, Word32Or(WordNotEqual(dst_elements, src_elements),
|
|
WordEqual(length, IntPtrConstant(0))));
|
|
|
|
// The write barrier can be ignored if {dst_elements} is in new space, or if
|
|
// the elements pointer is FixedDoubleArray.
|
|
if (needs_barrier_check) {
|
|
JumpIfPointersFromHereAreInteresting(dst_elements, &needs_barrier);
|
|
}
|
|
|
|
TNode<IntPtrT> source_byte_length =
|
|
IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind)));
|
|
static const int32_t fa_base_data_offset =
|
|
FixedArrayBase::kHeaderSize - kHeapObjectTag;
|
|
TNode<IntPtrT> src_offset_start = ElementOffsetFromIndex(
|
|
src_index, kind, INTPTR_PARAMETERS, fa_base_data_offset);
|
|
TNode<IntPtrT> dst_offset_start = ElementOffsetFromIndex(
|
|
dst_index, kind, INTPTR_PARAMETERS, fa_base_data_offset);
|
|
TNode<IntPtrT> src_elements_intptr = BitcastTaggedToWord(src_elements);
|
|
TNode<IntPtrT> source_data_ptr =
|
|
IntPtrAdd(src_elements_intptr, src_offset_start);
|
|
TNode<IntPtrT> dst_elements_intptr = BitcastTaggedToWord(dst_elements);
|
|
TNode<IntPtrT> dst_data_ptr =
|
|
IntPtrAdd(dst_elements_intptr, dst_offset_start);
|
|
TNode<ExternalReference> memcpy =
|
|
ExternalConstant(ExternalReference::libc_memcpy_function());
|
|
CallCFunction(memcpy, MachineType::Pointer(),
|
|
std::make_pair(MachineType::Pointer(), dst_data_ptr),
|
|
std::make_pair(MachineType::Pointer(), source_data_ptr),
|
|
std::make_pair(MachineType::UintPtr(), source_byte_length));
|
|
|
|
if (needs_barrier_check) {
|
|
Goto(&finished);
|
|
|
|
BIND(&needs_barrier);
|
|
{
|
|
const TNode<IntPtrT> begin = src_index;
|
|
const TNode<IntPtrT> end = IntPtrAdd(begin, length);
|
|
const TNode<IntPtrT> delta =
|
|
IntPtrMul(IntPtrSub(dst_index, src_index),
|
|
IntPtrConstant(ElementsKindToByteSize(kind)));
|
|
BuildFastFixedArrayForEach(
|
|
src_elements, kind, begin, end,
|
|
[&](Node* array, Node* offset) {
|
|
Node* const element = Load(MachineType::AnyTagged(), array, offset);
|
|
Node* const delta_offset = IntPtrAdd(offset, delta);
|
|
if (write_barrier == SKIP_WRITE_BARRIER) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, dst_elements,
|
|
delta_offset, element);
|
|
} else {
|
|
Store(dst_elements, delta_offset, element);
|
|
}
|
|
},
|
|
INTPTR_PARAMETERS, ForEachDirection::kForward);
|
|
Goto(&finished);
|
|
}
|
|
BIND(&finished);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::CopyFixedArrayElements(
|
|
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
|
|
Node* to_array, Node* first_element, Node* element_count, Node* capacity,
|
|
WriteBarrierMode barrier_mode, ParameterMode mode,
|
|
HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted) {
|
|
DCHECK_IMPLIES(var_holes_converted != nullptr,
|
|
convert_holes == HoleConversionMode::kConvertToUndefined);
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(element_count, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, from_kind));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(to_array, to_kind));
|
|
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
|
|
const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
|
|
Comment("[ CopyFixedArrayElements");
|
|
|
|
// Typed array elements are not supported.
|
|
DCHECK(!IsFixedTypedArrayElementsKind(from_kind));
|
|
DCHECK(!IsFixedTypedArrayElementsKind(to_kind));
|
|
|
|
Label done(this);
|
|
bool from_double_elements = IsDoubleElementsKind(from_kind);
|
|
bool to_double_elements = IsDoubleElementsKind(to_kind);
|
|
bool doubles_to_objects_conversion =
|
|
IsDoubleElementsKind(from_kind) && IsObjectElementsKind(to_kind);
|
|
bool needs_write_barrier =
|
|
doubles_to_objects_conversion ||
|
|
(barrier_mode == UPDATE_WRITE_BARRIER && IsObjectElementsKind(to_kind));
|
|
bool element_offset_matches =
|
|
!needs_write_barrier &&
|
|
(kTaggedSize == kDoubleSize ||
|
|
IsDoubleElementsKind(from_kind) == IsDoubleElementsKind(to_kind));
|
|
Node* double_hole =
|
|
Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64))
|
|
: ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32));
|
|
|
|
// If copying might trigger a GC, we pre-initialize the FixedArray such that
|
|
// it's always in a consistent state.
|
|
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
|
|
DCHECK(IsObjectElementsKind(to_kind));
|
|
// Use undefined for the part that we copy and holes for the rest.
|
|
// Later if we run into a hole in the source we can just skip the writing
|
|
// to the target and are still guaranteed that we get an undefined.
|
|
FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
|
|
element_count, RootIndex::kUndefinedValue, mode);
|
|
FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
|
|
RootIndex::kTheHoleValue, mode);
|
|
} else if (doubles_to_objects_conversion) {
|
|
// Pre-initialized the target with holes so later if we run into a hole in
|
|
// the source we can just skip the writing to the target.
|
|
FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
|
|
capacity, RootIndex::kTheHoleValue, mode);
|
|
} else if (element_count != capacity) {
|
|
FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
|
|
RootIndex::kTheHoleValue, mode);
|
|
}
|
|
|
|
Node* first_from_element_offset =
|
|
ElementOffsetFromIndex(first_element, from_kind, mode, 0);
|
|
Node* limit_offset = IntPtrAdd(first_from_element_offset,
|
|
IntPtrConstant(first_element_offset));
|
|
VARIABLE(
|
|
var_from_offset, MachineType::PointerRepresentation(),
|
|
ElementOffsetFromIndex(IntPtrOrSmiAdd(first_element, element_count, mode),
|
|
from_kind, mode, first_element_offset));
|
|
// This second variable is used only when the element sizes of source and
|
|
// destination arrays do not match.
|
|
VARIABLE(var_to_offset, MachineType::PointerRepresentation());
|
|
if (element_offset_matches) {
|
|
var_to_offset.Bind(var_from_offset.value());
|
|
} else {
|
|
var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode,
|
|
first_element_offset));
|
|
}
|
|
|
|
Variable* vars[] = {&var_from_offset, &var_to_offset, var_holes_converted};
|
|
int num_vars =
|
|
var_holes_converted != nullptr ? arraysize(vars) : arraysize(vars) - 1;
|
|
Label decrement(this, num_vars, vars);
|
|
|
|
Node* to_array_adjusted =
|
|
element_offset_matches
|
|
? IntPtrSub(BitcastTaggedToWord(to_array), first_from_element_offset)
|
|
: to_array;
|
|
|
|
Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
|
|
|
|
BIND(&decrement);
|
|
{
|
|
Node* from_offset = IntPtrSub(
|
|
var_from_offset.value(),
|
|
IntPtrConstant(from_double_elements ? kDoubleSize : kTaggedSize));
|
|
var_from_offset.Bind(from_offset);
|
|
|
|
Node* to_offset;
|
|
if (element_offset_matches) {
|
|
to_offset = from_offset;
|
|
} else {
|
|
to_offset = IntPtrSub(
|
|
var_to_offset.value(),
|
|
IntPtrConstant(to_double_elements ? kDoubleSize : kTaggedSize));
|
|
var_to_offset.Bind(to_offset);
|
|
}
|
|
|
|
Label next_iter(this), store_double_hole(this), signal_hole(this);
|
|
Label* if_hole;
|
|
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
|
|
// The target elements array is already preinitialized with undefined
|
|
// so we only need to signal that a hole was found and continue the loop.
|
|
if_hole = &signal_hole;
|
|
} else if (doubles_to_objects_conversion) {
|
|
// The target elements array is already preinitialized with holes, so we
|
|
// can just proceed with the next iteration.
|
|
if_hole = &next_iter;
|
|
} else if (IsDoubleElementsKind(to_kind)) {
|
|
if_hole = &store_double_hole;
|
|
} else {
|
|
// In all the other cases don't check for holes and copy the data as is.
|
|
if_hole = nullptr;
|
|
}
|
|
|
|
Node* value = LoadElementAndPrepareForStore(
|
|
from_array, var_from_offset.value(), from_kind, to_kind, if_hole);
|
|
|
|
if (needs_write_barrier) {
|
|
CHECK_EQ(to_array, to_array_adjusted);
|
|
Store(to_array_adjusted, to_offset, value);
|
|
} else if (to_double_elements) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted,
|
|
to_offset, value);
|
|
} else {
|
|
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged,
|
|
to_array_adjusted, to_offset, value);
|
|
}
|
|
Goto(&next_iter);
|
|
|
|
if (if_hole == &store_double_hole) {
|
|
BIND(&store_double_hole);
|
|
// Don't use doubles to store the hole double, since manipulating the
|
|
// signaling NaN used for the hole in C++, e.g. with bit_cast, will
|
|
// change its value on ia32 (the x87 stack is used to return values
|
|
// and stores to the stack silently clear the signalling bit).
|
|
//
|
|
// TODO(danno): When we have a Float32/Float64 wrapper class that
|
|
// preserves double bits during manipulation, remove this code/change
|
|
// this to an indexed Float64 store.
|
|
if (Is64()) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array_adjusted,
|
|
to_offset, double_hole);
|
|
} else {
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted,
|
|
to_offset, double_hole);
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted,
|
|
IntPtrAdd(to_offset, IntPtrConstant(kInt32Size)),
|
|
double_hole);
|
|
}
|
|
Goto(&next_iter);
|
|
} else if (if_hole == &signal_hole) {
|
|
// This case happens only when IsObjectElementsKind(to_kind).
|
|
BIND(&signal_hole);
|
|
if (var_holes_converted != nullptr) {
|
|
*var_holes_converted = Int32TrueConstant();
|
|
}
|
|
Goto(&next_iter);
|
|
}
|
|
|
|
BIND(&next_iter);
|
|
Node* compare = WordNotEqual(from_offset, limit_offset);
|
|
Branch(compare, &decrement, &done);
|
|
}
|
|
|
|
BIND(&done);
|
|
Comment("] CopyFixedArrayElements");
|
|
}
|
|
|
|
TNode<FixedArray> CodeStubAssembler::HeapObjectToFixedArray(
|
|
TNode<HeapObject> base, Label* cast_fail) {
|
|
Label fixed_array(this);
|
|
TNode<Map> map = LoadMap(base);
|
|
GotoIf(WordEqual(map, LoadRoot(RootIndex::kFixedArrayMap)), &fixed_array);
|
|
GotoIf(WordNotEqual(map, LoadRoot(RootIndex::kFixedCOWArrayMap)), cast_fail);
|
|
Goto(&fixed_array);
|
|
BIND(&fixed_array);
|
|
return UncheckedCast<FixedArray>(base);
|
|
}
|
|
|
|
void CodeStubAssembler::CopyPropertyArrayValues(Node* from_array,
|
|
Node* to_array,
|
|
Node* property_count,
|
|
WriteBarrierMode barrier_mode,
|
|
ParameterMode mode,
|
|
DestroySource destroy_source) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(property_count, mode));
|
|
CSA_SLOW_ASSERT(this, Word32Or(IsPropertyArray(from_array),
|
|
IsEmptyFixedArray(from_array)));
|
|
CSA_SLOW_ASSERT(this, IsPropertyArray(to_array));
|
|
Comment("[ CopyPropertyArrayValues");
|
|
|
|
bool needs_write_barrier = barrier_mode == UPDATE_WRITE_BARRIER;
|
|
|
|
if (destroy_source == DestroySource::kNo) {
|
|
// PropertyArray may contain MutableHeapNumbers, which will be cloned on the
|
|
// heap, requiring a write barrier.
|
|
needs_write_barrier = true;
|
|
}
|
|
|
|
Node* start = IntPtrOrSmiConstant(0, mode);
|
|
ElementsKind kind = PACKED_ELEMENTS;
|
|
BuildFastFixedArrayForEach(
|
|
from_array, kind, start, property_count,
|
|
[this, to_array, needs_write_barrier, destroy_source](Node* array,
|
|
Node* offset) {
|
|
Node* value = Load(MachineType::AnyTagged(), array, offset);
|
|
|
|
if (destroy_source == DestroySource::kNo) {
|
|
value = CloneIfMutablePrimitive(CAST(value));
|
|
}
|
|
|
|
if (needs_write_barrier) {
|
|
Store(to_array, offset, value);
|
|
} else {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, offset,
|
|
value);
|
|
}
|
|
},
|
|
mode);
|
|
|
|
#ifdef DEBUG
|
|
// Zap {from_array} if the copying above has made it invalid.
|
|
if (destroy_source == DestroySource::kYes) {
|
|
Label did_zap(this);
|
|
GotoIf(IsEmptyFixedArray(from_array), &did_zap);
|
|
FillPropertyArrayWithUndefined(from_array, start, property_count, mode);
|
|
|
|
Goto(&did_zap);
|
|
BIND(&did_zap);
|
|
}
|
|
#endif
|
|
Comment("] CopyPropertyArrayValues");
|
|
}
|
|
|
|
void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string,
|
|
TNode<IntPtrT> from_index,
|
|
TNode<IntPtrT> to_index,
|
|
TNode<IntPtrT> character_count,
|
|
String::Encoding from_encoding,
|
|
String::Encoding to_encoding) {
|
|
// Cannot assert IsString(from_string) and IsString(to_string) here because
|
|
// CSA::SubString can pass in faked sequential strings when handling external
|
|
// subject strings.
|
|
bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING;
|
|
bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING;
|
|
DCHECK_IMPLIES(to_one_byte, from_one_byte);
|
|
Comment("CopyStringCharacters ",
|
|
from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", " -> ",
|
|
to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING");
|
|
|
|
ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
|
|
ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
|
|
STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
|
int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag;
|
|
Node* from_offset = ElementOffsetFromIndex(from_index, from_kind,
|
|
INTPTR_PARAMETERS, header_size);
|
|
Node* to_offset =
|
|
ElementOffsetFromIndex(to_index, to_kind, INTPTR_PARAMETERS, header_size);
|
|
Node* byte_count =
|
|
ElementOffsetFromIndex(character_count, from_kind, INTPTR_PARAMETERS);
|
|
Node* limit_offset = IntPtrAdd(from_offset, byte_count);
|
|
|
|
// Prepare the fast loop
|
|
MachineType type =
|
|
from_one_byte ? MachineType::Uint8() : MachineType::Uint16();
|
|
MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8
|
|
: MachineRepresentation::kWord16;
|
|
int from_increment = 1 << ElementsKindToShiftSize(from_kind);
|
|
int to_increment = 1 << ElementsKindToShiftSize(to_kind);
|
|
|
|
VARIABLE(current_to_offset, MachineType::PointerRepresentation(), to_offset);
|
|
VariableList vars({¤t_to_offset}, zone());
|
|
int to_index_constant = 0, from_index_constant = 0;
|
|
bool index_same = (from_encoding == to_encoding) &&
|
|
(from_index == to_index ||
|
|
(ToInt32Constant(from_index, from_index_constant) &&
|
|
ToInt32Constant(to_index, to_index_constant) &&
|
|
from_index_constant == to_index_constant));
|
|
BuildFastLoop(vars, from_offset, limit_offset,
|
|
[this, from_string, to_string, ¤t_to_offset, to_increment,
|
|
type, rep, index_same](Node* offset) {
|
|
Node* value = Load(type, from_string, offset);
|
|
StoreNoWriteBarrier(
|
|
rep, to_string,
|
|
index_same ? offset : current_to_offset.value(), value);
|
|
if (!index_same) {
|
|
Increment(¤t_to_offset, to_increment);
|
|
}
|
|
},
|
|
from_increment, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
|
|
}
|
|
|
|
Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array,
|
|
Node* offset,
|
|
ElementsKind from_kind,
|
|
ElementsKind to_kind,
|
|
Label* if_hole) {
|
|
CSA_ASSERT(this, IsFixedArrayWithKind(array, from_kind));
|
|
if (IsDoubleElementsKind(from_kind)) {
|
|
Node* value =
|
|
LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64());
|
|
if (!IsDoubleElementsKind(to_kind)) {
|
|
value = AllocateHeapNumberWithValue(value);
|
|
}
|
|
return value;
|
|
|
|
} else {
|
|
Node* value = Load(MachineType::AnyTagged(), array, offset);
|
|
if (if_hole) {
|
|
GotoIf(WordEqual(value, TheHoleConstant()), if_hole);
|
|
}
|
|
if (IsDoubleElementsKind(to_kind)) {
|
|
if (IsSmiElementsKind(from_kind)) {
|
|
value = SmiToFloat64(value);
|
|
} else {
|
|
value = LoadHeapNumberValue(value);
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity,
|
|
ParameterMode mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(old_capacity, mode));
|
|
Node* half_old_capacity = WordOrSmiShr(old_capacity, 1, mode);
|
|
Node* new_capacity = IntPtrOrSmiAdd(half_old_capacity, old_capacity, mode);
|
|
Node* padding =
|
|
IntPtrOrSmiConstant(JSObject::kMinAddedElementsCapacity, mode);
|
|
return IntPtrOrSmiAdd(new_capacity, padding, mode);
|
|
}
|
|
|
|
Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
|
|
ElementsKind kind, Node* key,
|
|
Label* bailout) {
|
|
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind));
|
|
CSA_SLOW_ASSERT(this, TaggedIsSmi(key));
|
|
Node* capacity = LoadFixedArrayBaseLength(elements);
|
|
|
|
ParameterMode mode = OptimalParameterMode();
|
|
capacity = TaggedToParameter(capacity, mode);
|
|
key = TaggedToParameter(key, mode);
|
|
|
|
return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode,
|
|
bailout);
|
|
}
|
|
|
|
Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
|
|
ElementsKind kind, Node* key,
|
|
Node* capacity,
|
|
ParameterMode mode,
|
|
Label* bailout) {
|
|
Comment("TryGrowElementsCapacity");
|
|
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(key, mode));
|
|
|
|
// If the gap growth is too big, fall back to the runtime.
|
|
Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode);
|
|
Node* max_capacity = IntPtrOrSmiAdd(capacity, max_gap, mode);
|
|
GotoIf(UintPtrOrSmiGreaterThanOrEqual(key, max_capacity, mode), bailout);
|
|
|
|
// Calculate the capacity of the new backing store.
|
|
Node* new_capacity = CalculateNewElementsCapacity(
|
|
IntPtrOrSmiAdd(key, IntPtrOrSmiConstant(1, mode), mode), mode);
|
|
return GrowElementsCapacity(object, elements, kind, kind, capacity,
|
|
new_capacity, mode, bailout);
|
|
}
|
|
|
|
Node* CodeStubAssembler::GrowElementsCapacity(
|
|
Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind,
|
|
Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) {
|
|
Comment("[ GrowElementsCapacity");
|
|
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
|
|
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, from_kind));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(new_capacity, mode));
|
|
|
|
// If size of the allocation for the new capacity doesn't fit in a page
|
|
// that we can bump-pointer allocate from, fall back to the runtime.
|
|
int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind);
|
|
GotoIf(UintPtrOrSmiGreaterThanOrEqual(
|
|
new_capacity, IntPtrOrSmiConstant(max_size, mode), mode),
|
|
bailout);
|
|
|
|
// Allocate the new backing store.
|
|
Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode);
|
|
|
|
// Copy the elements from the old elements store to the new.
|
|
// The size-check above guarantees that the |new_elements| is allocated
|
|
// in new space so we can skip the write barrier.
|
|
CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity,
|
|
new_capacity, SKIP_WRITE_BARRIER, mode);
|
|
|
|
StoreObjectField(object, JSObject::kElementsOffset, new_elements);
|
|
Comment("] GrowElementsCapacity");
|
|
return new_elements;
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeAllocationMemento(Node* base,
|
|
Node* base_allocation_size,
|
|
Node* allocation_site) {
|
|
Comment("[Initialize AllocationMemento");
|
|
TNode<Object> memento =
|
|
InnerAllocate(CAST(base), UncheckedCast<IntPtrT>(base_allocation_size));
|
|
StoreMapNoWriteBarrier(memento, RootIndex::kAllocationMementoMap);
|
|
StoreObjectFieldNoWriteBarrier(
|
|
memento, AllocationMemento::kAllocationSiteOffset, allocation_site);
|
|
if (FLAG_allocation_site_pretenuring) {
|
|
TNode<Int32T> count = UncheckedCast<Int32T>(LoadObjectField(
|
|
allocation_site, AllocationSite::kPretenureCreateCountOffset,
|
|
MachineType::Int32()));
|
|
|
|
TNode<Int32T> incremented_count = Int32Add(count, Int32Constant(1));
|
|
StoreObjectFieldNoWriteBarrier(
|
|
allocation_site, AllocationSite::kPretenureCreateCountOffset,
|
|
incremented_count, MachineRepresentation::kWord32);
|
|
}
|
|
Comment("]");
|
|
}
|
|
|
|
Node* CodeStubAssembler::TryTaggedToFloat64(Node* value,
|
|
Label* if_valueisnotnumber) {
|
|
Label out(this);
|
|
VARIABLE(var_result, MachineRepresentation::kFloat64);
|
|
|
|
// Check if the {value} is a Smi or a HeapObject.
|
|
Label if_valueissmi(this), if_valueisnotsmi(this);
|
|
Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
|
|
|
|
BIND(&if_valueissmi);
|
|
{
|
|
// Convert the Smi {value}.
|
|
var_result.Bind(SmiToFloat64(value));
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&if_valueisnotsmi);
|
|
{
|
|
// Check if {value} is a HeapNumber.
|
|
Label if_valueisheapnumber(this);
|
|
Branch(IsHeapNumber(value), &if_valueisheapnumber, if_valueisnotnumber);
|
|
|
|
BIND(&if_valueisheapnumber);
|
|
{
|
|
// Load the floating point value.
|
|
var_result.Bind(LoadHeapNumberValue(value));
|
|
Goto(&out);
|
|
}
|
|
}
|
|
BIND(&out);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
|
|
// We might need to loop once due to ToNumber conversion.
|
|
VARIABLE(var_value, MachineRepresentation::kTagged);
|
|
VARIABLE(var_result, MachineRepresentation::kFloat64);
|
|
Label loop(this, &var_value), done_loop(this, &var_result);
|
|
var_value.Bind(value);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
Label if_valueisnotnumber(this, Label::kDeferred);
|
|
|
|
// Load the current {value}.
|
|
value = var_value.value();
|
|
|
|
// Convert {value} to Float64 if it is a number and convert it to a number
|
|
// otherwise.
|
|
Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber);
|
|
var_result.Bind(result);
|
|
Goto(&done_loop);
|
|
|
|
BIND(&if_valueisnotnumber);
|
|
{
|
|
// Convert the {value} to a Number first.
|
|
var_value.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, value));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
BIND(&done_loop);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
|
|
VARIABLE(var_result, MachineRepresentation::kWord32);
|
|
Label done(this);
|
|
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumber>(context, value,
|
|
&done, &var_result);
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
// Truncate {value} to word32 and jump to {if_number} if it is a Number,
|
|
// or find that it is a BigInt and jump to {if_bigint}.
|
|
void CodeStubAssembler::TaggedToWord32OrBigInt(Node* context, Node* value,
|
|
Label* if_number,
|
|
Variable* var_word32,
|
|
Label* if_bigint,
|
|
Variable* var_bigint) {
|
|
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>(
|
|
context, value, if_number, var_word32, if_bigint, var_bigint);
|
|
}
|
|
|
|
// Truncate {value} to word32 and jump to {if_number} if it is a Number,
|
|
// or find that it is a BigInt and jump to {if_bigint}. In either case,
|
|
// store the type feedback in {var_feedback}.
|
|
void CodeStubAssembler::TaggedToWord32OrBigIntWithFeedback(
|
|
Node* context, Node* value, Label* if_number, Variable* var_word32,
|
|
Label* if_bigint, Variable* var_bigint, Variable* var_feedback) {
|
|
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>(
|
|
context, value, if_number, var_word32, if_bigint, var_bigint,
|
|
var_feedback);
|
|
}
|
|
|
|
template <Object::Conversion conversion>
|
|
void CodeStubAssembler::TaggedToWord32OrBigIntImpl(
|
|
Node* context, Node* value, Label* if_number, Variable* var_word32,
|
|
Label* if_bigint, Variable* var_bigint, Variable* var_feedback) {
|
|
DCHECK(var_word32->rep() == MachineRepresentation::kWord32);
|
|
DCHECK(var_bigint == nullptr ||
|
|
var_bigint->rep() == MachineRepresentation::kTagged);
|
|
DCHECK(var_feedback == nullptr ||
|
|
var_feedback->rep() == MachineRepresentation::kTaggedSigned);
|
|
|
|
// We might need to loop after conversion.
|
|
VARIABLE(var_value, MachineRepresentation::kTagged, value);
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNone);
|
|
Variable* loop_vars[] = {&var_value, var_feedback};
|
|
int num_vars =
|
|
var_feedback != nullptr ? arraysize(loop_vars) : arraysize(loop_vars) - 1;
|
|
Label loop(this, num_vars, loop_vars);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
value = var_value.value();
|
|
Label not_smi(this), is_heap_number(this), is_oddball(this),
|
|
is_bigint(this);
|
|
GotoIf(TaggedIsNotSmi(value), ¬_smi);
|
|
|
|
// {value} is a Smi.
|
|
var_word32->Bind(SmiToInt32(value));
|
|
CombineFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall);
|
|
Goto(if_number);
|
|
|
|
BIND(¬_smi);
|
|
Node* map = LoadMap(value);
|
|
GotoIf(IsHeapNumberMap(map), &is_heap_number);
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
if (conversion == Object::Conversion::kToNumeric) {
|
|
GotoIf(IsBigIntInstanceType(instance_type), &is_bigint);
|
|
}
|
|
|
|
// Not HeapNumber (or BigInt if conversion == kToNumeric).
|
|
{
|
|
if (var_feedback != nullptr) {
|
|
// We do not require an Or with earlier feedback here because once we
|
|
// convert the value to a Numeric, we cannot reach this path. We can
|
|
// only reach this path on the first pass when the feedback is kNone.
|
|
CSA_ASSERT(this, SmiEqual(CAST(var_feedback->value()),
|
|
SmiConstant(BinaryOperationFeedback::kNone)));
|
|
}
|
|
GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &is_oddball);
|
|
// Not an oddball either -> convert.
|
|
auto builtin = conversion == Object::Conversion::kToNumeric
|
|
? Builtins::kNonNumberToNumeric
|
|
: Builtins::kNonNumberToNumber;
|
|
var_value.Bind(CallBuiltin(builtin, context, value));
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny);
|
|
Goto(&loop);
|
|
|
|
BIND(&is_oddball);
|
|
var_value.Bind(LoadObjectField(value, Oddball::kToNumberOffset));
|
|
OverwriteFeedback(var_feedback,
|
|
BinaryOperationFeedback::kNumberOrOddball);
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&is_heap_number);
|
|
var_word32->Bind(TruncateHeapNumberValueToWord32(value));
|
|
CombineFeedback(var_feedback, BinaryOperationFeedback::kNumber);
|
|
Goto(if_number);
|
|
|
|
if (conversion == Object::Conversion::kToNumeric) {
|
|
BIND(&is_bigint);
|
|
var_bigint->Bind(value);
|
|
CombineFeedback(var_feedback, BinaryOperationFeedback::kBigInt);
|
|
Goto(if_bigint);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
|
|
Node* value = LoadHeapNumberValue(object);
|
|
return TruncateFloat64ToWord32(value);
|
|
}
|
|
|
|
void CodeStubAssembler::TryHeapNumberToSmi(TNode<HeapNumber> number,
|
|
TVariable<Smi>& var_result_smi,
|
|
Label* if_smi) {
|
|
TNode<Float64T> value = LoadHeapNumberValue(number);
|
|
TryFloat64ToSmi(value, var_result_smi, if_smi);
|
|
}
|
|
|
|
void CodeStubAssembler::TryFloat64ToSmi(TNode<Float64T> value,
|
|
TVariable<Smi>& var_result_smi,
|
|
Label* if_smi) {
|
|
TNode<Int32T> value32 = RoundFloat64ToInt32(value);
|
|
TNode<Float64T> value64 = ChangeInt32ToFloat64(value32);
|
|
|
|
Label if_int32(this), if_heap_number(this, Label::kDeferred);
|
|
|
|
GotoIfNot(Float64Equal(value, value64), &if_heap_number);
|
|
GotoIfNot(Word32Equal(value32, Int32Constant(0)), &if_int32);
|
|
Branch(Int32LessThan(UncheckedCast<Int32T>(Float64ExtractHighWord32(value)),
|
|
Int32Constant(0)),
|
|
&if_heap_number, &if_int32);
|
|
|
|
TVARIABLE(Number, var_result);
|
|
BIND(&if_int32);
|
|
{
|
|
if (SmiValuesAre32Bits()) {
|
|
var_result_smi = SmiTag(ChangeInt32ToIntPtr(value32));
|
|
} else {
|
|
DCHECK(SmiValuesAre31Bits());
|
|
TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value32, value32);
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
GotoIf(overflow, &if_heap_number);
|
|
var_result_smi =
|
|
BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Projection<0>(pair)));
|
|
}
|
|
Goto(if_smi);
|
|
}
|
|
BIND(&if_heap_number);
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ChangeFloat64ToTagged(
|
|
SloppyTNode<Float64T> value) {
|
|
Label if_smi(this), done(this);
|
|
TVARIABLE(Smi, var_smi_result);
|
|
TVARIABLE(Number, var_result);
|
|
TryFloat64ToSmi(value, var_smi_result, &if_smi);
|
|
|
|
var_result = AllocateHeapNumberWithValue(value);
|
|
Goto(&done);
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
var_result = var_smi_result.value();
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ChangeInt32ToTagged(
|
|
SloppyTNode<Int32T> value) {
|
|
if (SmiValuesAre32Bits()) {
|
|
return SmiTag(ChangeInt32ToIntPtr(value));
|
|
}
|
|
DCHECK(SmiValuesAre31Bits());
|
|
TVARIABLE(Number, var_result);
|
|
TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value, value);
|
|
TNode<BoolT> overflow = Projection<1>(pair);
|
|
Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
|
|
if_join(this);
|
|
Branch(overflow, &if_overflow, &if_notoverflow);
|
|
BIND(&if_overflow);
|
|
{
|
|
TNode<Float64T> value64 = ChangeInt32ToFloat64(value);
|
|
TNode<HeapNumber> result = AllocateHeapNumberWithValue(value64);
|
|
var_result = result;
|
|
Goto(&if_join);
|
|
}
|
|
BIND(&if_notoverflow);
|
|
{
|
|
TNode<IntPtrT> almost_tagged_value =
|
|
ChangeInt32ToIntPtr(Projection<0>(pair));
|
|
TNode<Smi> result = BitcastWordToTaggedSigned(almost_tagged_value);
|
|
var_result = result;
|
|
Goto(&if_join);
|
|
}
|
|
BIND(&if_join);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ChangeUint32ToTagged(
|
|
SloppyTNode<Uint32T> value) {
|
|
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
|
|
if_join(this);
|
|
TVARIABLE(Number, var_result);
|
|
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
|
|
Branch(Uint32LessThan(Uint32Constant(Smi::kMaxValue), value), &if_overflow,
|
|
&if_not_overflow);
|
|
|
|
BIND(&if_not_overflow);
|
|
{
|
|
// The {value} is definitely in valid Smi range.
|
|
var_result = SmiTag(Signed(ChangeUint32ToWord(value)));
|
|
}
|
|
Goto(&if_join);
|
|
|
|
BIND(&if_overflow);
|
|
{
|
|
TNode<Float64T> float64_value = ChangeUint32ToFloat64(value);
|
|
var_result = AllocateHeapNumberWithValue(float64_value);
|
|
}
|
|
Goto(&if_join);
|
|
|
|
BIND(&if_join);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ChangeUintPtrToTagged(TNode<UintPtrT> value) {
|
|
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
|
|
if_join(this);
|
|
TVARIABLE(Number, var_result);
|
|
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
|
|
Branch(UintPtrLessThan(UintPtrConstant(Smi::kMaxValue), value), &if_overflow,
|
|
&if_not_overflow);
|
|
|
|
BIND(&if_not_overflow);
|
|
{
|
|
// The {value} is definitely in valid Smi range.
|
|
var_result = SmiTag(Signed(value));
|
|
}
|
|
Goto(&if_join);
|
|
|
|
BIND(&if_overflow);
|
|
{
|
|
TNode<Float64T> float64_value = ChangeUintPtrToFloat64(value);
|
|
var_result = AllocateHeapNumberWithValue(float64_value);
|
|
}
|
|
Goto(&if_join);
|
|
|
|
BIND(&if_join);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::ToThisString(TNode<Context> context,
|
|
TNode<Object> value,
|
|
TNode<String> method_name) {
|
|
VARIABLE(var_value, MachineRepresentation::kTagged, value);
|
|
|
|
// Check if the {value} is a Smi or a HeapObject.
|
|
Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
|
|
if_valueisstring(this);
|
|
Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
|
|
BIND(&if_valueisnotsmi);
|
|
{
|
|
// Load the instance type of the {value}.
|
|
Node* value_instance_type = LoadInstanceType(CAST(value));
|
|
|
|
// Check if the {value} is already String.
|
|
Label if_valueisnotstring(this, Label::kDeferred);
|
|
Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
|
|
&if_valueisnotstring);
|
|
BIND(&if_valueisnotstring);
|
|
{
|
|
// Check if the {value} is null.
|
|
Label if_valueisnullorundefined(this, Label::kDeferred);
|
|
GotoIf(IsNullOrUndefined(value), &if_valueisnullorundefined);
|
|
// Convert the {value} to a String.
|
|
var_value.Bind(CallBuiltin(Builtins::kToString, context, value));
|
|
Goto(&if_valueisstring);
|
|
|
|
BIND(&if_valueisnullorundefined);
|
|
{
|
|
// The {value} is either null or undefined.
|
|
ThrowTypeError(context, MessageTemplate::kCalledOnNullOrUndefined,
|
|
method_name);
|
|
}
|
|
}
|
|
}
|
|
BIND(&if_valueissmi);
|
|
{
|
|
// The {value} is a Smi, convert it to a String.
|
|
var_value.Bind(CallBuiltin(Builtins::kNumberToString, context, value));
|
|
Goto(&if_valueisstring);
|
|
}
|
|
BIND(&if_valueisstring);
|
|
return CAST(var_value.value());
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::ChangeNumberToUint32(TNode<Number> value) {
|
|
TVARIABLE(Uint32T, var_result);
|
|
Label if_smi(this), if_heapnumber(this, Label::kDeferred), done(this);
|
|
Branch(TaggedIsSmi(value), &if_smi, &if_heapnumber);
|
|
BIND(&if_smi);
|
|
{
|
|
var_result = Unsigned(SmiToInt32(CAST(value)));
|
|
Goto(&done);
|
|
}
|
|
BIND(&if_heapnumber);
|
|
{
|
|
var_result = ChangeFloat64ToUint32(LoadHeapNumberValue(CAST(value)));
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Float64T> CodeStubAssembler::ChangeNumberToFloat64(
|
|
SloppyTNode<Number> value) {
|
|
// TODO(tebbi): Remove assert once argument is TNode instead of SloppyTNode.
|
|
CSA_SLOW_ASSERT(this, IsNumber(value));
|
|
TVARIABLE(Float64T, result);
|
|
Label smi(this);
|
|
Label done(this, &result);
|
|
GotoIf(TaggedIsSmi(value), &smi);
|
|
result = LoadHeapNumberValue(CAST(value));
|
|
Goto(&done);
|
|
|
|
BIND(&smi);
|
|
{
|
|
result = SmiToFloat64(CAST(value));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::TryNumberToUintPtr(TNode<Number> value,
|
|
Label* if_negative) {
|
|
TVARIABLE(UintPtrT, result);
|
|
Label done(this, &result);
|
|
Branch(TaggedIsSmi(value),
|
|
[&] {
|
|
TNode<Smi> value_smi = CAST(value);
|
|
if (if_negative == nullptr) {
|
|
CSA_SLOW_ASSERT(this, SmiLessThan(SmiConstant(-1), value_smi));
|
|
} else {
|
|
GotoIfNot(TaggedIsPositiveSmi(value), if_negative);
|
|
}
|
|
result = UncheckedCast<UintPtrT>(SmiToIntPtr(value_smi));
|
|
Goto(&done);
|
|
},
|
|
[&] {
|
|
TNode<HeapNumber> value_hn = CAST(value);
|
|
TNode<Float64T> value = LoadHeapNumberValue(value_hn);
|
|
if (if_negative != nullptr) {
|
|
GotoIf(Float64LessThan(value, Float64Constant(0.0)), if_negative);
|
|
}
|
|
result = ChangeFloat64ToUintPtr(value);
|
|
Goto(&done);
|
|
});
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<WordT> CodeStubAssembler::TimesSystemPointerSize(
|
|
SloppyTNode<WordT> value) {
|
|
return WordShl(value, kSystemPointerSizeLog2);
|
|
}
|
|
|
|
TNode<WordT> CodeStubAssembler::TimesTaggedSize(SloppyTNode<WordT> value) {
|
|
return WordShl(value, kTaggedSizeLog2);
|
|
}
|
|
|
|
TNode<WordT> CodeStubAssembler::TimesDoubleSize(SloppyTNode<WordT> value) {
|
|
return WordShl(value, kDoubleSizeLog2);
|
|
}
|
|
|
|
Node* CodeStubAssembler::ToThisValue(Node* context, Node* value,
|
|
PrimitiveType primitive_type,
|
|
char const* method_name) {
|
|
// We might need to loop once due to JSValue unboxing.
|
|
VARIABLE(var_value, MachineRepresentation::kTagged, value);
|
|
Label loop(this, &var_value), done_loop(this),
|
|
done_throw(this, Label::kDeferred);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
// Load the current {value}.
|
|
value = var_value.value();
|
|
|
|
// Check if the {value} is a Smi or a HeapObject.
|
|
GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber)
|
|
? &done_loop
|
|
: &done_throw);
|
|
|
|
// Load the map of the {value}.
|
|
Node* value_map = LoadMap(value);
|
|
|
|
// Load the instance type of the {value}.
|
|
Node* value_instance_type = LoadMapInstanceType(value_map);
|
|
|
|
// Check if {value} is a JSValue.
|
|
Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this);
|
|
Branch(InstanceTypeEqual(value_instance_type, JS_VALUE_TYPE),
|
|
&if_valueisvalue, &if_valueisnotvalue);
|
|
|
|
BIND(&if_valueisvalue);
|
|
{
|
|
// Load the actual value from the {value}.
|
|
var_value.Bind(LoadObjectField(value, JSValue::kValueOffset));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&if_valueisnotvalue);
|
|
{
|
|
switch (primitive_type) {
|
|
case PrimitiveType::kBoolean:
|
|
GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop);
|
|
break;
|
|
case PrimitiveType::kNumber:
|
|
GotoIf(WordEqual(value_map, HeapNumberMapConstant()), &done_loop);
|
|
break;
|
|
case PrimitiveType::kString:
|
|
GotoIf(IsStringInstanceType(value_instance_type), &done_loop);
|
|
break;
|
|
case PrimitiveType::kSymbol:
|
|
GotoIf(WordEqual(value_map, SymbolMapConstant()), &done_loop);
|
|
break;
|
|
}
|
|
Goto(&done_throw);
|
|
}
|
|
}
|
|
|
|
BIND(&done_throw);
|
|
{
|
|
const char* primitive_name = nullptr;
|
|
switch (primitive_type) {
|
|
case PrimitiveType::kBoolean:
|
|
primitive_name = "Boolean";
|
|
break;
|
|
case PrimitiveType::kNumber:
|
|
primitive_name = "Number";
|
|
break;
|
|
case PrimitiveType::kString:
|
|
primitive_name = "String";
|
|
break;
|
|
case PrimitiveType::kSymbol:
|
|
primitive_name = "Symbol";
|
|
break;
|
|
}
|
|
CHECK_NOT_NULL(primitive_name);
|
|
|
|
// The {value} is not a compatible receiver for this method.
|
|
ThrowTypeError(context, MessageTemplate::kNotGeneric, method_name,
|
|
primitive_name);
|
|
}
|
|
|
|
BIND(&done_loop);
|
|
return var_value.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value,
|
|
InstanceType instance_type,
|
|
char const* method_name) {
|
|
Label out(this), throw_exception(this, Label::kDeferred);
|
|
VARIABLE(var_value_map, MachineRepresentation::kTagged);
|
|
|
|
GotoIf(TaggedIsSmi(value), &throw_exception);
|
|
|
|
// Load the instance type of the {value}.
|
|
var_value_map.Bind(LoadMap(value));
|
|
Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
|
|
|
|
Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out,
|
|
&throw_exception);
|
|
|
|
// The {value} is not a compatible receiver for this method.
|
|
BIND(&throw_exception);
|
|
ThrowTypeError(context, MessageTemplate::kIncompatibleMethodReceiver,
|
|
StringConstant(method_name), value);
|
|
|
|
BIND(&out);
|
|
return var_value_map.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::ThrowIfNotJSReceiver(Node* context, Node* value,
|
|
MessageTemplate msg_template,
|
|
const char* method_name) {
|
|
Label out(this), throw_exception(this, Label::kDeferred);
|
|
VARIABLE(var_value_map, MachineRepresentation::kTagged);
|
|
|
|
GotoIf(TaggedIsSmi(value), &throw_exception);
|
|
|
|
// Load the instance type of the {value}.
|
|
var_value_map.Bind(LoadMap(value));
|
|
Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
|
|
|
|
Branch(IsJSReceiverInstanceType(value_instance_type), &out, &throw_exception);
|
|
|
|
// The {value} is not a compatible receiver for this method.
|
|
BIND(&throw_exception);
|
|
ThrowTypeError(context, msg_template, method_name);
|
|
|
|
BIND(&out);
|
|
return var_value_map.value();
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowIfNotCallable(TNode<Context> context,
|
|
TNode<Object> value,
|
|
const char* method_name) {
|
|
Label out(this), throw_exception(this, Label::kDeferred);
|
|
|
|
GotoIf(TaggedIsSmi(value), &throw_exception);
|
|
Branch(IsCallable(CAST(value)), &out, &throw_exception);
|
|
|
|
// The {value} is not a compatible receiver for this method.
|
|
BIND(&throw_exception);
|
|
ThrowTypeError(context, MessageTemplate::kCalledNonCallable, method_name);
|
|
|
|
BIND(&out);
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowRangeError(Node* context, MessageTemplate message,
|
|
Node* arg0, Node* arg1, Node* arg2) {
|
|
Node* template_index = SmiConstant(static_cast<int>(message));
|
|
if (arg0 == nullptr) {
|
|
CallRuntime(Runtime::kThrowRangeError, context, template_index);
|
|
} else if (arg1 == nullptr) {
|
|
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0);
|
|
} else if (arg2 == nullptr) {
|
|
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1);
|
|
} else {
|
|
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1,
|
|
arg2);
|
|
}
|
|
Unreachable();
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message,
|
|
char const* arg0, char const* arg1) {
|
|
Node* arg0_node = nullptr;
|
|
if (arg0) arg0_node = StringConstant(arg0);
|
|
Node* arg1_node = nullptr;
|
|
if (arg1) arg1_node = StringConstant(arg1);
|
|
ThrowTypeError(context, message, arg0_node, arg1_node);
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message,
|
|
Node* arg0, Node* arg1, Node* arg2) {
|
|
Node* template_index = SmiConstant(static_cast<int>(message));
|
|
if (arg0 == nullptr) {
|
|
CallRuntime(Runtime::kThrowTypeError, context, template_index);
|
|
} else if (arg1 == nullptr) {
|
|
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0);
|
|
} else if (arg2 == nullptr) {
|
|
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1);
|
|
} else {
|
|
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1,
|
|
arg2);
|
|
}
|
|
Unreachable();
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::InstanceTypeEqual(
|
|
SloppyTNode<Int32T> instance_type, int type) {
|
|
return Word32Equal(instance_type, Int32Constant(type));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsDictionaryMap(SloppyTNode<Map> map) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
Node* bit_field3 = LoadMapBitField3(map);
|
|
return IsSetWord32<Map::IsDictionaryMapBit>(bit_field3);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsExtensibleMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::IsExtensibleBit>(LoadMapBitField2(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFrozenOrSealedElementsKindMap(
|
|
SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsElementsKindInRange(LoadMapElementsKind(map), PACKED_SEALED_ELEMENTS,
|
|
HOLEY_FROZEN_ELEMENTS);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsExtensibleNonPrototypeMap(TNode<Map> map) {
|
|
int kMask = Map::IsExtensibleBit::kMask | Map::IsPrototypeMapBit::kMask;
|
|
int kExpected = Map::IsExtensibleBit::kMask;
|
|
return Word32Equal(Word32And(LoadMapBitField2(map), Int32Constant(kMask)),
|
|
Int32Constant(kExpected));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCallableMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::IsCallableBit>(LoadMapBitField(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsDebugInfo(TNode<HeapObject> object) {
|
|
return HasInstanceType(object, DEBUG_INFO_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsDeprecatedMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::IsDeprecatedBit>(LoadMapBitField3(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsUndetectableMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::IsUndetectableBit>(LoadMapBitField(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNoElementsProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kNoElementsProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsArrayIteratorProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kArrayIteratorProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPromiseResolveProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kPromiseResolveProtector);
|
|
Node* cell_value = LoadObjectField(cell, Cell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPromiseThenProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kPromiseThenProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsArraySpeciesProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kArraySpeciesProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsTypedArraySpeciesProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kTypedArraySpeciesProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsRegExpSpeciesProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kRegExpSpeciesProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPromiseSpeciesProtectorCellInvalid() {
|
|
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
|
|
Node* cell = LoadRoot(RootIndex::kPromiseSpeciesProtector);
|
|
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
|
|
return WordEqual(cell_value, invalid);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPrototypeInitialArrayPrototype(
|
|
SloppyTNode<Context> context, SloppyTNode<Map> map) {
|
|
Node* const native_context = LoadNativeContext(context);
|
|
Node* const initial_array_prototype = LoadContextElement(
|
|
native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
|
|
Node* proto = LoadMapPrototype(map);
|
|
return WordEqual(proto, initial_array_prototype);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPrototypeTypedArrayPrototype(
|
|
SloppyTNode<Context> context, SloppyTNode<Map> map) {
|
|
TNode<Context> const native_context = LoadNativeContext(context);
|
|
TNode<Object> const typed_array_prototype =
|
|
LoadContextElement(native_context, Context::TYPED_ARRAY_PROTOTYPE_INDEX);
|
|
TNode<HeapObject> proto = LoadMapPrototype(map);
|
|
TNode<HeapObject> proto_of_proto = Select<HeapObject>(
|
|
IsJSObject(proto), [=] { return LoadMapPrototype(LoadMap(proto)); },
|
|
[=] { return NullConstant(); });
|
|
return WordEqual(proto_of_proto, typed_array_prototype);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFastAliasedArgumentsMap(
|
|
TNode<Context> context, TNode<Map> map) {
|
|
TNode<Context> const native_context = LoadNativeContext(context);
|
|
TNode<Object> const arguments_map = LoadContextElement(
|
|
native_context, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
|
|
return WordEqual(arguments_map, map);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSlowAliasedArgumentsMap(
|
|
TNode<Context> context, TNode<Map> map) {
|
|
TNode<Context> const native_context = LoadNativeContext(context);
|
|
TNode<Object> const arguments_map = LoadContextElement(
|
|
native_context, Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX);
|
|
return WordEqual(arguments_map, map);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSloppyArgumentsMap(TNode<Context> context,
|
|
TNode<Map> map) {
|
|
TNode<Context> const native_context = LoadNativeContext(context);
|
|
TNode<Object> const arguments_map =
|
|
LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX);
|
|
return WordEqual(arguments_map, map);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsStrictArgumentsMap(TNode<Context> context,
|
|
TNode<Map> map) {
|
|
TNode<Context> const native_context = LoadNativeContext(context);
|
|
TNode<Object> const arguments_map =
|
|
LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX);
|
|
return WordEqual(arguments_map, map);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::TaggedIsCallable(TNode<Object> object) {
|
|
return Select<BoolT>(
|
|
TaggedIsSmi(object), [=] { return Int32FalseConstant(); },
|
|
[=] {
|
|
return IsCallableMap(LoadMap(UncheckedCast<HeapObject>(object)));
|
|
});
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCallable(SloppyTNode<HeapObject> object) {
|
|
return IsCallableMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCell(SloppyTNode<HeapObject> object) {
|
|
return WordEqual(LoadMap(object), LoadRoot(RootIndex::kCellMap));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCode(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, CODE_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsConstructorMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::IsConstructorBit>(LoadMapBitField(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsConstructor(SloppyTNode<HeapObject> object) {
|
|
return IsConstructorMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFunctionWithPrototypeSlotMap(
|
|
SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsSetWord32<Map::HasPrototypeSlotBit>(LoadMapBitField(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSpecialReceiverInstanceType(
|
|
TNode<Int32T> instance_type) {
|
|
STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
|
|
return Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_SPECIAL_RECEIVER_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsCustomElementsReceiverInstanceType(
|
|
TNode<Int32T> instance_type) {
|
|
return Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE);
|
|
return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsOneByteStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
return Word32Equal(
|
|
Word32And(instance_type, Int32Constant(kStringEncodingMask)),
|
|
Int32Constant(kOneByteStringTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSequentialStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
return Word32Equal(
|
|
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
|
|
Int32Constant(kSeqStringTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsConsStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
return Word32Equal(
|
|
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
|
|
Int32Constant(kConsStringTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsIndirectStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
STATIC_ASSERT(kIsIndirectStringMask == 0x1);
|
|
STATIC_ASSERT(kIsIndirectStringTag == 0x1);
|
|
return UncheckedCast<BoolT>(
|
|
Word32And(instance_type, Int32Constant(kIsIndirectStringMask)));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsExternalStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
return Word32Equal(
|
|
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
|
|
Int32Constant(kExternalStringTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsUncachedExternalStringInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
CSA_ASSERT(this, IsStringInstanceType(instance_type));
|
|
STATIC_ASSERT(kUncachedExternalStringTag != 0);
|
|
return IsSetWord32(instance_type, kUncachedExternalStringMask);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSReceiverInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
return Int32GreaterThanOrEqual(instance_type,
|
|
Int32Constant(FIRST_JS_RECEIVER_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSReceiverMap(SloppyTNode<Map> map) {
|
|
return IsJSReceiverInstanceType(LoadMapInstanceType(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSReceiver(SloppyTNode<HeapObject> object) {
|
|
return IsJSReceiverMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNullOrJSReceiver(
|
|
SloppyTNode<HeapObject> object) {
|
|
return UncheckedCast<BoolT>(Word32Or(IsJSReceiver(object), IsNull(object)));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNullOrUndefined(SloppyTNode<Object> value) {
|
|
return UncheckedCast<BoolT>(Word32Or(IsUndefined(value), IsNull(value)));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSGlobalProxyInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, JS_GLOBAL_PROXY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSObjectInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
|
|
return Int32GreaterThanOrEqual(instance_type,
|
|
Int32Constant(FIRST_JS_OBJECT_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSObjectMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return IsJSObjectInstanceType(LoadMapInstanceType(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSObject(SloppyTNode<HeapObject> object) {
|
|
return IsJSObjectMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSPromiseMap(SloppyTNode<Map> map) {
|
|
CSA_ASSERT(this, IsMap(map));
|
|
return InstanceTypeEqual(LoadMapInstanceType(map), JS_PROMISE_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSPromise(SloppyTNode<HeapObject> object) {
|
|
return IsJSPromiseMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSProxy(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_PROXY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSStringIterator(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_STRING_ITERATOR_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSGlobalProxy(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_GLOBAL_PROXY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsMap(SloppyTNode<HeapObject> map) {
|
|
return IsMetaMap(LoadMap(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSValueInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, JS_VALUE_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSValue(SloppyTNode<HeapObject> object) {
|
|
return IsJSValueMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSValueMap(SloppyTNode<Map> map) {
|
|
return IsJSValueInstanceType(LoadMapInstanceType(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSArrayInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, JS_ARRAY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSArray(SloppyTNode<HeapObject> object) {
|
|
return IsJSArrayMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSArrayMap(SloppyTNode<Map> map) {
|
|
return IsJSArrayInstanceType(LoadMapInstanceType(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSArrayIterator(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_ARRAY_ITERATOR_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSAsyncGeneratorObject(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_ASYNC_GENERATOR_OBJECT_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsContext(SloppyTNode<HeapObject> object) {
|
|
Node* instance_type = LoadInstanceType(object);
|
|
return UncheckedCast<BoolT>(Word32And(
|
|
Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_CONTEXT_TYPE)),
|
|
Int32LessThanOrEqual(instance_type, Int32Constant(LAST_CONTEXT_TYPE))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFixedArray(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, FIXED_ARRAY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFixedArraySubclass(
|
|
SloppyTNode<HeapObject> object) {
|
|
Node* instance_type = LoadInstanceType(object);
|
|
return UncheckedCast<BoolT>(
|
|
Word32And(Int32GreaterThanOrEqual(instance_type,
|
|
Int32Constant(FIRST_FIXED_ARRAY_TYPE)),
|
|
Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_FIXED_ARRAY_TYPE))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNotWeakFixedArraySubclass(
|
|
SloppyTNode<HeapObject> object) {
|
|
Node* instance_type = LoadInstanceType(object);
|
|
return UncheckedCast<BoolT>(Word32Or(
|
|
Int32LessThan(instance_type, Int32Constant(FIRST_WEAK_FIXED_ARRAY_TYPE)),
|
|
Int32GreaterThan(instance_type,
|
|
Int32Constant(LAST_WEAK_FIXED_ARRAY_TYPE))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPromiseCapability(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, PROMISE_CAPABILITY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPropertyArray(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, PROPERTY_ARRAY_TYPE);
|
|
}
|
|
|
|
// This complicated check is due to elements oddities. If a smi array is empty
|
|
// after Array.p.shift, it is replaced by the empty array constant. If it is
|
|
// later filled with a double element, we try to grow it but pass in a double
|
|
// elements kind. Usually this would cause a size mismatch (since the source
|
|
// fixed array has HOLEY_ELEMENTS and destination has
|
|
// HOLEY_DOUBLE_ELEMENTS), but we don't have to worry about it when the
|
|
// source array is empty.
|
|
// TODO(jgruber): It might we worth creating an empty_double_array constant to
|
|
// simplify this case.
|
|
TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKindOrEmpty(
|
|
SloppyTNode<HeapObject> object, ElementsKind kind) {
|
|
Label out(this);
|
|
TVARIABLE(BoolT, var_result, Int32TrueConstant());
|
|
|
|
GotoIf(IsFixedArrayWithKind(object, kind), &out);
|
|
|
|
TNode<Smi> const length = LoadFixedArrayBaseLength(CAST(object));
|
|
GotoIf(SmiEqual(length, SmiConstant(0)), &out);
|
|
|
|
var_result = Int32FalseConstant();
|
|
Goto(&out);
|
|
|
|
BIND(&out);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKind(
|
|
SloppyTNode<HeapObject> object, ElementsKind kind) {
|
|
if (IsDoubleElementsKind(kind)) {
|
|
return IsFixedDoubleArray(object);
|
|
} else {
|
|
DCHECK(IsSmiOrObjectElementsKind(kind));
|
|
return IsFixedArraySubclass(object);
|
|
}
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsBoolean(SloppyTNode<HeapObject> object) {
|
|
return IsBooleanMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPropertyCell(SloppyTNode<HeapObject> object) {
|
|
return IsPropertyCellMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsAccessorInfo(SloppyTNode<HeapObject> object) {
|
|
return IsAccessorInfoMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsAccessorPair(SloppyTNode<HeapObject> object) {
|
|
return IsAccessorPairMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsAllocationSite(
|
|
SloppyTNode<HeapObject> object) {
|
|
return IsAllocationSiteInstanceType(LoadInstanceType(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsAnyHeapNumber(
|
|
SloppyTNode<HeapObject> object) {
|
|
return UncheckedCast<BoolT>(
|
|
Word32Or(IsMutableHeapNumber(object), IsHeapNumber(object)));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsHeapNumber(SloppyTNode<HeapObject> object) {
|
|
return IsHeapNumberMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsHeapNumberInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, HEAP_NUMBER_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsOddball(SloppyTNode<HeapObject> object) {
|
|
return IsOddballInstanceType(LoadInstanceType(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsOddballInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, ODDBALL_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsMutableHeapNumber(
|
|
SloppyTNode<HeapObject> object) {
|
|
return IsMutableHeapNumberMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFeedbackCell(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, FEEDBACK_CELL_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFeedbackVector(
|
|
SloppyTNode<HeapObject> object) {
|
|
return IsFeedbackVectorMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsName(SloppyTNode<HeapObject> object) {
|
|
return IsNameInstanceType(LoadInstanceType(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNameInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_NAME_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsString(SloppyTNode<HeapObject> object) {
|
|
return IsStringInstanceType(LoadInstanceType(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSymbolInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, SYMBOL_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSymbol(SloppyTNode<HeapObject> object) {
|
|
return IsSymbolMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsInternalizedStringInstanceType(
|
|
TNode<Int32T> instance_type) {
|
|
STATIC_ASSERT(kNotInternalizedTag != 0);
|
|
return Word32Equal(
|
|
Word32And(instance_type,
|
|
Int32Constant(kIsNotStringMask | kIsNotInternalizedMask)),
|
|
Int32Constant(kStringTag | kInternalizedTag));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsUniqueName(TNode<HeapObject> object) {
|
|
TNode<Int32T> instance_type = LoadInstanceType(object);
|
|
return Select<BoolT>(
|
|
IsInternalizedStringInstanceType(instance_type),
|
|
[=] { return Int32TrueConstant(); },
|
|
[=] { return IsSymbolInstanceType(instance_type); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsUniqueNameNoIndex(TNode<HeapObject> object) {
|
|
TNode<Int32T> instance_type = LoadInstanceType(object);
|
|
return Select<BoolT>(
|
|
IsInternalizedStringInstanceType(instance_type),
|
|
[=] {
|
|
return IsSetWord32(LoadNameHashField(CAST(object)),
|
|
Name::kIsNotArrayIndexMask);
|
|
},
|
|
[=] { return IsSymbolInstanceType(instance_type); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsBigIntInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, BIGINT_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsBigInt(SloppyTNode<HeapObject> object) {
|
|
return IsBigIntInstanceType(LoadInstanceType(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPrimitiveInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_PRIMITIVE_TYPE));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsPrivateSymbol(
|
|
SloppyTNode<HeapObject> object) {
|
|
return Select<BoolT>(IsSymbol(object),
|
|
[=] {
|
|
TNode<Symbol> symbol = CAST(object);
|
|
TNode<Uint32T> flags = LoadObjectField<Uint32T>(
|
|
symbol, Symbol::kFlagsOffset);
|
|
return IsSetWord32<Symbol::IsPrivateBit>(flags);
|
|
},
|
|
[=] { return Int32FalseConstant(); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNativeContext(
|
|
SloppyTNode<HeapObject> object) {
|
|
return WordEqual(LoadMap(object), LoadRoot(RootIndex::kNativeContextMap));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFixedDoubleArray(
|
|
SloppyTNode<HeapObject> object) {
|
|
return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant());
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsHashTable(SloppyTNode<HeapObject> object) {
|
|
Node* instance_type = LoadInstanceType(object);
|
|
return UncheckedCast<BoolT>(
|
|
Word32And(Int32GreaterThanOrEqual(instance_type,
|
|
Int32Constant(FIRST_HASH_TABLE_TYPE)),
|
|
Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_HASH_TABLE_TYPE))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsEphemeronHashTable(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, EPHEMERON_HASH_TABLE_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNameDictionary(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, NAME_DICTIONARY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsGlobalDictionary(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, GLOBAL_DICTIONARY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumberDictionary(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, NUMBER_DICTIONARY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSGeneratorObject(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_GENERATOR_OBJECT_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSFunctionInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, JS_FUNCTION_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsAllocationSiteInstanceType(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
return InstanceTypeEqual(instance_type, ALLOCATION_SITE_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSFunction(SloppyTNode<HeapObject> object) {
|
|
return IsJSFunctionMap(LoadMap(object));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSFunctionMap(SloppyTNode<Map> map) {
|
|
return IsJSFunctionInstanceType(LoadMapInstanceType(map));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSTypedArray(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_TYPED_ARRAY_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSArrayBuffer(
|
|
SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_ARRAY_BUFFER_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSDataView(TNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_DATA_VIEW_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsFixedTypedArray(
|
|
SloppyTNode<HeapObject> object) {
|
|
TNode<Int32T> instance_type = LoadInstanceType(object);
|
|
return UncheckedCast<BoolT>(Word32And(
|
|
Int32GreaterThanOrEqual(instance_type,
|
|
Int32Constant(FIRST_FIXED_TYPED_ARRAY_TYPE)),
|
|
Int32LessThanOrEqual(instance_type,
|
|
Int32Constant(LAST_FIXED_TYPED_ARRAY_TYPE))));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsJSRegExp(SloppyTNode<HeapObject> object) {
|
|
return HasInstanceType(object, JS_REGEXP_TYPE);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumber(SloppyTNode<Object> object) {
|
|
return Select<BoolT>(TaggedIsSmi(object), [=] { return Int32TrueConstant(); },
|
|
[=] { return IsHeapNumber(CAST(object)); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumeric(SloppyTNode<Object> object) {
|
|
return Select<BoolT>(
|
|
TaggedIsSmi(object), [=] { return Int32TrueConstant(); },
|
|
[=] {
|
|
return UncheckedCast<BoolT>(
|
|
Word32Or(IsHeapNumber(CAST(object)), IsBigInt(CAST(object))));
|
|
});
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumberNormalized(SloppyTNode<Number> number) {
|
|
TVARIABLE(BoolT, var_result, Int32TrueConstant());
|
|
Label out(this);
|
|
|
|
GotoIf(TaggedIsSmi(number), &out);
|
|
|
|
TNode<Float64T> value = LoadHeapNumberValue(CAST(number));
|
|
TNode<Float64T> smi_min =
|
|
Float64Constant(static_cast<double>(Smi::kMinValue));
|
|
TNode<Float64T> smi_max =
|
|
Float64Constant(static_cast<double>(Smi::kMaxValue));
|
|
|
|
GotoIf(Float64LessThan(value, smi_min), &out);
|
|
GotoIf(Float64GreaterThan(value, smi_max), &out);
|
|
GotoIfNot(Float64Equal(value, value), &out); // NaN.
|
|
|
|
var_result = Int32FalseConstant();
|
|
Goto(&out);
|
|
|
|
BIND(&out);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumberPositive(SloppyTNode<Number> number) {
|
|
return Select<BoolT>(TaggedIsSmi(number),
|
|
[=] { return TaggedIsPositiveSmi(number); },
|
|
[=] { return IsHeapNumberPositive(CAST(number)); });
|
|
}
|
|
|
|
// TODO(cbruni): Use TNode<HeapNumber> instead of custom name.
|
|
TNode<BoolT> CodeStubAssembler::IsHeapNumberPositive(TNode<HeapNumber> number) {
|
|
TNode<Float64T> value = LoadHeapNumberValue(number);
|
|
TNode<Float64T> float_zero = Float64Constant(0.);
|
|
return Float64GreaterThanOrEqual(value, float_zero);
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumberNonNegativeSafeInteger(
|
|
TNode<Number> number) {
|
|
return Select<BoolT>(
|
|
// TODO(cbruni): Introduce TaggedIsNonNegateSmi to avoid confusion.
|
|
TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); },
|
|
[=] {
|
|
TNode<HeapNumber> heap_number = CAST(number);
|
|
return Select<BoolT>(IsInteger(heap_number),
|
|
[=] { return IsHeapNumberPositive(heap_number); },
|
|
[=] { return Int32FalseConstant(); });
|
|
});
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<Object> number) {
|
|
return Select<BoolT>(
|
|
TaggedIsSmi(number), [=] { return Int32TrueConstant(); },
|
|
[=] {
|
|
return Select<BoolT>(
|
|
IsHeapNumber(CAST(number)),
|
|
[=] { return IsSafeInteger(UncheckedCast<HeapNumber>(number)); },
|
|
[=] { return Int32FalseConstant(); });
|
|
});
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<HeapNumber> number) {
|
|
// Load the actual value of {number}.
|
|
TNode<Float64T> number_value = LoadHeapNumberValue(number);
|
|
// Truncate the value of {number} to an integer (or an infinity).
|
|
TNode<Float64T> integer = Float64Trunc(number_value);
|
|
|
|
return Select<BoolT>(
|
|
// Check if {number}s value matches the integer (ruling out the
|
|
// infinities).
|
|
Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)),
|
|
[=] {
|
|
// Check if the {integer} value is in safe integer range.
|
|
return Float64LessThanOrEqual(Float64Abs(integer),
|
|
Float64Constant(kMaxSafeInteger));
|
|
},
|
|
[=] { return Int32FalseConstant(); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsInteger(TNode<Object> number) {
|
|
return Select<BoolT>(
|
|
TaggedIsSmi(number), [=] { return Int32TrueConstant(); },
|
|
[=] {
|
|
return Select<BoolT>(
|
|
IsHeapNumber(CAST(number)),
|
|
[=] { return IsInteger(UncheckedCast<HeapNumber>(number)); },
|
|
[=] { return Int32FalseConstant(); });
|
|
});
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsInteger(TNode<HeapNumber> number) {
|
|
TNode<Float64T> number_value = LoadHeapNumberValue(number);
|
|
// Truncate the value of {number} to an integer (or an infinity).
|
|
TNode<Float64T> integer = Float64Trunc(number_value);
|
|
// Check if {number}s value matches the integer (ruling out the infinities).
|
|
return Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsHeapNumberUint32(TNode<HeapNumber> number) {
|
|
// Check that the HeapNumber is a valid uint32
|
|
return Select<BoolT>(
|
|
IsHeapNumberPositive(number),
|
|
[=] {
|
|
TNode<Float64T> value = LoadHeapNumberValue(number);
|
|
TNode<Uint32T> int_value = Unsigned(TruncateFloat64ToWord32(value));
|
|
return Float64Equal(value, ChangeUint32ToFloat64(int_value));
|
|
},
|
|
[=] { return Int32FalseConstant(); });
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsNumberArrayIndex(TNode<Number> number) {
|
|
return Select<BoolT>(TaggedIsSmi(number),
|
|
[=] { return TaggedIsPositiveSmi(number); },
|
|
[=] { return IsHeapNumberUint32(CAST(number)); });
|
|
}
|
|
|
|
Node* CodeStubAssembler::FixedArraySizeDoesntFitInNewSpace(Node* element_count,
|
|
int base_size,
|
|
ParameterMode mode) {
|
|
int max_newspace_elements =
|
|
(kMaxRegularHeapObjectSize - base_size) / kTaggedSize;
|
|
return IntPtrOrSmiGreaterThan(
|
|
element_count, IntPtrOrSmiConstant(max_newspace_elements, mode), mode);
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::StringCharCodeAt(SloppyTNode<String> string,
|
|
SloppyTNode<IntPtrT> index) {
|
|
CSA_ASSERT(this, IsString(string));
|
|
|
|
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(index, IntPtrConstant(0)));
|
|
CSA_ASSERT(this, IntPtrLessThan(index, LoadStringLengthAsWord(string)));
|
|
|
|
TVARIABLE(Int32T, var_result);
|
|
|
|
Label return_result(this), if_runtime(this, Label::kDeferred),
|
|
if_stringistwobyte(this), if_stringisonebyte(this);
|
|
|
|
ToDirectStringAssembler to_direct(state(), string);
|
|
to_direct.TryToDirect(&if_runtime);
|
|
Node* const offset = IntPtrAdd(index, to_direct.offset());
|
|
Node* const instance_type = to_direct.instance_type();
|
|
|
|
Node* const string_data = to_direct.PointerToData(&if_runtime);
|
|
|
|
// Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
|
|
Branch(IsOneByteStringInstanceType(instance_type), &if_stringisonebyte,
|
|
&if_stringistwobyte);
|
|
|
|
BIND(&if_stringisonebyte);
|
|
{
|
|
var_result =
|
|
UncheckedCast<Int32T>(Load(MachineType::Uint8(), string_data, offset));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_stringistwobyte);
|
|
{
|
|
var_result =
|
|
UncheckedCast<Int32T>(Load(MachineType::Uint16(), string_data,
|
|
WordShl(offset, IntPtrConstant(1))));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_runtime);
|
|
{
|
|
Node* result = CallRuntime(Runtime::kStringCharCodeAt, NoContextConstant(),
|
|
string, SmiTag(index));
|
|
var_result = SmiToInt32(result);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::StringFromSingleCharCode(TNode<Int32T> code) {
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
|
|
// Check if the {code} is a one-byte char code.
|
|
Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
|
|
if_done(this);
|
|
Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
|
|
&if_codeisonebyte, &if_codeistwobyte);
|
|
BIND(&if_codeisonebyte);
|
|
{
|
|
// Load the isolate wide single character string cache.
|
|
TNode<FixedArray> cache =
|
|
CAST(LoadRoot(RootIndex::kSingleCharacterStringCache));
|
|
TNode<IntPtrT> code_index = Signed(ChangeUint32ToWord(code));
|
|
|
|
// Check if we have an entry for the {code} in the single character string
|
|
// cache already.
|
|
Label if_entryisundefined(this, Label::kDeferred),
|
|
if_entryisnotundefined(this);
|
|
Node* entry = UnsafeLoadFixedArrayElement(cache, code_index);
|
|
Branch(IsUndefined(entry), &if_entryisundefined, &if_entryisnotundefined);
|
|
|
|
BIND(&if_entryisundefined);
|
|
{
|
|
// Allocate a new SeqOneByteString for {code} and store it in the {cache}.
|
|
TNode<String> result = AllocateSeqOneByteString(1);
|
|
StoreNoWriteBarrier(
|
|
MachineRepresentation::kWord8, result,
|
|
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
|
|
StoreFixedArrayElement(cache, code_index, result);
|
|
var_result.Bind(result);
|
|
Goto(&if_done);
|
|
}
|
|
|
|
BIND(&if_entryisnotundefined);
|
|
{
|
|
// Return the entry from the {cache}.
|
|
var_result.Bind(entry);
|
|
Goto(&if_done);
|
|
}
|
|
}
|
|
|
|
BIND(&if_codeistwobyte);
|
|
{
|
|
// Allocate a new SeqTwoByteString for {code}.
|
|
Node* result = AllocateSeqTwoByteString(1);
|
|
StoreNoWriteBarrier(
|
|
MachineRepresentation::kWord16, result,
|
|
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
|
|
var_result.Bind(result);
|
|
Goto(&if_done);
|
|
}
|
|
|
|
BIND(&if_done);
|
|
CSA_ASSERT(this, IsString(var_result.value()));
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
// A wrapper around CopyStringCharacters which determines the correct string
|
|
// encoding, allocates a corresponding sequential string, and then copies the
|
|
// given character range using CopyStringCharacters.
|
|
// |from_string| must be a sequential string.
|
|
// 0 <= |from_index| <= |from_index| + |character_count| < from_string.length.
|
|
TNode<String> CodeStubAssembler::AllocAndCopyStringCharacters(
|
|
Node* from, Node* from_instance_type, TNode<IntPtrT> from_index,
|
|
TNode<IntPtrT> character_count) {
|
|
Label end(this), one_byte_sequential(this), two_byte_sequential(this);
|
|
TVARIABLE(String, var_result);
|
|
|
|
Branch(IsOneByteStringInstanceType(from_instance_type), &one_byte_sequential,
|
|
&two_byte_sequential);
|
|
|
|
// The subject string is a sequential one-byte string.
|
|
BIND(&one_byte_sequential);
|
|
{
|
|
TNode<String> result = AllocateSeqOneByteString(
|
|
NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count)));
|
|
CopyStringCharacters(from, result, from_index, IntPtrConstant(0),
|
|
character_count, String::ONE_BYTE_ENCODING,
|
|
String::ONE_BYTE_ENCODING);
|
|
var_result = result;
|
|
Goto(&end);
|
|
}
|
|
|
|
// The subject string is a sequential two-byte string.
|
|
BIND(&two_byte_sequential);
|
|
{
|
|
TNode<String> result = AllocateSeqTwoByteString(
|
|
NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count)));
|
|
CopyStringCharacters(from, result, from_index, IntPtrConstant(0),
|
|
character_count, String::TWO_BYTE_ENCODING,
|
|
String::TWO_BYTE_ENCODING);
|
|
var_result = result;
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::SubString(TNode<String> string,
|
|
TNode<IntPtrT> from,
|
|
TNode<IntPtrT> to) {
|
|
TVARIABLE(String, var_result);
|
|
ToDirectStringAssembler to_direct(state(), string);
|
|
Label end(this), runtime(this);
|
|
|
|
TNode<IntPtrT> const substr_length = IntPtrSub(to, from);
|
|
TNode<IntPtrT> const string_length = LoadStringLengthAsWord(string);
|
|
|
|
// Begin dispatching based on substring length.
|
|
|
|
Label original_string_or_invalid_length(this);
|
|
GotoIf(UintPtrGreaterThanOrEqual(substr_length, string_length),
|
|
&original_string_or_invalid_length);
|
|
|
|
// A real substring (substr_length < string_length).
|
|
Label empty(this);
|
|
GotoIf(IntPtrEqual(substr_length, IntPtrConstant(0)), &empty);
|
|
|
|
Label single_char(this);
|
|
GotoIf(IntPtrEqual(substr_length, IntPtrConstant(1)), &single_char);
|
|
|
|
// Deal with different string types: update the index if necessary
|
|
// and extract the underlying string.
|
|
|
|
TNode<String> direct_string = to_direct.TryToDirect(&runtime);
|
|
TNode<IntPtrT> offset = IntPtrAdd(from, to_direct.offset());
|
|
Node* const instance_type = to_direct.instance_type();
|
|
|
|
// The subject string can only be external or sequential string of either
|
|
// encoding at this point.
|
|
Label external_string(this);
|
|
{
|
|
if (FLAG_string_slices) {
|
|
Label next(this);
|
|
|
|
// Short slice. Copy instead of slicing.
|
|
GotoIf(IntPtrLessThan(substr_length,
|
|
IntPtrConstant(SlicedString::kMinLength)),
|
|
&next);
|
|
|
|
// Allocate new sliced string.
|
|
|
|
Counters* counters = isolate()->counters();
|
|
IncrementCounter(counters->sub_string_native(), 1);
|
|
|
|
Label one_byte_slice(this), two_byte_slice(this);
|
|
Branch(IsOneByteStringInstanceType(to_direct.instance_type()),
|
|
&one_byte_slice, &two_byte_slice);
|
|
|
|
BIND(&one_byte_slice);
|
|
{
|
|
var_result = AllocateSlicedOneByteString(
|
|
Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
|
|
SmiTag(offset));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&two_byte_slice);
|
|
{
|
|
var_result = AllocateSlicedTwoByteString(
|
|
Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
|
|
SmiTag(offset));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&next);
|
|
}
|
|
|
|
// The subject string can only be external or sequential string of either
|
|
// encoding at this point.
|
|
GotoIf(to_direct.is_external(), &external_string);
|
|
|
|
var_result = AllocAndCopyStringCharacters(direct_string, instance_type,
|
|
offset, substr_length);
|
|
|
|
Counters* counters = isolate()->counters();
|
|
IncrementCounter(counters->sub_string_native(), 1);
|
|
|
|
Goto(&end);
|
|
}
|
|
|
|
// Handle external string.
|
|
BIND(&external_string);
|
|
{
|
|
Node* const fake_sequential_string = to_direct.PointerToString(&runtime);
|
|
|
|
var_result = AllocAndCopyStringCharacters(
|
|
fake_sequential_string, instance_type, offset, substr_length);
|
|
|
|
Counters* counters = isolate()->counters();
|
|
IncrementCounter(counters->sub_string_native(), 1);
|
|
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&empty);
|
|
{
|
|
var_result = EmptyStringConstant();
|
|
Goto(&end);
|
|
}
|
|
|
|
// Substrings of length 1 are generated through CharCodeAt and FromCharCode.
|
|
BIND(&single_char);
|
|
{
|
|
TNode<Int32T> char_code = StringCharCodeAt(string, from);
|
|
var_result = StringFromSingleCharCode(char_code);
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&original_string_or_invalid_length);
|
|
{
|
|
CSA_ASSERT(this, IntPtrEqual(substr_length, string_length));
|
|
|
|
// Equal length - check if {from, to} == {0, str.length}.
|
|
GotoIf(UintPtrGreaterThan(from, IntPtrConstant(0)), &runtime);
|
|
|
|
// Return the original string (substr_length == string_length).
|
|
|
|
Counters* counters = isolate()->counters();
|
|
IncrementCounter(counters->sub_string_native(), 1);
|
|
|
|
var_result = string;
|
|
Goto(&end);
|
|
}
|
|
|
|
// Fall back to a runtime call.
|
|
BIND(&runtime);
|
|
{
|
|
var_result =
|
|
CAST(CallRuntime(Runtime::kStringSubstring, NoContextConstant(), string,
|
|
SmiTag(from), SmiTag(to)));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
ToDirectStringAssembler::ToDirectStringAssembler(
|
|
compiler::CodeAssemblerState* state, Node* string, Flags flags)
|
|
: CodeStubAssembler(state),
|
|
var_string_(this, MachineRepresentation::kTagged, string),
|
|
var_instance_type_(this, MachineRepresentation::kWord32),
|
|
var_offset_(this, MachineType::PointerRepresentation()),
|
|
var_is_external_(this, MachineRepresentation::kWord32),
|
|
flags_(flags) {
|
|
CSA_ASSERT(this, TaggedIsNotSmi(string));
|
|
CSA_ASSERT(this, IsString(string));
|
|
|
|
var_string_.Bind(string);
|
|
var_offset_.Bind(IntPtrConstant(0));
|
|
var_instance_type_.Bind(LoadInstanceType(string));
|
|
var_is_external_.Bind(Int32Constant(0));
|
|
}
|
|
|
|
TNode<String> ToDirectStringAssembler::TryToDirect(Label* if_bailout) {
|
|
VariableList vars({&var_string_, &var_offset_, &var_instance_type_}, zone());
|
|
Label dispatch(this, vars);
|
|
Label if_iscons(this);
|
|
Label if_isexternal(this);
|
|
Label if_issliced(this);
|
|
Label if_isthin(this);
|
|
Label out(this);
|
|
|
|
Branch(IsSequentialStringInstanceType(var_instance_type_.value()), &out,
|
|
&dispatch);
|
|
|
|
// Dispatch based on string representation.
|
|
BIND(&dispatch);
|
|
{
|
|
int32_t values[] = {
|
|
kSeqStringTag, kConsStringTag, kExternalStringTag,
|
|
kSlicedStringTag, kThinStringTag,
|
|
};
|
|
Label* labels[] = {
|
|
&out, &if_iscons, &if_isexternal, &if_issliced, &if_isthin,
|
|
};
|
|
STATIC_ASSERT(arraysize(values) == arraysize(labels));
|
|
|
|
Node* const representation = Word32And(
|
|
var_instance_type_.value(), Int32Constant(kStringRepresentationMask));
|
|
Switch(representation, if_bailout, values, labels, arraysize(values));
|
|
}
|
|
|
|
// Cons string. Check whether it is flat, then fetch first part.
|
|
// Flat cons strings have an empty second part.
|
|
BIND(&if_iscons);
|
|
{
|
|
Node* const string = var_string_.value();
|
|
GotoIfNot(IsEmptyString(LoadObjectField(string, ConsString::kSecondOffset)),
|
|
if_bailout);
|
|
|
|
Node* const lhs = LoadObjectField(string, ConsString::kFirstOffset);
|
|
var_string_.Bind(lhs);
|
|
var_instance_type_.Bind(LoadInstanceType(lhs));
|
|
|
|
Goto(&dispatch);
|
|
}
|
|
|
|
// Sliced string. Fetch parent and correct start index by offset.
|
|
BIND(&if_issliced);
|
|
{
|
|
if (!FLAG_string_slices || (flags_ & kDontUnpackSlicedStrings)) {
|
|
Goto(if_bailout);
|
|
} else {
|
|
Node* const string = var_string_.value();
|
|
Node* const sliced_offset =
|
|
LoadAndUntagObjectField(string, SlicedString::kOffsetOffset);
|
|
var_offset_.Bind(IntPtrAdd(var_offset_.value(), sliced_offset));
|
|
|
|
Node* const parent = LoadObjectField(string, SlicedString::kParentOffset);
|
|
var_string_.Bind(parent);
|
|
var_instance_type_.Bind(LoadInstanceType(parent));
|
|
|
|
Goto(&dispatch);
|
|
}
|
|
}
|
|
|
|
// Thin string. Fetch the actual string.
|
|
BIND(&if_isthin);
|
|
{
|
|
Node* const string = var_string_.value();
|
|
Node* const actual_string =
|
|
LoadObjectField(string, ThinString::kActualOffset);
|
|
Node* const actual_instance_type = LoadInstanceType(actual_string);
|
|
|
|
var_string_.Bind(actual_string);
|
|
var_instance_type_.Bind(actual_instance_type);
|
|
|
|
Goto(&dispatch);
|
|
}
|
|
|
|
// External string.
|
|
BIND(&if_isexternal);
|
|
var_is_external_.Bind(Int32Constant(1));
|
|
Goto(&out);
|
|
|
|
BIND(&out);
|
|
return CAST(var_string_.value());
|
|
}
|
|
|
|
TNode<RawPtrT> ToDirectStringAssembler::TryToSequential(
|
|
StringPointerKind ptr_kind, Label* if_bailout) {
|
|
CHECK(ptr_kind == PTR_TO_DATA || ptr_kind == PTR_TO_STRING);
|
|
|
|
TVARIABLE(RawPtrT, var_result);
|
|
Label out(this), if_issequential(this), if_isexternal(this, Label::kDeferred);
|
|
Branch(is_external(), &if_isexternal, &if_issequential);
|
|
|
|
BIND(&if_issequential);
|
|
{
|
|
STATIC_ASSERT(SeqOneByteString::kHeaderSize ==
|
|
SeqTwoByteString::kHeaderSize);
|
|
TNode<IntPtrT> result = BitcastTaggedToWord(var_string_.value());
|
|
if (ptr_kind == PTR_TO_DATA) {
|
|
result = IntPtrAdd(result, IntPtrConstant(SeqOneByteString::kHeaderSize -
|
|
kHeapObjectTag));
|
|
}
|
|
var_result = ReinterpretCast<RawPtrT>(result);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&if_isexternal);
|
|
{
|
|
GotoIf(IsUncachedExternalStringInstanceType(var_instance_type_.value()),
|
|
if_bailout);
|
|
|
|
TNode<String> string = CAST(var_string_.value());
|
|
TNode<IntPtrT> result =
|
|
LoadObjectField<IntPtrT>(string, ExternalString::kResourceDataOffset);
|
|
if (ptr_kind == PTR_TO_STRING) {
|
|
result = IntPtrSub(result, IntPtrConstant(SeqOneByteString::kHeaderSize -
|
|
kHeapObjectTag));
|
|
}
|
|
var_result = ReinterpretCast<RawPtrT>(result);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&out);
|
|
return var_result.value();
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfCanDerefIndirectString(Node* string,
|
|
Node* instance_type,
|
|
Label* can_deref,
|
|
Label* cannot_deref) {
|
|
CSA_ASSERT(this, IsString(string));
|
|
Node* representation =
|
|
Word32And(instance_type, Int32Constant(kStringRepresentationMask));
|
|
GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), can_deref);
|
|
GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)),
|
|
cannot_deref);
|
|
// Cons string.
|
|
Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
|
|
GotoIf(IsEmptyString(rhs), can_deref);
|
|
Goto(cannot_deref);
|
|
}
|
|
|
|
Node* CodeStubAssembler::DerefIndirectString(TNode<String> string,
|
|
TNode<Int32T> instance_type,
|
|
Label* cannot_deref) {
|
|
Label deref(this);
|
|
BranchIfCanDerefIndirectString(string, instance_type, &deref, cannot_deref);
|
|
BIND(&deref);
|
|
STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
|
|
static_cast<int>(ConsString::kFirstOffset));
|
|
return LoadObjectField(string, ThinString::kActualOffset);
|
|
}
|
|
|
|
void CodeStubAssembler::DerefIndirectString(Variable* var_string,
|
|
Node* instance_type) {
|
|
#ifdef DEBUG
|
|
Label can_deref(this), cannot_deref(this);
|
|
BranchIfCanDerefIndirectString(var_string->value(), instance_type, &can_deref,
|
|
&cannot_deref);
|
|
BIND(&cannot_deref);
|
|
DebugBreak(); // Should be able to dereference string.
|
|
Goto(&can_deref);
|
|
BIND(&can_deref);
|
|
#endif // DEBUG
|
|
|
|
STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
|
|
static_cast<int>(ConsString::kFirstOffset));
|
|
var_string->Bind(
|
|
LoadObjectField(var_string->value(), ThinString::kActualOffset));
|
|
}
|
|
|
|
void CodeStubAssembler::MaybeDerefIndirectString(Variable* var_string,
|
|
Node* instance_type,
|
|
Label* did_deref,
|
|
Label* cannot_deref) {
|
|
Label deref(this);
|
|
BranchIfCanDerefIndirectString(var_string->value(), instance_type, &deref,
|
|
cannot_deref);
|
|
|
|
BIND(&deref);
|
|
{
|
|
DerefIndirectString(var_string, instance_type);
|
|
Goto(did_deref);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::MaybeDerefIndirectStrings(Variable* var_left,
|
|
Node* left_instance_type,
|
|
Variable* var_right,
|
|
Node* right_instance_type,
|
|
Label* did_something) {
|
|
Label did_nothing_left(this), did_something_left(this),
|
|
didnt_do_anything(this);
|
|
MaybeDerefIndirectString(var_left, left_instance_type, &did_something_left,
|
|
&did_nothing_left);
|
|
|
|
BIND(&did_something_left);
|
|
{
|
|
MaybeDerefIndirectString(var_right, right_instance_type, did_something,
|
|
did_something);
|
|
}
|
|
|
|
BIND(&did_nothing_left);
|
|
{
|
|
MaybeDerefIndirectString(var_right, right_instance_type, did_something,
|
|
&didnt_do_anything);
|
|
}
|
|
|
|
BIND(&didnt_do_anything);
|
|
// Fall through if neither string was an indirect string.
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::StringAdd(Node* context, TNode<String> left,
|
|
TNode<String> right) {
|
|
TVARIABLE(String, result);
|
|
Label check_right(this), runtime(this, Label::kDeferred), cons(this),
|
|
done(this, &result), done_native(this, &result);
|
|
Counters* counters = isolate()->counters();
|
|
|
|
TNode<Uint32T> left_length = LoadStringLengthAsWord32(left);
|
|
GotoIfNot(Word32Equal(left_length, Uint32Constant(0)), &check_right);
|
|
result = right;
|
|
Goto(&done_native);
|
|
|
|
BIND(&check_right);
|
|
TNode<Uint32T> right_length = LoadStringLengthAsWord32(right);
|
|
GotoIfNot(Word32Equal(right_length, Uint32Constant(0)), &cons);
|
|
result = left;
|
|
Goto(&done_native);
|
|
|
|
BIND(&cons);
|
|
{
|
|
TNode<Uint32T> new_length = Uint32Add(left_length, right_length);
|
|
|
|
// If new length is greater than String::kMaxLength, goto runtime to
|
|
// throw. Note: we also need to invalidate the string length protector, so
|
|
// can't just throw here directly.
|
|
GotoIf(Uint32GreaterThan(new_length, Uint32Constant(String::kMaxLength)),
|
|
&runtime);
|
|
|
|
TVARIABLE(String, var_left, left);
|
|
TVARIABLE(String, var_right, right);
|
|
Variable* input_vars[2] = {&var_left, &var_right};
|
|
Label non_cons(this, 2, input_vars);
|
|
Label slow(this, Label::kDeferred);
|
|
GotoIf(Uint32LessThan(new_length, Uint32Constant(ConsString::kMinLength)),
|
|
&non_cons);
|
|
|
|
result =
|
|
AllocateConsString(new_length, var_left.value(), var_right.value());
|
|
Goto(&done_native);
|
|
|
|
BIND(&non_cons);
|
|
|
|
Comment("Full string concatenate");
|
|
Node* left_instance_type = LoadInstanceType(var_left.value());
|
|
Node* right_instance_type = LoadInstanceType(var_right.value());
|
|
// Compute intersection and difference of instance types.
|
|
|
|
Node* ored_instance_types =
|
|
Word32Or(left_instance_type, right_instance_type);
|
|
Node* xored_instance_types =
|
|
Word32Xor(left_instance_type, right_instance_type);
|
|
|
|
// Check if both strings have the same encoding and both are sequential.
|
|
GotoIf(IsSetWord32(xored_instance_types, kStringEncodingMask), &runtime);
|
|
GotoIf(IsSetWord32(ored_instance_types, kStringRepresentationMask), &slow);
|
|
|
|
TNode<IntPtrT> word_left_length = Signed(ChangeUint32ToWord(left_length));
|
|
TNode<IntPtrT> word_right_length = Signed(ChangeUint32ToWord(right_length));
|
|
|
|
Label two_byte(this);
|
|
GotoIf(Word32Equal(Word32And(ored_instance_types,
|
|
Int32Constant(kStringEncodingMask)),
|
|
Int32Constant(kTwoByteStringTag)),
|
|
&two_byte);
|
|
// One-byte sequential string case
|
|
result = AllocateSeqOneByteString(context, new_length);
|
|
CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
|
|
IntPtrConstant(0), word_left_length,
|
|
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
|
|
CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
|
|
word_left_length, word_right_length,
|
|
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
|
|
Goto(&done_native);
|
|
|
|
BIND(&two_byte);
|
|
{
|
|
// Two-byte sequential string case
|
|
result = AllocateSeqTwoByteString(context, new_length);
|
|
CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
|
|
IntPtrConstant(0), word_left_length,
|
|
String::TWO_BYTE_ENCODING,
|
|
String::TWO_BYTE_ENCODING);
|
|
CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
|
|
word_left_length, word_right_length,
|
|
String::TWO_BYTE_ENCODING,
|
|
String::TWO_BYTE_ENCODING);
|
|
Goto(&done_native);
|
|
}
|
|
|
|
BIND(&slow);
|
|
{
|
|
// Try to unwrap indirect strings, restart the above attempt on success.
|
|
MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right,
|
|
right_instance_type, &non_cons);
|
|
Goto(&runtime);
|
|
}
|
|
}
|
|
BIND(&runtime);
|
|
{
|
|
result = CAST(CallRuntime(Runtime::kStringAdd, context, left, right));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done_native);
|
|
{
|
|
IncrementCounter(counters->string_add_native(), 1);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::StringFromSingleCodePoint(
|
|
TNode<Int32T> codepoint, UnicodeEncoding encoding) {
|
|
VARIABLE(var_result, MachineRepresentation::kTagged, EmptyStringConstant());
|
|
|
|
Label if_isword16(this), if_isword32(this), return_result(this);
|
|
|
|
Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16,
|
|
&if_isword32);
|
|
|
|
BIND(&if_isword16);
|
|
{
|
|
var_result.Bind(StringFromSingleCharCode(codepoint));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_isword32);
|
|
{
|
|
switch (encoding) {
|
|
case UnicodeEncoding::UTF16:
|
|
break;
|
|
case UnicodeEncoding::UTF32: {
|
|
// Convert UTF32 to UTF16 code units, and store as a 32 bit word.
|
|
Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10));
|
|
|
|
// lead = (codepoint >> 10) + LEAD_OFFSET
|
|
Node* lead =
|
|
Int32Add(Word32Shr(codepoint, Int32Constant(10)), lead_offset);
|
|
|
|
// trail = (codepoint & 0x3FF) + 0xDC00;
|
|
Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)),
|
|
Int32Constant(0xDC00));
|
|
|
|
// codpoint = (trail << 16) | lead;
|
|
codepoint = Signed(Word32Or(Word32Shl(trail, Int32Constant(16)), lead));
|
|
break;
|
|
}
|
|
}
|
|
|
|
Node* value = AllocateSeqTwoByteString(2);
|
|
StoreNoWriteBarrier(
|
|
MachineRepresentation::kWord32, value,
|
|
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag),
|
|
codepoint);
|
|
var_result.Bind(value);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_result);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::StringToNumber(TNode<String> input) {
|
|
Label runtime(this, Label::kDeferred);
|
|
Label end(this);
|
|
|
|
TVARIABLE(Number, var_result);
|
|
|
|
// Check if string has a cached array index.
|
|
TNode<Uint32T> hash = LoadNameHashField(input);
|
|
GotoIf(IsSetWord32(hash, Name::kDoesNotContainCachedArrayIndexMask),
|
|
&runtime);
|
|
|
|
var_result =
|
|
SmiTag(Signed(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash)));
|
|
Goto(&end);
|
|
|
|
BIND(&runtime);
|
|
{
|
|
var_result =
|
|
CAST(CallRuntime(Runtime::kStringToNumber, NoContextConstant(), input));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::NumberToString(TNode<Number> input) {
|
|
TVARIABLE(String, result);
|
|
TVARIABLE(Smi, smi_input);
|
|
Label runtime(this, Label::kDeferred), if_smi(this), if_heap_number(this),
|
|
done(this, &result);
|
|
|
|
// Load the number string cache.
|
|
Node* number_string_cache = LoadRoot(RootIndex::kNumberStringCache);
|
|
|
|
// Make the hash mask from the length of the number string cache. It
|
|
// contains two elements (number and string) for each cache entry.
|
|
// TODO(ishell): cleanup mask handling.
|
|
Node* mask =
|
|
BitcastTaggedToWord(LoadFixedArrayBaseLength(number_string_cache));
|
|
TNode<IntPtrT> one = IntPtrConstant(1);
|
|
mask = IntPtrSub(mask, one);
|
|
|
|
GotoIfNot(TaggedIsSmi(input), &if_heap_number);
|
|
smi_input = CAST(input);
|
|
Goto(&if_smi);
|
|
|
|
BIND(&if_heap_number);
|
|
{
|
|
TNode<HeapNumber> heap_number_input = CAST(input);
|
|
// Try normalizing the HeapNumber.
|
|
TryHeapNumberToSmi(heap_number_input, smi_input, &if_smi);
|
|
|
|
// Make a hash from the two 32-bit values of the double.
|
|
TNode<Int32T> low =
|
|
LoadObjectField<Int32T>(heap_number_input, HeapNumber::kValueOffset);
|
|
TNode<Int32T> high = LoadObjectField<Int32T>(
|
|
heap_number_input, HeapNumber::kValueOffset + kIntSize);
|
|
TNode<Word32T> hash = Word32Xor(low, high);
|
|
TNode<WordT> word_hash = WordShl(ChangeInt32ToIntPtr(hash), one);
|
|
TNode<WordT> index =
|
|
WordAnd(word_hash, WordSar(mask, SmiShiftBitsConstant()));
|
|
|
|
// Cache entry's key must be a heap number
|
|
Node* number_key =
|
|
UnsafeLoadFixedArrayElement(CAST(number_string_cache), index);
|
|
GotoIf(TaggedIsSmi(number_key), &runtime);
|
|
GotoIfNot(IsHeapNumber(number_key), &runtime);
|
|
|
|
// Cache entry's key must match the heap number value we're looking for.
|
|
Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset,
|
|
MachineType::Int32());
|
|
Node* high_compare = LoadObjectField(
|
|
number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32());
|
|
GotoIfNot(Word32Equal(low, low_compare), &runtime);
|
|
GotoIfNot(Word32Equal(high, high_compare), &runtime);
|
|
|
|
// Heap number match, return value from cache entry.
|
|
result = CAST(UnsafeLoadFixedArrayElement(CAST(number_string_cache), index,
|
|
kTaggedSize));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
// Load the smi key, make sure it matches the smi we're looking for.
|
|
Node* smi_index = BitcastWordToTagged(
|
|
WordAnd(WordShl(BitcastTaggedToWord(smi_input.value()), one), mask));
|
|
Node* smi_key = UnsafeLoadFixedArrayElement(CAST(number_string_cache),
|
|
smi_index, 0, SMI_PARAMETERS);
|
|
GotoIf(WordNotEqual(smi_key, smi_input.value()), &runtime);
|
|
|
|
// Smi match, return value from cache entry.
|
|
result = CAST(UnsafeLoadFixedArrayElement(
|
|
CAST(number_string_cache), smi_index, kTaggedSize, SMI_PARAMETERS));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&runtime);
|
|
{
|
|
// No cache entry, go to the runtime.
|
|
result =
|
|
CAST(CallRuntime(Runtime::kNumberToString, NoContextConstant(), input));
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::NonNumberToNumberOrNumeric(
|
|
Node* context, Node* input, Object::Conversion mode,
|
|
BigIntHandling bigint_handling) {
|
|
CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input)));
|
|
CSA_ASSERT(this, Word32BinaryNot(IsHeapNumber(input)));
|
|
|
|
// We might need to loop once here due to ToPrimitive conversions.
|
|
VARIABLE(var_input, MachineRepresentation::kTagged, input);
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
Label loop(this, &var_input);
|
|
Label end(this);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
// Load the current {input} value (known to be a HeapObject).
|
|
Node* input = var_input.value();
|
|
|
|
// Dispatch on the {input} instance type.
|
|
Node* input_instance_type = LoadInstanceType(input);
|
|
Label if_inputisstring(this), if_inputisoddball(this),
|
|
if_inputisbigint(this), if_inputisreceiver(this, Label::kDeferred),
|
|
if_inputisother(this, Label::kDeferred);
|
|
GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring);
|
|
GotoIf(IsBigIntInstanceType(input_instance_type), &if_inputisbigint);
|
|
GotoIf(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE),
|
|
&if_inputisoddball);
|
|
Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver,
|
|
&if_inputisother);
|
|
|
|
BIND(&if_inputisstring);
|
|
{
|
|
// The {input} is a String, use the fast stub to convert it to a Number.
|
|
TNode<String> string_input = CAST(input);
|
|
var_result.Bind(StringToNumber(string_input));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_inputisbigint);
|
|
if (mode == Object::Conversion::kToNumeric) {
|
|
var_result.Bind(input);
|
|
Goto(&end);
|
|
} else {
|
|
DCHECK_EQ(mode, Object::Conversion::kToNumber);
|
|
if (bigint_handling == BigIntHandling::kThrow) {
|
|
Goto(&if_inputisother);
|
|
} else {
|
|
DCHECK_EQ(bigint_handling, BigIntHandling::kConvertToNumber);
|
|
var_result.Bind(CallRuntime(Runtime::kBigIntToNumber, context, input));
|
|
Goto(&end);
|
|
}
|
|
}
|
|
|
|
BIND(&if_inputisoddball);
|
|
{
|
|
// The {input} is an Oddball, we just need to load the Number value of it.
|
|
var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_inputisreceiver);
|
|
{
|
|
// The {input} is a JSReceiver, we need to convert it to a Primitive first
|
|
// using the ToPrimitive type conversion, preferably yielding a Number.
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
|
|
isolate(), ToPrimitiveHint::kNumber);
|
|
Node* result = CallStub(callable, context, input);
|
|
|
|
// Check if the {result} is already a Number/Numeric.
|
|
Label if_done(this), if_notdone(this);
|
|
Branch(mode == Object::Conversion::kToNumber ? IsNumber(result)
|
|
: IsNumeric(result),
|
|
&if_done, &if_notdone);
|
|
|
|
BIND(&if_done);
|
|
{
|
|
// The ToPrimitive conversion already gave us a Number/Numeric, so we're
|
|
// done.
|
|
var_result.Bind(result);
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_notdone);
|
|
{
|
|
// We now have a Primitive {result}, but it's not yet a Number/Numeric.
|
|
var_input.Bind(result);
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_inputisother);
|
|
{
|
|
// The {input} is something else (e.g. Symbol), let the runtime figure
|
|
// out the correct exception.
|
|
// Note: We cannot tail call to the runtime here, as js-to-wasm
|
|
// trampolines also use this code currently, and they declare all
|
|
// outgoing parameters as untagged, while we would push a tagged
|
|
// object here.
|
|
auto function_id = mode == Object::Conversion::kToNumber
|
|
? Runtime::kToNumber
|
|
: Runtime::kToNumeric;
|
|
var_result.Bind(CallRuntime(function_id, context, input));
|
|
Goto(&end);
|
|
}
|
|
}
|
|
|
|
BIND(&end);
|
|
if (mode == Object::Conversion::kToNumeric) {
|
|
CSA_ASSERT(this, IsNumeric(var_result.value()));
|
|
} else {
|
|
DCHECK_EQ(mode, Object::Conversion::kToNumber);
|
|
CSA_ASSERT(this, IsNumber(var_result.value()));
|
|
}
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NonNumberToNumber(
|
|
SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
|
|
BigIntHandling bigint_handling) {
|
|
return CAST(NonNumberToNumberOrNumeric(
|
|
context, input, Object::Conversion::kToNumber, bigint_handling));
|
|
}
|
|
|
|
TNode<Numeric> CodeStubAssembler::NonNumberToNumeric(
|
|
SloppyTNode<Context> context, SloppyTNode<HeapObject> input) {
|
|
Node* result = NonNumberToNumberOrNumeric(context, input,
|
|
Object::Conversion::kToNumeric);
|
|
CSA_SLOW_ASSERT(this, IsNumeric(result));
|
|
return UncheckedCast<Numeric>(result);
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ToNumber_Inline(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
TVARIABLE(Number, var_result);
|
|
Label end(this), not_smi(this, Label::kDeferred);
|
|
|
|
GotoIfNot(TaggedIsSmi(input), ¬_smi);
|
|
var_result = CAST(input);
|
|
Goto(&end);
|
|
|
|
BIND(¬_smi);
|
|
{
|
|
var_result =
|
|
Select<Number>(IsHeapNumber(CAST(input)), [=] { return CAST(input); },
|
|
[=] {
|
|
return CAST(CallBuiltin(Builtins::kNonNumberToNumber,
|
|
context, input));
|
|
});
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ToNumber(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input,
|
|
BigIntHandling bigint_handling) {
|
|
TVARIABLE(Number, var_result);
|
|
Label end(this);
|
|
|
|
Label not_smi(this, Label::kDeferred);
|
|
GotoIfNot(TaggedIsSmi(input), ¬_smi);
|
|
TNode<Smi> input_smi = CAST(input);
|
|
var_result = input_smi;
|
|
Goto(&end);
|
|
|
|
BIND(¬_smi);
|
|
{
|
|
Label not_heap_number(this, Label::kDeferred);
|
|
TNode<HeapObject> input_ho = CAST(input);
|
|
GotoIfNot(IsHeapNumber(input_ho), ¬_heap_number);
|
|
|
|
TNode<HeapNumber> input_hn = CAST(input_ho);
|
|
var_result = input_hn;
|
|
Goto(&end);
|
|
|
|
BIND(¬_heap_number);
|
|
{
|
|
var_result = NonNumberToNumber(context, input_ho, bigint_handling);
|
|
Goto(&end);
|
|
}
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<BigInt> CodeStubAssembler::ToBigInt(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
TVARIABLE(BigInt, var_result);
|
|
Label if_bigint(this), done(this), if_throw(this);
|
|
|
|
GotoIf(TaggedIsSmi(input), &if_throw);
|
|
GotoIf(IsBigInt(CAST(input)), &if_bigint);
|
|
var_result = CAST(CallRuntime(Runtime::kToBigInt, context, input));
|
|
Goto(&done);
|
|
|
|
BIND(&if_bigint);
|
|
var_result = CAST(input);
|
|
Goto(&done);
|
|
|
|
BIND(&if_throw);
|
|
ThrowTypeError(context, MessageTemplate::kBigIntFromObject, input);
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done,
|
|
Variable* var_numeric) {
|
|
TaggedToNumeric(context, value, done, var_numeric, nullptr);
|
|
}
|
|
|
|
void CodeStubAssembler::TaggedToNumericWithFeedback(Node* context, Node* value,
|
|
Label* done,
|
|
Variable* var_numeric,
|
|
Variable* var_feedback) {
|
|
DCHECK_NOT_NULL(var_feedback);
|
|
TaggedToNumeric(context, value, done, var_numeric, var_feedback);
|
|
}
|
|
|
|
void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done,
|
|
Variable* var_numeric,
|
|
Variable* var_feedback) {
|
|
var_numeric->Bind(value);
|
|
Label if_smi(this), if_heapnumber(this), if_bigint(this), if_oddball(this);
|
|
GotoIf(TaggedIsSmi(value), &if_smi);
|
|
Node* map = LoadMap(value);
|
|
GotoIf(IsHeapNumberMap(map), &if_heapnumber);
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
GotoIf(IsBigIntInstanceType(instance_type), &if_bigint);
|
|
|
|
// {value} is not a Numeric yet.
|
|
GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball);
|
|
var_numeric->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context, value));
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny);
|
|
Goto(done);
|
|
|
|
BIND(&if_smi);
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall);
|
|
Goto(done);
|
|
|
|
BIND(&if_heapnumber);
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumber);
|
|
Goto(done);
|
|
|
|
BIND(&if_bigint);
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kBigInt);
|
|
Goto(done);
|
|
|
|
BIND(&if_oddball);
|
|
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumberOrOddball);
|
|
var_numeric->Bind(LoadObjectField(value, Oddball::kToNumberOffset));
|
|
Goto(done);
|
|
}
|
|
|
|
// ES#sec-touint32
|
|
TNode<Number> CodeStubAssembler::ToUint32(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
Node* const float_zero = Float64Constant(0.0);
|
|
Node* const float_two_32 = Float64Constant(static_cast<double>(1ULL << 32));
|
|
|
|
Label out(this);
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged, input);
|
|
|
|
// Early exit for positive smis.
|
|
{
|
|
// TODO(jgruber): This branch and the recheck below can be removed once we
|
|
// have a ToNumber with multiple exits.
|
|
Label next(this, Label::kDeferred);
|
|
Branch(TaggedIsPositiveSmi(input), &out, &next);
|
|
BIND(&next);
|
|
}
|
|
|
|
Node* const number = ToNumber(context, input);
|
|
var_result.Bind(number);
|
|
|
|
// Perhaps we have a positive smi now.
|
|
{
|
|
Label next(this, Label::kDeferred);
|
|
Branch(TaggedIsPositiveSmi(number), &out, &next);
|
|
BIND(&next);
|
|
}
|
|
|
|
Label if_isnegativesmi(this), if_isheapnumber(this);
|
|
Branch(TaggedIsSmi(number), &if_isnegativesmi, &if_isheapnumber);
|
|
|
|
BIND(&if_isnegativesmi);
|
|
{
|
|
Node* const uint32_value = SmiToInt32(number);
|
|
Node* float64_value = ChangeUint32ToFloat64(uint32_value);
|
|
var_result.Bind(AllocateHeapNumberWithValue(float64_value));
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&if_isheapnumber);
|
|
{
|
|
Label return_zero(this);
|
|
Node* const value = LoadHeapNumberValue(number);
|
|
|
|
{
|
|
// +-0.
|
|
Label next(this);
|
|
Branch(Float64Equal(value, float_zero), &return_zero, &next);
|
|
BIND(&next);
|
|
}
|
|
|
|
{
|
|
// NaN.
|
|
Label next(this);
|
|
Branch(Float64Equal(value, value), &next, &return_zero);
|
|
BIND(&next);
|
|
}
|
|
|
|
{
|
|
// +Infinity.
|
|
Label next(this);
|
|
Node* const positive_infinity =
|
|
Float64Constant(std::numeric_limits<double>::infinity());
|
|
Branch(Float64Equal(value, positive_infinity), &return_zero, &next);
|
|
BIND(&next);
|
|
}
|
|
|
|
{
|
|
// -Infinity.
|
|
Label next(this);
|
|
Node* const negative_infinity =
|
|
Float64Constant(-1.0 * std::numeric_limits<double>::infinity());
|
|
Branch(Float64Equal(value, negative_infinity), &return_zero, &next);
|
|
BIND(&next);
|
|
}
|
|
|
|
// * Let int be the mathematical value that is the same sign as number and
|
|
// whose magnitude is floor(abs(number)).
|
|
// * Let int32bit be int modulo 2^32.
|
|
// * Return int32bit.
|
|
{
|
|
Node* x = Float64Trunc(value);
|
|
x = Float64Mod(x, float_two_32);
|
|
x = Float64Add(x, float_two_32);
|
|
x = Float64Mod(x, float_two_32);
|
|
|
|
Node* const result = ChangeFloat64ToTagged(x);
|
|
var_result.Bind(result);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&return_zero);
|
|
{
|
|
var_result.Bind(SmiConstant(0));
|
|
Goto(&out);
|
|
}
|
|
}
|
|
|
|
BIND(&out);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::ToString_Inline(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
VARIABLE(var_result, MachineRepresentation::kTagged, input);
|
|
Label stub_call(this, Label::kDeferred), out(this);
|
|
|
|
GotoIf(TaggedIsSmi(input), &stub_call);
|
|
Branch(IsString(CAST(input)), &out, &stub_call);
|
|
|
|
BIND(&stub_call);
|
|
var_result.Bind(CallBuiltin(Builtins::kToString, context, input));
|
|
Goto(&out);
|
|
|
|
BIND(&out);
|
|
return CAST(var_result.value());
|
|
}
|
|
|
|
Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) {
|
|
Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this);
|
|
VARIABLE(result, MachineRepresentation::kTagged);
|
|
Label done(this, &result);
|
|
|
|
BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
|
|
|
|
BIND(&if_isreceiver);
|
|
{
|
|
// Convert {input} to a primitive first passing Number hint.
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
|
|
result.Bind(CallStub(callable, context, input));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_isnotreceiver);
|
|
{
|
|
result.Bind(input);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<JSReceiver> CodeStubAssembler::ToObject(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
return CAST(CallBuiltin(Builtins::kToObject, context, input));
|
|
}
|
|
|
|
TNode<JSReceiver> CodeStubAssembler::ToObject_Inline(TNode<Context> context,
|
|
TNode<Object> input) {
|
|
TVARIABLE(JSReceiver, result);
|
|
Label if_isreceiver(this), if_isnotreceiver(this, Label::kDeferred);
|
|
Label done(this);
|
|
|
|
BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
|
|
|
|
BIND(&if_isreceiver);
|
|
{
|
|
result = CAST(input);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_isnotreceiver);
|
|
{
|
|
result = ToObject(context, input);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::ToSmiIndex(TNode<Context> context,
|
|
TNode<Object> input,
|
|
Label* range_error) {
|
|
TVARIABLE(Smi, result);
|
|
Label check_undefined(this), return_zero(this), defined(this),
|
|
negative_check(this), done(this);
|
|
|
|
GotoIfNot(TaggedIsSmi(input), &check_undefined);
|
|
result = CAST(input);
|
|
Goto(&negative_check);
|
|
|
|
BIND(&check_undefined);
|
|
Branch(IsUndefined(input), &return_zero, &defined);
|
|
|
|
BIND(&defined);
|
|
TNode<Number> integer_input =
|
|
CAST(CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input));
|
|
GotoIfNot(TaggedIsSmi(integer_input), range_error);
|
|
result = CAST(integer_input);
|
|
Goto(&negative_check);
|
|
|
|
BIND(&negative_check);
|
|
Branch(SmiLessThan(result.value(), SmiConstant(0)), range_error, &done);
|
|
|
|
BIND(&return_zero);
|
|
result = SmiConstant(0);
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::ToSmiLength(TNode<Context> context,
|
|
TNode<Object> input,
|
|
Label* range_error) {
|
|
TVARIABLE(Smi, result);
|
|
Label to_integer(this), negative_check(this),
|
|
heap_number_negative_check(this), return_zero(this), done(this);
|
|
|
|
GotoIfNot(TaggedIsSmi(input), &to_integer);
|
|
result = CAST(input);
|
|
Goto(&negative_check);
|
|
|
|
BIND(&to_integer);
|
|
{
|
|
TNode<Number> integer_input = CAST(
|
|
CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input));
|
|
GotoIfNot(TaggedIsSmi(integer_input), &heap_number_negative_check);
|
|
result = CAST(integer_input);
|
|
Goto(&negative_check);
|
|
|
|
// integer_input can still be a negative HeapNumber here.
|
|
BIND(&heap_number_negative_check);
|
|
TNode<HeapNumber> heap_number_input = CAST(integer_input);
|
|
Branch(IsTrue(CallBuiltin(Builtins::kLessThan, context, heap_number_input,
|
|
SmiConstant(0))),
|
|
&return_zero, range_error);
|
|
}
|
|
|
|
BIND(&negative_check);
|
|
Branch(SmiLessThan(result.value(), SmiConstant(0)), &return_zero, &done);
|
|
|
|
BIND(&return_zero);
|
|
result = SmiConstant(0);
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ToLength_Inline(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input) {
|
|
TNode<Smi> smi_zero = SmiConstant(0);
|
|
return Select<Number>(
|
|
TaggedIsSmi(input), [=] { return SmiMax(CAST(input), smi_zero); },
|
|
[=] { return CAST(CallBuiltin(Builtins::kToLength, context, input)); });
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ToInteger_Inline(
|
|
SloppyTNode<Context> context, SloppyTNode<Object> input,
|
|
ToIntegerTruncationMode mode) {
|
|
Builtins::Name builtin = (mode == kNoTruncation)
|
|
? Builtins::kToInteger
|
|
: Builtins::kToInteger_TruncateMinusZero;
|
|
return Select<Number>(
|
|
TaggedIsSmi(input), [=] { return CAST(input); },
|
|
[=] { return CAST(CallBuiltin(builtin, context, input)); });
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::ToInteger(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> input,
|
|
ToIntegerTruncationMode mode) {
|
|
// We might need to loop once for ToNumber conversion.
|
|
TVARIABLE(Object, var_arg, input);
|
|
Label loop(this, &var_arg), out(this);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
// Shared entry points.
|
|
Label return_zero(this, Label::kDeferred);
|
|
|
|
// Load the current {arg} value.
|
|
TNode<Object> arg = var_arg.value();
|
|
|
|
// Check if {arg} is a Smi.
|
|
GotoIf(TaggedIsSmi(arg), &out);
|
|
|
|
// Check if {arg} is a HeapNumber.
|
|
Label if_argisheapnumber(this),
|
|
if_argisnotheapnumber(this, Label::kDeferred);
|
|
Branch(IsHeapNumber(CAST(arg)), &if_argisheapnumber,
|
|
&if_argisnotheapnumber);
|
|
|
|
BIND(&if_argisheapnumber);
|
|
{
|
|
TNode<HeapNumber> arg_hn = CAST(arg);
|
|
// Load the floating-point value of {arg}.
|
|
Node* arg_value = LoadHeapNumberValue(arg_hn);
|
|
|
|
// Check if {arg} is NaN.
|
|
GotoIfNot(Float64Equal(arg_value, arg_value), &return_zero);
|
|
|
|
// Truncate {arg} towards zero.
|
|
TNode<Float64T> value = Float64Trunc(arg_value);
|
|
|
|
if (mode == kTruncateMinusZero) {
|
|
// Truncate -0.0 to 0.
|
|
GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero);
|
|
}
|
|
|
|
var_arg = ChangeFloat64ToTagged(value);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&if_argisnotheapnumber);
|
|
{
|
|
// Need to convert {arg} to a Number first.
|
|
var_arg = UncheckedCast<Object>(
|
|
CallBuiltin(Builtins::kNonNumberToNumber, context, arg));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&return_zero);
|
|
var_arg = SmiConstant(0);
|
|
Goto(&out);
|
|
}
|
|
|
|
BIND(&out);
|
|
if (mode == kTruncateMinusZero) {
|
|
CSA_ASSERT(this, IsNumberNormalized(CAST(var_arg.value())));
|
|
}
|
|
return CAST(var_arg.value());
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::DecodeWord32(SloppyTNode<Word32T> word32,
|
|
uint32_t shift, uint32_t mask) {
|
|
return UncheckedCast<Uint32T>(Word32Shr(
|
|
Word32And(word32, Int32Constant(mask)), static_cast<int>(shift)));
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::DecodeWord(SloppyTNode<WordT> word,
|
|
uint32_t shift, uint32_t mask) {
|
|
return Unsigned(
|
|
WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift)));
|
|
}
|
|
|
|
TNode<WordT> CodeStubAssembler::UpdateWord(TNode<WordT> word,
|
|
TNode<WordT> value, uint32_t shift,
|
|
uint32_t mask) {
|
|
TNode<WordT> encoded_value = WordShl(value, static_cast<int>(shift));
|
|
TNode<IntPtrT> inverted_mask = IntPtrConstant(~static_cast<intptr_t>(mask));
|
|
// Ensure the {value} fits fully in the mask.
|
|
CSA_ASSERT(this, WordEqual(WordAnd(encoded_value, inverted_mask),
|
|
IntPtrConstant(0)));
|
|
return WordOr(WordAnd(word, inverted_mask), encoded_value);
|
|
}
|
|
|
|
void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) {
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Node* counter_address =
|
|
ExternalConstant(ExternalReference::Create(counter));
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address,
|
|
Int32Constant(value));
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) {
|
|
DCHECK_GT(delta, 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Node* counter_address =
|
|
ExternalConstant(ExternalReference::Create(counter));
|
|
// This operation has to be exactly 32-bit wide in case the external
|
|
// reference table redirects the counter to a uint32_t dummy_stats_counter_
|
|
// field.
|
|
Node* value = Load(MachineType::Int32(), counter_address);
|
|
value = Int32Add(value, Int32Constant(delta));
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) {
|
|
DCHECK_GT(delta, 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Node* counter_address =
|
|
ExternalConstant(ExternalReference::Create(counter));
|
|
// This operation has to be exactly 32-bit wide in case the external
|
|
// reference table redirects the counter to a uint32_t dummy_stats_counter_
|
|
// field.
|
|
Node* value = Load(MachineType::Int32(), counter_address);
|
|
value = Int32Sub(value, Int32Constant(delta));
|
|
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::Increment(Variable* variable, int value,
|
|
ParameterMode mode) {
|
|
DCHECK_IMPLIES(mode == INTPTR_PARAMETERS,
|
|
variable->rep() == MachineType::PointerRepresentation());
|
|
DCHECK_IMPLIES(mode == SMI_PARAMETERS, CanBeTaggedSigned(variable->rep()));
|
|
variable->Bind(IntPtrOrSmiAdd(variable->value(),
|
|
IntPtrOrSmiConstant(value, mode), mode));
|
|
}
|
|
|
|
void CodeStubAssembler::Use(Label* label) {
|
|
GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label);
|
|
}
|
|
|
|
void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
|
|
Variable* var_index, Label* if_keyisunique,
|
|
Variable* var_unique, Label* if_bailout,
|
|
Label* if_notinternalized) {
|
|
DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep());
|
|
DCHECK_EQ(MachineRepresentation::kTagged, var_unique->rep());
|
|
Comment("TryToName");
|
|
|
|
Label if_hascachedindex(this), if_keyisnotindex(this), if_thinstring(this),
|
|
if_keyisother(this, Label::kDeferred);
|
|
// Handle Smi and HeapNumber keys.
|
|
var_index->Bind(TryToIntptr(key, &if_keyisnotindex));
|
|
Goto(if_keyisindex);
|
|
|
|
BIND(&if_keyisnotindex);
|
|
Node* key_map = LoadMap(key);
|
|
var_unique->Bind(key);
|
|
// Symbols are unique.
|
|
GotoIf(IsSymbolMap(key_map), if_keyisunique);
|
|
Node* key_instance_type = LoadMapInstanceType(key_map);
|
|
// Miss if |key| is not a String.
|
|
STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
|
|
GotoIfNot(IsStringInstanceType(key_instance_type), &if_keyisother);
|
|
|
|
// |key| is a String. Check if it has a cached array index.
|
|
Node* hash = LoadNameHashField(key);
|
|
GotoIf(IsClearWord32(hash, Name::kDoesNotContainCachedArrayIndexMask),
|
|
&if_hascachedindex);
|
|
// No cached array index. If the string knows that it contains an index,
|
|
// then it must be an uncacheable index. Handle this case in the runtime.
|
|
GotoIf(IsClearWord32(hash, Name::kIsNotArrayIndexMask), if_bailout);
|
|
// Check if we have a ThinString.
|
|
GotoIf(InstanceTypeEqual(key_instance_type, THIN_STRING_TYPE),
|
|
&if_thinstring);
|
|
GotoIf(InstanceTypeEqual(key_instance_type, THIN_ONE_BYTE_STRING_TYPE),
|
|
&if_thinstring);
|
|
// Finally, check if |key| is internalized.
|
|
STATIC_ASSERT(kNotInternalizedTag != 0);
|
|
GotoIf(IsSetWord32(key_instance_type, kIsNotInternalizedMask),
|
|
if_notinternalized != nullptr ? if_notinternalized : if_bailout);
|
|
Goto(if_keyisunique);
|
|
|
|
BIND(&if_thinstring);
|
|
var_unique->Bind(LoadObjectField(key, ThinString::kActualOffset));
|
|
Goto(if_keyisunique);
|
|
|
|
BIND(&if_hascachedindex);
|
|
var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash));
|
|
Goto(if_keyisindex);
|
|
|
|
BIND(&if_keyisother);
|
|
GotoIfNot(InstanceTypeEqual(key_instance_type, ODDBALL_TYPE), if_bailout);
|
|
var_unique->Bind(LoadObjectField(key, Oddball::kToStringOffset));
|
|
Goto(if_keyisunique);
|
|
}
|
|
|
|
void CodeStubAssembler::TryInternalizeString(
|
|
Node* string, Label* if_index, Variable* var_index, Label* if_internalized,
|
|
Variable* var_internalized, Label* if_not_internalized, Label* if_bailout) {
|
|
DCHECK(var_index->rep() == MachineType::PointerRepresentation());
|
|
DCHECK_EQ(var_internalized->rep(), MachineRepresentation::kTagged);
|
|
CSA_SLOW_ASSERT(this, IsString(string));
|
|
Node* function =
|
|
ExternalConstant(ExternalReference::try_internalize_string_function());
|
|
Node* const isolate_ptr =
|
|
ExternalConstant(ExternalReference::isolate_address(isolate()));
|
|
Node* result =
|
|
CallCFunction(function, MachineType::AnyTagged(),
|
|
std::make_pair(MachineType::Pointer(), isolate_ptr),
|
|
std::make_pair(MachineType::AnyTagged(), string));
|
|
Label internalized(this);
|
|
GotoIf(TaggedIsNotSmi(result), &internalized);
|
|
Node* word_result = SmiUntag(result);
|
|
GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kNotFound)),
|
|
if_not_internalized);
|
|
GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kUnsupported)),
|
|
if_bailout);
|
|
var_index->Bind(word_result);
|
|
Goto(if_index);
|
|
|
|
BIND(&internalized);
|
|
var_internalized->Bind(result);
|
|
Goto(if_internalized);
|
|
}
|
|
|
|
template <typename Dictionary>
|
|
TNode<IntPtrT> CodeStubAssembler::EntryToIndex(TNode<IntPtrT> entry,
|
|
int field_index) {
|
|
TNode<IntPtrT> entry_index =
|
|
IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize));
|
|
return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex +
|
|
field_index));
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::LoadDescriptorArrayElement(
|
|
TNode<DescriptorArray> object, Node* index, int additional_offset) {
|
|
return LoadArrayElement(object, DescriptorArray::kHeaderSize, index,
|
|
additional_offset);
|
|
}
|
|
|
|
TNode<Name> CodeStubAssembler::LoadKeyByKeyIndex(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
|
|
return CAST(LoadDescriptorArrayElement(container, key_index, 0));
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadDetailsByKeyIndex(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
|
|
const int kKeyToDetails =
|
|
DescriptorArray::ToDetailsIndex(0) - DescriptorArray::ToKeyIndex(0);
|
|
return Unsigned(
|
|
LoadAndUntagToWord32ArrayElement(container, DescriptorArray::kHeaderSize,
|
|
key_index, kKeyToDetails * kTaggedSize));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadValueByKeyIndex(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
|
|
const int kKeyToValue =
|
|
DescriptorArray::ToValueIndex(0) - DescriptorArray::ToKeyIndex(0);
|
|
return CAST(LoadDescriptorArrayElement(container, key_index,
|
|
kKeyToValue * kTaggedSize));
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByKeyIndex(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
|
|
const int kKeyToValue =
|
|
DescriptorArray::ToValueIndex(0) - DescriptorArray::ToKeyIndex(0);
|
|
return LoadDescriptorArrayElement(container, key_index,
|
|
kKeyToValue * kTaggedSize);
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::DescriptorEntryToIndex(
|
|
TNode<IntPtrT> descriptor_entry) {
|
|
return IntPtrMul(descriptor_entry,
|
|
IntPtrConstant(DescriptorArray::kEntrySize));
|
|
}
|
|
|
|
TNode<Name> CodeStubAssembler::LoadKeyByDescriptorEntry(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
|
|
return CAST(LoadDescriptorArrayElement(
|
|
container, DescriptorEntryToIndex(descriptor_entry),
|
|
DescriptorArray::ToKeyIndex(0) * kTaggedSize));
|
|
}
|
|
|
|
TNode<Name> CodeStubAssembler::LoadKeyByDescriptorEntry(
|
|
TNode<DescriptorArray> container, int descriptor_entry) {
|
|
return CAST(LoadDescriptorArrayElement(
|
|
container, IntPtrConstant(0),
|
|
DescriptorArray::ToKeyIndex(descriptor_entry) * kTaggedSize));
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadDetailsByDescriptorEntry(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
|
|
return Unsigned(LoadAndUntagToWord32ArrayElement(
|
|
container, DescriptorArray::kHeaderSize,
|
|
DescriptorEntryToIndex(descriptor_entry),
|
|
DescriptorArray::ToDetailsIndex(0) * kTaggedSize));
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadDetailsByDescriptorEntry(
|
|
TNode<DescriptorArray> container, int descriptor_entry) {
|
|
return Unsigned(LoadAndUntagToWord32ArrayElement(
|
|
container, DescriptorArray::kHeaderSize, IntPtrConstant(0),
|
|
DescriptorArray::ToDetailsIndex(descriptor_entry) * kTaggedSize));
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::LoadValueByDescriptorEntry(
|
|
TNode<DescriptorArray> container, int descriptor_entry) {
|
|
return CAST(LoadDescriptorArrayElement(
|
|
container, IntPtrConstant(0),
|
|
DescriptorArray::ToValueIndex(descriptor_entry) * kTaggedSize));
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByDescriptorEntry(
|
|
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
|
|
return LoadDescriptorArrayElement(
|
|
container, DescriptorEntryToIndex(descriptor_entry),
|
|
DescriptorArray::ToValueIndex(0) * kTaggedSize);
|
|
}
|
|
|
|
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NameDictionary>(
|
|
TNode<IntPtrT>, int);
|
|
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<GlobalDictionary>(
|
|
TNode<IntPtrT>, int);
|
|
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NumberDictionary>(
|
|
TNode<IntPtrT>, int);
|
|
|
|
// This must be kept in sync with HashTableBase::ComputeCapacity().
|
|
TNode<IntPtrT> CodeStubAssembler::HashTableComputeCapacity(
|
|
TNode<IntPtrT> at_least_space_for) {
|
|
TNode<IntPtrT> capacity = IntPtrRoundUpToPowerOfTwo32(
|
|
IntPtrAdd(at_least_space_for, WordShr(at_least_space_for, 1)));
|
|
return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity));
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::IntPtrMax(SloppyTNode<IntPtrT> left,
|
|
SloppyTNode<IntPtrT> right) {
|
|
intptr_t left_constant;
|
|
intptr_t right_constant;
|
|
if (ToIntPtrConstant(left, left_constant) &&
|
|
ToIntPtrConstant(right, right_constant)) {
|
|
return IntPtrConstant(std::max(left_constant, right_constant));
|
|
}
|
|
return SelectConstant<IntPtrT>(IntPtrGreaterThanOrEqual(left, right), left,
|
|
right);
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::IntPtrMin(SloppyTNode<IntPtrT> left,
|
|
SloppyTNode<IntPtrT> right) {
|
|
intptr_t left_constant;
|
|
intptr_t right_constant;
|
|
if (ToIntPtrConstant(left, left_constant) &&
|
|
ToIntPtrConstant(right, right_constant)) {
|
|
return IntPtrConstant(std::min(left_constant, right_constant));
|
|
}
|
|
return SelectConstant<IntPtrT>(IntPtrLessThanOrEqual(left, right), left,
|
|
right);
|
|
}
|
|
|
|
template <>
|
|
TNode<HeapObject> CodeStubAssembler::LoadName<NameDictionary>(
|
|
TNode<HeapObject> key) {
|
|
CSA_ASSERT(this, Word32Or(IsTheHole(key), IsName(key)));
|
|
return key;
|
|
}
|
|
|
|
template <>
|
|
TNode<HeapObject> CodeStubAssembler::LoadName<GlobalDictionary>(
|
|
TNode<HeapObject> key) {
|
|
TNode<PropertyCell> property_cell = CAST(key);
|
|
return CAST(LoadObjectField(property_cell, PropertyCell::kNameOffset));
|
|
}
|
|
|
|
template <typename Dictionary>
|
|
void CodeStubAssembler::NameDictionaryLookup(
|
|
TNode<Dictionary> dictionary, TNode<Name> unique_name, Label* if_found,
|
|
TVariable<IntPtrT>* var_name_index, Label* if_not_found, LookupMode mode) {
|
|
static_assert(std::is_same<Dictionary, NameDictionary>::value ||
|
|
std::is_same<Dictionary, GlobalDictionary>::value,
|
|
"Unexpected NameDictionary");
|
|
DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
|
|
DCHECK_IMPLIES(mode == kFindInsertionIndex, if_found == nullptr);
|
|
Comment("NameDictionaryLookup");
|
|
CSA_ASSERT(this, IsUniqueName(unique_name));
|
|
|
|
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<Dictionary>(dictionary));
|
|
TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1));
|
|
TNode<WordT> hash = ChangeUint32ToWord(LoadNameHash(unique_name));
|
|
|
|
// See Dictionary::FirstProbe().
|
|
TNode<IntPtrT> count = IntPtrConstant(0);
|
|
TNode<IntPtrT> entry = Signed(WordAnd(hash, mask));
|
|
Node* undefined = UndefinedConstant();
|
|
|
|
// Appease the variable merging algorithm for "Goto(&loop)" below.
|
|
*var_name_index = IntPtrConstant(0);
|
|
|
|
TVARIABLE(IntPtrT, var_count, count);
|
|
TVARIABLE(IntPtrT, var_entry, entry);
|
|
Variable* loop_vars[] = {&var_count, &var_entry, var_name_index};
|
|
Label loop(this, arraysize(loop_vars), loop_vars);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
TNode<IntPtrT> entry = var_entry.value();
|
|
|
|
TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry);
|
|
*var_name_index = index;
|
|
|
|
TNode<HeapObject> current =
|
|
CAST(UnsafeLoadFixedArrayElement(dictionary, index));
|
|
GotoIf(WordEqual(current, undefined), if_not_found);
|
|
if (mode == kFindExisting) {
|
|
current = LoadName<Dictionary>(current);
|
|
GotoIf(WordEqual(current, unique_name), if_found);
|
|
} else {
|
|
DCHECK_EQ(kFindInsertionIndex, mode);
|
|
GotoIf(WordEqual(current, TheHoleConstant()), if_not_found);
|
|
}
|
|
|
|
// See Dictionary::NextProbe().
|
|
Increment(&var_count);
|
|
entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask));
|
|
|
|
var_entry = entry;
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
// Instantiate template methods to workaround GCC compilation issue.
|
|
template V8_EXPORT_PRIVATE void
|
|
CodeStubAssembler::NameDictionaryLookup<NameDictionary>(TNode<NameDictionary>,
|
|
TNode<Name>, Label*,
|
|
TVariable<IntPtrT>*,
|
|
Label*, LookupMode);
|
|
template V8_EXPORT_PRIVATE void CodeStubAssembler::NameDictionaryLookup<
|
|
GlobalDictionary>(TNode<GlobalDictionary>, TNode<Name>, Label*,
|
|
TVariable<IntPtrT>*, Label*, LookupMode);
|
|
|
|
Node* CodeStubAssembler::ComputeUnseededHash(Node* key) {
|
|
// See v8::internal::ComputeUnseededHash()
|
|
Node* hash = TruncateIntPtrToInt32(key);
|
|
hash = Int32Add(Word32Xor(hash, Int32Constant(0xFFFFFFFF)),
|
|
Word32Shl(hash, Int32Constant(15)));
|
|
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12)));
|
|
hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2)));
|
|
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4)));
|
|
hash = Int32Mul(hash, Int32Constant(2057));
|
|
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16)));
|
|
return Word32And(hash, Int32Constant(0x3FFFFFFF));
|
|
}
|
|
|
|
Node* CodeStubAssembler::ComputeSeededHash(Node* key) {
|
|
Node* const function_addr =
|
|
ExternalConstant(ExternalReference::compute_integer_hash());
|
|
Node* const isolate_ptr =
|
|
ExternalConstant(ExternalReference::isolate_address(isolate()));
|
|
|
|
MachineType type_ptr = MachineType::Pointer();
|
|
MachineType type_uint32 = MachineType::Uint32();
|
|
|
|
Node* const result = CallCFunction(
|
|
function_addr, type_uint32, std::make_pair(type_ptr, isolate_ptr),
|
|
std::make_pair(type_uint32, TruncateIntPtrToInt32(key)));
|
|
return result;
|
|
}
|
|
|
|
void CodeStubAssembler::NumberDictionaryLookup(
|
|
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
|
|
Label* if_found, TVariable<IntPtrT>* var_entry, Label* if_not_found) {
|
|
CSA_ASSERT(this, IsNumberDictionary(dictionary));
|
|
DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep());
|
|
Comment("NumberDictionaryLookup");
|
|
|
|
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NumberDictionary>(dictionary));
|
|
TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1));
|
|
|
|
TNode<WordT> hash = ChangeUint32ToWord(ComputeSeededHash(intptr_index));
|
|
Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index);
|
|
|
|
// See Dictionary::FirstProbe().
|
|
TNode<IntPtrT> count = IntPtrConstant(0);
|
|
TNode<IntPtrT> entry = Signed(WordAnd(hash, mask));
|
|
|
|
Node* undefined = UndefinedConstant();
|
|
Node* the_hole = TheHoleConstant();
|
|
|
|
TVARIABLE(IntPtrT, var_count, count);
|
|
Variable* loop_vars[] = {&var_count, var_entry};
|
|
Label loop(this, 2, loop_vars);
|
|
*var_entry = entry;
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
TNode<IntPtrT> entry = var_entry->value();
|
|
|
|
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(entry);
|
|
Node* current = UnsafeLoadFixedArrayElement(dictionary, index);
|
|
GotoIf(WordEqual(current, undefined), if_not_found);
|
|
Label next_probe(this);
|
|
{
|
|
Label if_currentissmi(this), if_currentisnotsmi(this);
|
|
Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi);
|
|
BIND(&if_currentissmi);
|
|
{
|
|
Node* current_value = SmiUntag(current);
|
|
Branch(WordEqual(current_value, intptr_index), if_found, &next_probe);
|
|
}
|
|
BIND(&if_currentisnotsmi);
|
|
{
|
|
GotoIf(WordEqual(current, the_hole), &next_probe);
|
|
// Current must be the Number.
|
|
Node* current_value = LoadHeapNumberValue(current);
|
|
Branch(Float64Equal(current_value, key_as_float64), if_found,
|
|
&next_probe);
|
|
}
|
|
}
|
|
|
|
BIND(&next_probe);
|
|
// See Dictionary::NextProbe().
|
|
Increment(&var_count);
|
|
entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask));
|
|
|
|
*var_entry = entry;
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::BasicLoadNumberDictionaryElement(
|
|
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
|
|
Label* not_data, Label* if_hole) {
|
|
TVARIABLE(IntPtrT, var_entry);
|
|
Label if_found(this);
|
|
NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry,
|
|
if_hole);
|
|
BIND(&if_found);
|
|
|
|
// Check that the value is a data property.
|
|
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value());
|
|
TNode<Uint32T> details =
|
|
LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index);
|
|
TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details);
|
|
// TODO(jkummerow): Support accessors without missing?
|
|
GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data);
|
|
// Finally, load the value.
|
|
return LoadValueByKeyIndex<NumberDictionary>(dictionary, index);
|
|
}
|
|
|
|
void CodeStubAssembler::BasicStoreNumberDictionaryElement(
|
|
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
|
|
TNode<Object> value, Label* not_data, Label* if_hole, Label* read_only) {
|
|
TVARIABLE(IntPtrT, var_entry);
|
|
Label if_found(this);
|
|
NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry,
|
|
if_hole);
|
|
BIND(&if_found);
|
|
|
|
// Check that the value is a data property.
|
|
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value());
|
|
TNode<Uint32T> details =
|
|
LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index);
|
|
TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details);
|
|
// TODO(jkummerow): Support accessors without missing?
|
|
GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data);
|
|
|
|
// Check that the property is writeable.
|
|
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
|
|
read_only);
|
|
|
|
// Finally, store the value.
|
|
StoreValueByKeyIndex<NumberDictionary>(dictionary, index, value);
|
|
}
|
|
|
|
template <class Dictionary>
|
|
void CodeStubAssembler::FindInsertionEntry(TNode<Dictionary> dictionary,
|
|
TNode<Name> key,
|
|
TVariable<IntPtrT>* var_key_index) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
template <>
|
|
void CodeStubAssembler::FindInsertionEntry<NameDictionary>(
|
|
TNode<NameDictionary> dictionary, TNode<Name> key,
|
|
TVariable<IntPtrT>* var_key_index) {
|
|
Label done(this);
|
|
NameDictionaryLookup<NameDictionary>(dictionary, key, nullptr, var_key_index,
|
|
&done, kFindInsertionIndex);
|
|
BIND(&done);
|
|
}
|
|
|
|
template <class Dictionary>
|
|
void CodeStubAssembler::InsertEntry(TNode<Dictionary> dictionary,
|
|
TNode<Name> key, TNode<Object> value,
|
|
TNode<IntPtrT> index,
|
|
TNode<Smi> enum_index) {
|
|
UNREACHABLE(); // Use specializations instead.
|
|
}
|
|
|
|
template <>
|
|
void CodeStubAssembler::InsertEntry<NameDictionary>(
|
|
TNode<NameDictionary> dictionary, TNode<Name> name, TNode<Object> value,
|
|
TNode<IntPtrT> index, TNode<Smi> enum_index) {
|
|
// Store name and value.
|
|
StoreFixedArrayElement(dictionary, index, name);
|
|
StoreValueByKeyIndex<NameDictionary>(dictionary, index, value);
|
|
|
|
// Prepare details of the new property.
|
|
PropertyDetails d(kData, NONE, PropertyCellType::kNoCell);
|
|
enum_index =
|
|
SmiShl(enum_index, PropertyDetails::DictionaryStorageField::kShift);
|
|
// We OR over the actual index below, so we expect the initial value to be 0.
|
|
DCHECK_EQ(0, d.dictionary_index());
|
|
TVARIABLE(Smi, var_details, SmiOr(SmiConstant(d.AsSmi()), enum_index));
|
|
|
|
// Private names must be marked non-enumerable.
|
|
Label not_private(this, &var_details);
|
|
GotoIfNot(IsPrivateSymbol(name), ¬_private);
|
|
TNode<Smi> dont_enum =
|
|
SmiShl(SmiConstant(DONT_ENUM), PropertyDetails::AttributesField::kShift);
|
|
var_details = SmiOr(var_details.value(), dont_enum);
|
|
Goto(¬_private);
|
|
BIND(¬_private);
|
|
|
|
// Finally, store the details.
|
|
StoreDetailsByKeyIndex<NameDictionary>(dictionary, index,
|
|
var_details.value());
|
|
}
|
|
|
|
template <>
|
|
void CodeStubAssembler::InsertEntry<GlobalDictionary>(
|
|
TNode<GlobalDictionary> dictionary, TNode<Name> key, TNode<Object> value,
|
|
TNode<IntPtrT> index, TNode<Smi> enum_index) {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
template <class Dictionary>
|
|
void CodeStubAssembler::Add(TNode<Dictionary> dictionary, TNode<Name> key,
|
|
TNode<Object> value, Label* bailout) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsEmptyPropertyDictionary(dictionary)));
|
|
TNode<Smi> capacity = GetCapacity<Dictionary>(dictionary);
|
|
TNode<Smi> nof = GetNumberOfElements<Dictionary>(dictionary);
|
|
TNode<Smi> new_nof = SmiAdd(nof, SmiConstant(1));
|
|
// Require 33% to still be free after adding additional_elements.
|
|
// Computing "x + (x >> 1)" on a Smi x does not return a valid Smi!
|
|
// But that's OK here because it's only used for a comparison.
|
|
TNode<Smi> required_capacity_pseudo_smi = SmiAdd(new_nof, SmiShr(new_nof, 1));
|
|
GotoIf(SmiBelow(capacity, required_capacity_pseudo_smi), bailout);
|
|
// Require rehashing if more than 50% of free elements are deleted elements.
|
|
TNode<Smi> deleted = GetNumberOfDeletedElements<Dictionary>(dictionary);
|
|
CSA_ASSERT(this, SmiAbove(capacity, new_nof));
|
|
TNode<Smi> half_of_free_elements = SmiShr(SmiSub(capacity, new_nof), 1);
|
|
GotoIf(SmiAbove(deleted, half_of_free_elements), bailout);
|
|
|
|
TNode<Smi> enum_index = GetNextEnumerationIndex<Dictionary>(dictionary);
|
|
TNode<Smi> new_enum_index = SmiAdd(enum_index, SmiConstant(1));
|
|
TNode<Smi> max_enum_index =
|
|
SmiConstant(PropertyDetails::DictionaryStorageField::kMax);
|
|
GotoIf(SmiAbove(new_enum_index, max_enum_index), bailout);
|
|
|
|
// No more bailouts after this point.
|
|
// Operations from here on can have side effects.
|
|
|
|
SetNextEnumerationIndex<Dictionary>(dictionary, new_enum_index);
|
|
SetNumberOfElements<Dictionary>(dictionary, new_nof);
|
|
|
|
TVARIABLE(IntPtrT, var_key_index);
|
|
FindInsertionEntry<Dictionary>(dictionary, key, &var_key_index);
|
|
InsertEntry<Dictionary>(dictionary, key, value, var_key_index.value(),
|
|
enum_index);
|
|
}
|
|
|
|
template void CodeStubAssembler::Add<NameDictionary>(TNode<NameDictionary>,
|
|
TNode<Name>, TNode<Object>,
|
|
Label*);
|
|
|
|
template <typename Array>
|
|
void CodeStubAssembler::LookupLinear(TNode<Name> unique_name,
|
|
TNode<Array> array,
|
|
TNode<Uint32T> number_of_valid_entries,
|
|
Label* if_found,
|
|
TVariable<IntPtrT>* var_name_index,
|
|
Label* if_not_found) {
|
|
static_assert(std::is_base_of<FixedArray, Array>::value ||
|
|
std::is_base_of<WeakFixedArray, Array>::value ||
|
|
std::is_base_of<DescriptorArray, Array>::value,
|
|
"T must be a descendant of FixedArray or a WeakFixedArray");
|
|
Comment("LookupLinear");
|
|
CSA_ASSERT(this, IsUniqueName(unique_name));
|
|
TNode<IntPtrT> first_inclusive = IntPtrConstant(Array::ToKeyIndex(0));
|
|
TNode<IntPtrT> factor = IntPtrConstant(Array::kEntrySize);
|
|
TNode<IntPtrT> last_exclusive = IntPtrAdd(
|
|
first_inclusive,
|
|
IntPtrMul(ChangeInt32ToIntPtr(number_of_valid_entries), factor));
|
|
|
|
BuildFastLoop(last_exclusive, first_inclusive,
|
|
[=](SloppyTNode<IntPtrT> name_index) {
|
|
TNode<MaybeObject> element =
|
|
LoadArrayElement(array, Array::kHeaderSize, name_index);
|
|
TNode<Name> candidate_name = CAST(element);
|
|
*var_name_index = name_index;
|
|
GotoIf(WordEqual(candidate_name, unique_name), if_found);
|
|
},
|
|
-Array::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPre);
|
|
Goto(if_not_found);
|
|
}
|
|
|
|
template <>
|
|
TNode<Uint32T> CodeStubAssembler::NumberOfEntries<DescriptorArray>(
|
|
TNode<DescriptorArray> descriptors) {
|
|
return Unsigned(LoadNumberOfDescriptors(descriptors));
|
|
}
|
|
|
|
template <>
|
|
TNode<Uint32T> CodeStubAssembler::NumberOfEntries<TransitionArray>(
|
|
TNode<TransitionArray> transitions) {
|
|
TNode<IntPtrT> length = LoadAndUntagWeakFixedArrayLength(transitions);
|
|
return Select<Uint32T>(
|
|
UintPtrLessThan(length, IntPtrConstant(TransitionArray::kFirstIndex)),
|
|
[=] { return Unsigned(Int32Constant(0)); },
|
|
[=] {
|
|
return Unsigned(LoadAndUntagToWord32ArrayElement(
|
|
transitions, WeakFixedArray::kHeaderSize,
|
|
IntPtrConstant(TransitionArray::kTransitionLengthIndex)));
|
|
});
|
|
}
|
|
|
|
template <typename Array>
|
|
TNode<IntPtrT> CodeStubAssembler::EntryIndexToIndex(
|
|
TNode<Uint32T> entry_index) {
|
|
TNode<Int32T> entry_size = Int32Constant(Array::kEntrySize);
|
|
TNode<Word32T> index = Int32Mul(entry_index, entry_size);
|
|
return ChangeInt32ToIntPtr(index);
|
|
}
|
|
|
|
template <typename Array>
|
|
TNode<IntPtrT> CodeStubAssembler::ToKeyIndex(TNode<Uint32T> entry_index) {
|
|
return IntPtrAdd(IntPtrConstant(Array::ToKeyIndex(0)),
|
|
EntryIndexToIndex<Array>(entry_index));
|
|
}
|
|
|
|
template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<DescriptorArray>(
|
|
TNode<Uint32T>);
|
|
template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<TransitionArray>(
|
|
TNode<Uint32T>);
|
|
|
|
template <>
|
|
TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<DescriptorArray>(
|
|
TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) {
|
|
TNode<Uint32T> details =
|
|
DescriptorArrayGetDetails(descriptors, descriptor_number);
|
|
return DecodeWord32<PropertyDetails::DescriptorPointer>(details);
|
|
}
|
|
|
|
template <>
|
|
TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<TransitionArray>(
|
|
TNode<TransitionArray> transitions, TNode<Uint32T> transition_number) {
|
|
return transition_number;
|
|
}
|
|
|
|
template <typename Array>
|
|
TNode<Name> CodeStubAssembler::GetKey(TNode<Array> array,
|
|
TNode<Uint32T> entry_index) {
|
|
static_assert(std::is_base_of<TransitionArray, Array>::value ||
|
|
std::is_base_of<DescriptorArray, Array>::value,
|
|
"T must be a descendant of DescriptorArray or TransitionArray");
|
|
const int key_offset = Array::ToKeyIndex(0) * kTaggedSize;
|
|
TNode<MaybeObject> element =
|
|
LoadArrayElement(array, Array::kHeaderSize,
|
|
EntryIndexToIndex<Array>(entry_index), key_offset);
|
|
return CAST(element);
|
|
}
|
|
|
|
template TNode<Name> CodeStubAssembler::GetKey<DescriptorArray>(
|
|
TNode<DescriptorArray>, TNode<Uint32T>);
|
|
template TNode<Name> CodeStubAssembler::GetKey<TransitionArray>(
|
|
TNode<TransitionArray>, TNode<Uint32T>);
|
|
|
|
TNode<Uint32T> CodeStubAssembler::DescriptorArrayGetDetails(
|
|
TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) {
|
|
const int details_offset = DescriptorArray::ToDetailsIndex(0) * kTaggedSize;
|
|
return Unsigned(LoadAndUntagToWord32ArrayElement(
|
|
descriptors, DescriptorArray::kHeaderSize,
|
|
EntryIndexToIndex<DescriptorArray>(descriptor_number), details_offset));
|
|
}
|
|
|
|
template <typename Array>
|
|
void CodeStubAssembler::LookupBinary(TNode<Name> unique_name,
|
|
TNode<Array> array,
|
|
TNode<Uint32T> number_of_valid_entries,
|
|
Label* if_found,
|
|
TVariable<IntPtrT>* var_name_index,
|
|
Label* if_not_found) {
|
|
Comment("LookupBinary");
|
|
TVARIABLE(Uint32T, var_low, Unsigned(Int32Constant(0)));
|
|
TNode<Uint32T> limit =
|
|
Unsigned(Int32Sub(NumberOfEntries<Array>(array), Int32Constant(1)));
|
|
TVARIABLE(Uint32T, var_high, limit);
|
|
TNode<Uint32T> hash = LoadNameHashField(unique_name);
|
|
CSA_ASSERT(this, Word32NotEqual(hash, Int32Constant(0)));
|
|
|
|
// Assume non-empty array.
|
|
CSA_ASSERT(this, Uint32LessThanOrEqual(var_low.value(), var_high.value()));
|
|
|
|
Label binary_loop(this, {&var_high, &var_low});
|
|
Goto(&binary_loop);
|
|
BIND(&binary_loop);
|
|
{
|
|
// mid = low + (high - low) / 2 (to avoid overflow in "(low + high) / 2").
|
|
TNode<Uint32T> mid = Unsigned(
|
|
Int32Add(var_low.value(),
|
|
Word32Shr(Int32Sub(var_high.value(), var_low.value()), 1)));
|
|
// mid_name = array->GetSortedKey(mid).
|
|
TNode<Uint32T> sorted_key_index = GetSortedKeyIndex<Array>(array, mid);
|
|
TNode<Name> mid_name = GetKey<Array>(array, sorted_key_index);
|
|
|
|
TNode<Uint32T> mid_hash = LoadNameHashField(mid_name);
|
|
|
|
Label mid_greater(this), mid_less(this), merge(this);
|
|
Branch(Uint32GreaterThanOrEqual(mid_hash, hash), &mid_greater, &mid_less);
|
|
BIND(&mid_greater);
|
|
{
|
|
var_high = mid;
|
|
Goto(&merge);
|
|
}
|
|
BIND(&mid_less);
|
|
{
|
|
var_low = Unsigned(Int32Add(mid, Int32Constant(1)));
|
|
Goto(&merge);
|
|
}
|
|
BIND(&merge);
|
|
GotoIf(Word32NotEqual(var_low.value(), var_high.value()), &binary_loop);
|
|
}
|
|
|
|
Label scan_loop(this, &var_low);
|
|
Goto(&scan_loop);
|
|
BIND(&scan_loop);
|
|
{
|
|
GotoIf(Int32GreaterThan(var_low.value(), limit), if_not_found);
|
|
|
|
TNode<Uint32T> sort_index =
|
|
GetSortedKeyIndex<Array>(array, var_low.value());
|
|
TNode<Name> current_name = GetKey<Array>(array, sort_index);
|
|
TNode<Uint32T> current_hash = LoadNameHashField(current_name);
|
|
GotoIf(Word32NotEqual(current_hash, hash), if_not_found);
|
|
Label next(this);
|
|
GotoIf(WordNotEqual(current_name, unique_name), &next);
|
|
GotoIf(Uint32GreaterThanOrEqual(sort_index, number_of_valid_entries),
|
|
if_not_found);
|
|
*var_name_index = ToKeyIndex<Array>(sort_index);
|
|
Goto(if_found);
|
|
|
|
BIND(&next);
|
|
var_low = Unsigned(Int32Add(var_low.value(), Int32Constant(1)));
|
|
Goto(&scan_loop);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::ForEachEnumerableOwnProperty(
|
|
TNode<Context> context, TNode<Map> map, TNode<JSObject> object,
|
|
ForEachEnumerationMode mode, const ForEachKeyValueFunction& body,
|
|
Label* bailout) {
|
|
TNode<Int32T> type = LoadMapInstanceType(map);
|
|
TNode<Uint32T> bit_field3 = EnsureOnlyHasSimpleProperties(map, type, bailout);
|
|
|
|
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
|
|
TNode<Uint32T> nof_descriptors =
|
|
DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3);
|
|
|
|
TVARIABLE(BoolT, var_stable, Int32TrueConstant());
|
|
|
|
TVARIABLE(BoolT, var_has_symbol, Int32FalseConstant());
|
|
// false - iterate only string properties, true - iterate only symbol
|
|
// properties
|
|
TVARIABLE(BoolT, var_is_symbol_processing_loop, Int32FalseConstant());
|
|
TVARIABLE(IntPtrT, var_start_key_index,
|
|
ToKeyIndex<DescriptorArray>(Unsigned(Int32Constant(0))));
|
|
// Note: var_end_key_index is exclusive for the loop
|
|
TVARIABLE(IntPtrT, var_end_key_index,
|
|
ToKeyIndex<DescriptorArray>(nof_descriptors));
|
|
VariableList list(
|
|
{&var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
|
|
&var_start_key_index, &var_end_key_index},
|
|
zone());
|
|
Label descriptor_array_loop(
|
|
this, {&var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
|
|
&var_start_key_index, &var_end_key_index});
|
|
|
|
Goto(&descriptor_array_loop);
|
|
BIND(&descriptor_array_loop);
|
|
|
|
BuildFastLoop(
|
|
list, var_start_key_index.value(), var_end_key_index.value(),
|
|
[=, &var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
|
|
&var_start_key_index, &var_end_key_index](Node* index) {
|
|
TNode<IntPtrT> descriptor_key_index =
|
|
TNode<IntPtrT>::UncheckedCast(index);
|
|
TNode<Name> next_key =
|
|
LoadKeyByKeyIndex(descriptors, descriptor_key_index);
|
|
|
|
TVARIABLE(Object, var_value, SmiConstant(0));
|
|
Label callback(this), next_iteration(this);
|
|
|
|
if (mode == kEnumerationOrder) {
|
|
// |next_key| is either a string or a symbol
|
|
// Skip strings or symbols depending on
|
|
// |var_is_symbol_processing_loop|.
|
|
Label if_string(this), if_symbol(this), if_name_ok(this);
|
|
Branch(IsSymbol(next_key), &if_symbol, &if_string);
|
|
BIND(&if_symbol);
|
|
{
|
|
// Process symbol property when |var_is_symbol_processing_loop| is
|
|
// true.
|
|
GotoIf(var_is_symbol_processing_loop.value(), &if_name_ok);
|
|
// First iteration need to calculate smaller range for processing
|
|
// symbols
|
|
Label if_first_symbol(this);
|
|
// var_end_key_index is still inclusive at this point.
|
|
var_end_key_index = descriptor_key_index;
|
|
Branch(var_has_symbol.value(), &next_iteration, &if_first_symbol);
|
|
BIND(&if_first_symbol);
|
|
{
|
|
var_start_key_index = descriptor_key_index;
|
|
var_has_symbol = Int32TrueConstant();
|
|
Goto(&next_iteration);
|
|
}
|
|
}
|
|
BIND(&if_string);
|
|
{
|
|
CSA_ASSERT(this, IsString(next_key));
|
|
// Process string property when |var_is_symbol_processing_loop| is
|
|
// false.
|
|
Branch(var_is_symbol_processing_loop.value(), &next_iteration,
|
|
&if_name_ok);
|
|
}
|
|
BIND(&if_name_ok);
|
|
}
|
|
{
|
|
TVARIABLE(Map, var_map);
|
|
TVARIABLE(HeapObject, var_meta_storage);
|
|
TVARIABLE(IntPtrT, var_entry);
|
|
TVARIABLE(Uint32T, var_details);
|
|
Label if_found(this);
|
|
|
|
Label if_found_fast(this), if_found_dict(this);
|
|
|
|
Label if_stable(this), if_not_stable(this);
|
|
Branch(var_stable.value(), &if_stable, &if_not_stable);
|
|
BIND(&if_stable);
|
|
{
|
|
// Directly decode from the descriptor array if |object| did not
|
|
// change shape.
|
|
var_map = map;
|
|
var_meta_storage = descriptors;
|
|
var_entry = Signed(descriptor_key_index);
|
|
Goto(&if_found_fast);
|
|
}
|
|
BIND(&if_not_stable);
|
|
{
|
|
// If the map did change, do a slower lookup. We are still
|
|
// guaranteed that the object has a simple shape, and that the key
|
|
// is a name.
|
|
var_map = LoadMap(object);
|
|
TryLookupPropertyInSimpleObject(
|
|
object, var_map.value(), next_key, &if_found_fast,
|
|
&if_found_dict, &var_meta_storage, &var_entry, &next_iteration);
|
|
}
|
|
|
|
BIND(&if_found_fast);
|
|
{
|
|
TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value());
|
|
TNode<IntPtrT> name_index = var_entry.value();
|
|
|
|
// Skip non-enumerable properties.
|
|
var_details = LoadDetailsByKeyIndex(descriptors, name_index);
|
|
GotoIf(IsSetWord32(var_details.value(),
|
|
PropertyDetails::kAttributesDontEnumMask),
|
|
&next_iteration);
|
|
|
|
LoadPropertyFromFastObject(object, var_map.value(), descriptors,
|
|
name_index, var_details.value(),
|
|
&var_value);
|
|
Goto(&if_found);
|
|
}
|
|
BIND(&if_found_dict);
|
|
{
|
|
TNode<NameDictionary> dictionary = CAST(var_meta_storage.value());
|
|
TNode<IntPtrT> entry = var_entry.value();
|
|
|
|
TNode<Uint32T> details =
|
|
LoadDetailsByKeyIndex<NameDictionary>(dictionary, entry);
|
|
// Skip non-enumerable properties.
|
|
GotoIf(
|
|
IsSetWord32(details, PropertyDetails::kAttributesDontEnumMask),
|
|
&next_iteration);
|
|
|
|
var_details = details;
|
|
var_value = LoadValueByKeyIndex<NameDictionary>(dictionary, entry);
|
|
Goto(&if_found);
|
|
}
|
|
|
|
// Here we have details and value which could be an accessor.
|
|
BIND(&if_found);
|
|
{
|
|
Label slow_load(this, Label::kDeferred);
|
|
|
|
var_value = CallGetterIfAccessor(var_value.value(),
|
|
var_details.value(), context,
|
|
object, &slow_load, kCallJSGetter);
|
|
Goto(&callback);
|
|
|
|
BIND(&slow_load);
|
|
var_value =
|
|
CallRuntime(Runtime::kGetProperty, context, object, next_key);
|
|
Goto(&callback);
|
|
|
|
BIND(&callback);
|
|
body(next_key, var_value.value());
|
|
|
|
// Check if |object| is still stable, i.e. we can proceed using
|
|
// property details from preloaded |descriptors|.
|
|
var_stable =
|
|
Select<BoolT>(var_stable.value(),
|
|
[=] { return WordEqual(LoadMap(object), map); },
|
|
[=] { return Int32FalseConstant(); });
|
|
|
|
Goto(&next_iteration);
|
|
}
|
|
}
|
|
BIND(&next_iteration);
|
|
},
|
|
DescriptorArray::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
|
|
|
|
if (mode == kEnumerationOrder) {
|
|
Label done(this);
|
|
GotoIf(var_is_symbol_processing_loop.value(), &done);
|
|
GotoIfNot(var_has_symbol.value(), &done);
|
|
// All string properties are processed, now process symbol properties.
|
|
var_is_symbol_processing_loop = Int32TrueConstant();
|
|
// Add DescriptorArray::kEntrySize to make the var_end_key_index exclusive
|
|
// as BuildFastLoop() expects.
|
|
Increment(&var_end_key_index, DescriptorArray::kEntrySize,
|
|
INTPTR_PARAMETERS);
|
|
Goto(&descriptor_array_loop);
|
|
|
|
BIND(&done);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::DescriptorLookup(
|
|
SloppyTNode<Name> unique_name, SloppyTNode<DescriptorArray> descriptors,
|
|
SloppyTNode<Uint32T> bitfield3, Label* if_found,
|
|
TVariable<IntPtrT>* var_name_index, Label* if_not_found) {
|
|
Comment("DescriptorArrayLookup");
|
|
TNode<Uint32T> nof = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3);
|
|
Lookup<DescriptorArray>(unique_name, descriptors, nof, if_found,
|
|
var_name_index, if_not_found);
|
|
}
|
|
|
|
void CodeStubAssembler::TransitionLookup(
|
|
SloppyTNode<Name> unique_name, SloppyTNode<TransitionArray> transitions,
|
|
Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) {
|
|
Comment("TransitionArrayLookup");
|
|
TNode<Uint32T> number_of_valid_transitions =
|
|
NumberOfEntries<TransitionArray>(transitions);
|
|
Lookup<TransitionArray>(unique_name, transitions, number_of_valid_transitions,
|
|
if_found, var_name_index, if_not_found);
|
|
}
|
|
|
|
template <typename Array>
|
|
void CodeStubAssembler::Lookup(TNode<Name> unique_name, TNode<Array> array,
|
|
TNode<Uint32T> number_of_valid_entries,
|
|
Label* if_found,
|
|
TVariable<IntPtrT>* var_name_index,
|
|
Label* if_not_found) {
|
|
Comment("ArrayLookup");
|
|
if (!number_of_valid_entries) {
|
|
number_of_valid_entries = NumberOfEntries(array);
|
|
}
|
|
GotoIf(Word32Equal(number_of_valid_entries, Int32Constant(0)), if_not_found);
|
|
Label linear_search(this), binary_search(this);
|
|
const int kMaxElementsForLinearSearch = 32;
|
|
Branch(Uint32LessThanOrEqual(number_of_valid_entries,
|
|
Int32Constant(kMaxElementsForLinearSearch)),
|
|
&linear_search, &binary_search);
|
|
BIND(&linear_search);
|
|
{
|
|
LookupLinear<Array>(unique_name, array, number_of_valid_entries, if_found,
|
|
var_name_index, if_not_found);
|
|
}
|
|
BIND(&binary_search);
|
|
{
|
|
LookupBinary<Array>(unique_name, array, number_of_valid_entries, if_found,
|
|
var_name_index, if_not_found);
|
|
}
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsSimpleObjectMap(TNode<Map> map) {
|
|
uint32_t mask =
|
|
Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask;
|
|
// !IsSpecialReceiverType && !IsNamedInterceptor && !IsAccessCheckNeeded
|
|
return Select<BoolT>(
|
|
IsSpecialReceiverInstanceType(LoadMapInstanceType(map)),
|
|
[=] { return Int32FalseConstant(); },
|
|
[=] { return IsClearWord32(LoadMapBitField(map), mask); });
|
|
}
|
|
|
|
void CodeStubAssembler::TryLookupPropertyInSimpleObject(
|
|
TNode<JSObject> object, TNode<Map> map, TNode<Name> unique_name,
|
|
Label* if_found_fast, Label* if_found_dict,
|
|
TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index,
|
|
Label* if_not_found) {
|
|
CSA_ASSERT(this, IsSimpleObjectMap(map));
|
|
CSA_ASSERT(this, IsUniqueNameNoIndex(unique_name));
|
|
|
|
TNode<Uint32T> bit_field3 = LoadMapBitField3(map);
|
|
Label if_isfastmap(this), if_isslowmap(this);
|
|
Branch(IsSetWord32<Map::IsDictionaryMapBit>(bit_field3), &if_isslowmap,
|
|
&if_isfastmap);
|
|
BIND(&if_isfastmap);
|
|
{
|
|
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
|
|
*var_meta_storage = descriptors;
|
|
|
|
DescriptorLookup(unique_name, descriptors, bit_field3, if_found_fast,
|
|
var_name_index, if_not_found);
|
|
}
|
|
BIND(&if_isslowmap);
|
|
{
|
|
TNode<NameDictionary> dictionary = CAST(LoadSlowProperties(object));
|
|
*var_meta_storage = dictionary;
|
|
|
|
NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict,
|
|
var_name_index, if_not_found);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::TryLookupProperty(
|
|
SloppyTNode<JSObject> object, SloppyTNode<Map> map,
|
|
SloppyTNode<Int32T> instance_type, SloppyTNode<Name> unique_name,
|
|
Label* if_found_fast, Label* if_found_dict, Label* if_found_global,
|
|
TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index,
|
|
Label* if_not_found, Label* if_bailout) {
|
|
Label if_objectisspecial(this);
|
|
GotoIf(IsSpecialReceiverInstanceType(instance_type), &if_objectisspecial);
|
|
|
|
TryLookupPropertyInSimpleObject(object, map, unique_name, if_found_fast,
|
|
if_found_dict, var_meta_storage,
|
|
var_name_index, if_not_found);
|
|
|
|
BIND(&if_objectisspecial);
|
|
{
|
|
// Handle global object here and bailout for other special objects.
|
|
GotoIfNot(InstanceTypeEqual(instance_type, JS_GLOBAL_OBJECT_TYPE),
|
|
if_bailout);
|
|
|
|
// Handle interceptors and access checks in runtime.
|
|
TNode<Int32T> bit_field = LoadMapBitField(map);
|
|
int mask =
|
|
Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask;
|
|
GotoIf(IsSetWord32(bit_field, mask), if_bailout);
|
|
|
|
TNode<GlobalDictionary> dictionary = CAST(LoadSlowProperties(object));
|
|
*var_meta_storage = dictionary;
|
|
|
|
NameDictionaryLookup<GlobalDictionary>(
|
|
dictionary, unique_name, if_found_global, var_name_index, if_not_found);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map,
|
|
Node* instance_type,
|
|
Node* unique_name, Label* if_found,
|
|
Label* if_not_found,
|
|
Label* if_bailout) {
|
|
Comment("TryHasOwnProperty");
|
|
CSA_ASSERT(this, IsUniqueNameNoIndex(CAST(unique_name)));
|
|
TVARIABLE(HeapObject, var_meta_storage);
|
|
TVARIABLE(IntPtrT, var_name_index);
|
|
|
|
Label if_found_global(this);
|
|
TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found,
|
|
&if_found_global, &var_meta_storage, &var_name_index,
|
|
if_not_found, if_bailout);
|
|
|
|
BIND(&if_found_global);
|
|
{
|
|
VARIABLE(var_value, MachineRepresentation::kTagged);
|
|
VARIABLE(var_details, MachineRepresentation::kWord32);
|
|
// Check if the property cell is not deleted.
|
|
LoadPropertyFromGlobalDictionary(var_meta_storage.value(),
|
|
var_name_index.value(), &var_value,
|
|
&var_details, if_not_found);
|
|
Goto(if_found);
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::GetMethod(Node* context, Node* object,
|
|
Handle<Name> name,
|
|
Label* if_null_or_undefined) {
|
|
Node* method = GetProperty(context, object, name);
|
|
|
|
GotoIf(IsUndefined(method), if_null_or_undefined);
|
|
GotoIf(IsNull(method), if_null_or_undefined);
|
|
|
|
return method;
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::GetIteratorMethod(
|
|
TNode<Context> context, TNode<HeapObject> heap_obj,
|
|
Label* if_iteratorundefined) {
|
|
return CAST(GetMethod(context, heap_obj,
|
|
isolate()->factory()->iterator_symbol(),
|
|
if_iteratorundefined));
|
|
}
|
|
|
|
void CodeStubAssembler::LoadPropertyFromFastObject(
|
|
Node* object, Node* map, TNode<DescriptorArray> descriptors,
|
|
Node* name_index, Variable* var_details, Variable* var_value) {
|
|
DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep());
|
|
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
|
|
|
|
Node* details =
|
|
LoadDetailsByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index));
|
|
var_details->Bind(details);
|
|
|
|
LoadPropertyFromFastObject(object, map, descriptors, name_index, details,
|
|
var_value);
|
|
}
|
|
|
|
void CodeStubAssembler::LoadPropertyFromFastObject(
|
|
Node* object, Node* map, TNode<DescriptorArray> descriptors,
|
|
Node* name_index, Node* details, Variable* var_value) {
|
|
Comment("[ LoadPropertyFromFastObject");
|
|
|
|
Node* location = DecodeWord32<PropertyDetails::LocationField>(details);
|
|
|
|
Label if_in_field(this), if_in_descriptor(this), done(this);
|
|
Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field,
|
|
&if_in_descriptor);
|
|
BIND(&if_in_field);
|
|
{
|
|
Node* field_index =
|
|
DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details);
|
|
Node* representation =
|
|
DecodeWord32<PropertyDetails::RepresentationField>(details);
|
|
|
|
field_index =
|
|
IntPtrAdd(field_index, LoadMapInobjectPropertiesStartInWords(map));
|
|
Node* instance_size_in_words = LoadMapInstanceSizeInWords(map);
|
|
|
|
Label if_inobject(this), if_backing_store(this);
|
|
VARIABLE(var_double_value, MachineRepresentation::kFloat64);
|
|
Label rebox_double(this, &var_double_value);
|
|
Branch(UintPtrLessThan(field_index, instance_size_in_words), &if_inobject,
|
|
&if_backing_store);
|
|
BIND(&if_inobject);
|
|
{
|
|
Comment("if_inobject");
|
|
Node* field_offset = TimesTaggedSize(field_index);
|
|
|
|
Label if_double(this), if_tagged(this);
|
|
Branch(Word32NotEqual(representation,
|
|
Int32Constant(Representation::kDouble)),
|
|
&if_tagged, &if_double);
|
|
BIND(&if_tagged);
|
|
{
|
|
var_value->Bind(LoadObjectField(object, field_offset));
|
|
Goto(&done);
|
|
}
|
|
BIND(&if_double);
|
|
{
|
|
if (FLAG_unbox_double_fields) {
|
|
var_double_value.Bind(
|
|
LoadObjectField(object, field_offset, MachineType::Float64()));
|
|
} else {
|
|
Node* mutable_heap_number = LoadObjectField(object, field_offset);
|
|
var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
|
|
}
|
|
Goto(&rebox_double);
|
|
}
|
|
}
|
|
BIND(&if_backing_store);
|
|
{
|
|
Comment("if_backing_store");
|
|
TNode<HeapObject> properties = LoadFastProperties(object);
|
|
field_index = IntPtrSub(field_index, instance_size_in_words);
|
|
Node* value = LoadPropertyArrayElement(CAST(properties), field_index);
|
|
|
|
Label if_double(this), if_tagged(this);
|
|
Branch(Word32NotEqual(representation,
|
|
Int32Constant(Representation::kDouble)),
|
|
&if_tagged, &if_double);
|
|
BIND(&if_tagged);
|
|
{
|
|
var_value->Bind(value);
|
|
Goto(&done);
|
|
}
|
|
BIND(&if_double);
|
|
{
|
|
var_double_value.Bind(LoadHeapNumberValue(value));
|
|
Goto(&rebox_double);
|
|
}
|
|
}
|
|
BIND(&rebox_double);
|
|
{
|
|
Comment("rebox_double");
|
|
Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value());
|
|
var_value->Bind(heap_number);
|
|
Goto(&done);
|
|
}
|
|
}
|
|
BIND(&if_in_descriptor);
|
|
{
|
|
var_value->Bind(
|
|
LoadValueByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index)));
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
|
|
Comment("] LoadPropertyFromFastObject");
|
|
}
|
|
|
|
void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary,
|
|
Node* name_index,
|
|
Variable* var_details,
|
|
Variable* var_value) {
|
|
Comment("LoadPropertyFromNameDictionary");
|
|
CSA_ASSERT(this, IsNameDictionary(dictionary));
|
|
|
|
var_details->Bind(
|
|
LoadDetailsByKeyIndex<NameDictionary>(dictionary, name_index));
|
|
var_value->Bind(LoadValueByKeyIndex<NameDictionary>(dictionary, name_index));
|
|
|
|
Comment("] LoadPropertyFromNameDictionary");
|
|
}
|
|
|
|
void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary,
|
|
Node* name_index,
|
|
Variable* var_details,
|
|
Variable* var_value,
|
|
Label* if_deleted) {
|
|
Comment("[ LoadPropertyFromGlobalDictionary");
|
|
CSA_ASSERT(this, IsGlobalDictionary(dictionary));
|
|
|
|
Node* property_cell = LoadFixedArrayElement(CAST(dictionary), name_index);
|
|
CSA_ASSERT(this, IsPropertyCell(property_cell));
|
|
|
|
Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
|
|
GotoIf(WordEqual(value, TheHoleConstant()), if_deleted);
|
|
|
|
var_value->Bind(value);
|
|
|
|
Node* details = LoadAndUntagToWord32ObjectField(
|
|
property_cell, PropertyCell::kPropertyDetailsRawOffset);
|
|
var_details->Bind(details);
|
|
|
|
Comment("] LoadPropertyFromGlobalDictionary");
|
|
}
|
|
|
|
// |value| is the property backing store's contents, which is either a value
|
|
// or an accessor pair, as specified by |details|.
|
|
// Returns either the original value, or the result of the getter call.
|
|
TNode<Object> CodeStubAssembler::CallGetterIfAccessor(
|
|
Node* value, Node* details, Node* context, Node* receiver,
|
|
Label* if_bailout, GetOwnPropertyMode mode) {
|
|
VARIABLE(var_value, MachineRepresentation::kTagged, value);
|
|
Label done(this), if_accessor_info(this, Label::kDeferred);
|
|
|
|
Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
|
|
GotoIf(Word32Equal(kind, Int32Constant(kData)), &done);
|
|
|
|
// Accessor case.
|
|
GotoIfNot(IsAccessorPair(value), &if_accessor_info);
|
|
|
|
// AccessorPair case.
|
|
{
|
|
if (mode == kCallJSGetter) {
|
|
Node* accessor_pair = value;
|
|
Node* getter =
|
|
LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
|
|
Node* getter_map = LoadMap(getter);
|
|
Node* instance_type = LoadMapInstanceType(getter_map);
|
|
// FunctionTemplateInfo getters are not supported yet.
|
|
GotoIf(InstanceTypeEqual(instance_type, FUNCTION_TEMPLATE_INFO_TYPE),
|
|
if_bailout);
|
|
|
|
// Return undefined if the {getter} is not callable.
|
|
var_value.Bind(UndefinedConstant());
|
|
GotoIfNot(IsCallableMap(getter_map), &done);
|
|
|
|
// Call the accessor.
|
|
Callable callable = CodeFactory::Call(isolate());
|
|
Node* result = CallJS(callable, context, getter, receiver);
|
|
var_value.Bind(result);
|
|
}
|
|
Goto(&done);
|
|
}
|
|
|
|
// AccessorInfo case.
|
|
BIND(&if_accessor_info);
|
|
{
|
|
Node* accessor_info = value;
|
|
CSA_ASSERT(this, IsAccessorInfo(value));
|
|
CSA_ASSERT(this, TaggedIsNotSmi(receiver));
|
|
Label if_array(this), if_function(this), if_value(this);
|
|
|
|
// Dispatch based on {receiver} instance type.
|
|
Node* receiver_map = LoadMap(receiver);
|
|
Node* receiver_instance_type = LoadMapInstanceType(receiver_map);
|
|
GotoIf(IsJSArrayInstanceType(receiver_instance_type), &if_array);
|
|
GotoIf(IsJSFunctionInstanceType(receiver_instance_type), &if_function);
|
|
Branch(IsJSValueInstanceType(receiver_instance_type), &if_value,
|
|
if_bailout);
|
|
|
|
// JSArray AccessorInfo case.
|
|
BIND(&if_array);
|
|
{
|
|
// We only deal with the "length" accessor on JSArray.
|
|
GotoIfNot(IsLengthString(
|
|
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
|
|
if_bailout);
|
|
var_value.Bind(LoadJSArrayLength(receiver));
|
|
Goto(&done);
|
|
}
|
|
|
|
// JSFunction AccessorInfo case.
|
|
BIND(&if_function);
|
|
{
|
|
// We only deal with the "prototype" accessor on JSFunction here.
|
|
GotoIfNot(IsPrototypeString(
|
|
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
|
|
if_bailout);
|
|
|
|
GotoIfPrototypeRequiresRuntimeLookup(CAST(receiver), CAST(receiver_map),
|
|
if_bailout);
|
|
var_value.Bind(LoadJSFunctionPrototype(receiver, if_bailout));
|
|
Goto(&done);
|
|
}
|
|
|
|
// JSValue AccessorInfo case.
|
|
BIND(&if_value);
|
|
{
|
|
// We only deal with the "length" accessor on JSValue string wrappers.
|
|
GotoIfNot(IsLengthString(
|
|
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
|
|
if_bailout);
|
|
Node* receiver_value = LoadJSValueValue(receiver);
|
|
GotoIfNot(TaggedIsNotSmi(receiver_value), if_bailout);
|
|
GotoIfNot(IsString(receiver_value), if_bailout);
|
|
var_value.Bind(LoadStringLengthAsSmi(receiver_value));
|
|
Goto(&done);
|
|
}
|
|
}
|
|
|
|
BIND(&done);
|
|
return UncheckedCast<Object>(var_value.value());
|
|
}
|
|
|
|
void CodeStubAssembler::TryGetOwnProperty(
|
|
Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
|
|
Node* unique_name, Label* if_found_value, Variable* var_value,
|
|
Label* if_not_found, Label* if_bailout) {
|
|
TryGetOwnProperty(context, receiver, object, map, instance_type, unique_name,
|
|
if_found_value, var_value, nullptr, nullptr, if_not_found,
|
|
if_bailout, kCallJSGetter);
|
|
}
|
|
|
|
void CodeStubAssembler::TryGetOwnProperty(
|
|
Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
|
|
Node* unique_name, Label* if_found_value, Variable* var_value,
|
|
Variable* var_details, Variable* var_raw_value, Label* if_not_found,
|
|
Label* if_bailout, GetOwnPropertyMode mode) {
|
|
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
|
|
Comment("TryGetOwnProperty");
|
|
CSA_ASSERT(this, IsUniqueNameNoIndex(CAST(unique_name)));
|
|
|
|
TVARIABLE(HeapObject, var_meta_storage);
|
|
TVARIABLE(IntPtrT, var_entry);
|
|
|
|
Label if_found_fast(this), if_found_dict(this), if_found_global(this);
|
|
|
|
VARIABLE(local_var_details, MachineRepresentation::kWord32);
|
|
if (!var_details) {
|
|
var_details = &local_var_details;
|
|
}
|
|
Label if_found(this);
|
|
|
|
TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast,
|
|
&if_found_dict, &if_found_global, &var_meta_storage,
|
|
&var_entry, if_not_found, if_bailout);
|
|
BIND(&if_found_fast);
|
|
{
|
|
TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value());
|
|
Node* name_index = var_entry.value();
|
|
|
|
LoadPropertyFromFastObject(object, map, descriptors, name_index,
|
|
var_details, var_value);
|
|
Goto(&if_found);
|
|
}
|
|
BIND(&if_found_dict);
|
|
{
|
|
Node* dictionary = var_meta_storage.value();
|
|
Node* entry = var_entry.value();
|
|
LoadPropertyFromNameDictionary(dictionary, entry, var_details, var_value);
|
|
Goto(&if_found);
|
|
}
|
|
BIND(&if_found_global);
|
|
{
|
|
Node* dictionary = var_meta_storage.value();
|
|
Node* entry = var_entry.value();
|
|
|
|
LoadPropertyFromGlobalDictionary(dictionary, entry, var_details, var_value,
|
|
if_not_found);
|
|
Goto(&if_found);
|
|
}
|
|
// Here we have details and value which could be an accessor.
|
|
BIND(&if_found);
|
|
{
|
|
// TODO(ishell): Execute C++ accessor in case of accessor info
|
|
if (var_raw_value) {
|
|
var_raw_value->Bind(var_value->value());
|
|
}
|
|
Node* value = CallGetterIfAccessor(var_value->value(), var_details->value(),
|
|
context, receiver, if_bailout, mode);
|
|
var_value->Bind(value);
|
|
Goto(if_found_value);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
|
|
SloppyTNode<Int32T> instance_type,
|
|
SloppyTNode<IntPtrT> intptr_index,
|
|
Label* if_found, Label* if_absent,
|
|
Label* if_not_found,
|
|
Label* if_bailout) {
|
|
// Handle special objects in runtime.
|
|
GotoIf(IsSpecialReceiverInstanceType(instance_type), if_bailout);
|
|
|
|
Node* elements_kind = LoadMapElementsKind(map);
|
|
|
|
// TODO(verwaest): Support other elements kinds as well.
|
|
Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this),
|
|
if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this),
|
|
if_typedarray(this);
|
|
// clang-format off
|
|
int32_t values[] = {
|
|
// Handled by {if_isobjectorsmi}.
|
|
PACKED_SMI_ELEMENTS, HOLEY_SMI_ELEMENTS, PACKED_ELEMENTS,
|
|
HOLEY_ELEMENTS,
|
|
// Handled by {if_isdouble}.
|
|
PACKED_DOUBLE_ELEMENTS, HOLEY_DOUBLE_ELEMENTS,
|
|
// Handled by {if_isdictionary}.
|
|
DICTIONARY_ELEMENTS,
|
|
// Handled by {if_isfaststringwrapper}.
|
|
FAST_STRING_WRAPPER_ELEMENTS,
|
|
// Handled by {if_isslowstringwrapper}.
|
|
SLOW_STRING_WRAPPER_ELEMENTS,
|
|
// Handled by {if_not_found}.
|
|
NO_ELEMENTS,
|
|
// Handled by {if_typed_array}.
|
|
UINT8_ELEMENTS,
|
|
INT8_ELEMENTS,
|
|
UINT16_ELEMENTS,
|
|
INT16_ELEMENTS,
|
|
UINT32_ELEMENTS,
|
|
INT32_ELEMENTS,
|
|
FLOAT32_ELEMENTS,
|
|
FLOAT64_ELEMENTS,
|
|
UINT8_CLAMPED_ELEMENTS,
|
|
BIGUINT64_ELEMENTS,
|
|
BIGINT64_ELEMENTS,
|
|
};
|
|
Label* labels[] = {
|
|
&if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi,
|
|
&if_isobjectorsmi,
|
|
&if_isdouble, &if_isdouble,
|
|
&if_isdictionary,
|
|
&if_isfaststringwrapper,
|
|
&if_isslowstringwrapper,
|
|
if_not_found,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
&if_typedarray,
|
|
};
|
|
// clang-format on
|
|
STATIC_ASSERT(arraysize(values) == arraysize(labels));
|
|
Switch(elements_kind, if_bailout, values, labels, arraysize(values));
|
|
|
|
BIND(&if_isobjectorsmi);
|
|
{
|
|
TNode<FixedArray> elements = CAST(LoadElements(object));
|
|
TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements);
|
|
|
|
GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob);
|
|
|
|
TNode<Object> element = UnsafeLoadFixedArrayElement(elements, intptr_index);
|
|
TNode<Oddball> the_hole = TheHoleConstant();
|
|
Branch(WordEqual(element, the_hole), if_not_found, if_found);
|
|
}
|
|
BIND(&if_isdouble);
|
|
{
|
|
TNode<FixedArrayBase> elements = LoadElements(object);
|
|
TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements);
|
|
|
|
GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob);
|
|
|
|
// Check if the element is a double hole, but don't load it.
|
|
LoadFixedDoubleArrayElement(CAST(elements), intptr_index,
|
|
MachineType::None(), 0, INTPTR_PARAMETERS,
|
|
if_not_found);
|
|
Goto(if_found);
|
|
}
|
|
BIND(&if_isdictionary);
|
|
{
|
|
// Negative keys must be converted to property names.
|
|
GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
|
|
|
|
TVARIABLE(IntPtrT, var_entry);
|
|
TNode<NumberDictionary> elements = CAST(LoadElements(object));
|
|
NumberDictionaryLookup(elements, intptr_index, if_found, &var_entry,
|
|
if_not_found);
|
|
}
|
|
BIND(&if_isfaststringwrapper);
|
|
{
|
|
CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
|
|
Node* string = LoadJSValueValue(object);
|
|
CSA_ASSERT(this, IsString(string));
|
|
Node* length = LoadStringLengthAsWord(string);
|
|
GotoIf(UintPtrLessThan(intptr_index, length), if_found);
|
|
Goto(&if_isobjectorsmi);
|
|
}
|
|
BIND(&if_isslowstringwrapper);
|
|
{
|
|
CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
|
|
Node* string = LoadJSValueValue(object);
|
|
CSA_ASSERT(this, IsString(string));
|
|
Node* length = LoadStringLengthAsWord(string);
|
|
GotoIf(UintPtrLessThan(intptr_index, length), if_found);
|
|
Goto(&if_isdictionary);
|
|
}
|
|
BIND(&if_typedarray);
|
|
{
|
|
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
|
|
GotoIf(IsDetachedBuffer(buffer), if_absent);
|
|
|
|
TNode<UintPtrT> length = LoadJSTypedArrayLength(CAST(object));
|
|
Branch(UintPtrLessThan(intptr_index, length), if_found, if_absent);
|
|
}
|
|
BIND(&if_oob);
|
|
{
|
|
// Positive OOB indices mean "not found", negative indices must be
|
|
// converted to property names.
|
|
GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
|
|
Goto(if_not_found);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfMaybeSpecialIndex(TNode<String> name_string,
|
|
Label* if_maybe_special_index,
|
|
Label* if_not_special_index) {
|
|
// TODO(cwhan.tunz): Implement fast cases more.
|
|
|
|
// If a name is empty or too long, it's not a special index
|
|
// Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
|
|
const int kBufferSize = 24;
|
|
TNode<Smi> string_length = LoadStringLengthAsSmi(name_string);
|
|
GotoIf(SmiEqual(string_length, SmiConstant(0)), if_not_special_index);
|
|
GotoIf(SmiGreaterThan(string_length, SmiConstant(kBufferSize)),
|
|
if_not_special_index);
|
|
|
|
// If the first character of name is not a digit or '-', or we can't match it
|
|
// to Infinity or NaN, then this is not a special index.
|
|
TNode<Int32T> first_char = StringCharCodeAt(name_string, IntPtrConstant(0));
|
|
// If the name starts with '-', it can be a negative index.
|
|
GotoIf(Word32Equal(first_char, Int32Constant('-')), if_maybe_special_index);
|
|
// If the name starts with 'I', it can be "Infinity".
|
|
GotoIf(Word32Equal(first_char, Int32Constant('I')), if_maybe_special_index);
|
|
// If the name starts with 'N', it can be "NaN".
|
|
GotoIf(Word32Equal(first_char, Int32Constant('N')), if_maybe_special_index);
|
|
// Finally, if the first character is not a digit either, then we are sure
|
|
// that the name is not a special index.
|
|
GotoIf(Uint32LessThan(first_char, Int32Constant('0')), if_not_special_index);
|
|
GotoIf(Uint32LessThan(Int32Constant('9'), first_char), if_not_special_index);
|
|
Goto(if_maybe_special_index);
|
|
}
|
|
|
|
void CodeStubAssembler::TryPrototypeChainLookup(
|
|
Node* receiver, Node* key, const LookupInHolder& lookup_property_in_holder,
|
|
const LookupInHolder& lookup_element_in_holder, Label* if_end,
|
|
Label* if_bailout, Label* if_proxy) {
|
|
// Ensure receiver is JSReceiver, otherwise bailout.
|
|
Label if_objectisnotsmi(this);
|
|
Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi);
|
|
BIND(&if_objectisnotsmi);
|
|
|
|
Node* map = LoadMap(receiver);
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
{
|
|
Label if_objectisreceiver(this);
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE);
|
|
Branch(IsJSReceiverInstanceType(instance_type), &if_objectisreceiver,
|
|
if_bailout);
|
|
BIND(&if_objectisreceiver);
|
|
|
|
if (if_proxy) {
|
|
GotoIf(InstanceTypeEqual(instance_type, JS_PROXY_TYPE), if_proxy);
|
|
}
|
|
}
|
|
|
|
VARIABLE(var_index, MachineType::PointerRepresentation());
|
|
VARIABLE(var_unique, MachineRepresentation::kTagged);
|
|
|
|
Label if_keyisindex(this), if_iskeyunique(this);
|
|
TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, &var_unique,
|
|
if_bailout);
|
|
|
|
BIND(&if_iskeyunique);
|
|
{
|
|
VARIABLE(var_holder, MachineRepresentation::kTagged, receiver);
|
|
VARIABLE(var_holder_map, MachineRepresentation::kTagged, map);
|
|
VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32,
|
|
instance_type);
|
|
|
|
Variable* merged_variables[] = {&var_holder, &var_holder_map,
|
|
&var_holder_instance_type};
|
|
Label loop(this, arraysize(merged_variables), merged_variables);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
Node* holder_map = var_holder_map.value();
|
|
Node* holder_instance_type = var_holder_instance_type.value();
|
|
|
|
Label next_proto(this), check_integer_indexed_exotic(this);
|
|
lookup_property_in_holder(receiver, var_holder.value(), holder_map,
|
|
holder_instance_type, var_unique.value(),
|
|
&check_integer_indexed_exotic, if_bailout);
|
|
|
|
BIND(&check_integer_indexed_exotic);
|
|
{
|
|
// Bailout if it can be an integer indexed exotic case.
|
|
GotoIfNot(InstanceTypeEqual(holder_instance_type, JS_TYPED_ARRAY_TYPE),
|
|
&next_proto);
|
|
GotoIfNot(IsString(var_unique.value()), &next_proto);
|
|
BranchIfMaybeSpecialIndex(CAST(var_unique.value()), if_bailout,
|
|
&next_proto);
|
|
}
|
|
|
|
BIND(&next_proto);
|
|
|
|
Node* proto = LoadMapPrototype(holder_map);
|
|
|
|
GotoIf(IsNull(proto), if_end);
|
|
|
|
Node* map = LoadMap(proto);
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
|
|
var_holder.Bind(proto);
|
|
var_holder_map.Bind(map);
|
|
var_holder_instance_type.Bind(instance_type);
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
BIND(&if_keyisindex);
|
|
{
|
|
VARIABLE(var_holder, MachineRepresentation::kTagged, receiver);
|
|
VARIABLE(var_holder_map, MachineRepresentation::kTagged, map);
|
|
VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32,
|
|
instance_type);
|
|
|
|
Variable* merged_variables[] = {&var_holder, &var_holder_map,
|
|
&var_holder_instance_type};
|
|
Label loop(this, arraysize(merged_variables), merged_variables);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
Label next_proto(this);
|
|
lookup_element_in_holder(receiver, var_holder.value(),
|
|
var_holder_map.value(),
|
|
var_holder_instance_type.value(),
|
|
var_index.value(), &next_proto, if_bailout);
|
|
BIND(&next_proto);
|
|
|
|
Node* proto = LoadMapPrototype(var_holder_map.value());
|
|
|
|
GotoIf(IsNull(proto), if_end);
|
|
|
|
Node* map = LoadMap(proto);
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
|
|
var_holder.Bind(proto);
|
|
var_holder_map.Bind(map);
|
|
var_holder_instance_type.Bind(instance_type);
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::HasInPrototypeChain(Node* context, Node* object,
|
|
Node* prototype) {
|
|
CSA_ASSERT(this, TaggedIsNotSmi(object));
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
Label return_false(this), return_true(this),
|
|
return_runtime(this, Label::kDeferred), return_result(this);
|
|
|
|
// Loop through the prototype chain looking for the {prototype}.
|
|
VARIABLE(var_object_map, MachineRepresentation::kTagged, LoadMap(object));
|
|
Label loop(this, &var_object_map);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
// Check if we can determine the prototype directly from the {object_map}.
|
|
Label if_objectisdirect(this), if_objectisspecial(this, Label::kDeferred);
|
|
Node* object_map = var_object_map.value();
|
|
TNode<Int32T> object_instance_type = LoadMapInstanceType(object_map);
|
|
Branch(IsSpecialReceiverInstanceType(object_instance_type),
|
|
&if_objectisspecial, &if_objectisdirect);
|
|
BIND(&if_objectisspecial);
|
|
{
|
|
// The {object_map} is a special receiver map or a primitive map, check
|
|
// if we need to use the if_objectisspecial path in the runtime.
|
|
GotoIf(InstanceTypeEqual(object_instance_type, JS_PROXY_TYPE),
|
|
&return_runtime);
|
|
Node* object_bitfield = LoadMapBitField(object_map);
|
|
int mask = Map::HasNamedInterceptorBit::kMask |
|
|
Map::IsAccessCheckNeededBit::kMask;
|
|
Branch(IsSetWord32(object_bitfield, mask), &return_runtime,
|
|
&if_objectisdirect);
|
|
}
|
|
BIND(&if_objectisdirect);
|
|
|
|
// Check the current {object} prototype.
|
|
Node* object_prototype = LoadMapPrototype(object_map);
|
|
GotoIf(IsNull(object_prototype), &return_false);
|
|
GotoIf(WordEqual(object_prototype, prototype), &return_true);
|
|
|
|
// Continue with the prototype.
|
|
CSA_ASSERT(this, TaggedIsNotSmi(object_prototype));
|
|
var_object_map.Bind(LoadMap(object_prototype));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&return_true);
|
|
var_result.Bind(TrueConstant());
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_false);
|
|
var_result.Bind(FalseConstant());
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_runtime);
|
|
{
|
|
// Fallback to the runtime implementation.
|
|
var_result.Bind(
|
|
CallRuntime(Runtime::kHasInPrototypeChain, context, object, prototype));
|
|
}
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
|
|
Node* object) {
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
Label return_runtime(this, Label::kDeferred), return_result(this);
|
|
|
|
GotoIfForceSlowPath(&return_runtime);
|
|
|
|
// Goto runtime if {object} is a Smi.
|
|
GotoIf(TaggedIsSmi(object), &return_runtime);
|
|
|
|
// Goto runtime if {callable} is a Smi.
|
|
GotoIf(TaggedIsSmi(callable), &return_runtime);
|
|
|
|
// Load map of {callable}.
|
|
Node* callable_map = LoadMap(callable);
|
|
|
|
// Goto runtime if {callable} is not a JSFunction.
|
|
Node* callable_instance_type = LoadMapInstanceType(callable_map);
|
|
GotoIfNot(InstanceTypeEqual(callable_instance_type, JS_FUNCTION_TYPE),
|
|
&return_runtime);
|
|
|
|
GotoIfPrototypeRequiresRuntimeLookup(CAST(callable), CAST(callable_map),
|
|
&return_runtime);
|
|
|
|
// Get the "prototype" (or initial map) of the {callable}.
|
|
Node* callable_prototype =
|
|
LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
|
|
{
|
|
Label no_initial_map(this), walk_prototype_chain(this);
|
|
VARIABLE(var_callable_prototype, MachineRepresentation::kTagged,
|
|
callable_prototype);
|
|
|
|
// Resolve the "prototype" if the {callable} has an initial map.
|
|
GotoIfNot(IsMap(callable_prototype), &no_initial_map);
|
|
var_callable_prototype.Bind(
|
|
LoadObjectField(callable_prototype, Map::kPrototypeOffset));
|
|
Goto(&walk_prototype_chain);
|
|
|
|
BIND(&no_initial_map);
|
|
// {callable_prototype} is the hole if the "prototype" property hasn't been
|
|
// requested so far.
|
|
Branch(WordEqual(callable_prototype, TheHoleConstant()), &return_runtime,
|
|
&walk_prototype_chain);
|
|
|
|
BIND(&walk_prototype_chain);
|
|
callable_prototype = var_callable_prototype.value();
|
|
}
|
|
|
|
// Loop through the prototype chain looking for the {callable} prototype.
|
|
CSA_ASSERT(this, IsJSReceiver(callable_prototype));
|
|
var_result.Bind(HasInPrototypeChain(context, object, callable_prototype));
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_runtime);
|
|
{
|
|
// Fallback to the runtime implementation.
|
|
var_result.Bind(
|
|
CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
|
|
}
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
|
|
ElementsKind kind,
|
|
ParameterMode mode,
|
|
int base_size) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, mode));
|
|
int element_size_shift = ElementsKindToShiftSize(kind);
|
|
int element_size = 1 << element_size_shift;
|
|
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
|
|
intptr_t index = 0;
|
|
bool constant_index = false;
|
|
if (mode == SMI_PARAMETERS) {
|
|
element_size_shift -= kSmiShiftBits;
|
|
Smi smi_index;
|
|
constant_index = ToSmiConstant(index_node, &smi_index);
|
|
if (constant_index) index = smi_index->value();
|
|
index_node = BitcastTaggedToWord(index_node);
|
|
} else {
|
|
DCHECK(mode == INTPTR_PARAMETERS);
|
|
constant_index = ToIntPtrConstant(index_node, index);
|
|
}
|
|
if (constant_index) {
|
|
return IntPtrConstant(base_size + element_size * index);
|
|
}
|
|
|
|
TNode<WordT> shifted_index =
|
|
(element_size_shift == 0)
|
|
? UncheckedCast<WordT>(index_node)
|
|
: ((element_size_shift > 0)
|
|
? WordShl(index_node, IntPtrConstant(element_size_shift))
|
|
: WordSar(index_node, IntPtrConstant(-element_size_shift)));
|
|
return IntPtrAdd(IntPtrConstant(base_size), Signed(shifted_index));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
|
|
SloppyTNode<IntPtrT> length,
|
|
int header_size,
|
|
ElementsKind kind) {
|
|
// Make sure we point to the last field.
|
|
int element_size = 1 << ElementsKindToShiftSize(kind);
|
|
int correction = header_size - kHeapObjectTag - element_size;
|
|
TNode<IntPtrT> last_offset =
|
|
ElementOffsetFromIndex(length, kind, INTPTR_PARAMETERS, correction);
|
|
return IntPtrLessThanOrEqual(offset, last_offset);
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::LoadFeedbackCellValue(
|
|
SloppyTNode<JSFunction> closure) {
|
|
TNode<FeedbackCell> feedback_cell =
|
|
CAST(LoadObjectField(closure, JSFunction::kFeedbackCellOffset));
|
|
return CAST(LoadObjectField(feedback_cell, FeedbackCell::kValueOffset));
|
|
}
|
|
|
|
TNode<HeapObject> CodeStubAssembler::LoadFeedbackVector(
|
|
SloppyTNode<JSFunction> closure) {
|
|
TVARIABLE(HeapObject, maybe_vector, LoadFeedbackCellValue(closure));
|
|
Label done(this);
|
|
|
|
// If the closure doesn't have a feedback vector allocated yet, return
|
|
// undefined. FeedbackCell can contain Undefined / FixedArray (for lazy
|
|
// allocations) / FeedbackVector.
|
|
GotoIf(IsFeedbackVector(maybe_vector.value()), &done);
|
|
|
|
// In all other cases return Undefined.
|
|
maybe_vector = UndefinedConstant();
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return maybe_vector.value();
|
|
}
|
|
|
|
TNode<ClosureFeedbackCellArray> CodeStubAssembler::LoadClosureFeedbackArray(
|
|
SloppyTNode<JSFunction> closure) {
|
|
TVARIABLE(HeapObject, feedback_cell_array, LoadFeedbackCellValue(closure));
|
|
Label end(this);
|
|
|
|
// When feedback vectors are not yet allocated feedback cell contains a
|
|
// an array of feedback cells used by create closures.
|
|
GotoIf(HasInstanceType(feedback_cell_array.value(),
|
|
CLOSURE_FEEDBACK_CELL_ARRAY_TYPE),
|
|
&end);
|
|
|
|
// Load FeedbackCellArray from feedback vector.
|
|
TNode<FeedbackVector> vector = CAST(feedback_cell_array.value());
|
|
feedback_cell_array = CAST(
|
|
LoadObjectField(vector, FeedbackVector::kClosureFeedbackCellArrayOffset));
|
|
Goto(&end);
|
|
|
|
BIND(&end);
|
|
return CAST(feedback_cell_array.value());
|
|
}
|
|
|
|
TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVectorForStub() {
|
|
TNode<JSFunction> function =
|
|
CAST(LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset));
|
|
return CAST(LoadFeedbackVector(function));
|
|
}
|
|
|
|
void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* maybe_vector,
|
|
Node* slot_id) {
|
|
Label end(this);
|
|
// If feedback_vector is not valid, then nothing to do.
|
|
GotoIf(IsUndefined(maybe_vector), &end);
|
|
|
|
// This method is used for binary op and compare feedback. These
|
|
// vector nodes are initialized with a smi 0, so we can simply OR
|
|
// our new feedback in place.
|
|
TNode<FeedbackVector> feedback_vector = CAST(maybe_vector);
|
|
TNode<MaybeObject> feedback_element =
|
|
LoadFeedbackVectorSlot(feedback_vector, slot_id);
|
|
TNode<Smi> previous_feedback = CAST(feedback_element);
|
|
TNode<Smi> combined_feedback = SmiOr(previous_feedback, CAST(feedback));
|
|
|
|
GotoIf(SmiEqual(previous_feedback, combined_feedback), &end);
|
|
{
|
|
StoreFeedbackVectorSlot(feedback_vector, slot_id, combined_feedback,
|
|
SKIP_WRITE_BARRIER);
|
|
ReportFeedbackUpdate(feedback_vector, slot_id, "UpdateFeedback");
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
}
|
|
|
|
void CodeStubAssembler::ReportFeedbackUpdate(
|
|
SloppyTNode<FeedbackVector> feedback_vector, SloppyTNode<IntPtrT> slot_id,
|
|
const char* reason) {
|
|
// Reset profiler ticks.
|
|
StoreObjectFieldNoWriteBarrier(
|
|
feedback_vector, FeedbackVector::kProfilerTicksOffset, Int32Constant(0),
|
|
MachineRepresentation::kWord32);
|
|
|
|
#ifdef V8_TRACE_FEEDBACK_UPDATES
|
|
// Trace the update.
|
|
CallRuntime(Runtime::kInterpreterTraceUpdateFeedback, NoContextConstant(),
|
|
LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset),
|
|
SmiTag(slot_id), StringConstant(reason));
|
|
#endif // V8_TRACE_FEEDBACK_UPDATES
|
|
}
|
|
|
|
void CodeStubAssembler::OverwriteFeedback(Variable* existing_feedback,
|
|
int new_feedback) {
|
|
if (existing_feedback == nullptr) return;
|
|
existing_feedback->Bind(SmiConstant(new_feedback));
|
|
}
|
|
|
|
void CodeStubAssembler::CombineFeedback(Variable* existing_feedback,
|
|
int feedback) {
|
|
if (existing_feedback == nullptr) return;
|
|
existing_feedback->Bind(
|
|
SmiOr(CAST(existing_feedback->value()), SmiConstant(feedback)));
|
|
}
|
|
|
|
void CodeStubAssembler::CombineFeedback(Variable* existing_feedback,
|
|
Node* feedback) {
|
|
if (existing_feedback == nullptr) return;
|
|
existing_feedback->Bind(
|
|
SmiOr(CAST(existing_feedback->value()), CAST(feedback)));
|
|
}
|
|
|
|
void CodeStubAssembler::CheckForAssociatedProtector(Node* name,
|
|
Label* if_protector) {
|
|
// This list must be kept in sync with LookupIterator::UpdateProtector!
|
|
// TODO(jkummerow): Would it be faster to have a bit in Symbol::flags()?
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kconstructor_string)),
|
|
if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kiterator_symbol)), if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::knext_string)), if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kspecies_symbol)), if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kis_concat_spreadable_symbol)),
|
|
if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kresolve_string)), if_protector);
|
|
GotoIf(WordEqual(name, LoadRoot(RootIndex::kthen_string)), if_protector);
|
|
// Fall through if no case matched.
|
|
}
|
|
|
|
TNode<Map> CodeStubAssembler::LoadReceiverMap(SloppyTNode<Object> receiver) {
|
|
return Select<Map>(
|
|
TaggedIsSmi(receiver),
|
|
[=] { return CAST(LoadRoot(RootIndex::kHeapNumberMap)); },
|
|
[=] { return LoadMap(UncheckedCast<HeapObject>(receiver)); });
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::TryToIntptr(Node* key, Label* miss) {
|
|
TVARIABLE(IntPtrT, var_intptr_key);
|
|
Label done(this, &var_intptr_key), key_is_smi(this);
|
|
GotoIf(TaggedIsSmi(key), &key_is_smi);
|
|
// Try to convert a heap number to a Smi.
|
|
GotoIfNot(IsHeapNumber(key), miss);
|
|
{
|
|
TNode<Float64T> value = LoadHeapNumberValue(key);
|
|
TNode<Int32T> int_value = RoundFloat64ToInt32(value);
|
|
GotoIfNot(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss);
|
|
var_intptr_key = ChangeInt32ToIntPtr(int_value);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&key_is_smi);
|
|
{
|
|
var_intptr_key = SmiUntag(key);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return var_intptr_key.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::EmitKeyedSloppyArguments(
|
|
Node* receiver, Node* key, Node* value, Label* bailout,
|
|
ArgumentsAccessMode access_mode) {
|
|
// Mapped arguments are actual arguments. Unmapped arguments are values added
|
|
// to the arguments object after it was created for the call. Mapped arguments
|
|
// are stored in the context at indexes given by elements[key + 2]. Unmapped
|
|
// arguments are stored as regular indexed properties in the arguments array,
|
|
// held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed
|
|
// look at argument object construction.
|
|
//
|
|
// The sloppy arguments elements array has a special format:
|
|
//
|
|
// 0: context
|
|
// 1: unmapped arguments array
|
|
// 2: mapped_index0,
|
|
// 3: mapped_index1,
|
|
// ...
|
|
//
|
|
// length is 2 + min(number_of_actual_arguments, number_of_formal_arguments).
|
|
// If key + 2 >= elements.length then attempt to look in the unmapped
|
|
// arguments array (given by elements[1]) and return the value at key, missing
|
|
// to the runtime if the unmapped arguments array is not a fixed array or if
|
|
// key >= unmapped_arguments_array.length.
|
|
//
|
|
// Otherwise, t = elements[key + 2]. If t is the hole, then look up the value
|
|
// in the unmapped arguments array, as described above. Otherwise, t is a Smi
|
|
// index into the context array given at elements[0]. Return the value at
|
|
// context[t].
|
|
|
|
GotoIfNot(TaggedIsSmi(key), bailout);
|
|
key = SmiUntag(key);
|
|
GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout);
|
|
|
|
TNode<FixedArray> elements = CAST(LoadElements(receiver));
|
|
TNode<IntPtrT> elements_length = LoadAndUntagFixedArrayBaseLength(elements);
|
|
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
if (access_mode == ArgumentsAccessMode::kStore) {
|
|
var_result.Bind(value);
|
|
} else {
|
|
DCHECK(access_mode == ArgumentsAccessMode::kLoad ||
|
|
access_mode == ArgumentsAccessMode::kHas);
|
|
}
|
|
Label if_mapped(this), if_unmapped(this), end(this, &var_result);
|
|
Node* intptr_two = IntPtrConstant(2);
|
|
Node* adjusted_length = IntPtrSub(elements_length, intptr_two);
|
|
|
|
GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped);
|
|
|
|
TNode<Object> mapped_index =
|
|
LoadFixedArrayElement(elements, IntPtrAdd(key, intptr_two));
|
|
Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped);
|
|
|
|
BIND(&if_mapped);
|
|
{
|
|
TNode<IntPtrT> mapped_index_intptr = SmiUntag(CAST(mapped_index));
|
|
TNode<Context> the_context = CAST(LoadFixedArrayElement(elements, 0));
|
|
if (access_mode == ArgumentsAccessMode::kLoad) {
|
|
Node* result = LoadContextElement(the_context, mapped_index_intptr);
|
|
CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant()));
|
|
var_result.Bind(result);
|
|
} else if (access_mode == ArgumentsAccessMode::kHas) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsTheHole(LoadContextElement(
|
|
the_context, mapped_index_intptr))));
|
|
var_result.Bind(TrueConstant());
|
|
} else {
|
|
StoreContextElement(the_context, mapped_index_intptr, value);
|
|
}
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_unmapped);
|
|
{
|
|
TNode<HeapObject> backing_store_ho =
|
|
CAST(LoadFixedArrayElement(elements, 1));
|
|
GotoIf(WordNotEqual(LoadMap(backing_store_ho), FixedArrayMapConstant()),
|
|
bailout);
|
|
TNode<FixedArray> backing_store = CAST(backing_store_ho);
|
|
|
|
TNode<IntPtrT> backing_store_length =
|
|
LoadAndUntagFixedArrayBaseLength(backing_store);
|
|
if (access_mode == ArgumentsAccessMode::kHas) {
|
|
Label out_of_bounds(this);
|
|
GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length),
|
|
&out_of_bounds);
|
|
Node* result = LoadFixedArrayElement(backing_store, key);
|
|
var_result.Bind(
|
|
SelectBooleanConstant(WordNotEqual(result, TheHoleConstant())));
|
|
Goto(&end);
|
|
|
|
BIND(&out_of_bounds);
|
|
var_result.Bind(FalseConstant());
|
|
Goto(&end);
|
|
} else {
|
|
GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout);
|
|
|
|
// The key falls into unmapped range.
|
|
if (access_mode == ArgumentsAccessMode::kLoad) {
|
|
Node* result = LoadFixedArrayElement(backing_store, key);
|
|
GotoIf(WordEqual(result, TheHoleConstant()), bailout);
|
|
var_result.Bind(result);
|
|
} else {
|
|
StoreFixedArrayElement(backing_store, key, value);
|
|
}
|
|
Goto(&end);
|
|
}
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Context> CodeStubAssembler::LoadScriptContext(
|
|
TNode<Context> context, TNode<IntPtrT> context_index) {
|
|
TNode<Context> native_context = LoadNativeContext(context);
|
|
TNode<ScriptContextTable> script_context_table = CAST(
|
|
LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX));
|
|
|
|
TNode<Context> script_context = CAST(LoadFixedArrayElement(
|
|
script_context_table, context_index,
|
|
ScriptContextTable::kFirstContextSlotIndex * kTaggedSize));
|
|
return script_context;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Converts typed array elements kind to a machine representations.
|
|
MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) {
|
|
switch (kind) {
|
|
case UINT8_CLAMPED_ELEMENTS:
|
|
case UINT8_ELEMENTS:
|
|
case INT8_ELEMENTS:
|
|
return MachineRepresentation::kWord8;
|
|
case UINT16_ELEMENTS:
|
|
case INT16_ELEMENTS:
|
|
return MachineRepresentation::kWord16;
|
|
case UINT32_ELEMENTS:
|
|
case INT32_ELEMENTS:
|
|
return MachineRepresentation::kWord32;
|
|
case FLOAT32_ELEMENTS:
|
|
return MachineRepresentation::kFloat32;
|
|
case FLOAT64_ELEMENTS:
|
|
return MachineRepresentation::kFloat64;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind,
|
|
Node* index, Node* value,
|
|
ParameterMode mode) {
|
|
if (IsFixedTypedArrayElementsKind(kind)) {
|
|
if (kind == UINT8_CLAMPED_ELEMENTS) {
|
|
CSA_ASSERT(this,
|
|
Word32Equal(value, Word32And(Int32Constant(0xFF), value)));
|
|
}
|
|
Node* offset = ElementOffsetFromIndex(index, kind, mode, 0);
|
|
// TODO(cbruni): Add OOB check once typed.
|
|
MachineRepresentation rep = ElementsKindToMachineRepresentation(kind);
|
|
StoreNoWriteBarrier(rep, elements, offset, value);
|
|
return;
|
|
} else if (IsDoubleElementsKind(kind)) {
|
|
TNode<Float64T> value_float64 = UncheckedCast<Float64T>(value);
|
|
StoreFixedDoubleArrayElement(CAST(elements), index, value_float64, mode);
|
|
} else {
|
|
WriteBarrierMode barrier_mode = IsSmiElementsKind(kind)
|
|
? UNSAFE_SKIP_WRITE_BARRIER
|
|
: UPDATE_WRITE_BARRIER;
|
|
StoreFixedArrayElement(CAST(elements), index, value, barrier_mode, 0, mode);
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) {
|
|
Label done(this);
|
|
Node* int32_zero = Int32Constant(0);
|
|
Node* int32_255 = Int32Constant(255);
|
|
VARIABLE(var_value, MachineRepresentation::kWord32, int32_value);
|
|
GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done);
|
|
var_value.Bind(int32_zero);
|
|
GotoIf(Int32LessThan(int32_value, int32_zero), &done);
|
|
var_value.Bind(int32_255);
|
|
Goto(&done);
|
|
BIND(&done);
|
|
return var_value.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) {
|
|
Label done(this);
|
|
VARIABLE(var_value, MachineRepresentation::kWord32, Int32Constant(0));
|
|
GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done);
|
|
var_value.Bind(Int32Constant(255));
|
|
GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done);
|
|
{
|
|
Node* rounded_value = Float64RoundToEven(float64_value);
|
|
var_value.Bind(TruncateFloat64ToWord32(rounded_value));
|
|
Goto(&done);
|
|
}
|
|
BIND(&done);
|
|
return var_value.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::PrepareValueForWriteToTypedArray(
|
|
TNode<Object> input, ElementsKind elements_kind, TNode<Context> context) {
|
|
DCHECK(IsFixedTypedArrayElementsKind(elements_kind));
|
|
|
|
MachineRepresentation rep;
|
|
switch (elements_kind) {
|
|
case UINT8_ELEMENTS:
|
|
case INT8_ELEMENTS:
|
|
case UINT16_ELEMENTS:
|
|
case INT16_ELEMENTS:
|
|
case UINT32_ELEMENTS:
|
|
case INT32_ELEMENTS:
|
|
case UINT8_CLAMPED_ELEMENTS:
|
|
rep = MachineRepresentation::kWord32;
|
|
break;
|
|
case FLOAT32_ELEMENTS:
|
|
rep = MachineRepresentation::kFloat32;
|
|
break;
|
|
case FLOAT64_ELEMENTS:
|
|
rep = MachineRepresentation::kFloat64;
|
|
break;
|
|
case BIGINT64_ELEMENTS:
|
|
case BIGUINT64_ELEMENTS:
|
|
return ToBigInt(context, input);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
VARIABLE(var_result, rep);
|
|
VARIABLE(var_input, MachineRepresentation::kTagged, input);
|
|
Label done(this, &var_result), if_smi(this), if_heapnumber_or_oddball(this),
|
|
convert(this), loop(this, &var_input);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
GotoIf(TaggedIsSmi(var_input.value()), &if_smi);
|
|
// We can handle both HeapNumber and Oddball here, since Oddball has the
|
|
// same layout as the HeapNumber for the HeapNumber::value field. This
|
|
// way we can also properly optimize stores of oddballs to typed arrays.
|
|
GotoIf(IsHeapNumber(var_input.value()), &if_heapnumber_or_oddball);
|
|
STATIC_ASSERT_FIELD_OFFSETS_EQUAL(HeapNumber::kValueOffset,
|
|
Oddball::kToNumberRawOffset);
|
|
Branch(HasInstanceType(var_input.value(), ODDBALL_TYPE),
|
|
&if_heapnumber_or_oddball, &convert);
|
|
|
|
BIND(&if_heapnumber_or_oddball);
|
|
{
|
|
Node* value = UncheckedCast<Float64T>(LoadObjectField(
|
|
var_input.value(), HeapNumber::kValueOffset, MachineType::Float64()));
|
|
if (rep == MachineRepresentation::kWord32) {
|
|
if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
|
|
value = Float64ToUint8Clamped(value);
|
|
} else {
|
|
value = TruncateFloat64ToWord32(value);
|
|
}
|
|
} else if (rep == MachineRepresentation::kFloat32) {
|
|
value = TruncateFloat64ToFloat32(value);
|
|
} else {
|
|
DCHECK_EQ(MachineRepresentation::kFloat64, rep);
|
|
}
|
|
var_result.Bind(value);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
Node* value = SmiToInt32(var_input.value());
|
|
if (rep == MachineRepresentation::kFloat32) {
|
|
value = RoundInt32ToFloat32(value);
|
|
} else if (rep == MachineRepresentation::kFloat64) {
|
|
value = ChangeInt32ToFloat64(value);
|
|
} else {
|
|
DCHECK_EQ(MachineRepresentation::kWord32, rep);
|
|
if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
|
|
value = Int32ToUint8Clamped(value);
|
|
}
|
|
}
|
|
var_result.Bind(value);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&convert);
|
|
{
|
|
var_input.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, input));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&done);
|
|
return var_result.value();
|
|
}
|
|
|
|
void CodeStubAssembler::EmitBigTypedArrayElementStore(
|
|
TNode<JSTypedArray> object, TNode<FixedTypedArrayBase> elements,
|
|
TNode<IntPtrT> intptr_key, TNode<Object> value, TNode<Context> context,
|
|
Label* opt_if_detached) {
|
|
TNode<BigInt> bigint_value = ToBigInt(context, value);
|
|
|
|
if (opt_if_detached != nullptr) {
|
|
// Check if buffer has been detached. Must happen after {ToBigInt}!
|
|
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
|
|
GotoIf(IsDetachedBuffer(buffer), opt_if_detached);
|
|
}
|
|
|
|
TNode<RawPtrT> backing_store = LoadFixedTypedArrayBackingStore(elements);
|
|
TNode<IntPtrT> offset = ElementOffsetFromIndex(intptr_key, BIGINT64_ELEMENTS,
|
|
INTPTR_PARAMETERS, 0);
|
|
EmitBigTypedArrayElementStore(elements, backing_store, offset, bigint_value);
|
|
}
|
|
|
|
void CodeStubAssembler::BigIntToRawBytes(TNode<BigInt> bigint,
|
|
TVariable<UintPtrT>* var_low,
|
|
TVariable<UintPtrT>* var_high) {
|
|
Label done(this);
|
|
*var_low = Unsigned(IntPtrConstant(0));
|
|
*var_high = Unsigned(IntPtrConstant(0));
|
|
TNode<Word32T> bitfield = LoadBigIntBitfield(bigint);
|
|
TNode<Uint32T> length = DecodeWord32<BigIntBase::LengthBits>(bitfield);
|
|
TNode<Uint32T> sign = DecodeWord32<BigIntBase::SignBits>(bitfield);
|
|
GotoIf(Word32Equal(length, Int32Constant(0)), &done);
|
|
*var_low = LoadBigIntDigit(bigint, 0);
|
|
if (!Is64()) {
|
|
Label load_done(this);
|
|
GotoIf(Word32Equal(length, Int32Constant(1)), &load_done);
|
|
*var_high = LoadBigIntDigit(bigint, 1);
|
|
Goto(&load_done);
|
|
BIND(&load_done);
|
|
}
|
|
GotoIf(Word32Equal(sign, Int32Constant(0)), &done);
|
|
// Negative value. Simulate two's complement.
|
|
if (!Is64()) {
|
|
*var_high = Unsigned(IntPtrSub(IntPtrConstant(0), var_high->value()));
|
|
Label no_carry(this);
|
|
GotoIf(WordEqual(var_low->value(), IntPtrConstant(0)), &no_carry);
|
|
*var_high = Unsigned(IntPtrSub(var_high->value(), IntPtrConstant(1)));
|
|
Goto(&no_carry);
|
|
BIND(&no_carry);
|
|
}
|
|
*var_low = Unsigned(IntPtrSub(IntPtrConstant(0), var_low->value()));
|
|
Goto(&done);
|
|
BIND(&done);
|
|
}
|
|
|
|
void CodeStubAssembler::EmitBigTypedArrayElementStore(
|
|
TNode<FixedTypedArrayBase> elements, TNode<RawPtrT> backing_store,
|
|
TNode<IntPtrT> offset, TNode<BigInt> bigint_value) {
|
|
TVARIABLE(UintPtrT, var_low);
|
|
// Only used on 32-bit platforms.
|
|
TVARIABLE(UintPtrT, var_high);
|
|
BigIntToRawBytes(bigint_value, &var_low, &var_high);
|
|
|
|
MachineRepresentation rep = WordT::kMachineRepresentation;
|
|
#if defined(V8_TARGET_BIG_ENDIAN)
|
|
if (!Is64()) {
|
|
StoreNoWriteBarrier(rep, backing_store, offset, var_high.value());
|
|
StoreNoWriteBarrier(rep, backing_store,
|
|
IntPtrAdd(offset, IntPtrConstant(kSystemPointerSize)),
|
|
var_low.value());
|
|
} else {
|
|
StoreNoWriteBarrier(rep, backing_store, offset, var_low.value());
|
|
}
|
|
#else
|
|
StoreNoWriteBarrier(rep, backing_store, offset, var_low.value());
|
|
if (!Is64()) {
|
|
StoreNoWriteBarrier(rep, backing_store,
|
|
IntPtrAdd(offset, IntPtrConstant(kSystemPointerSize)),
|
|
var_high.value());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value,
|
|
ElementsKind elements_kind,
|
|
KeyedAccessStoreMode store_mode,
|
|
Label* bailout, Node* context) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsJSProxy(object)));
|
|
|
|
Node* elements = LoadElements(object);
|
|
if (!(IsSmiOrObjectElementsKind(elements_kind) ||
|
|
IsSealedElementsKind(elements_kind))) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
|
|
} else if (!IsCOWHandlingStoreMode(store_mode)) {
|
|
GotoIf(IsFixedCOWArrayMap(LoadMap(elements)), bailout);
|
|
}
|
|
|
|
// TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode().
|
|
ParameterMode parameter_mode = INTPTR_PARAMETERS;
|
|
TNode<IntPtrT> intptr_key = TryToIntptr(key, bailout);
|
|
|
|
if (IsFixedTypedArrayElementsKind(elements_kind)) {
|
|
Label done(this);
|
|
|
|
// IntegerIndexedElementSet converts value to a Number/BigInt prior to the
|
|
// bounds check.
|
|
value = PrepareValueForWriteToTypedArray(CAST(value), elements_kind,
|
|
CAST(context));
|
|
|
|
// There must be no allocations between the buffer load and
|
|
// and the actual store to backing store, because GC may decide that
|
|
// the buffer is not alive or move the elements.
|
|
// TODO(ishell): introduce DisallowHeapAllocationCode scope here.
|
|
|
|
// Check if buffer has been detached.
|
|
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
|
|
GotoIf(IsDetachedBuffer(buffer), bailout);
|
|
|
|
// Bounds check.
|
|
TNode<UintPtrT> length = LoadJSTypedArrayLength(CAST(object));
|
|
|
|
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
// Skip the store if we write beyond the length or
|
|
// to a property with a negative integer index.
|
|
GotoIfNot(UintPtrLessThan(intptr_key, length), &done);
|
|
} else if (store_mode == STANDARD_STORE) {
|
|
GotoIfNot(UintPtrLessThan(intptr_key, length), bailout);
|
|
} else {
|
|
// This case is produced due to the dispatched call in
|
|
// ElementsTransitionAndStore and StoreFastElement.
|
|
// TODO(jgruber): Avoid generating unsupported combinations to save code
|
|
// size.
|
|
DebugBreak();
|
|
}
|
|
|
|
if (elements_kind == BIGINT64_ELEMENTS ||
|
|
elements_kind == BIGUINT64_ELEMENTS) {
|
|
TNode<BigInt> bigint_value = UncheckedCast<BigInt>(value);
|
|
|
|
TNode<RawPtrT> backing_store =
|
|
LoadFixedTypedArrayBackingStore(CAST(elements));
|
|
TNode<IntPtrT> offset = ElementOffsetFromIndex(
|
|
intptr_key, BIGINT64_ELEMENTS, INTPTR_PARAMETERS, 0);
|
|
EmitBigTypedArrayElementStore(CAST(elements), backing_store, offset,
|
|
bigint_value);
|
|
} else {
|
|
Node* backing_store = LoadFixedTypedArrayBackingStore(CAST(elements));
|
|
StoreElement(backing_store, elements_kind, intptr_key, value,
|
|
parameter_mode);
|
|
}
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return;
|
|
}
|
|
DCHECK(
|
|
IsFastElementsKind(elements_kind) ||
|
|
IsInRange(elements_kind, PACKED_SEALED_ELEMENTS, HOLEY_SEALED_ELEMENTS));
|
|
|
|
Node* length =
|
|
SelectImpl(IsJSArray(object), [=]() { return LoadJSArrayLength(object); },
|
|
[=]() { return LoadFixedArrayBaseLength(elements); },
|
|
MachineRepresentation::kTagged);
|
|
length = TaggedToParameter(length, parameter_mode);
|
|
|
|
// In case value is stored into a fast smi array, assure that the value is
|
|
// a smi before manipulating the backing store. Otherwise the backing store
|
|
// may be left in an invalid state.
|
|
if (IsSmiElementsKind(elements_kind)) {
|
|
GotoIfNot(TaggedIsSmi(value), bailout);
|
|
} else if (IsDoubleElementsKind(elements_kind)) {
|
|
value = TryTaggedToFloat64(value, bailout);
|
|
}
|
|
|
|
if (IsGrowStoreMode(store_mode) &&
|
|
!(IsInRange(elements_kind, PACKED_SEALED_ELEMENTS,
|
|
HOLEY_SEALED_ELEMENTS))) {
|
|
elements = CheckForCapacityGrow(object, elements, elements_kind, length,
|
|
intptr_key, parameter_mode, bailout);
|
|
} else {
|
|
GotoIfNot(UintPtrLessThan(intptr_key, length), bailout);
|
|
}
|
|
|
|
// If we didn't grow {elements}, it might still be COW, in which case we
|
|
// copy it now.
|
|
if (!IsSmiOrObjectElementsKind(elements_kind)) {
|
|
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
|
|
} else if (IsCOWHandlingStoreMode(store_mode)) {
|
|
elements = CopyElementsOnWrite(object, elements, elements_kind, length,
|
|
parameter_mode, bailout);
|
|
}
|
|
|
|
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
|
|
StoreElement(elements, elements_kind, intptr_key, value, parameter_mode);
|
|
}
|
|
|
|
Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements,
|
|
ElementsKind kind, Node* length,
|
|
Node* key, ParameterMode mode,
|
|
Label* bailout) {
|
|
DCHECK(IsFastElementsKind(kind));
|
|
VARIABLE(checked_elements, MachineRepresentation::kTagged);
|
|
Label grow_case(this), no_grow_case(this), done(this),
|
|
grow_bailout(this, Label::kDeferred);
|
|
|
|
Node* condition;
|
|
if (IsHoleyElementsKind(kind)) {
|
|
condition = UintPtrGreaterThanOrEqual(key, length);
|
|
} else {
|
|
// We don't support growing here unless the value is being appended.
|
|
condition = WordEqual(key, length);
|
|
}
|
|
Branch(condition, &grow_case, &no_grow_case);
|
|
|
|
BIND(&grow_case);
|
|
{
|
|
Node* current_capacity =
|
|
TaggedToParameter(LoadFixedArrayBaseLength(elements), mode);
|
|
checked_elements.Bind(elements);
|
|
Label fits_capacity(this);
|
|
// If key is negative, we will notice in Runtime::kGrowArrayElements.
|
|
GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity);
|
|
|
|
{
|
|
Node* new_elements = TryGrowElementsCapacity(
|
|
object, elements, kind, key, current_capacity, mode, &grow_bailout);
|
|
checked_elements.Bind(new_elements);
|
|
Goto(&fits_capacity);
|
|
}
|
|
|
|
BIND(&grow_bailout);
|
|
{
|
|
Node* tagged_key = mode == SMI_PARAMETERS
|
|
? key
|
|
: ChangeInt32ToTagged(TruncateIntPtrToInt32(key));
|
|
Node* maybe_elements = CallRuntime(
|
|
Runtime::kGrowArrayElements, NoContextConstant(), object, tagged_key);
|
|
GotoIf(TaggedIsSmi(maybe_elements), bailout);
|
|
CSA_ASSERT(this, IsFixedArrayWithKind(maybe_elements, kind));
|
|
checked_elements.Bind(maybe_elements);
|
|
Goto(&fits_capacity);
|
|
}
|
|
|
|
BIND(&fits_capacity);
|
|
GotoIfNot(IsJSArray(object), &done);
|
|
|
|
Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode));
|
|
StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset,
|
|
ParameterToTagged(new_length, mode));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&no_grow_case);
|
|
{
|
|
GotoIfNot(UintPtrLessThan(key, length), bailout);
|
|
checked_elements.Bind(elements);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return checked_elements.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements,
|
|
ElementsKind kind, Node* length,
|
|
ParameterMode mode,
|
|
Label* bailout) {
|
|
VARIABLE(new_elements_var, MachineRepresentation::kTagged, elements);
|
|
Label done(this);
|
|
|
|
GotoIfNot(IsFixedCOWArrayMap(LoadMap(elements)), &done);
|
|
{
|
|
Node* capacity =
|
|
TaggedToParameter(LoadFixedArrayBaseLength(elements), mode);
|
|
Node* new_elements = GrowElementsCapacity(object, elements, kind, kind,
|
|
length, capacity, mode, bailout);
|
|
new_elements_var.Bind(new_elements);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
return new_elements_var.value();
|
|
}
|
|
|
|
void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map,
|
|
ElementsKind from_kind,
|
|
ElementsKind to_kind,
|
|
Label* bailout) {
|
|
DCHECK(!IsHoleyElementsKind(from_kind) || IsHoleyElementsKind(to_kind));
|
|
if (AllocationSite::ShouldTrack(from_kind, to_kind)) {
|
|
TrapAllocationMemento(object, bailout);
|
|
}
|
|
|
|
if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
|
|
Comment("Non-simple map transition");
|
|
Node* elements = LoadElements(object);
|
|
|
|
Label done(this);
|
|
GotoIf(WordEqual(elements, EmptyFixedArrayConstant()), &done);
|
|
|
|
// TODO(ishell): Use OptimalParameterMode().
|
|
ParameterMode mode = INTPTR_PARAMETERS;
|
|
Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements));
|
|
Node* array_length = SelectImpl(
|
|
IsJSArray(object),
|
|
[=]() {
|
|
CSA_ASSERT(this, IsFastElementsKind(LoadElementsKind(object)));
|
|
return SmiUntag(LoadFastJSArrayLength(object));
|
|
},
|
|
[=]() { return elements_length; },
|
|
MachineType::PointerRepresentation());
|
|
|
|
CSA_ASSERT(this, WordNotEqual(elements_length, IntPtrConstant(0)));
|
|
|
|
GrowElementsCapacity(object, elements, from_kind, to_kind, array_length,
|
|
elements_length, mode, bailout);
|
|
Goto(&done);
|
|
BIND(&done);
|
|
}
|
|
|
|
StoreMap(object, map);
|
|
}
|
|
|
|
void CodeStubAssembler::TrapAllocationMemento(Node* object,
|
|
Label* memento_found) {
|
|
Comment("[ TrapAllocationMemento");
|
|
Label no_memento_found(this);
|
|
Label top_check(this), map_check(this);
|
|
|
|
TNode<ExternalReference> new_space_top_address = ExternalConstant(
|
|
ExternalReference::new_space_allocation_top_address(isolate()));
|
|
const int kMementoMapOffset = JSArray::kSize;
|
|
const int kMementoLastWordOffset =
|
|
kMementoMapOffset + AllocationMemento::kSize - kTaggedSize;
|
|
|
|
// Bail out if the object is not in new space.
|
|
TNode<IntPtrT> object_word = BitcastTaggedToWord(object);
|
|
TNode<IntPtrT> object_page = PageFromAddress(object_word);
|
|
{
|
|
TNode<IntPtrT> page_flags =
|
|
UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page,
|
|
IntPtrConstant(Page::kFlagsOffset)));
|
|
GotoIf(WordEqual(
|
|
WordAnd(page_flags,
|
|
IntPtrConstant(MemoryChunk::kIsInYoungGenerationMask)),
|
|
IntPtrConstant(0)),
|
|
&no_memento_found);
|
|
// TODO(ulan): Support allocation memento for a large object by allocating
|
|
// additional word for the memento after the large object.
|
|
GotoIf(WordNotEqual(WordAnd(page_flags,
|
|
IntPtrConstant(MemoryChunk::kIsLargePageMask)),
|
|
IntPtrConstant(0)),
|
|
&no_memento_found);
|
|
}
|
|
|
|
TNode<IntPtrT> memento_last_word = IntPtrAdd(
|
|
object_word, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag));
|
|
TNode<IntPtrT> memento_last_word_page = PageFromAddress(memento_last_word);
|
|
|
|
TNode<IntPtrT> new_space_top = UncheckedCast<IntPtrT>(
|
|
Load(MachineType::Pointer(), new_space_top_address));
|
|
TNode<IntPtrT> new_space_top_page = PageFromAddress(new_space_top);
|
|
|
|
// If the object is in new space, we need to check whether respective
|
|
// potential memento object is on the same page as the current top.
|
|
GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check);
|
|
|
|
// The object is on a different page than allocation top. Bail out if the
|
|
// object sits on the page boundary as no memento can follow and we cannot
|
|
// touch the memory following it.
|
|
Branch(WordEqual(object_page, memento_last_word_page), &map_check,
|
|
&no_memento_found);
|
|
|
|
// If top is on the same page as the current object, we need to check whether
|
|
// we are below top.
|
|
BIND(&top_check);
|
|
{
|
|
Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top),
|
|
&no_memento_found, &map_check);
|
|
}
|
|
|
|
// Memento map check.
|
|
BIND(&map_check);
|
|
{
|
|
TNode<Object> memento_map = LoadObjectField(object, kMementoMapOffset);
|
|
Branch(WordEqual(memento_map, LoadRoot(RootIndex::kAllocationMementoMap)),
|
|
memento_found, &no_memento_found);
|
|
}
|
|
BIND(&no_memento_found);
|
|
Comment("] TrapAllocationMemento");
|
|
}
|
|
|
|
TNode<IntPtrT> CodeStubAssembler::PageFromAddress(TNode<IntPtrT> address) {
|
|
return WordAnd(address, IntPtrConstant(~kPageAlignmentMask));
|
|
}
|
|
|
|
TNode<AllocationSite> CodeStubAssembler::CreateAllocationSiteInFeedbackVector(
|
|
SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot) {
|
|
TNode<IntPtrT> size = IntPtrConstant(AllocationSite::kSizeWithWeakNext);
|
|
Node* site = Allocate(size, CodeStubAssembler::kPretenured);
|
|
StoreMapNoWriteBarrier(site, RootIndex::kAllocationSiteWithWeakNextMap);
|
|
// Should match AllocationSite::Initialize.
|
|
TNode<WordT> field = UpdateWord<AllocationSite::ElementsKindBits>(
|
|
IntPtrConstant(0), IntPtrConstant(GetInitialFastElementsKind()));
|
|
StoreObjectFieldNoWriteBarrier(
|
|
site, AllocationSite::kTransitionInfoOrBoilerplateOffset,
|
|
SmiTag(Signed(field)));
|
|
|
|
// Unlike literals, constructed arrays don't have nested sites
|
|
TNode<Smi> zero = SmiConstant(0);
|
|
StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero);
|
|
|
|
// Pretenuring calculation field.
|
|
StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset,
|
|
Int32Constant(0),
|
|
MachineRepresentation::kWord32);
|
|
|
|
// Pretenuring memento creation count field.
|
|
StoreObjectFieldNoWriteBarrier(
|
|
site, AllocationSite::kPretenureCreateCountOffset, Int32Constant(0),
|
|
MachineRepresentation::kWord32);
|
|
|
|
// Store an empty fixed array for the code dependency.
|
|
StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset,
|
|
RootIndex::kEmptyWeakFixedArray);
|
|
|
|
// Link the object to the allocation site list
|
|
TNode<ExternalReference> site_list = ExternalConstant(
|
|
ExternalReference::allocation_sites_list_address(isolate()));
|
|
TNode<Object> next_site = CAST(LoadBufferObject(site_list, 0));
|
|
|
|
// TODO(mvstanton): This is a store to a weak pointer, which we may want to
|
|
// mark as such in order to skip the write barrier, once we have a unified
|
|
// system for weakness. For now we decided to keep it like this because having
|
|
// an initial write barrier backed store makes this pointer strong until the
|
|
// next GC, and allocation sites are designed to survive several GCs anyway.
|
|
StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site);
|
|
StoreFullTaggedNoWriteBarrier(site_list, site);
|
|
|
|
StoreFeedbackVectorSlot(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0,
|
|
SMI_PARAMETERS);
|
|
return CAST(site);
|
|
}
|
|
|
|
TNode<MaybeObject> CodeStubAssembler::StoreWeakReferenceInFeedbackVector(
|
|
SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
|
|
SloppyTNode<HeapObject> value, int additional_offset,
|
|
ParameterMode parameter_mode) {
|
|
TNode<MaybeObject> weak_value = MakeWeak(value);
|
|
StoreFeedbackVectorSlot(feedback_vector, slot, weak_value,
|
|
UPDATE_WRITE_BARRIER, additional_offset,
|
|
parameter_mode);
|
|
return weak_value;
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::NotHasBoilerplate(
|
|
TNode<Object> maybe_literal_site) {
|
|
return TaggedIsSmi(maybe_literal_site);
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::LoadTransitionInfo(
|
|
TNode<AllocationSite> allocation_site) {
|
|
TNode<Smi> transition_info = CAST(LoadObjectField(
|
|
allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset));
|
|
return transition_info;
|
|
}
|
|
|
|
TNode<JSObject> CodeStubAssembler::LoadBoilerplate(
|
|
TNode<AllocationSite> allocation_site) {
|
|
TNode<JSObject> boilerplate = CAST(LoadObjectField(
|
|
allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset));
|
|
return boilerplate;
|
|
}
|
|
|
|
TNode<Int32T> CodeStubAssembler::LoadElementsKind(
|
|
TNode<AllocationSite> allocation_site) {
|
|
TNode<Smi> transition_info = LoadTransitionInfo(allocation_site);
|
|
TNode<Int32T> elements_kind =
|
|
Signed(DecodeWord32<AllocationSite::ElementsKindBits>(
|
|
SmiToInt32(transition_info)));
|
|
CSA_ASSERT(this, IsFastElementsKind(elements_kind));
|
|
return elements_kind;
|
|
}
|
|
|
|
Node* CodeStubAssembler::BuildFastLoop(
|
|
const CodeStubAssembler::VariableList& vars, Node* start_index,
|
|
Node* end_index, const FastLoopBody& body, int increment,
|
|
ParameterMode parameter_mode, IndexAdvanceMode advance_mode) {
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(start_index, parameter_mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(end_index, parameter_mode));
|
|
MachineRepresentation index_rep = ParameterRepresentation(parameter_mode);
|
|
VARIABLE(var, index_rep, start_index);
|
|
VariableList vars_copy(vars.begin(), vars.end(), zone());
|
|
vars_copy.push_back(&var);
|
|
Label loop(this, vars_copy);
|
|
Label after_loop(this);
|
|
// Introduce an explicit second check of the termination condition before the
|
|
// loop that helps turbofan generate better code. If there's only a single
|
|
// check, then the CodeStubAssembler forces it to be at the beginning of the
|
|
// loop requiring a backwards branch at the end of the loop (it's not possible
|
|
// to force the loop header check at the end of the loop and branch forward to
|
|
// it from the pre-header). The extra branch is slower in the case that the
|
|
// loop actually iterates.
|
|
Node* first_check = WordEqual(var.value(), end_index);
|
|
int32_t first_check_val;
|
|
if (ToInt32Constant(first_check, first_check_val)) {
|
|
if (first_check_val) return var.value();
|
|
Goto(&loop);
|
|
} else {
|
|
Branch(first_check, &after_loop, &loop);
|
|
}
|
|
|
|
BIND(&loop);
|
|
{
|
|
if (advance_mode == IndexAdvanceMode::kPre) {
|
|
Increment(&var, increment, parameter_mode);
|
|
}
|
|
body(var.value());
|
|
if (advance_mode == IndexAdvanceMode::kPost) {
|
|
Increment(&var, increment, parameter_mode);
|
|
}
|
|
Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop);
|
|
}
|
|
BIND(&after_loop);
|
|
return var.value();
|
|
}
|
|
|
|
void CodeStubAssembler::BuildFastFixedArrayForEach(
|
|
const CodeStubAssembler::VariableList& vars, Node* fixed_array,
|
|
ElementsKind kind, Node* first_element_inclusive,
|
|
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
|
|
ParameterMode mode, ForEachDirection direction) {
|
|
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(first_element_inclusive, mode));
|
|
CSA_SLOW_ASSERT(this, MatchesParameterMode(last_element_exclusive, mode));
|
|
CSA_SLOW_ASSERT(this, Word32Or(IsFixedArrayWithKind(fixed_array, kind),
|
|
IsPropertyArray(fixed_array)));
|
|
int32_t first_val;
|
|
bool constant_first = ToInt32Constant(first_element_inclusive, first_val);
|
|
int32_t last_val;
|
|
bool constent_last = ToInt32Constant(last_element_exclusive, last_val);
|
|
if (constant_first && constent_last) {
|
|
int delta = last_val - first_val;
|
|
DCHECK_GE(delta, 0);
|
|
if (delta <= kElementLoopUnrollThreshold) {
|
|
if (direction == ForEachDirection::kForward) {
|
|
for (int i = first_val; i < last_val; ++i) {
|
|
Node* index = IntPtrConstant(i);
|
|
Node* offset =
|
|
ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
body(fixed_array, offset);
|
|
}
|
|
} else {
|
|
for (int i = last_val - 1; i >= first_val; --i) {
|
|
Node* index = IntPtrConstant(i);
|
|
Node* offset =
|
|
ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
body(fixed_array, offset);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
Node* start =
|
|
ElementOffsetFromIndex(first_element_inclusive, kind, mode,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
Node* limit =
|
|
ElementOffsetFromIndex(last_element_exclusive, kind, mode,
|
|
FixedArray::kHeaderSize - kHeapObjectTag);
|
|
if (direction == ForEachDirection::kReverse) std::swap(start, limit);
|
|
|
|
int increment = IsDoubleElementsKind(kind) ? kDoubleSize : kTaggedSize;
|
|
BuildFastLoop(
|
|
vars, start, limit,
|
|
[fixed_array, &body](Node* offset) { body(fixed_array, offset); },
|
|
direction == ForEachDirection::kReverse ? -increment : increment,
|
|
INTPTR_PARAMETERS,
|
|
direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre
|
|
: IndexAdvanceMode::kPost);
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfFixedArraySizeDoesntFitInNewSpace(
|
|
Node* element_count, Label* doesnt_fit, int base_size, ParameterMode mode) {
|
|
GotoIf(FixedArraySizeDoesntFitInNewSpace(element_count, base_size, mode),
|
|
doesnt_fit);
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeFieldsWithRoot(Node* object,
|
|
Node* start_offset,
|
|
Node* end_offset,
|
|
RootIndex root_index) {
|
|
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
|
|
start_offset = IntPtrAdd(start_offset, IntPtrConstant(-kHeapObjectTag));
|
|
end_offset = IntPtrAdd(end_offset, IntPtrConstant(-kHeapObjectTag));
|
|
Node* root_value = LoadRoot(root_index);
|
|
BuildFastLoop(
|
|
end_offset, start_offset,
|
|
[this, object, root_value](Node* current) {
|
|
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, current,
|
|
root_value);
|
|
},
|
|
-kTaggedSize, INTPTR_PARAMETERS,
|
|
CodeStubAssembler::IndexAdvanceMode::kPre);
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfNumberRelationalComparison(
|
|
Operation op, Node* left, Node* right, Label* if_true, Label* if_false) {
|
|
CSA_SLOW_ASSERT(this, IsNumber(left));
|
|
CSA_SLOW_ASSERT(this, IsNumber(right));
|
|
|
|
Label do_float_comparison(this);
|
|
TVARIABLE(Float64T, var_left_float);
|
|
TVARIABLE(Float64T, var_right_float);
|
|
|
|
Branch(
|
|
TaggedIsSmi(left),
|
|
[&] {
|
|
TNode<Smi> smi_left = CAST(left);
|
|
|
|
Branch(
|
|
TaggedIsSmi(right),
|
|
[&] {
|
|
TNode<Smi> smi_right = CAST(right);
|
|
|
|
// Both {left} and {right} are Smi, so just perform a fast
|
|
// Smi comparison.
|
|
switch (op) {
|
|
case Operation::kEqual:
|
|
BranchIfSmiEqual(smi_left, smi_right, if_true, if_false);
|
|
break;
|
|
case Operation::kLessThan:
|
|
BranchIfSmiLessThan(smi_left, smi_right, if_true, if_false);
|
|
break;
|
|
case Operation::kLessThanOrEqual:
|
|
BranchIfSmiLessThanOrEqual(smi_left, smi_right, if_true,
|
|
if_false);
|
|
break;
|
|
case Operation::kGreaterThan:
|
|
BranchIfSmiLessThan(smi_right, smi_left, if_true, if_false);
|
|
break;
|
|
case Operation::kGreaterThanOrEqual:
|
|
BranchIfSmiLessThanOrEqual(smi_right, smi_left, if_true,
|
|
if_false);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
},
|
|
[&] {
|
|
CSA_ASSERT(this, IsHeapNumber(right));
|
|
var_left_float = SmiToFloat64(smi_left);
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
Goto(&do_float_comparison);
|
|
});
|
|
},
|
|
[&] {
|
|
CSA_ASSERT(this, IsHeapNumber(left));
|
|
var_left_float = LoadHeapNumberValue(left);
|
|
|
|
Branch(
|
|
TaggedIsSmi(right),
|
|
[&] {
|
|
var_right_float = SmiToFloat64(right);
|
|
Goto(&do_float_comparison);
|
|
},
|
|
[&] {
|
|
CSA_ASSERT(this, IsHeapNumber(right));
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
Goto(&do_float_comparison);
|
|
});
|
|
});
|
|
|
|
BIND(&do_float_comparison);
|
|
{
|
|
switch (op) {
|
|
case Operation::kEqual:
|
|
Branch(Float64Equal(var_left_float.value(), var_right_float.value()),
|
|
if_true, if_false);
|
|
break;
|
|
case Operation::kLessThan:
|
|
Branch(Float64LessThan(var_left_float.value(), var_right_float.value()),
|
|
if_true, if_false);
|
|
break;
|
|
case Operation::kLessThanOrEqual:
|
|
Branch(Float64LessThanOrEqual(var_left_float.value(),
|
|
var_right_float.value()),
|
|
if_true, if_false);
|
|
break;
|
|
case Operation::kGreaterThan:
|
|
Branch(
|
|
Float64GreaterThan(var_left_float.value(), var_right_float.value()),
|
|
if_true, if_false);
|
|
break;
|
|
case Operation::kGreaterThanOrEqual:
|
|
Branch(Float64GreaterThanOrEqual(var_left_float.value(),
|
|
var_right_float.value()),
|
|
if_true, if_false);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfNumberGreaterThanOrEqual(Node* left, Node* right,
|
|
Label* if_true) {
|
|
Label if_false(this);
|
|
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
|
|
right, if_true, &if_false);
|
|
BIND(&if_false);
|
|
}
|
|
|
|
namespace {
|
|
Operation Reverse(Operation op) {
|
|
switch (op) {
|
|
case Operation::kLessThan:
|
|
return Operation::kGreaterThan;
|
|
case Operation::kLessThanOrEqual:
|
|
return Operation::kGreaterThanOrEqual;
|
|
case Operation::kGreaterThan:
|
|
return Operation::kLessThan;
|
|
case Operation::kGreaterThanOrEqual:
|
|
return Operation::kLessThanOrEqual;
|
|
default:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
} // anonymous namespace
|
|
|
|
Node* CodeStubAssembler::RelationalComparison(Operation op, Node* left,
|
|
Node* right, Node* context,
|
|
Variable* var_type_feedback) {
|
|
Label return_true(this), return_false(this), do_float_comparison(this),
|
|
end(this);
|
|
TVARIABLE(Oddball, var_result); // Actually only "true" or "false".
|
|
TVARIABLE(Float64T, var_left_float);
|
|
TVARIABLE(Float64T, var_right_float);
|
|
|
|
// We might need to loop several times due to ToPrimitive and/or ToNumeric
|
|
// conversions.
|
|
VARIABLE(var_left, MachineRepresentation::kTagged, left);
|
|
VARIABLE(var_right, MachineRepresentation::kTagged, right);
|
|
VariableList loop_variable_list({&var_left, &var_right}, zone());
|
|
if (var_type_feedback != nullptr) {
|
|
// Initialize the type feedback to None. The current feedback is combined
|
|
// with the previous feedback.
|
|
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone));
|
|
loop_variable_list.push_back(var_type_feedback);
|
|
}
|
|
Label loop(this, loop_variable_list);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
left = var_left.value();
|
|
right = var_right.value();
|
|
|
|
Label if_left_smi(this), if_left_not_smi(this);
|
|
Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi);
|
|
|
|
BIND(&if_left_smi);
|
|
{
|
|
TNode<Smi> smi_left = CAST(left);
|
|
Label if_right_smi(this), if_right_heapnumber(this),
|
|
if_right_bigint(this, Label::kDeferred),
|
|
if_right_not_numeric(this, Label::kDeferred);
|
|
GotoIf(TaggedIsSmi(right), &if_right_smi);
|
|
Node* right_map = LoadMap(right);
|
|
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
|
|
Node* right_instance_type = LoadMapInstanceType(right_map);
|
|
Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint,
|
|
&if_right_not_numeric);
|
|
|
|
BIND(&if_right_smi);
|
|
{
|
|
TNode<Smi> smi_right = CAST(right);
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kSignedSmall);
|
|
switch (op) {
|
|
case Operation::kLessThan:
|
|
BranchIfSmiLessThan(smi_left, smi_right, &return_true,
|
|
&return_false);
|
|
break;
|
|
case Operation::kLessThanOrEqual:
|
|
BranchIfSmiLessThanOrEqual(smi_left, smi_right, &return_true,
|
|
&return_false);
|
|
break;
|
|
case Operation::kGreaterThan:
|
|
BranchIfSmiLessThan(smi_right, smi_left, &return_true,
|
|
&return_false);
|
|
break;
|
|
case Operation::kGreaterThanOrEqual:
|
|
BranchIfSmiLessThanOrEqual(smi_right, smi_left, &return_true,
|
|
&return_false);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
BIND(&if_right_heapnumber);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
var_left_float = SmiToFloat64(smi_left);
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
Goto(&do_float_comparison);
|
|
}
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
|
|
NoContextConstant(),
|
|
SmiConstant(Reverse(op)), right, left));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_not_numeric);
|
|
{
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
// Convert {right} to a Numeric; we don't need to perform the
|
|
// dedicated ToPrimitive(right, hint Number) operation, as the
|
|
// ToNumeric(right) will by itself already invoke ToPrimitive with
|
|
// a Number hint.
|
|
var_right.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_not_smi);
|
|
{
|
|
Node* left_map = LoadMap(left);
|
|
|
|
Label if_right_smi(this), if_right_not_smi(this);
|
|
Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi);
|
|
|
|
BIND(&if_right_smi);
|
|
{
|
|
Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred),
|
|
if_left_not_numeric(this, Label::kDeferred);
|
|
GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber);
|
|
Node* left_instance_type = LoadMapInstanceType(left_map);
|
|
Branch(IsBigIntInstanceType(left_instance_type), &if_left_bigint,
|
|
&if_left_not_numeric);
|
|
|
|
BIND(&if_left_heapnumber);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
var_left_float = LoadHeapNumberValue(left);
|
|
var_right_float = SmiToFloat64(right);
|
|
Goto(&do_float_comparison);
|
|
}
|
|
|
|
BIND(&if_left_bigint);
|
|
{
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
|
|
NoContextConstant(), SmiConstant(op),
|
|
left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_left_not_numeric);
|
|
{
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
// Convert {left} to a Numeric; we don't need to perform the
|
|
// dedicated ToPrimitive(left, hint Number) operation, as the
|
|
// ToNumeric(left) will by itself already invoke ToPrimitive with
|
|
// a Number hint.
|
|
var_left.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_right_not_smi);
|
|
{
|
|
Node* right_map = LoadMap(right);
|
|
|
|
Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred),
|
|
if_left_string(this, Label::kDeferred),
|
|
if_left_other(this, Label::kDeferred);
|
|
GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber);
|
|
Node* left_instance_type = LoadMapInstanceType(left_map);
|
|
GotoIf(IsBigIntInstanceType(left_instance_type), &if_left_bigint);
|
|
Branch(IsStringInstanceType(left_instance_type), &if_left_string,
|
|
&if_left_other);
|
|
|
|
BIND(&if_left_heapnumber);
|
|
{
|
|
Label if_right_heapnumber(this),
|
|
if_right_bigint(this, Label::kDeferred),
|
|
if_right_not_numeric(this, Label::kDeferred);
|
|
GotoIf(WordEqual(right_map, left_map), &if_right_heapnumber);
|
|
Node* right_instance_type = LoadMapInstanceType(right_map);
|
|
Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint,
|
|
&if_right_not_numeric);
|
|
|
|
BIND(&if_right_heapnumber);
|
|
{
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kNumber);
|
|
var_left_float = LoadHeapNumberValue(left);
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
Goto(&do_float_comparison);
|
|
}
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
var_result = CAST(CallRuntime(
|
|
Runtime::kBigIntCompareToNumber, NoContextConstant(),
|
|
SmiConstant(Reverse(op)), right, left));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_not_numeric);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
// Convert {right} to a Numeric; we don't need to perform
|
|
// dedicated ToPrimitive(right, hint Number) operation, as the
|
|
// ToNumeric(right) will by itself already invoke ToPrimitive with
|
|
// a Number hint.
|
|
var_right.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_bigint);
|
|
{
|
|
Label if_right_heapnumber(this), if_right_bigint(this),
|
|
if_right_string(this), if_right_other(this);
|
|
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
|
|
Node* right_instance_type = LoadMapInstanceType(right_map);
|
|
GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint);
|
|
Branch(IsStringInstanceType(right_instance_type), &if_right_string,
|
|
&if_right_other);
|
|
|
|
BIND(&if_right_heapnumber);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
|
|
NoContextConstant(), SmiConstant(op),
|
|
left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kBigInt);
|
|
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToBigInt,
|
|
NoContextConstant(), SmiConstant(op),
|
|
left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_string);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToString,
|
|
NoContextConstant(), SmiConstant(op),
|
|
left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
// {right} is not a Number, BigInt, or String.
|
|
BIND(&if_right_other);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
// Convert {right} to a Numeric; we don't need to perform
|
|
// dedicated ToPrimitive(right, hint Number) operation, as the
|
|
// ToNumeric(right) will by itself already invoke ToPrimitive with
|
|
// a Number hint.
|
|
var_right.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_string);
|
|
{
|
|
Node* right_instance_type = LoadMapInstanceType(right_map);
|
|
|
|
Label if_right_not_string(this, Label::kDeferred);
|
|
GotoIfNot(IsStringInstanceType(right_instance_type),
|
|
&if_right_not_string);
|
|
|
|
// Both {left} and {right} are strings.
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kString);
|
|
Builtins::Name builtin;
|
|
switch (op) {
|
|
case Operation::kLessThan:
|
|
builtin = Builtins::kStringLessThan;
|
|
break;
|
|
case Operation::kLessThanOrEqual:
|
|
builtin = Builtins::kStringLessThanOrEqual;
|
|
break;
|
|
case Operation::kGreaterThan:
|
|
builtin = Builtins::kStringGreaterThan;
|
|
break;
|
|
case Operation::kGreaterThanOrEqual:
|
|
builtin = Builtins::kStringGreaterThanOrEqual;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
var_result = CAST(CallBuiltin(builtin, context, left, right));
|
|
Goto(&end);
|
|
|
|
BIND(&if_right_not_string);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
// {left} is a String, while {right} isn't. Check if {right} is
|
|
// a BigInt, otherwise call ToPrimitive(right, hint Number) if
|
|
// {right} is a receiver, or ToNumeric(left) and then
|
|
// ToNumeric(right) in the other cases.
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
Label if_right_bigint(this),
|
|
if_right_receiver(this, Label::kDeferred);
|
|
GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint);
|
|
GotoIf(IsJSReceiverInstanceType(right_instance_type),
|
|
&if_right_receiver);
|
|
|
|
var_left.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
|
|
var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right));
|
|
Goto(&loop);
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
var_result = CAST(CallRuntime(
|
|
Runtime::kBigIntCompareToString, NoContextConstant(),
|
|
SmiConstant(Reverse(op)), right, left));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_receiver);
|
|
{
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
|
|
isolate(), ToPrimitiveHint::kNumber);
|
|
var_right.Bind(CallStub(callable, context, right));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_other);
|
|
{
|
|
// {left} is neither a Numeric nor a String, and {right} is not a Smi.
|
|
if (var_type_feedback != nullptr) {
|
|
// Collect NumberOrOddball feedback if {left} is an Oddball
|
|
// and {right} is either a HeapNumber or Oddball. Otherwise collect
|
|
// Any feedback.
|
|
Label collect_any_feedback(this), collect_oddball_feedback(this),
|
|
collect_feedback_done(this);
|
|
GotoIfNot(InstanceTypeEqual(left_instance_type, ODDBALL_TYPE),
|
|
&collect_any_feedback);
|
|
|
|
GotoIf(IsHeapNumberMap(right_map), &collect_oddball_feedback);
|
|
Node* right_instance_type = LoadMapInstanceType(right_map);
|
|
Branch(InstanceTypeEqual(right_instance_type, ODDBALL_TYPE),
|
|
&collect_oddball_feedback, &collect_any_feedback);
|
|
|
|
BIND(&collect_oddball_feedback);
|
|
{
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kNumberOrOddball);
|
|
Goto(&collect_feedback_done);
|
|
}
|
|
|
|
BIND(&collect_any_feedback);
|
|
{
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kAny);
|
|
Goto(&collect_feedback_done);
|
|
}
|
|
|
|
BIND(&collect_feedback_done);
|
|
}
|
|
|
|
// If {left} is a receiver, call ToPrimitive(left, hint Number).
|
|
// Otherwise call ToNumeric(right) and then ToNumeric(left), the
|
|
// order here is important as it's observable by user code.
|
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
|
Label if_left_receiver(this, Label::kDeferred);
|
|
GotoIf(IsJSReceiverInstanceType(left_instance_type),
|
|
&if_left_receiver);
|
|
|
|
var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right));
|
|
var_left.Bind(
|
|
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
|
|
Goto(&loop);
|
|
|
|
BIND(&if_left_receiver);
|
|
{
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
|
|
isolate(), ToPrimitiveHint::kNumber);
|
|
var_left.Bind(CallStub(callable, context, left));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&do_float_comparison);
|
|
{
|
|
switch (op) {
|
|
case Operation::kLessThan:
|
|
Branch(Float64LessThan(var_left_float.value(), var_right_float.value()),
|
|
&return_true, &return_false);
|
|
break;
|
|
case Operation::kLessThanOrEqual:
|
|
Branch(Float64LessThanOrEqual(var_left_float.value(),
|
|
var_right_float.value()),
|
|
&return_true, &return_false);
|
|
break;
|
|
case Operation::kGreaterThan:
|
|
Branch(
|
|
Float64GreaterThan(var_left_float.value(), var_right_float.value()),
|
|
&return_true, &return_false);
|
|
break;
|
|
case Operation::kGreaterThanOrEqual:
|
|
Branch(Float64GreaterThanOrEqual(var_left_float.value(),
|
|
var_right_float.value()),
|
|
&return_true, &return_false);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
BIND(&return_true);
|
|
{
|
|
var_result = TrueConstant();
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&return_false);
|
|
{
|
|
var_result = FalseConstant();
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Smi> CodeStubAssembler::CollectFeedbackForString(
|
|
SloppyTNode<Int32T> instance_type) {
|
|
TNode<Smi> feedback = SelectSmiConstant(
|
|
Word32Equal(
|
|
Word32And(instance_type, Int32Constant(kIsNotInternalizedMask)),
|
|
Int32Constant(kInternalizedTag)),
|
|
CompareOperationFeedback::kInternalizedString,
|
|
CompareOperationFeedback::kString);
|
|
return feedback;
|
|
}
|
|
|
|
void CodeStubAssembler::GenerateEqual_Same(Node* value, Label* if_equal,
|
|
Label* if_notequal,
|
|
Variable* var_type_feedback) {
|
|
// In case of abstract or strict equality checks, we need additional checks
|
|
// for NaN values because they are not considered equal, even if both the
|
|
// left and the right hand side reference exactly the same value.
|
|
|
|
Label if_smi(this), if_heapnumber(this);
|
|
GotoIf(TaggedIsSmi(value), &if_smi);
|
|
|
|
Node* value_map = LoadMap(value);
|
|
GotoIf(IsHeapNumberMap(value_map), &if_heapnumber);
|
|
|
|
// For non-HeapNumbers, all we do is collect type feedback.
|
|
if (var_type_feedback != nullptr) {
|
|
Node* instance_type = LoadMapInstanceType(value_map);
|
|
|
|
Label if_string(this), if_receiver(this), if_oddball(this), if_symbol(this),
|
|
if_bigint(this);
|
|
GotoIf(IsStringInstanceType(instance_type), &if_string);
|
|
GotoIf(IsJSReceiverInstanceType(instance_type), &if_receiver);
|
|
GotoIf(IsOddballInstanceType(instance_type), &if_oddball);
|
|
Branch(IsBigIntInstanceType(instance_type), &if_bigint, &if_symbol);
|
|
|
|
BIND(&if_string);
|
|
{
|
|
CSA_ASSERT(this, IsString(value));
|
|
CombineFeedback(var_type_feedback,
|
|
CollectFeedbackForString(instance_type));
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_symbol);
|
|
{
|
|
CSA_ASSERT(this, IsSymbol(value));
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kSymbol);
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_receiver);
|
|
{
|
|
CSA_ASSERT(this, IsJSReceiver(value));
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver);
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_bigint);
|
|
{
|
|
CSA_ASSERT(this, IsBigInt(value));
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt);
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_oddball);
|
|
{
|
|
CSA_ASSERT(this, IsOddball(value));
|
|
Label if_boolean(this), if_not_boolean(this);
|
|
Branch(IsBooleanMap(value_map), &if_boolean, &if_not_boolean);
|
|
|
|
BIND(&if_boolean);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_not_boolean);
|
|
{
|
|
CSA_ASSERT(this, IsNullOrUndefined(value));
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined);
|
|
Goto(if_equal);
|
|
}
|
|
}
|
|
} else {
|
|
Goto(if_equal);
|
|
}
|
|
|
|
BIND(&if_heapnumber);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
Node* number_value = LoadHeapNumberValue(value);
|
|
BranchIfFloat64IsNaN(number_value, if_notequal, if_equal);
|
|
}
|
|
|
|
BIND(&if_smi);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall);
|
|
Goto(if_equal);
|
|
}
|
|
}
|
|
|
|
// ES6 section 7.2.12 Abstract Equality Comparison
|
|
Node* CodeStubAssembler::Equal(Node* left, Node* right, Node* context,
|
|
Variable* var_type_feedback) {
|
|
// This is a slightly optimized version of Object::Equals. Whenever you
|
|
// change something functionality wise in here, remember to update the
|
|
// Object::Equals method as well.
|
|
|
|
Label if_equal(this), if_notequal(this), do_float_comparison(this),
|
|
do_right_stringtonumber(this, Label::kDeferred), end(this);
|
|
VARIABLE(result, MachineRepresentation::kTagged);
|
|
TVARIABLE(Float64T, var_left_float);
|
|
TVARIABLE(Float64T, var_right_float);
|
|
|
|
// We can avoid code duplication by exploiting the fact that abstract equality
|
|
// is symmetric.
|
|
Label use_symmetry(this);
|
|
|
|
// We might need to loop several times due to ToPrimitive and/or ToNumber
|
|
// conversions.
|
|
VARIABLE(var_left, MachineRepresentation::kTagged, left);
|
|
VARIABLE(var_right, MachineRepresentation::kTagged, right);
|
|
VariableList loop_variable_list({&var_left, &var_right}, zone());
|
|
if (var_type_feedback != nullptr) {
|
|
// Initialize the type feedback to None. The current feedback will be
|
|
// combined with the previous feedback.
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone);
|
|
loop_variable_list.push_back(var_type_feedback);
|
|
}
|
|
Label loop(this, loop_variable_list);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
left = var_left.value();
|
|
right = var_right.value();
|
|
|
|
Label if_notsame(this);
|
|
GotoIf(WordNotEqual(left, right), &if_notsame);
|
|
{
|
|
// {left} and {right} reference the exact same value, yet we need special
|
|
// treatment for HeapNumber, as NaN is not equal to NaN.
|
|
GenerateEqual_Same(left, &if_equal, &if_notequal, var_type_feedback);
|
|
}
|
|
|
|
BIND(&if_notsame);
|
|
Label if_left_smi(this), if_left_not_smi(this);
|
|
Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi);
|
|
|
|
BIND(&if_left_smi);
|
|
{
|
|
Label if_right_smi(this), if_right_not_smi(this);
|
|
Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi);
|
|
|
|
BIND(&if_right_smi);
|
|
{
|
|
// We have already checked for {left} and {right} being the same value,
|
|
// so when we get here they must be different Smis.
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kSignedSmall);
|
|
Goto(&if_notequal);
|
|
}
|
|
|
|
BIND(&if_right_not_smi);
|
|
Node* right_map = LoadMap(right);
|
|
Label if_right_heapnumber(this), if_right_boolean(this),
|
|
if_right_bigint(this, Label::kDeferred),
|
|
if_right_receiver(this, Label::kDeferred);
|
|
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
|
|
// {left} is Smi and {right} is not HeapNumber or Smi.
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
|
|
Node* right_type = LoadMapInstanceType(right_map);
|
|
GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber);
|
|
GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint);
|
|
Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver,
|
|
&if_notequal);
|
|
|
|
BIND(&if_right_heapnumber);
|
|
{
|
|
var_left_float = SmiToFloat64(left);
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
Goto(&do_float_comparison);
|
|
}
|
|
|
|
BIND(&if_right_boolean);
|
|
{
|
|
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber,
|
|
NoContextConstant(), right, left));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_receiver);
|
|
{
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
|
|
var_right.Bind(CallStub(callable, context, right));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_not_smi);
|
|
{
|
|
GotoIf(TaggedIsSmi(right), &use_symmetry);
|
|
|
|
Label if_left_symbol(this), if_left_number(this),
|
|
if_left_string(this, Label::kDeferred),
|
|
if_left_bigint(this, Label::kDeferred), if_left_oddball(this),
|
|
if_left_receiver(this);
|
|
|
|
Node* left_map = LoadMap(left);
|
|
Node* right_map = LoadMap(right);
|
|
Node* left_type = LoadMapInstanceType(left_map);
|
|
Node* right_type = LoadMapInstanceType(right_map);
|
|
|
|
GotoIf(IsStringInstanceType(left_type), &if_left_string);
|
|
GotoIf(IsSymbolInstanceType(left_type), &if_left_symbol);
|
|
GotoIf(IsHeapNumberInstanceType(left_type), &if_left_number);
|
|
GotoIf(IsOddballInstanceType(left_type), &if_left_oddball);
|
|
Branch(IsBigIntInstanceType(left_type), &if_left_bigint,
|
|
&if_left_receiver);
|
|
|
|
BIND(&if_left_string);
|
|
{
|
|
GotoIfNot(IsStringInstanceType(right_type), &use_symmetry);
|
|
result.Bind(CallBuiltin(Builtins::kStringEqual, context, left, right));
|
|
CombineFeedback(var_type_feedback,
|
|
SmiOr(CollectFeedbackForString(left_type),
|
|
CollectFeedbackForString(right_type)));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_left_number);
|
|
{
|
|
Label if_right_not_number(this);
|
|
GotoIf(Word32NotEqual(left_type, right_type), &if_right_not_number);
|
|
|
|
var_left_float = LoadHeapNumberValue(left);
|
|
var_right_float = LoadHeapNumberValue(right);
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
Goto(&do_float_comparison);
|
|
|
|
BIND(&if_right_not_number);
|
|
{
|
|
Label if_right_boolean(this);
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber);
|
|
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
|
|
GotoIf(IsBigIntInstanceType(right_type), &use_symmetry);
|
|
Branch(IsJSReceiverInstanceType(right_type), &use_symmetry,
|
|
&if_notequal);
|
|
|
|
BIND(&if_right_boolean);
|
|
{
|
|
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_bigint);
|
|
{
|
|
Label if_right_heapnumber(this), if_right_bigint(this),
|
|
if_right_string(this), if_right_boolean(this);
|
|
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
|
|
GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint);
|
|
GotoIf(IsStringInstanceType(right_type), &if_right_string);
|
|
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
|
|
Branch(IsJSReceiverInstanceType(right_type), &use_symmetry,
|
|
&if_notequal);
|
|
|
|
BIND(&if_right_heapnumber);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber,
|
|
NoContextConstant(), left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_bigint);
|
|
{
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt);
|
|
result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt,
|
|
NoContextConstant(), left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_string);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
result.Bind(CallRuntime(Runtime::kBigIntEqualToString,
|
|
NoContextConstant(), left, right));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_right_boolean);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_oddball);
|
|
{
|
|
Label if_left_boolean(this), if_left_not_boolean(this);
|
|
Branch(IsBooleanMap(left_map), &if_left_boolean, &if_left_not_boolean);
|
|
|
|
BIND(&if_left_not_boolean);
|
|
{
|
|
// {left} is either Null or Undefined. Check if {right} is
|
|
// undetectable (which includes Null and Undefined).
|
|
Label if_right_undetectable(this), if_right_not_undetectable(this);
|
|
Branch(IsUndetectableMap(right_map), &if_right_undetectable,
|
|
&if_right_not_undetectable);
|
|
|
|
BIND(&if_right_undetectable);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
// If {right} is undetectable, it must be either also
|
|
// Null or Undefined, or a Receiver (aka document.all).
|
|
var_type_feedback->Bind(SmiConstant(
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined));
|
|
}
|
|
Goto(&if_equal);
|
|
}
|
|
|
|
BIND(&if_right_not_undetectable);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
// Track whether {right} is Null, Undefined or Receiver.
|
|
var_type_feedback->Bind(SmiConstant(
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined));
|
|
GotoIf(IsJSReceiverInstanceType(right_type), &if_notequal);
|
|
GotoIfNot(IsBooleanMap(right_map), &if_notequal);
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
Goto(&if_notequal);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_boolean);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
|
|
// If {right} is a Boolean too, it must be a different Boolean.
|
|
GotoIf(WordEqual(right_map, left_map), &if_notequal);
|
|
|
|
// Otherwise, convert {left} to number and try again.
|
|
var_left.Bind(LoadObjectField(left, Oddball::kToNumberOffset));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_symbol);
|
|
{
|
|
Label if_right_receiver(this);
|
|
GotoIf(IsJSReceiverInstanceType(right_type), &if_right_receiver);
|
|
// {right} is not a JSReceiver and also not the same Symbol as {left},
|
|
// so the result is "not equal".
|
|
if (var_type_feedback != nullptr) {
|
|
Label if_right_symbol(this);
|
|
GotoIf(IsSymbolInstanceType(right_type), &if_right_symbol);
|
|
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny));
|
|
Goto(&if_notequal);
|
|
|
|
BIND(&if_right_symbol);
|
|
{
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kSymbol);
|
|
Goto(&if_notequal);
|
|
}
|
|
} else {
|
|
Goto(&if_notequal);
|
|
}
|
|
|
|
BIND(&if_right_receiver);
|
|
{
|
|
// {left} is a Primitive and {right} is a JSReceiver, so swapping
|
|
// the order is not observable.
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
Goto(&use_symmetry);
|
|
}
|
|
}
|
|
|
|
BIND(&if_left_receiver);
|
|
{
|
|
CSA_ASSERT(this, IsJSReceiverInstanceType(left_type));
|
|
Label if_right_receiver(this), if_right_not_receiver(this);
|
|
Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver,
|
|
&if_right_not_receiver);
|
|
|
|
BIND(&if_right_receiver);
|
|
{
|
|
// {left} and {right} are different JSReceiver references.
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kReceiver);
|
|
Goto(&if_notequal);
|
|
}
|
|
|
|
BIND(&if_right_not_receiver);
|
|
{
|
|
// Check if {right} is undetectable, which means it must be Null
|
|
// or Undefined, since we already ruled out Receiver for {right}.
|
|
Label if_right_undetectable(this),
|
|
if_right_not_undetectable(this, Label::kDeferred);
|
|
Branch(IsUndetectableMap(right_map), &if_right_undetectable,
|
|
&if_right_not_undetectable);
|
|
|
|
BIND(&if_right_undetectable);
|
|
{
|
|
// When we get here, {right} must be either Null or Undefined.
|
|
CSA_ASSERT(this, IsNullOrUndefined(right));
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(SmiConstant(
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined));
|
|
}
|
|
Branch(IsUndetectableMap(left_map), &if_equal, &if_notequal);
|
|
}
|
|
|
|
BIND(&if_right_not_undetectable);
|
|
{
|
|
// {right} is a Primitive, and neither Null or Undefined;
|
|
// convert {left} to Primitive too.
|
|
if (var_type_feedback != nullptr) {
|
|
var_type_feedback->Bind(
|
|
SmiConstant(CompareOperationFeedback::kAny));
|
|
}
|
|
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
|
|
var_left.Bind(CallStub(callable, context, left));
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&do_right_stringtonumber);
|
|
{
|
|
var_right.Bind(CallBuiltin(Builtins::kStringToNumber, context, right));
|
|
Goto(&loop);
|
|
}
|
|
|
|
BIND(&use_symmetry);
|
|
{
|
|
var_left.Bind(right);
|
|
var_right.Bind(left);
|
|
Goto(&loop);
|
|
}
|
|
}
|
|
|
|
BIND(&do_float_comparison);
|
|
{
|
|
Branch(Float64Equal(var_left_float.value(), var_right_float.value()),
|
|
&if_equal, &if_notequal);
|
|
}
|
|
|
|
BIND(&if_equal);
|
|
{
|
|
result.Bind(TrueConstant());
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_notequal);
|
|
{
|
|
result.Bind(FalseConstant());
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::StrictEqual(Node* lhs, Node* rhs,
|
|
Variable* var_type_feedback) {
|
|
// Pseudo-code for the algorithm below:
|
|
//
|
|
// if (lhs == rhs) {
|
|
// if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN;
|
|
// return true;
|
|
// }
|
|
// if (!lhs->IsSmi()) {
|
|
// if (lhs->IsHeapNumber()) {
|
|
// if (rhs->IsSmi()) {
|
|
// return Smi::ToInt(rhs) == HeapNumber::cast(lhs)->value();
|
|
// } else if (rhs->IsHeapNumber()) {
|
|
// return HeapNumber::cast(rhs)->value() ==
|
|
// HeapNumber::cast(lhs)->value();
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// } else {
|
|
// if (rhs->IsSmi()) {
|
|
// return false;
|
|
// } else {
|
|
// if (lhs->IsString()) {
|
|
// if (rhs->IsString()) {
|
|
// return %StringEqual(lhs, rhs);
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// } else if (lhs->IsBigInt()) {
|
|
// if (rhs->IsBigInt()) {
|
|
// return %BigIntEqualToBigInt(lhs, rhs);
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// }
|
|
// }
|
|
// } else {
|
|
// if (rhs->IsSmi()) {
|
|
// return false;
|
|
// } else {
|
|
// if (rhs->IsHeapNumber()) {
|
|
// return Smi::ToInt(lhs) == HeapNumber::cast(rhs)->value();
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
Label if_equal(this), if_notequal(this), if_not_equivalent_types(this),
|
|
end(this);
|
|
VARIABLE(result, MachineRepresentation::kTagged);
|
|
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone);
|
|
|
|
// Check if {lhs} and {rhs} refer to the same object.
|
|
Label if_same(this), if_notsame(this);
|
|
Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
|
|
|
|
BIND(&if_same);
|
|
{
|
|
// The {lhs} and {rhs} reference the exact same value, yet we need special
|
|
// treatment for HeapNumber, as NaN is not equal to NaN.
|
|
GenerateEqual_Same(lhs, &if_equal, &if_notequal, var_type_feedback);
|
|
}
|
|
|
|
BIND(&if_notsame);
|
|
{
|
|
// The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber,
|
|
// BigInt and String they can still be considered equal.
|
|
|
|
// Check if {lhs} is a Smi or a HeapObject.
|
|
Label if_lhsissmi(this), if_lhsisnotsmi(this);
|
|
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
|
|
|
|
BIND(&if_lhsisnotsmi);
|
|
{
|
|
// Load the map of {lhs}.
|
|
Node* lhs_map = LoadMap(lhs);
|
|
|
|
// Check if {lhs} is a HeapNumber.
|
|
Label if_lhsisnumber(this), if_lhsisnotnumber(this);
|
|
Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber);
|
|
|
|
BIND(&if_lhsisnumber);
|
|
{
|
|
// Check if {rhs} is a Smi or a HeapObject.
|
|
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
|
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
|
|
|
BIND(&if_rhsissmi);
|
|
{
|
|
// Convert {lhs} and {rhs} to floating point values.
|
|
Node* lhs_value = LoadHeapNumberValue(lhs);
|
|
Node* rhs_value = SmiToFloat64(rhs);
|
|
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
|
|
// Perform a floating point comparison of {lhs} and {rhs}.
|
|
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
|
|
}
|
|
|
|
BIND(&if_rhsisnotsmi);
|
|
{
|
|
// Load the map of {rhs}.
|
|
Node* rhs_map = LoadMap(rhs);
|
|
|
|
// Check if {rhs} is also a HeapNumber.
|
|
Label if_rhsisnumber(this), if_rhsisnotnumber(this);
|
|
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
|
|
|
|
BIND(&if_rhsisnumber);
|
|
{
|
|
// Convert {lhs} and {rhs} to floating point values.
|
|
Node* lhs_value = LoadHeapNumberValue(lhs);
|
|
Node* rhs_value = LoadHeapNumberValue(rhs);
|
|
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kNumber);
|
|
|
|
// Perform a floating point comparison of {lhs} and {rhs}.
|
|
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
|
|
}
|
|
|
|
BIND(&if_rhsisnotnumber);
|
|
Goto(&if_not_equivalent_types);
|
|
}
|
|
}
|
|
|
|
BIND(&if_lhsisnotnumber);
|
|
{
|
|
// Check if {rhs} is a Smi or a HeapObject.
|
|
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
|
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
|
|
|
BIND(&if_rhsissmi);
|
|
Goto(&if_not_equivalent_types);
|
|
|
|
BIND(&if_rhsisnotsmi);
|
|
{
|
|
// Load the instance type of {lhs}.
|
|
Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
|
|
|
|
// Check if {lhs} is a String.
|
|
Label if_lhsisstring(this, Label::kDeferred), if_lhsisnotstring(this);
|
|
Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
|
|
&if_lhsisnotstring);
|
|
|
|
BIND(&if_lhsisstring);
|
|
{
|
|
// Load the instance type of {rhs}.
|
|
Node* rhs_instance_type = LoadInstanceType(rhs);
|
|
|
|
// Check if {rhs} is also a String.
|
|
Label if_rhsisstring(this, Label::kDeferred),
|
|
if_rhsisnotstring(this);
|
|
Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
|
|
&if_rhsisnotstring);
|
|
|
|
BIND(&if_rhsisstring);
|
|
{
|
|
if (var_type_feedback != nullptr) {
|
|
TNode<Smi> lhs_feedback =
|
|
CollectFeedbackForString(lhs_instance_type);
|
|
TNode<Smi> rhs_feedback =
|
|
CollectFeedbackForString(rhs_instance_type);
|
|
var_type_feedback->Bind(SmiOr(lhs_feedback, rhs_feedback));
|
|
}
|
|
result.Bind(CallBuiltin(Builtins::kStringEqual,
|
|
NoContextConstant(), lhs, rhs));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_rhsisnotstring);
|
|
Goto(&if_not_equivalent_types);
|
|
}
|
|
|
|
BIND(&if_lhsisnotstring);
|
|
{
|
|
// Check if {lhs} is a BigInt.
|
|
Label if_lhsisbigint(this), if_lhsisnotbigint(this);
|
|
Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint,
|
|
&if_lhsisnotbigint);
|
|
|
|
BIND(&if_lhsisbigint);
|
|
{
|
|
// Load the instance type of {rhs}.
|
|
Node* rhs_instance_type = LoadInstanceType(rhs);
|
|
|
|
// Check if {rhs} is also a BigInt.
|
|
Label if_rhsisbigint(this, Label::kDeferred),
|
|
if_rhsisnotbigint(this);
|
|
Branch(IsBigIntInstanceType(rhs_instance_type), &if_rhsisbigint,
|
|
&if_rhsisnotbigint);
|
|
|
|
BIND(&if_rhsisbigint);
|
|
{
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kBigInt);
|
|
result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt,
|
|
NoContextConstant(), lhs, rhs));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_rhsisnotbigint);
|
|
Goto(&if_not_equivalent_types);
|
|
}
|
|
|
|
BIND(&if_lhsisnotbigint);
|
|
if (var_type_feedback != nullptr) {
|
|
// Load the instance type of {rhs}.
|
|
Node* rhs_map = LoadMap(rhs);
|
|
Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
|
|
|
|
Label if_lhsissymbol(this), if_lhsisreceiver(this),
|
|
if_lhsisoddball(this);
|
|
GotoIf(IsJSReceiverInstanceType(lhs_instance_type),
|
|
&if_lhsisreceiver);
|
|
GotoIf(IsBooleanMap(lhs_map), &if_not_equivalent_types);
|
|
GotoIf(IsOddballInstanceType(lhs_instance_type),
|
|
&if_lhsisoddball);
|
|
Branch(IsSymbolInstanceType(lhs_instance_type), &if_lhsissymbol,
|
|
&if_not_equivalent_types);
|
|
|
|
BIND(&if_lhsisreceiver);
|
|
{
|
|
GotoIf(IsBooleanMap(rhs_map), &if_not_equivalent_types);
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kReceiver);
|
|
GotoIf(IsJSReceiverInstanceType(rhs_instance_type),
|
|
&if_notequal);
|
|
OverwriteFeedback(
|
|
var_type_feedback,
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined);
|
|
GotoIf(IsOddballInstanceType(rhs_instance_type), &if_notequal);
|
|
Goto(&if_not_equivalent_types);
|
|
}
|
|
|
|
BIND(&if_lhsisoddball);
|
|
{
|
|
STATIC_ASSERT(LAST_PRIMITIVE_TYPE == ODDBALL_TYPE);
|
|
GotoIf(IsBooleanMap(rhs_map), &if_not_equivalent_types);
|
|
GotoIf(Int32LessThan(rhs_instance_type,
|
|
Int32Constant(ODDBALL_TYPE)),
|
|
&if_not_equivalent_types);
|
|
OverwriteFeedback(
|
|
var_type_feedback,
|
|
CompareOperationFeedback::kReceiverOrNullOrUndefined);
|
|
Goto(&if_notequal);
|
|
}
|
|
|
|
BIND(&if_lhsissymbol);
|
|
{
|
|
GotoIfNot(IsSymbolInstanceType(rhs_instance_type),
|
|
&if_not_equivalent_types);
|
|
OverwriteFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kSymbol);
|
|
Goto(&if_notequal);
|
|
}
|
|
} else {
|
|
Goto(&if_notequal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&if_lhsissmi);
|
|
{
|
|
// We already know that {lhs} and {rhs} are not reference equal, and {lhs}
|
|
// is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a
|
|
// HeapNumber with an equal floating point value.
|
|
|
|
// Check if {rhs} is a Smi or a HeapObject.
|
|
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
|
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
|
|
|
BIND(&if_rhsissmi);
|
|
CombineFeedback(var_type_feedback,
|
|
CompareOperationFeedback::kSignedSmall);
|
|
Goto(&if_notequal);
|
|
|
|
BIND(&if_rhsisnotsmi);
|
|
{
|
|
// Load the map of the {rhs}.
|
|
Node* rhs_map = LoadMap(rhs);
|
|
|
|
// The {rhs} could be a HeapNumber with the same value as {lhs}.
|
|
Label if_rhsisnumber(this), if_rhsisnotnumber(this);
|
|
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
|
|
|
|
BIND(&if_rhsisnumber);
|
|
{
|
|
// Convert {lhs} and {rhs} to floating point values.
|
|
Node* lhs_value = SmiToFloat64(lhs);
|
|
Node* rhs_value = LoadHeapNumberValue(rhs);
|
|
|
|
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
|
|
|
|
// Perform a floating point comparison of {lhs} and {rhs}.
|
|
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
|
|
}
|
|
|
|
BIND(&if_rhsisnotnumber);
|
|
Goto(&if_not_equivalent_types);
|
|
}
|
|
}
|
|
}
|
|
|
|
BIND(&if_equal);
|
|
{
|
|
result.Bind(TrueConstant());
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&if_not_equivalent_types);
|
|
{
|
|
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
|
|
Goto(&if_notequal);
|
|
}
|
|
|
|
BIND(&if_notequal);
|
|
{
|
|
result.Bind(FalseConstant());
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return result.value();
|
|
}
|
|
|
|
// ECMA#sec-samevalue
|
|
// This algorithm differs from the Strict Equality Comparison Algorithm in its
|
|
// treatment of signed zeroes and NaNs.
|
|
void CodeStubAssembler::BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true,
|
|
Label* if_false, SameValueMode mode) {
|
|
VARIABLE(var_lhs_value, MachineRepresentation::kFloat64);
|
|
VARIABLE(var_rhs_value, MachineRepresentation::kFloat64);
|
|
Label do_fcmp(this);
|
|
|
|
// Immediately jump to {if_true} if {lhs} == {rhs}, because - unlike
|
|
// StrictEqual - SameValue considers two NaNs to be equal.
|
|
GotoIf(WordEqual(lhs, rhs), if_true);
|
|
|
|
// Check if the {lhs} is a Smi.
|
|
Label if_lhsissmi(this), if_lhsisheapobject(this);
|
|
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisheapobject);
|
|
|
|
BIND(&if_lhsissmi);
|
|
{
|
|
// Since {lhs} is a Smi, the comparison can only yield true
|
|
// iff the {rhs} is a HeapNumber with the same float64 value.
|
|
Branch(TaggedIsSmi(rhs), if_false, [&] {
|
|
GotoIfNot(IsHeapNumber(rhs), if_false);
|
|
var_lhs_value.Bind(SmiToFloat64(lhs));
|
|
var_rhs_value.Bind(LoadHeapNumberValue(rhs));
|
|
Goto(&do_fcmp);
|
|
});
|
|
}
|
|
|
|
BIND(&if_lhsisheapobject);
|
|
{
|
|
// Check if the {rhs} is a Smi.
|
|
Branch(TaggedIsSmi(rhs),
|
|
[&] {
|
|
// Since {rhs} is a Smi, the comparison can only yield true
|
|
// iff the {lhs} is a HeapNumber with the same float64 value.
|
|
GotoIfNot(IsHeapNumber(lhs), if_false);
|
|
var_lhs_value.Bind(LoadHeapNumberValue(lhs));
|
|
var_rhs_value.Bind(SmiToFloat64(rhs));
|
|
Goto(&do_fcmp);
|
|
},
|
|
[&] {
|
|
// Now this can only yield true if either both {lhs} and {rhs} are
|
|
// HeapNumbers with the same value, or both are Strings with the
|
|
// same character sequence, or both are BigInts with the same
|
|
// value.
|
|
Label if_lhsisheapnumber(this), if_lhsisstring(this),
|
|
if_lhsisbigint(this);
|
|
Node* const lhs_map = LoadMap(lhs);
|
|
GotoIf(IsHeapNumberMap(lhs_map), &if_lhsisheapnumber);
|
|
if (mode != SameValueMode::kNumbersOnly) {
|
|
Node* const lhs_instance_type = LoadMapInstanceType(lhs_map);
|
|
GotoIf(IsStringInstanceType(lhs_instance_type), &if_lhsisstring);
|
|
GotoIf(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint);
|
|
}
|
|
Goto(if_false);
|
|
|
|
BIND(&if_lhsisheapnumber);
|
|
{
|
|
GotoIfNot(IsHeapNumber(rhs), if_false);
|
|
var_lhs_value.Bind(LoadHeapNumberValue(lhs));
|
|
var_rhs_value.Bind(LoadHeapNumberValue(rhs));
|
|
Goto(&do_fcmp);
|
|
}
|
|
|
|
if (mode != SameValueMode::kNumbersOnly) {
|
|
BIND(&if_lhsisstring);
|
|
{
|
|
// Now we can only yield true if {rhs} is also a String
|
|
// with the same sequence of characters.
|
|
GotoIfNot(IsString(rhs), if_false);
|
|
Node* const result = CallBuiltin(
|
|
Builtins::kStringEqual, NoContextConstant(), lhs, rhs);
|
|
Branch(IsTrue(result), if_true, if_false);
|
|
}
|
|
|
|
BIND(&if_lhsisbigint);
|
|
{
|
|
GotoIfNot(IsBigInt(rhs), if_false);
|
|
Node* const result =
|
|
CallRuntime(Runtime::kBigIntEqualToBigInt,
|
|
NoContextConstant(), lhs, rhs);
|
|
Branch(IsTrue(result), if_true, if_false);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
BIND(&do_fcmp);
|
|
{
|
|
TNode<Float64T> lhs_value = UncheckedCast<Float64T>(var_lhs_value.value());
|
|
TNode<Float64T> rhs_value = UncheckedCast<Float64T>(var_rhs_value.value());
|
|
BranchIfSameNumberValue(lhs_value, rhs_value, if_true, if_false);
|
|
}
|
|
}
|
|
|
|
void CodeStubAssembler::BranchIfSameNumberValue(TNode<Float64T> lhs_value,
|
|
TNode<Float64T> rhs_value,
|
|
Label* if_true,
|
|
Label* if_false) {
|
|
Label if_equal(this), if_notequal(this);
|
|
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
|
|
|
|
BIND(&if_equal);
|
|
{
|
|
// We still need to handle the case when {lhs} and {rhs} are -0.0 and
|
|
// 0.0 (or vice versa). Compare the high word to
|
|
// distinguish between the two.
|
|
Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_value);
|
|
Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_value);
|
|
|
|
// If x is +0 and y is -0, return false.
|
|
// If x is -0 and y is +0, return false.
|
|
Branch(Word32Equal(lhs_hi_word, rhs_hi_word), if_true, if_false);
|
|
}
|
|
|
|
BIND(&if_notequal);
|
|
{
|
|
// Return true iff both {rhs} and {lhs} are NaN.
|
|
GotoIf(Float64Equal(lhs_value, lhs_value), if_false);
|
|
Branch(Float64Equal(rhs_value, rhs_value), if_false, if_true);
|
|
}
|
|
}
|
|
|
|
TNode<Oddball> CodeStubAssembler::HasProperty(SloppyTNode<Context> context,
|
|
SloppyTNode<Object> object,
|
|
SloppyTNode<Object> key,
|
|
HasPropertyLookupMode mode) {
|
|
Label call_runtime(this, Label::kDeferred), return_true(this),
|
|
return_false(this), end(this), if_proxy(this, Label::kDeferred);
|
|
|
|
CodeStubAssembler::LookupInHolder lookup_property_in_holder =
|
|
[this, &return_true](Node* receiver, Node* holder, Node* holder_map,
|
|
Node* holder_instance_type, Node* unique_name,
|
|
Label* next_holder, Label* if_bailout) {
|
|
TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name,
|
|
&return_true, next_holder, if_bailout);
|
|
};
|
|
|
|
CodeStubAssembler::LookupInHolder lookup_element_in_holder =
|
|
[this, &return_true, &return_false](
|
|
Node* receiver, Node* holder, Node* holder_map,
|
|
Node* holder_instance_type, Node* index, Label* next_holder,
|
|
Label* if_bailout) {
|
|
TryLookupElement(holder, holder_map, holder_instance_type, index,
|
|
&return_true, &return_false, next_holder, if_bailout);
|
|
};
|
|
|
|
TryPrototypeChainLookup(object, key, lookup_property_in_holder,
|
|
lookup_element_in_holder, &return_false,
|
|
&call_runtime, &if_proxy);
|
|
|
|
TVARIABLE(Oddball, result);
|
|
|
|
BIND(&if_proxy);
|
|
{
|
|
TNode<Name> name = CAST(CallBuiltin(Builtins::kToName, context, key));
|
|
switch (mode) {
|
|
case kHasProperty:
|
|
GotoIf(IsPrivateSymbol(name), &return_false);
|
|
|
|
result = CAST(
|
|
CallBuiltin(Builtins::kProxyHasProperty, context, object, name));
|
|
Goto(&end);
|
|
break;
|
|
case kForInHasProperty:
|
|
Goto(&call_runtime);
|
|
break;
|
|
}
|
|
}
|
|
|
|
BIND(&return_true);
|
|
{
|
|
result = TrueConstant();
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&return_false);
|
|
{
|
|
result = FalseConstant();
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&call_runtime);
|
|
{
|
|
Runtime::FunctionId fallback_runtime_function_id;
|
|
switch (mode) {
|
|
case kHasProperty:
|
|
fallback_runtime_function_id = Runtime::kHasProperty;
|
|
break;
|
|
case kForInHasProperty:
|
|
fallback_runtime_function_id = Runtime::kForInHasProperty;
|
|
break;
|
|
}
|
|
|
|
result =
|
|
CAST(CallRuntime(fallback_runtime_function_id, context, object, key));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
CSA_ASSERT(this, IsBoolean(result.value()));
|
|
return result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::Typeof(Node* value) {
|
|
VARIABLE(result_var, MachineRepresentation::kTagged);
|
|
|
|
Label return_number(this, Label::kDeferred), if_oddball(this),
|
|
return_function(this), return_undefined(this), return_object(this),
|
|
return_string(this), return_bigint(this), return_result(this);
|
|
|
|
GotoIf(TaggedIsSmi(value), &return_number);
|
|
|
|
Node* map = LoadMap(value);
|
|
|
|
GotoIf(IsHeapNumberMap(map), &return_number);
|
|
|
|
Node* instance_type = LoadMapInstanceType(map);
|
|
|
|
GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &if_oddball);
|
|
|
|
Node* callable_or_undetectable_mask = Word32And(
|
|
LoadMapBitField(map),
|
|
Int32Constant(Map::IsCallableBit::kMask | Map::IsUndetectableBit::kMask));
|
|
|
|
GotoIf(Word32Equal(callable_or_undetectable_mask,
|
|
Int32Constant(Map::IsCallableBit::kMask)),
|
|
&return_function);
|
|
|
|
GotoIfNot(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)),
|
|
&return_undefined);
|
|
|
|
GotoIf(IsJSReceiverInstanceType(instance_type), &return_object);
|
|
|
|
GotoIf(IsStringInstanceType(instance_type), &return_string);
|
|
|
|
GotoIf(IsBigIntInstanceType(instance_type), &return_bigint);
|
|
|
|
CSA_ASSERT(this, InstanceTypeEqual(instance_type, SYMBOL_TYPE));
|
|
result_var.Bind(HeapConstant(isolate()->factory()->symbol_string()));
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_number);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->number_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_oddball);
|
|
{
|
|
Node* type = LoadObjectField(value, Oddball::kTypeOfOffset);
|
|
result_var.Bind(type);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_function);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->function_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_undefined);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->undefined_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_object);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->object_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_string);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->string_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_bigint);
|
|
{
|
|
result_var.Bind(HeapConstant(isolate()->factory()->bigint_string()));
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&return_result);
|
|
return result_var.value();
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::GetSuperConstructor(
|
|
SloppyTNode<Context> context, SloppyTNode<JSFunction> active_function) {
|
|
Label is_not_constructor(this, Label::kDeferred), out(this);
|
|
TVARIABLE(Object, result);
|
|
|
|
TNode<Map> map = LoadMap(active_function);
|
|
TNode<Object> prototype = LoadMapPrototype(map);
|
|
TNode<Map> prototype_map = LoadMap(CAST(prototype));
|
|
GotoIfNot(IsConstructorMap(prototype_map), &is_not_constructor);
|
|
|
|
result = prototype;
|
|
Goto(&out);
|
|
|
|
BIND(&is_not_constructor);
|
|
{
|
|
CallRuntime(Runtime::kThrowNotSuperConstructor, context, prototype,
|
|
active_function);
|
|
Unreachable();
|
|
}
|
|
|
|
BIND(&out);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<JSReceiver> CodeStubAssembler::SpeciesConstructor(
|
|
SloppyTNode<Context> context, SloppyTNode<Object> object,
|
|
SloppyTNode<JSReceiver> default_constructor) {
|
|
Isolate* isolate = this->isolate();
|
|
TVARIABLE(JSReceiver, var_result, default_constructor);
|
|
|
|
// 2. Let C be ? Get(O, "constructor").
|
|
TNode<Object> constructor =
|
|
GetProperty(context, object, isolate->factory()->constructor_string());
|
|
|
|
// 3. If C is undefined, return defaultConstructor.
|
|
Label out(this);
|
|
GotoIf(IsUndefined(constructor), &out);
|
|
|
|
// 4. If Type(C) is not Object, throw a TypeError exception.
|
|
ThrowIfNotJSReceiver(context, constructor,
|
|
MessageTemplate::kConstructorNotReceiver);
|
|
|
|
// 5. Let S be ? Get(C, @@species).
|
|
TNode<Object> species =
|
|
GetProperty(context, constructor, isolate->factory()->species_symbol());
|
|
|
|
// 6. If S is either undefined or null, return defaultConstructor.
|
|
GotoIf(IsNullOrUndefined(species), &out);
|
|
|
|
// 7. If IsConstructor(S) is true, return S.
|
|
Label throw_error(this);
|
|
GotoIf(TaggedIsSmi(species), &throw_error);
|
|
GotoIfNot(IsConstructorMap(LoadMap(CAST(species))), &throw_error);
|
|
var_result = CAST(species);
|
|
Goto(&out);
|
|
|
|
// 8. Throw a TypeError exception.
|
|
BIND(&throw_error);
|
|
ThrowTypeError(context, MessageTemplate::kSpeciesNotConstructor);
|
|
|
|
BIND(&out);
|
|
return var_result.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable,
|
|
Node* context) {
|
|
VARIABLE(var_result, MachineRepresentation::kTagged);
|
|
Label if_notcallable(this, Label::kDeferred),
|
|
if_notreceiver(this, Label::kDeferred), if_otherhandler(this),
|
|
if_nohandler(this, Label::kDeferred), return_true(this),
|
|
return_false(this), return_result(this, &var_result);
|
|
|
|
// Ensure that the {callable} is actually a JSReceiver.
|
|
GotoIf(TaggedIsSmi(callable), &if_notreceiver);
|
|
GotoIfNot(IsJSReceiver(callable), &if_notreceiver);
|
|
|
|
// Load the @@hasInstance property from {callable}.
|
|
Node* inst_of_handler =
|
|
GetProperty(context, callable, HasInstanceSymbolConstant());
|
|
|
|
// Optimize for the likely case where {inst_of_handler} is the builtin
|
|
// Function.prototype[@@hasInstance] method, and emit a direct call in
|
|
// that case without any additional checking.
|
|
Node* native_context = LoadNativeContext(context);
|
|
Node* function_has_instance =
|
|
LoadContextElement(native_context, Context::FUNCTION_HAS_INSTANCE_INDEX);
|
|
GotoIfNot(WordEqual(inst_of_handler, function_has_instance),
|
|
&if_otherhandler);
|
|
{
|
|
// Call to Function.prototype[@@hasInstance] directly.
|
|
Callable builtin(BUILTIN_CODE(isolate(), FunctionPrototypeHasInstance),
|
|
CallTrampolineDescriptor{});
|
|
Node* result = CallJS(builtin, context, inst_of_handler, callable, object);
|
|
var_result.Bind(result);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_otherhandler);
|
|
{
|
|
// Check if there's actually an {inst_of_handler}.
|
|
GotoIf(IsNull(inst_of_handler), &if_nohandler);
|
|
GotoIf(IsUndefined(inst_of_handler), &if_nohandler);
|
|
|
|
// Call the {inst_of_handler} for {callable} and {object}.
|
|
Node* result = CallJS(
|
|
CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
|
|
context, inst_of_handler, callable, object);
|
|
|
|
// Convert the {result} to a Boolean.
|
|
BranchIfToBooleanIsTrue(result, &return_true, &return_false);
|
|
}
|
|
|
|
BIND(&if_nohandler);
|
|
{
|
|
// Ensure that the {callable} is actually Callable.
|
|
GotoIfNot(IsCallable(callable), &if_notcallable);
|
|
|
|
// Use the OrdinaryHasInstance algorithm.
|
|
Node* result =
|
|
CallBuiltin(Builtins::kOrdinaryHasInstance, context, callable, object);
|
|
var_result.Bind(result);
|
|
Goto(&return_result);
|
|
}
|
|
|
|
BIND(&if_notcallable);
|
|
{ ThrowTypeError(context, MessageTemplate::kNonCallableInInstanceOfCheck); }
|
|
|
|
BIND(&if_notreceiver);
|
|
{ ThrowTypeError(context, MessageTemplate::kNonObjectInInstanceOfCheck); }
|
|
|
|
BIND(&return_true);
|
|
var_result.Bind(TrueConstant());
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_false);
|
|
var_result.Bind(FalseConstant());
|
|
Goto(&return_result);
|
|
|
|
BIND(&return_result);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberInc(SloppyTNode<Number> value) {
|
|
TVARIABLE(Number, var_result);
|
|
TVARIABLE(Float64T, var_finc_value);
|
|
Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this);
|
|
Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
|
|
|
|
BIND(&if_issmi);
|
|
{
|
|
Label if_overflow(this);
|
|
TNode<Smi> smi_value = CAST(value);
|
|
TNode<Smi> one = SmiConstant(1);
|
|
var_result = TrySmiAdd(smi_value, one, &if_overflow);
|
|
Goto(&end);
|
|
|
|
BIND(&if_overflow);
|
|
{
|
|
var_finc_value = SmiToFloat64(smi_value);
|
|
Goto(&do_finc);
|
|
}
|
|
}
|
|
|
|
BIND(&if_isnotsmi);
|
|
{
|
|
TNode<HeapNumber> heap_number_value = CAST(value);
|
|
|
|
// Load the HeapNumber value.
|
|
var_finc_value = LoadHeapNumberValue(heap_number_value);
|
|
Goto(&do_finc);
|
|
}
|
|
|
|
BIND(&do_finc);
|
|
{
|
|
TNode<Float64T> finc_value = var_finc_value.value();
|
|
TNode<Float64T> one = Float64Constant(1.0);
|
|
TNode<Float64T> finc_result = Float64Add(finc_value, one);
|
|
var_result = AllocateHeapNumberWithValue(finc_result);
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberDec(SloppyTNode<Number> value) {
|
|
TVARIABLE(Number, var_result);
|
|
TVARIABLE(Float64T, var_fdec_value);
|
|
Label if_issmi(this), if_isnotsmi(this), do_fdec(this), end(this);
|
|
Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
|
|
|
|
BIND(&if_issmi);
|
|
{
|
|
TNode<Smi> smi_value = CAST(value);
|
|
TNode<Smi> one = SmiConstant(1);
|
|
Label if_overflow(this);
|
|
var_result = TrySmiSub(smi_value, one, &if_overflow);
|
|
Goto(&end);
|
|
|
|
BIND(&if_overflow);
|
|
{
|
|
var_fdec_value = SmiToFloat64(smi_value);
|
|
Goto(&do_fdec);
|
|
}
|
|
}
|
|
|
|
BIND(&if_isnotsmi);
|
|
{
|
|
TNode<HeapNumber> heap_number_value = CAST(value);
|
|
|
|
// Load the HeapNumber value.
|
|
var_fdec_value = LoadHeapNumberValue(heap_number_value);
|
|
Goto(&do_fdec);
|
|
}
|
|
|
|
BIND(&do_fdec);
|
|
{
|
|
TNode<Float64T> fdec_value = var_fdec_value.value();
|
|
TNode<Float64T> minus_one = Float64Constant(-1.0);
|
|
TNode<Float64T> fdec_result = Float64Add(fdec_value, minus_one);
|
|
var_result = AllocateHeapNumberWithValue(fdec_result);
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberAdd(SloppyTNode<Number> a,
|
|
SloppyTNode<Number> b) {
|
|
TVARIABLE(Number, var_result);
|
|
Label float_add(this, Label::kDeferred), end(this);
|
|
GotoIf(TaggedIsNotSmi(a), &float_add);
|
|
GotoIf(TaggedIsNotSmi(b), &float_add);
|
|
|
|
// Try fast Smi addition first.
|
|
var_result = TrySmiAdd(CAST(a), CAST(b), &float_add);
|
|
Goto(&end);
|
|
|
|
BIND(&float_add);
|
|
{
|
|
var_result = ChangeFloat64ToTagged(
|
|
Float64Add(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b)));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::NumberSub(SloppyTNode<Number> a,
|
|
SloppyTNode<Number> b) {
|
|
TVARIABLE(Number, var_result);
|
|
Label float_sub(this, Label::kDeferred), end(this);
|
|
GotoIf(TaggedIsNotSmi(a), &float_sub);
|
|
GotoIf(TaggedIsNotSmi(b), &float_sub);
|
|
|
|
// Try fast Smi subtraction first.
|
|
var_result = TrySmiSub(CAST(a), CAST(b), &float_sub);
|
|
Goto(&end);
|
|
|
|
BIND(&float_sub);
|
|
{
|
|
var_result = ChangeFloat64ToTagged(
|
|
Float64Sub(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b)));
|
|
Goto(&end);
|
|
}
|
|
|
|
BIND(&end);
|
|
return var_result.value();
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfNotNumber(Node* input, Label* is_not_number) {
|
|
Label is_number(this);
|
|
GotoIf(TaggedIsSmi(input), &is_number);
|
|
Branch(IsHeapNumber(input), &is_number, is_not_number);
|
|
BIND(&is_number);
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfNumber(Node* input, Label* is_number) {
|
|
GotoIf(TaggedIsSmi(input), is_number);
|
|
GotoIf(IsHeapNumber(input), is_number);
|
|
}
|
|
|
|
TNode<Number> CodeStubAssembler::BitwiseOp(Node* left32, Node* right32,
|
|
Operation bitwise_op) {
|
|
switch (bitwise_op) {
|
|
case Operation::kBitwiseAnd:
|
|
return ChangeInt32ToTagged(Signed(Word32And(left32, right32)));
|
|
case Operation::kBitwiseOr:
|
|
return ChangeInt32ToTagged(Signed(Word32Or(left32, right32)));
|
|
case Operation::kBitwiseXor:
|
|
return ChangeInt32ToTagged(Signed(Word32Xor(left32, right32)));
|
|
case Operation::kShiftLeft:
|
|
if (!Word32ShiftIsSafe()) {
|
|
right32 = Word32And(right32, Int32Constant(0x1F));
|
|
}
|
|
return ChangeInt32ToTagged(Signed(Word32Shl(left32, right32)));
|
|
case Operation::kShiftRight:
|
|
if (!Word32ShiftIsSafe()) {
|
|
right32 = Word32And(right32, Int32Constant(0x1F));
|
|
}
|
|
return ChangeInt32ToTagged(Signed(Word32Sar(left32, right32)));
|
|
case Operation::kShiftRightLogical:
|
|
if (!Word32ShiftIsSafe()) {
|
|
right32 = Word32And(right32, Int32Constant(0x1F));
|
|
}
|
|
return ChangeUint32ToTagged(Unsigned(Word32Shr(left32, right32)));
|
|
default:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// ES #sec-createarrayiterator
|
|
TNode<JSArrayIterator> CodeStubAssembler::CreateArrayIterator(
|
|
TNode<Context> context, TNode<Object> object, IterationKind kind) {
|
|
TNode<Context> native_context = LoadNativeContext(context);
|
|
TNode<Map> iterator_map = CAST(LoadContextElement(
|
|
native_context, Context::INITIAL_ARRAY_ITERATOR_MAP_INDEX));
|
|
Node* iterator = Allocate(JSArrayIterator::kSize);
|
|
StoreMapNoWriteBarrier(iterator, iterator_map);
|
|
StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldNoWriteBarrier(
|
|
iterator, JSArrayIterator::kIteratedObjectOffset, object);
|
|
StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset,
|
|
SmiConstant(0));
|
|
StoreObjectFieldNoWriteBarrier(
|
|
iterator, JSArrayIterator::kKindOffset,
|
|
SmiConstant(Smi::FromInt(static_cast<int>(kind))));
|
|
return CAST(iterator);
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocateJSIteratorResult(Node* context, Node* value,
|
|
Node* done) {
|
|
CSA_ASSERT(this, IsBoolean(done));
|
|
Node* native_context = LoadNativeContext(context);
|
|
Node* map =
|
|
LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX);
|
|
Node* result = Allocate(JSIteratorResult::kSize);
|
|
StoreMapNoWriteBarrier(result, map);
|
|
StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, value);
|
|
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kDoneOffset, done);
|
|
return result;
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocateJSIteratorResultForEntry(Node* context,
|
|
Node* key,
|
|
Node* value) {
|
|
Node* native_context = LoadNativeContext(context);
|
|
Node* length = SmiConstant(2);
|
|
int const elements_size = FixedArray::SizeFor(2);
|
|
TNode<FixedArray> elements = UncheckedCast<FixedArray>(
|
|
Allocate(elements_size + JSArray::kSize + JSIteratorResult::kSize));
|
|
StoreObjectFieldRoot(elements, FixedArray::kMapOffset,
|
|
RootIndex::kFixedArrayMap);
|
|
StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length);
|
|
StoreFixedArrayElement(elements, 0, key);
|
|
StoreFixedArrayElement(elements, 1, value);
|
|
Node* array_map = LoadContextElement(
|
|
native_context, Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX);
|
|
TNode<HeapObject> array = InnerAllocate(elements, elements_size);
|
|
StoreMapNoWriteBarrier(array, array_map);
|
|
StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements);
|
|
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
|
|
Node* iterator_map =
|
|
LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX);
|
|
TNode<HeapObject> result = InnerAllocate(array, JSArray::kSize);
|
|
StoreMapNoWriteBarrier(result, iterator_map);
|
|
StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, array);
|
|
StoreObjectFieldRoot(result, JSIteratorResult::kDoneOffset,
|
|
RootIndex::kFalseValue);
|
|
return result;
|
|
}
|
|
|
|
TNode<JSReceiver> CodeStubAssembler::ArraySpeciesCreate(TNode<Context> context,
|
|
TNode<Object> o,
|
|
TNode<Number> len) {
|
|
TNode<JSReceiver> constructor =
|
|
CAST(CallRuntime(Runtime::kArraySpeciesConstructor, context, o));
|
|
return Construct(context, constructor, len);
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) {
|
|
CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE));
|
|
TNode<Uint32T> buffer_bit_field = LoadJSArrayBufferBitField(CAST(buffer));
|
|
return IsSetWord32<JSArrayBuffer::WasDetachedBit>(buffer_bit_field);
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowIfArrayBufferIsDetached(
|
|
SloppyTNode<Context> context, TNode<JSArrayBuffer> array_buffer,
|
|
const char* method_name) {
|
|
Label if_detached(this, Label::kDeferred), if_not_detached(this);
|
|
Branch(IsDetachedBuffer(array_buffer), &if_detached, &if_not_detached);
|
|
BIND(&if_detached);
|
|
ThrowTypeError(context, MessageTemplate::kDetachedOperation, method_name);
|
|
BIND(&if_not_detached);
|
|
}
|
|
|
|
void CodeStubAssembler::ThrowIfArrayBufferViewBufferIsDetached(
|
|
SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
|
|
const char* method_name) {
|
|
TNode<JSArrayBuffer> buffer = LoadJSArrayBufferViewBuffer(array_buffer_view);
|
|
ThrowIfArrayBufferIsDetached(context, buffer, method_name);
|
|
}
|
|
|
|
TNode<Uint32T> CodeStubAssembler::LoadJSArrayBufferBitField(
|
|
TNode<JSArrayBuffer> array_buffer) {
|
|
return LoadObjectField<Uint32T>(array_buffer, JSArrayBuffer::kBitFieldOffset);
|
|
}
|
|
|
|
TNode<RawPtrT> CodeStubAssembler::LoadJSArrayBufferBackingStore(
|
|
TNode<JSArrayBuffer> array_buffer) {
|
|
return LoadObjectField<RawPtrT>(array_buffer,
|
|
JSArrayBuffer::kBackingStoreOffset);
|
|
}
|
|
|
|
TNode<JSArrayBuffer> CodeStubAssembler::LoadJSArrayBufferViewBuffer(
|
|
TNode<JSArrayBufferView> array_buffer_view) {
|
|
return LoadObjectField<JSArrayBuffer>(array_buffer_view,
|
|
JSArrayBufferView::kBufferOffset);
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteLength(
|
|
TNode<JSArrayBufferView> array_buffer_view) {
|
|
return LoadObjectField<UintPtrT>(array_buffer_view,
|
|
JSArrayBufferView::kByteLengthOffset);
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteOffset(
|
|
TNode<JSArrayBufferView> array_buffer_view) {
|
|
return LoadObjectField<UintPtrT>(array_buffer_view,
|
|
JSArrayBufferView::kByteOffsetOffset);
|
|
}
|
|
|
|
TNode<UintPtrT> CodeStubAssembler::LoadJSTypedArrayLength(
|
|
TNode<JSTypedArray> typed_array) {
|
|
return LoadObjectField<UintPtrT>(typed_array, JSTypedArray::kLengthOffset);
|
|
}
|
|
|
|
CodeStubArguments::CodeStubArguments(
|
|
CodeStubAssembler* assembler, Node* argc, Node* fp,
|
|
CodeStubAssembler::ParameterMode param_mode, ReceiverMode receiver_mode)
|
|
: assembler_(assembler),
|
|
argc_mode_(param_mode),
|
|
receiver_mode_(receiver_mode),
|
|
argc_(argc),
|
|
base_(),
|
|
fp_(fp != nullptr ? fp : assembler_->LoadFramePointer()) {
|
|
Node* offset = assembler_->ElementOffsetFromIndex(
|
|
argc_, SYSTEM_POINTER_ELEMENTS, param_mode,
|
|
(StandardFrameConstants::kFixedSlotCountAboveFp - 1) *
|
|
kSystemPointerSize);
|
|
base_ =
|
|
assembler_->UncheckedCast<RawPtrT>(assembler_->IntPtrAdd(fp_, offset));
|
|
}
|
|
|
|
TNode<Object> CodeStubArguments::GetReceiver() const {
|
|
DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver);
|
|
return assembler_->UncheckedCast<Object>(assembler_->LoadFullTagged(
|
|
base_, assembler_->IntPtrConstant(kSystemPointerSize)));
|
|
}
|
|
|
|
void CodeStubArguments::SetReceiver(TNode<Object> object) const {
|
|
DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver);
|
|
assembler_->StoreFullTaggedNoWriteBarrier(
|
|
base_, assembler_->IntPtrConstant(kSystemPointerSize), object);
|
|
}
|
|
|
|
TNode<WordT> CodeStubArguments::AtIndexPtr(
|
|
Node* index, CodeStubAssembler::ParameterMode mode) const {
|
|
typedef compiler::Node Node;
|
|
Node* negated_index = assembler_->IntPtrOrSmiSub(
|
|
assembler_->IntPtrOrSmiConstant(0, mode), index, mode);
|
|
Node* offset = assembler_->ElementOffsetFromIndex(
|
|
negated_index, SYSTEM_POINTER_ELEMENTS, mode, 0);
|
|
return assembler_->IntPtrAdd(assembler_->UncheckedCast<IntPtrT>(base_),
|
|
offset);
|
|
}
|
|
|
|
TNode<Object> CodeStubArguments::AtIndex(
|
|
Node* index, CodeStubAssembler::ParameterMode mode) const {
|
|
DCHECK_EQ(argc_mode_, mode);
|
|
CSA_ASSERT(assembler_,
|
|
assembler_->UintPtrOrSmiLessThan(index, GetLength(mode), mode));
|
|
return assembler_->UncheckedCast<Object>(
|
|
assembler_->LoadFullTagged(AtIndexPtr(index, mode)));
|
|
}
|
|
|
|
TNode<Object> CodeStubArguments::AtIndex(int index) const {
|
|
return AtIndex(assembler_->IntPtrConstant(index));
|
|
}
|
|
|
|
TNode<Object> CodeStubArguments::GetOptionalArgumentValue(
|
|
int index, TNode<Object> default_value) {
|
|
CodeStubAssembler::TVariable<Object> result(assembler_);
|
|
CodeStubAssembler::Label argument_missing(assembler_),
|
|
argument_done(assembler_, &result);
|
|
|
|
assembler_->GotoIf(assembler_->UintPtrOrSmiGreaterThanOrEqual(
|
|
assembler_->IntPtrOrSmiConstant(index, argc_mode_),
|
|
argc_, argc_mode_),
|
|
&argument_missing);
|
|
result = AtIndex(index);
|
|
assembler_->Goto(&argument_done);
|
|
|
|
assembler_->BIND(&argument_missing);
|
|
result = default_value;
|
|
assembler_->Goto(&argument_done);
|
|
|
|
assembler_->BIND(&argument_done);
|
|
return result.value();
|
|
}
|
|
|
|
TNode<Object> CodeStubArguments::GetOptionalArgumentValue(
|
|
TNode<IntPtrT> index, TNode<Object> default_value) {
|
|
CodeStubAssembler::TVariable<Object> result(assembler_);
|
|
CodeStubAssembler::Label argument_missing(assembler_),
|
|
argument_done(assembler_, &result);
|
|
|
|
assembler_->GotoIf(
|
|
assembler_->UintPtrOrSmiGreaterThanOrEqual(
|
|
assembler_->IntPtrToParameter(index, argc_mode_), argc_, argc_mode_),
|
|
&argument_missing);
|
|
result = AtIndex(index);
|
|
assembler_->Goto(&argument_done);
|
|
|
|
assembler_->BIND(&argument_missing);
|
|
result = default_value;
|
|
assembler_->Goto(&argument_done);
|
|
|
|
assembler_->BIND(&argument_done);
|
|
return result.value();
|
|
}
|
|
|
|
void CodeStubArguments::ForEach(
|
|
const CodeStubAssembler::VariableList& vars,
|
|
const CodeStubArguments::ForEachBodyFunction& body, Node* first, Node* last,
|
|
CodeStubAssembler::ParameterMode mode) {
|
|
assembler_->Comment("CodeStubArguments::ForEach");
|
|
if (first == nullptr) {
|
|
first = assembler_->IntPtrOrSmiConstant(0, mode);
|
|
}
|
|
if (last == nullptr) {
|
|
DCHECK_EQ(mode, argc_mode_);
|
|
last = argc_;
|
|
}
|
|
Node* start = assembler_->IntPtrSub(
|
|
assembler_->UncheckedCast<IntPtrT>(base_),
|
|
assembler_->ElementOffsetFromIndex(first, SYSTEM_POINTER_ELEMENTS, mode));
|
|
Node* end = assembler_->IntPtrSub(
|
|
assembler_->UncheckedCast<IntPtrT>(base_),
|
|
assembler_->ElementOffsetFromIndex(last, SYSTEM_POINTER_ELEMENTS, mode));
|
|
assembler_->BuildFastLoop(
|
|
vars, start, end,
|
|
[this, &body](Node* current) {
|
|
Node* arg = assembler_->Load(MachineType::AnyTagged(), current);
|
|
body(arg);
|
|
},
|
|
-kSystemPointerSize, CodeStubAssembler::INTPTR_PARAMETERS,
|
|
CodeStubAssembler::IndexAdvanceMode::kPost);
|
|
}
|
|
|
|
void CodeStubArguments::PopAndReturn(Node* value) {
|
|
Node* pop_count;
|
|
if (receiver_mode_ == ReceiverMode::kHasReceiver) {
|
|
pop_count = assembler_->IntPtrOrSmiAdd(
|
|
argc_, assembler_->IntPtrOrSmiConstant(1, argc_mode_), argc_mode_);
|
|
} else {
|
|
pop_count = argc_;
|
|
}
|
|
|
|
assembler_->PopAndReturn(assembler_->ParameterToIntPtr(pop_count, argc_mode_),
|
|
value);
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) {
|
|
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
|
|
return Uint32LessThanOrEqual(elements_kind,
|
|
Int32Constant(LAST_FAST_ELEMENTS_KIND));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsDoubleElementsKind(
|
|
TNode<Int32T> elements_kind) {
|
|
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
|
|
STATIC_ASSERT((PACKED_DOUBLE_ELEMENTS & 1) == 0);
|
|
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS + 1 == HOLEY_DOUBLE_ELEMENTS);
|
|
return Word32Equal(Word32Shr(elements_kind, Int32Constant(1)),
|
|
Int32Constant(PACKED_DOUBLE_ELEMENTS / 2));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsFastSmiOrTaggedElementsKind(Node* elements_kind) {
|
|
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
|
|
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND);
|
|
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND);
|
|
return Uint32LessThanOrEqual(elements_kind,
|
|
Int32Constant(TERMINAL_FAST_ELEMENTS_KIND));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsFastSmiElementsKind(Node* elements_kind) {
|
|
return Uint32LessThanOrEqual(elements_kind,
|
|
Int32Constant(HOLEY_SMI_ELEMENTS));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) {
|
|
CSA_ASSERT(this, IsFastElementsKind(elements_kind));
|
|
|
|
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == (PACKED_SMI_ELEMENTS | 1));
|
|
STATIC_ASSERT(HOLEY_ELEMENTS == (PACKED_ELEMENTS | 1));
|
|
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == (PACKED_DOUBLE_ELEMENTS | 1));
|
|
return IsSetWord32(elements_kind, 1);
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsElementsKindGreaterThan(
|
|
Node* target_kind, ElementsKind reference_kind) {
|
|
return Int32GreaterThan(target_kind, Int32Constant(reference_kind));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsElementsKindLessThanOrEqual(
|
|
TNode<Int32T> target_kind, ElementsKind reference_kind) {
|
|
return Int32LessThanOrEqual(target_kind, Int32Constant(reference_kind));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsElementsKindInRange(
|
|
TNode<Int32T> target_kind, ElementsKind lower_reference_kind,
|
|
ElementsKind higher_reference_kind) {
|
|
return Uint32LessThanOrEqual(
|
|
Int32Sub(target_kind, Int32Constant(lower_reference_kind)),
|
|
Int32Constant(higher_reference_kind - lower_reference_kind));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsDebugActive() {
|
|
Node* is_debug_active = Load(
|
|
MachineType::Uint8(),
|
|
ExternalConstant(ExternalReference::debug_is_active_address(isolate())));
|
|
return Word32NotEqual(is_debug_active, Int32Constant(0));
|
|
}
|
|
|
|
TNode<BoolT> CodeStubAssembler::IsRuntimeCallStatsEnabled() {
|
|
STATIC_ASSERT(sizeof(TracingFlags::runtime_stats) == kInt32Size);
|
|
TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load(
|
|
MachineType::Int32(),
|
|
ExternalConstant(ExternalReference::address_of_runtime_stats_flag())));
|
|
return Word32NotEqual(flag_value, Int32Constant(0));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsPromiseHookEnabled() {
|
|
Node* const promise_hook = Load(
|
|
MachineType::Pointer(),
|
|
ExternalConstant(ExternalReference::promise_hook_address(isolate())));
|
|
return WordNotEqual(promise_hook, IntPtrConstant(0));
|
|
}
|
|
|
|
Node* CodeStubAssembler::HasAsyncEventDelegate() {
|
|
Node* const async_event_delegate =
|
|
Load(MachineType::Pointer(),
|
|
ExternalConstant(
|
|
ExternalReference::async_event_delegate_address(isolate())));
|
|
return WordNotEqual(async_event_delegate, IntPtrConstant(0));
|
|
}
|
|
|
|
Node* CodeStubAssembler::IsPromiseHookEnabledOrHasAsyncEventDelegate() {
|
|
Node* const promise_hook_or_async_event_delegate =
|
|
Load(MachineType::Uint8(),
|
|
ExternalConstant(
|
|
ExternalReference::promise_hook_or_async_event_delegate_address(
|
|
isolate())));
|
|
return Word32NotEqual(promise_hook_or_async_event_delegate, Int32Constant(0));
|
|
}
|
|
|
|
Node* CodeStubAssembler::
|
|
IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate() {
|
|
Node* const promise_hook_or_debug_is_active_or_async_event_delegate = Load(
|
|
MachineType::Uint8(),
|
|
ExternalConstant(
|
|
ExternalReference::
|
|
promise_hook_or_debug_is_active_or_async_event_delegate_address(
|
|
isolate())));
|
|
return Word32NotEqual(promise_hook_or_debug_is_active_or_async_event_delegate,
|
|
Int32Constant(0));
|
|
}
|
|
|
|
TNode<Code> CodeStubAssembler::LoadBuiltin(TNode<Smi> builtin_id) {
|
|
CSA_ASSERT(this, SmiGreaterThanOrEqual(builtin_id, SmiConstant(0)));
|
|
CSA_ASSERT(this,
|
|
SmiLessThan(builtin_id, SmiConstant(Builtins::builtin_count)));
|
|
|
|
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
|
|
int index_shift = kSystemPointerSizeLog2 - kSmiShiftBits;
|
|
TNode<WordT> table_index =
|
|
index_shift >= 0 ? WordShl(BitcastTaggedToWord(builtin_id), index_shift)
|
|
: WordSar(BitcastTaggedToWord(builtin_id), -index_shift);
|
|
|
|
return CAST(
|
|
Load(MachineType::TaggedPointer(),
|
|
ExternalConstant(ExternalReference::builtins_address(isolate())),
|
|
table_index));
|
|
}
|
|
|
|
TNode<Code> CodeStubAssembler::GetSharedFunctionInfoCode(
|
|
SloppyTNode<SharedFunctionInfo> shared_info, Label* if_compile_lazy) {
|
|
TNode<Object> sfi_data =
|
|
LoadObjectField(shared_info, SharedFunctionInfo::kFunctionDataOffset);
|
|
|
|
TVARIABLE(Code, sfi_code);
|
|
|
|
Label done(this);
|
|
Label check_instance_type(this);
|
|
|
|
// IsSmi: Is builtin
|
|
GotoIf(TaggedIsNotSmi(sfi_data), &check_instance_type);
|
|
if (if_compile_lazy) {
|
|
GotoIf(SmiEqual(CAST(sfi_data), SmiConstant(Builtins::kCompileLazy)),
|
|
if_compile_lazy);
|
|
}
|
|
sfi_code = LoadBuiltin(CAST(sfi_data));
|
|
Goto(&done);
|
|
|
|
// Switch on data's instance type.
|
|
BIND(&check_instance_type);
|
|
TNode<Int32T> data_type = LoadInstanceType(CAST(sfi_data));
|
|
|
|
int32_t case_values[] = {BYTECODE_ARRAY_TYPE,
|
|
WASM_EXPORTED_FUNCTION_DATA_TYPE,
|
|
ASM_WASM_DATA_TYPE,
|
|
UNCOMPILED_DATA_WITHOUT_PREPARSE_DATA_TYPE,
|
|
UNCOMPILED_DATA_WITH_PREPARSE_DATA_TYPE,
|
|
FUNCTION_TEMPLATE_INFO_TYPE,
|
|
WASM_CAPI_FUNCTION_DATA_TYPE};
|
|
Label check_is_bytecode_array(this);
|
|
Label check_is_exported_function_data(this);
|
|
Label check_is_asm_wasm_data(this);
|
|
Label check_is_uncompiled_data_without_preparse_data(this);
|
|
Label check_is_uncompiled_data_with_preparse_data(this);
|
|
Label check_is_function_template_info(this);
|
|
Label check_is_interpreter_data(this);
|
|
Label check_is_wasm_capi_function_data(this);
|
|
Label* case_labels[] = {&check_is_bytecode_array,
|
|
&check_is_exported_function_data,
|
|
&check_is_asm_wasm_data,
|
|
&check_is_uncompiled_data_without_preparse_data,
|
|
&check_is_uncompiled_data_with_preparse_data,
|
|
&check_is_function_template_info,
|
|
&check_is_wasm_capi_function_data};
|
|
STATIC_ASSERT(arraysize(case_values) == arraysize(case_labels));
|
|
Switch(data_type, &check_is_interpreter_data, case_values, case_labels,
|
|
arraysize(case_labels));
|
|
|
|
// IsBytecodeArray: Interpret bytecode
|
|
BIND(&check_is_bytecode_array);
|
|
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InterpreterEntryTrampoline));
|
|
Goto(&done);
|
|
|
|
// IsWasmExportedFunctionData: Use the wrapper code
|
|
BIND(&check_is_exported_function_data);
|
|
sfi_code = CAST(LoadObjectField(
|
|
CAST(sfi_data), WasmExportedFunctionData::kWrapperCodeOffset));
|
|
Goto(&done);
|
|
|
|
// IsAsmWasmData: Instantiate using AsmWasmData
|
|
BIND(&check_is_asm_wasm_data);
|
|
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InstantiateAsmJs));
|
|
Goto(&done);
|
|
|
|
// IsUncompiledDataWithPreparseData | IsUncompiledDataWithoutPreparseData:
|
|
// Compile lazy
|
|
BIND(&check_is_uncompiled_data_with_preparse_data);
|
|
Goto(&check_is_uncompiled_data_without_preparse_data);
|
|
BIND(&check_is_uncompiled_data_without_preparse_data);
|
|
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), CompileLazy));
|
|
Goto(if_compile_lazy ? if_compile_lazy : &done);
|
|
|
|
// IsFunctionTemplateInfo: API call
|
|
BIND(&check_is_function_template_info);
|
|
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), HandleApiCall));
|
|
Goto(&done);
|
|
|
|
// IsInterpreterData: Interpret bytecode
|
|
BIND(&check_is_interpreter_data);
|
|
// This is the default branch, so assert that we have the expected data type.
|
|
CSA_ASSERT(this,
|
|
Word32Equal(data_type, Int32Constant(INTERPRETER_DATA_TYPE)));
|
|
sfi_code = CAST(LoadObjectField(
|
|
CAST(sfi_data), InterpreterData::kInterpreterTrampolineOffset));
|
|
Goto(&done);
|
|
|
|
// IsWasmCapiFunctionData: Use the wrapper code.
|
|
BIND(&check_is_wasm_capi_function_data);
|
|
sfi_code = CAST(LoadObjectField(CAST(sfi_data),
|
|
WasmCapiFunctionData::kWrapperCodeOffset));
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return sfi_code.value();
|
|
}
|
|
|
|
Node* CodeStubAssembler::AllocateFunctionWithMapAndContext(Node* map,
|
|
Node* shared_info,
|
|
Node* context) {
|
|
CSA_SLOW_ASSERT(this, IsMap(map));
|
|
|
|
Node* const code = GetSharedFunctionInfoCode(shared_info);
|
|
|
|
// TODO(ishell): All the callers of this function pass map loaded from
|
|
// Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX. So we can remove
|
|
// map parameter.
|
|
CSA_ASSERT(this, Word32BinaryNot(IsConstructorMap(map)));
|
|
CSA_ASSERT(this, Word32BinaryNot(IsFunctionWithPrototypeSlotMap(map)));
|
|
Node* const fun = Allocate(JSFunction::kSizeWithoutPrototype);
|
|
STATIC_ASSERT(JSFunction::kSizeWithoutPrototype == 7 * kTaggedSize);
|
|
StoreMapNoWriteBarrier(fun, map);
|
|
StoreObjectFieldRoot(fun, JSObject::kPropertiesOrHashOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldRoot(fun, JSObject::kElementsOffset,
|
|
RootIndex::kEmptyFixedArray);
|
|
StoreObjectFieldRoot(fun, JSFunction::kFeedbackCellOffset,
|
|
RootIndex::kManyClosuresCell);
|
|
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kSharedFunctionInfoOffset,
|
|
shared_info);
|
|
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kContextOffset, context);
|
|
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kCodeOffset, code);
|
|
return fun;
|
|
}
|
|
|
|
Node* CodeStubAssembler::MarkerIsFrameType(Node* marker_or_function,
|
|
StackFrame::Type frame_type) {
|
|
return WordEqual(marker_or_function,
|
|
IntPtrConstant(StackFrame::TypeToMarker(frame_type)));
|
|
}
|
|
|
|
Node* CodeStubAssembler::MarkerIsNotFrameType(Node* marker_or_function,
|
|
StackFrame::Type frame_type) {
|
|
return WordNotEqual(marker_or_function,
|
|
IntPtrConstant(StackFrame::TypeToMarker(frame_type)));
|
|
}
|
|
|
|
void CodeStubAssembler::CheckPrototypeEnumCache(Node* receiver,
|
|
Node* receiver_map,
|
|
Label* if_fast,
|
|
Label* if_slow) {
|
|
VARIABLE(var_object, MachineRepresentation::kTagged, receiver);
|
|
VARIABLE(var_object_map, MachineRepresentation::kTagged, receiver_map);
|
|
|
|
Label loop(this, {&var_object, &var_object_map}), done_loop(this);
|
|
Goto(&loop);
|
|
BIND(&loop);
|
|
{
|
|
// Check that there are no elements on the current {object}.
|
|
Label if_no_elements(this);
|
|
Node* object = var_object.value();
|
|
Node* object_map = var_object_map.value();
|
|
|
|
// The following relies on the elements only aliasing with JSProxy::target,
|
|
// which is a Javascript value and hence cannot be confused with an elements
|
|
// backing store.
|
|
STATIC_ASSERT(static_cast<int>(JSObject::kElementsOffset) ==
|
|
static_cast<int>(JSProxy::kTargetOffset));
|
|
Node* object_elements = LoadObjectField(object, JSObject::kElementsOffset);
|
|
GotoIf(IsEmptyFixedArray(object_elements), &if_no_elements);
|
|
GotoIf(IsEmptySlowElementDictionary(object_elements), &if_no_elements);
|
|
|
|
// It might still be an empty JSArray.
|
|
GotoIfNot(IsJSArrayMap(object_map), if_slow);
|
|
Node* object_length = LoadJSArrayLength(object);
|
|
Branch(WordEqual(object_length, SmiConstant(0)), &if_no_elements, if_slow);
|
|
|
|
// Continue with the {object}s prototype.
|
|
BIND(&if_no_elements);
|
|
object = LoadMapPrototype(object_map);
|
|
GotoIf(IsNull(object), if_fast);
|
|
|
|
// For all {object}s but the {receiver}, check that the cache is empty.
|
|
var_object.Bind(object);
|
|
object_map = LoadMap(object);
|
|
var_object_map.Bind(object_map);
|
|
Node* object_enum_length = LoadMapEnumLength(object_map);
|
|
Branch(WordEqual(object_enum_length, IntPtrConstant(0)), &loop, if_slow);
|
|
}
|
|
}
|
|
|
|
Node* CodeStubAssembler::CheckEnumCache(Node* receiver, Label* if_empty,
|
|
Label* if_runtime) {
|
|
Label if_fast(this), if_cache(this), if_no_cache(this, Label::kDeferred);
|
|
Node* receiver_map = LoadMap(receiver);
|
|
|
|
// Check if the enum length field of the {receiver} is properly initialized,
|
|
// indicating that there is an enum cache.
|
|
Node* receiver_enum_length = LoadMapEnumLength(receiver_map);
|
|
Branch(WordEqual(receiver_enum_length,
|
|
IntPtrConstant(kInvalidEnumCacheSentinel)),
|
|
&if_no_cache, &if_cache);
|
|
|
|
BIND(&if_no_cache);
|
|
{
|
|
// Avoid runtime-call for empty dictionary receivers.
|
|
GotoIfNot(IsDictionaryMap(receiver_map), if_runtime);
|
|
TNode<NameDictionary> properties = CAST(LoadSlowProperties(receiver));
|
|
TNode<Smi> length = GetNumberOfElements(properties);
|
|
GotoIfNot(WordEqual(length, SmiConstant(0)), if_runtime);
|
|
// Check that there are no elements on the {receiver} and its prototype
|
|
// chain. Given that we do not create an EnumCache for dict-mode objects,
|
|
// directly jump to {if_empty} if there are no elements and no properties
|
|
// on the {receiver}.
|
|
CheckPrototypeEnumCache(receiver, receiver_map, if_empty, if_runtime);
|
|
}
|
|
|
|
// Check that there are no elements on the fast {receiver} and its
|
|
// prototype chain.
|
|
BIND(&if_cache);
|
|
CheckPrototypeEnumCache(receiver, receiver_map, &if_fast, if_runtime);
|
|
|
|
BIND(&if_fast);
|
|
return receiver_map;
|
|
}
|
|
|
|
TNode<Object> CodeStubAssembler::GetArgumentValue(
|
|
TorqueGeneratedBaseBuiltinsAssembler::Arguments args,
|
|
TNode<IntPtrT> index) {
|
|
return CodeStubArguments(this, args).GetOptionalArgumentValue(index);
|
|
}
|
|
|
|
TorqueGeneratedBaseBuiltinsAssembler::Arguments
|
|
CodeStubAssembler::GetFrameArguments(TNode<RawPtrT> frame,
|
|
TNode<IntPtrT> argc) {
|
|
return CodeStubArguments(this, argc, frame, INTPTR_PARAMETERS)
|
|
.GetTorqueArguments();
|
|
}
|
|
|
|
void CodeStubAssembler::Print(const char* s) {
|
|
std::string formatted(s);
|
|
formatted += "\n";
|
|
CallRuntime(Runtime::kGlobalPrint, NoContextConstant(),
|
|
StringConstant(formatted.c_str()));
|
|
}
|
|
|
|
void CodeStubAssembler::Print(const char* prefix, Node* tagged_value) {
|
|
if (prefix != nullptr) {
|
|
std::string formatted(prefix);
|
|
formatted += ": ";
|
|
Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked(
|
|
formatted.c_str(), AllocationType::kOld);
|
|
CallRuntime(Runtime::kGlobalPrint, NoContextConstant(),
|
|
HeapConstant(string));
|
|
}
|
|
CallRuntime(Runtime::kDebugPrint, NoContextConstant(), tagged_value);
|
|
}
|
|
|
|
void CodeStubAssembler::PerformStackCheck(TNode<Context> context) {
|
|
Label ok(this), stack_check_interrupt(this, Label::kDeferred);
|
|
|
|
// The instruction sequence below is carefully crafted to hit our pattern
|
|
// matcher for stack checks within instruction selection.
|
|
// See StackCheckMatcher::Matched and JSGenericLowering::LowerJSStackCheck.
|
|
|
|
TNode<UintPtrT> sp = UncheckedCast<UintPtrT>(LoadStackPointer());
|
|
TNode<UintPtrT> stack_limit = UncheckedCast<UintPtrT>(Load(
|
|
MachineType::Pointer(),
|
|
ExternalConstant(ExternalReference::address_of_stack_limit(isolate()))));
|
|
TNode<BoolT> sp_within_limit = UintPtrLessThan(stack_limit, sp);
|
|
|
|
Branch(sp_within_limit, &ok, &stack_check_interrupt);
|
|
|
|
BIND(&stack_check_interrupt);
|
|
CallRuntime(Runtime::kStackGuard, context);
|
|
Goto(&ok);
|
|
|
|
BIND(&ok);
|
|
}
|
|
|
|
void CodeStubAssembler::InitializeFunctionContext(Node* native_context,
|
|
Node* context, int slots) {
|
|
DCHECK_GE(slots, Context::MIN_CONTEXT_SLOTS);
|
|
StoreMapNoWriteBarrier(context, RootIndex::kFunctionContextMap);
|
|
StoreObjectFieldNoWriteBarrier(context, FixedArray::kLengthOffset,
|
|
SmiConstant(slots));
|
|
|
|
Node* const empty_scope_info =
|
|
LoadContextElement(native_context, Context::SCOPE_INFO_INDEX);
|
|
StoreContextElementNoWriteBarrier(context, Context::SCOPE_INFO_INDEX,
|
|
empty_scope_info);
|
|
StoreContextElementNoWriteBarrier(context, Context::PREVIOUS_INDEX,
|
|
UndefinedConstant());
|
|
StoreContextElementNoWriteBarrier(context, Context::EXTENSION_INDEX,
|
|
TheHoleConstant());
|
|
StoreContextElementNoWriteBarrier(context, Context::NATIVE_CONTEXT_INDEX,
|
|
native_context);
|
|
}
|
|
|
|
TNode<JSArray> CodeStubAssembler::ArrayCreate(TNode<Context> context,
|
|
TNode<Number> length) {
|
|
TVARIABLE(JSArray, array);
|
|
Label allocate_js_array(this);
|
|
|
|
Label done(this), next(this), runtime(this, Label::kDeferred);
|
|
TNode<Smi> limit = SmiConstant(JSArray::kInitialMaxFastElementArray);
|
|
CSA_ASSERT_BRANCH(this, [=](Label* ok, Label* not_ok) {
|
|
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length,
|
|
SmiConstant(0), ok, not_ok);
|
|
});
|
|
// This check also transitively covers the case where length is too big
|
|
// to be representable by a SMI and so is not usable with
|
|
// AllocateJSArray.
|
|
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length,
|
|
limit, &runtime, &next);
|
|
|
|
BIND(&runtime);
|
|
{
|
|
TNode<Context> native_context = LoadNativeContext(context);
|
|
TNode<JSFunction> array_function =
|
|
CAST(LoadContextElement(native_context, Context::ARRAY_FUNCTION_INDEX));
|
|
array = CAST(CallRuntime(Runtime::kNewArray, context, array_function,
|
|
length, array_function, UndefinedConstant()));
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&next);
|
|
CSA_ASSERT(this, TaggedIsSmi(length));
|
|
|
|
TNode<Map> array_map = CAST(LoadContextElement(
|
|
context, Context::JS_ARRAY_PACKED_SMI_ELEMENTS_MAP_INDEX));
|
|
|
|
// TODO(delphick): Consider using
|
|
// AllocateUninitializedJSArrayWithElements to avoid initializing an
|
|
// array and then writing over it.
|
|
array =
|
|
AllocateJSArray(PACKED_SMI_ELEMENTS, array_map, length, SmiConstant(0),
|
|
nullptr, ParameterMode::SMI_PARAMETERS);
|
|
Goto(&done);
|
|
|
|
BIND(&done);
|
|
return array.value();
|
|
}
|
|
|
|
void CodeStubAssembler::SetPropertyLength(TNode<Context> context,
|
|
TNode<Object> array,
|
|
TNode<Number> length) {
|
|
Label fast(this), runtime(this), done(this);
|
|
// There's no need to set the length, if
|
|
// 1) the array is a fast JS array and
|
|
// 2) the new length is equal to the old length.
|
|
// as the set is not observable. Otherwise fall back to the run-time.
|
|
|
|
// 1) Check that the array has fast elements.
|
|
// TODO(delphick): Consider changing this since it does an an unnecessary
|
|
// check for SMIs.
|
|
// TODO(delphick): Also we could hoist this to after the array construction
|
|
// and copy the args into array in the same way as the Array constructor.
|
|
BranchIfFastJSArray(array, context, &fast, &runtime);
|
|
|
|
BIND(&fast);
|
|
{
|
|
TNode<JSArray> fast_array = CAST(array);
|
|
|
|
TNode<Smi> length_smi = CAST(length);
|
|
TNode<Smi> old_length = LoadFastJSArrayLength(fast_array);
|
|
CSA_ASSERT(this, TaggedIsPositiveSmi(old_length));
|
|
|
|
// 2) If the created array's length matches the required length, then
|
|
// there's nothing else to do. Otherwise use the runtime to set the
|
|
// property as that will insert holes into excess elements or shrink
|
|
// the backing store as appropriate.
|
|
Branch(SmiNotEqual(length_smi, old_length), &runtime, &done);
|
|
}
|
|
|
|
BIND(&runtime);
|
|
{
|
|
SetPropertyStrict(context, array, CodeStubAssembler::LengthStringConstant(),
|
|
length);
|
|
Goto(&done);
|
|
}
|
|
|
|
BIND(&done);
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfInitialPrototypePropertyModified(
|
|
TNode<Map> object_map, TNode<Map> initial_prototype_map, int descriptor,
|
|
RootIndex field_name_root_index, Label* if_modified) {
|
|
DescriptorIndexAndName index_name{descriptor, field_name_root_index};
|
|
GotoIfInitialPrototypePropertiesModified(
|
|
object_map, initial_prototype_map,
|
|
Vector<DescriptorIndexAndName>(&index_name, 1), if_modified);
|
|
}
|
|
|
|
void CodeStubAssembler::GotoIfInitialPrototypePropertiesModified(
|
|
TNode<Map> object_map, TNode<Map> initial_prototype_map,
|
|
Vector<DescriptorIndexAndName> properties, Label* if_modified) {
|
|
TNode<Map> prototype_map = LoadMap(LoadMapPrototype(object_map));
|
|
GotoIfNot(WordEqual(prototype_map, initial_prototype_map), if_modified);
|
|
|
|
// We need to make sure that relevant properties in the prototype have
|
|
// not been tampered with. We do this by checking that their slots
|
|
// in the prototype's descriptor array are still marked as const.
|
|
TNode<DescriptorArray> descriptors = LoadMapDescriptors(prototype_map);
|
|
|
|
TNode<Uint32T> combined_details;
|
|
for (int i = 0; i < properties.length(); i++) {
|
|
// Assert the descriptor index is in-bounds.
|
|
int descriptor = properties[i].descriptor_index;
|
|
CSA_ASSERT(this, Int32LessThan(Int32Constant(descriptor),
|
|
LoadNumberOfDescriptors(descriptors)));
|
|
// Assert that the name is correct. This essentially checks that
|
|
// the descriptor index corresponds to the insertion order in
|
|
// the bootstrapper.
|
|
CSA_ASSERT(this,
|
|
WordEqual(LoadKeyByDescriptorEntry(descriptors, descriptor),
|
|
LoadRoot(properties[i].name_root_index)));
|
|
|
|
TNode<Uint32T> details =
|
|
DescriptorArrayGetDetails(descriptors, Uint32Constant(descriptor));
|
|
if (i == 0) {
|
|
combined_details = details;
|
|
} else {
|
|
combined_details = Unsigned(Word32And(combined_details, details));
|
|
}
|
|
}
|
|
|
|
TNode<Uint32T> constness =
|
|
DecodeWord32<PropertyDetails::ConstnessField>(combined_details);
|
|
|
|
GotoIfNot(
|
|
Word32Equal(constness,
|
|
Int32Constant(static_cast<int>(PropertyConstness::kConst))),
|
|
if_modified);
|
|
}
|
|
|
|
TNode<String> CodeStubAssembler::TaggedToDirectString(TNode<Object> value,
|
|
Label* fail) {
|
|
ToDirectStringAssembler to_direct(state(), value);
|
|
to_direct.TryToDirect(fail);
|
|
to_direct.PointerToData(fail);
|
|
return CAST(value);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|