v8/src/code-stub-assembler.cc
Tobias Tebbi a19c3ffb8f Reland: [csa] verify skipped write-barriers in MemoryOptimizer
With very few exceptions, this verifies all skipped write-barriers in
CSA and Torque, showing that the MemoryOptimizer together with some
type information on the stored value are enough to avoid unsafe skipped
write-barriers.

Changes to CSA:
SKIP_WRITE_BARRIER and Store*NoWriteBarrier are verified by the
MemoryOptimizer by default.
Type information about the stored values (TNode<Smi>) is exploited to
safely skip write barriers for stored Smi values.
In some cases, the code is re-structured to make it easier to consume
for the MemoryOptimizer (manual branch and load elimination).

Changes to the MemoryOptimizer:
Improve the MemoryOptimizer to remove write barriers:
- When the store happens to a CSA-generated InnerAllocate, by ignoring
  Bitcasts and additions.
- When the stored value is the HeapConstant of an immortal immovable root.
- When the stored value is a SmiConstant (recognized by BitcastToTaggedSigned).
- Fast C-calls are treated as non-allocating.
- Runtime calls can be white-listed as non-allocating.

Remaining missing cases:
- C++-style iterator loops with inner pointers.
- Inner allocates that are reloaded from a field where they were just stored
  (for example an elements backing store). Load elimination would fix that.
- Safe stored value types that cannot be expressed in CSA (e.g., Smi|Hole).
  We could handle that in Torque.
- Double-aligned allocations, which are not lowered in the MemoryOptimizer
  but in CSA.

Drive-by change: Avoid Smi suffix for StoreFixedArrayElement since this
can be handled by overload resolution (in Torque and C++).

Reland Change: Support pointer compression operands.

R=jarin@chromium.org
TBR=mvstanton@chromium.org

Bug: v8:7793
Change-Id: I84e1831eb6bf9be14f36db3f8b485ee4fab6b22e
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1612904
Auto-Submit: Tobias Tebbi <tebbi@chromium.org>
Reviewed-by: Michael Stanton <mvstanton@chromium.org>
Commit-Queue: Tobias Tebbi <tebbi@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61522}
2019-05-15 11:46:30 +00:00

13895 lines
521 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/code-stub-assembler.h"
#include "src/code-factory.h"
#include "src/counters.h"
#include "src/frames-inl.h"
#include "src/frames.h"
#include "src/function-kind.h"
#include "src/heap/heap-inl.h" // For Page/MemoryChunk. TODO(jkummerow): Drop.
#include "src/objects/api-callbacks.h"
#include "src/objects/cell.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/heap-number.h"
#include "src/objects/oddball.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/property-cell.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
using compiler::Node;
template <class T>
using TNode = compiler::TNode<T>;
template <class T>
using SloppyTNode = compiler::SloppyTNode<T>;
CodeStubAssembler::CodeStubAssembler(compiler::CodeAssemblerState* state)
: compiler::CodeAssembler(state),
TorqueGeneratedBaseBuiltinsAssembler(state) {
if (DEBUG_BOOL && FLAG_csa_trap_on_node != nullptr) {
HandleBreakOnNode();
}
}
void CodeStubAssembler::HandleBreakOnNode() {
// FLAG_csa_trap_on_node should be in a form "STUB,NODE" where STUB is a
// string specifying the name of a stub and NODE is number specifying node id.
const char* name = state()->name();
size_t name_length = strlen(name);
if (strncmp(FLAG_csa_trap_on_node, name, name_length) != 0) {
// Different name.
return;
}
size_t option_length = strlen(FLAG_csa_trap_on_node);
if (option_length < name_length + 2 ||
FLAG_csa_trap_on_node[name_length] != ',') {
// Option is too short.
return;
}
const char* start = &FLAG_csa_trap_on_node[name_length + 1];
char* end;
int node_id = static_cast<int>(strtol(start, &end, 10));
if (start == end) {
// Bad node id.
return;
}
BreakOnNode(node_id);
}
void CodeStubAssembler::Assert(const BranchGenerator& branch,
const char* message, const char* file, int line,
Node* extra_node1, const char* extra_node1_name,
Node* extra_node2, const char* extra_node2_name,
Node* extra_node3, const char* extra_node3_name,
Node* extra_node4, const char* extra_node4_name,
Node* extra_node5,
const char* extra_node5_name) {
#if defined(DEBUG)
if (FLAG_debug_code) {
Check(branch, message, file, line, extra_node1, extra_node1_name,
extra_node2, extra_node2_name, extra_node3, extra_node3_name,
extra_node4, extra_node4_name, extra_node5, extra_node5_name);
}
#endif
}
void CodeStubAssembler::Assert(const NodeGenerator& condition_body,
const char* message, const char* file, int line,
Node* extra_node1, const char* extra_node1_name,
Node* extra_node2, const char* extra_node2_name,
Node* extra_node3, const char* extra_node3_name,
Node* extra_node4, const char* extra_node4_name,
Node* extra_node5,
const char* extra_node5_name) {
#if defined(DEBUG)
if (FLAG_debug_code) {
Check(condition_body, message, file, line, extra_node1, extra_node1_name,
extra_node2, extra_node2_name, extra_node3, extra_node3_name,
extra_node4, extra_node4_name, extra_node5, extra_node5_name);
}
#endif
}
#ifdef DEBUG
namespace {
void MaybePrintNodeWithName(CodeStubAssembler* csa, Node* node,
const char* node_name) {
if (node != nullptr) {
csa->CallRuntime(Runtime::kPrintWithNameForAssert, csa->SmiConstant(0),
csa->StringConstant(node_name), node);
}
}
} // namespace
#endif
void CodeStubAssembler::Check(const BranchGenerator& branch,
const char* message, const char* file, int line,
Node* extra_node1, const char* extra_node1_name,
Node* extra_node2, const char* extra_node2_name,
Node* extra_node3, const char* extra_node3_name,
Node* extra_node4, const char* extra_node4_name,
Node* extra_node5, const char* extra_node5_name) {
Label ok(this);
Label not_ok(this, Label::kDeferred);
if (message != nullptr && FLAG_code_comments) {
Comment("[ Assert: ", message);
} else {
Comment("[ Assert");
}
branch(&ok, &not_ok);
BIND(&not_ok);
FailAssert(message, file, line, extra_node1, extra_node1_name, extra_node2,
extra_node2_name, extra_node3, extra_node3_name, extra_node4,
extra_node4_name, extra_node5, extra_node5_name);
BIND(&ok);
Comment("] Assert");
}
void CodeStubAssembler::Check(const NodeGenerator& condition_body,
const char* message, const char* file, int line,
Node* extra_node1, const char* extra_node1_name,
Node* extra_node2, const char* extra_node2_name,
Node* extra_node3, const char* extra_node3_name,
Node* extra_node4, const char* extra_node4_name,
Node* extra_node5, const char* extra_node5_name) {
BranchGenerator branch = [=](Label* ok, Label* not_ok) {
Node* condition = condition_body();
DCHECK_NOT_NULL(condition);
Branch(condition, ok, not_ok);
};
Check(branch, message, file, line, extra_node1, extra_node1_name, extra_node2,
extra_node2_name, extra_node3, extra_node3_name, extra_node4,
extra_node4_name, extra_node5, extra_node5_name);
}
void CodeStubAssembler::FastCheck(TNode<BoolT> condition) {
Label ok(this), not_ok(this, Label::kDeferred);
Branch(condition, &ok, &not_ok);
BIND(&not_ok);
{
DebugBreak();
Goto(&ok);
}
BIND(&ok);
}
void CodeStubAssembler::FailAssert(
const char* message, const char* file, int line, Node* extra_node1,
const char* extra_node1_name, Node* extra_node2,
const char* extra_node2_name, Node* extra_node3,
const char* extra_node3_name, Node* extra_node4,
const char* extra_node4_name, Node* extra_node5,
const char* extra_node5_name) {
DCHECK_NOT_NULL(message);
EmbeddedVector<char, 1024> chars;
if (file != nullptr) {
SNPrintF(chars, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line);
} else {
SNPrintF(chars, "CSA_ASSERT failed: %s\n", message);
}
Node* message_node = StringConstant(chars.begin());
#ifdef DEBUG
// Only print the extra nodes in debug builds.
MaybePrintNodeWithName(this, extra_node1, extra_node1_name);
MaybePrintNodeWithName(this, extra_node2, extra_node2_name);
MaybePrintNodeWithName(this, extra_node3, extra_node3_name);
MaybePrintNodeWithName(this, extra_node4, extra_node4_name);
MaybePrintNodeWithName(this, extra_node5, extra_node5_name);
#endif
DebugAbort(message_node);
Unreachable();
}
Node* CodeStubAssembler::SelectImpl(TNode<BoolT> condition,
const NodeGenerator& true_body,
const NodeGenerator& false_body,
MachineRepresentation rep) {
VARIABLE(value, rep);
Label vtrue(this), vfalse(this), end(this);
Branch(condition, &vtrue, &vfalse);
BIND(&vtrue);
{
value.Bind(true_body());
Goto(&end);
}
BIND(&vfalse);
{
value.Bind(false_body());
Goto(&end);
}
BIND(&end);
return value.value();
}
TNode<Int32T> CodeStubAssembler::SelectInt32Constant(
SloppyTNode<BoolT> condition, int true_value, int false_value) {
return SelectConstant<Int32T>(condition, Int32Constant(true_value),
Int32Constant(false_value));
}
TNode<IntPtrT> CodeStubAssembler::SelectIntPtrConstant(
SloppyTNode<BoolT> condition, int true_value, int false_value) {
return SelectConstant<IntPtrT>(condition, IntPtrConstant(true_value),
IntPtrConstant(false_value));
}
TNode<Oddball> CodeStubAssembler::SelectBooleanConstant(
SloppyTNode<BoolT> condition) {
return SelectConstant<Oddball>(condition, TrueConstant(), FalseConstant());
}
TNode<Smi> CodeStubAssembler::SelectSmiConstant(SloppyTNode<BoolT> condition,
Smi true_value,
Smi false_value) {
return SelectConstant<Smi>(condition, SmiConstant(true_value),
SmiConstant(false_value));
}
TNode<Object> CodeStubAssembler::NoContextConstant() {
return SmiConstant(Context::kNoContext);
}
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<Heap>().rootAccessorName())>::type>::type> \
CodeStubAssembler::name##Constant() { \
return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \
std::declval<Heap>().rootAccessorName())>::type>::type>( \
LoadRoot(RootIndex::k##rootIndexName)); \
}
HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
CodeStubAssembler::name##Constant() { \
return UncheckedCast<std::remove_pointer<std::remove_reference<decltype( \
std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type>( \
LoadRoot(RootIndex::k##rootIndexName)); \
}
HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
compiler::TNode<BoolT> CodeStubAssembler::Is##name( \
SloppyTNode<Object> value) { \
return WordEqual(value, name##Constant()); \
} \
compiler::TNode<BoolT> CodeStubAssembler::IsNot##name( \
SloppyTNode<Object> value) { \
return WordNotEqual(value, name##Constant()); \
}
HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiConstant(value);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return IntPtrConstant(value);
}
}
bool CodeStubAssembler::IsIntPtrOrSmiConstantZero(Node* test,
ParameterMode mode) {
int32_t constant_test;
Smi smi_test;
if (mode == INTPTR_PARAMETERS) {
if (ToInt32Constant(test, constant_test) && constant_test == 0) {
return true;
}
} else {
DCHECK_EQ(mode, SMI_PARAMETERS);
if (ToSmiConstant(test, &smi_test) && smi_test->value() == 0) {
return true;
}
}
return false;
}
bool CodeStubAssembler::TryGetIntPtrOrSmiConstantValue(Node* maybe_constant,
int* value,
ParameterMode mode) {
int32_t int32_constant;
if (mode == INTPTR_PARAMETERS) {
if (ToInt32Constant(maybe_constant, int32_constant)) {
*value = int32_constant;
return true;
}
} else {
DCHECK_EQ(mode, SMI_PARAMETERS);
Smi smi_constant;
if (ToSmiConstant(maybe_constant, &smi_constant)) {
*value = Smi::ToInt(smi_constant);
return true;
}
}
return false;
}
TNode<IntPtrT> CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(
TNode<IntPtrT> value) {
Comment("IntPtrRoundUpToPowerOfTwo32");
CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u)));
value = Signed(IntPtrSub(value, IntPtrConstant(1)));
for (int i = 1; i <= 16; i *= 2) {
value = Signed(WordOr(value, WordShr(value, IntPtrConstant(i))));
}
return Signed(IntPtrAdd(value, IntPtrConstant(1)));
}
Node* CodeStubAssembler::MatchesParameterMode(Node* value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return TaggedIsSmi(value);
} else {
return Int32Constant(1);
}
}
TNode<BoolT> CodeStubAssembler::WordIsPowerOfTwo(SloppyTNode<IntPtrT> value) {
// value && !(value & (value - 1))
return WordEqual(
Select<IntPtrT>(
WordEqual(value, IntPtrConstant(0)),
[=] { return IntPtrConstant(1); },
[=] { return WordAnd(value, IntPtrSub(value, IntPtrConstant(1))); }),
IntPtrConstant(0));
}
TNode<Float64T> CodeStubAssembler::Float64Round(SloppyTNode<Float64T> x) {
Node* one = Float64Constant(1.0);
Node* one_half = Float64Constant(0.5);
Label return_x(this);
// Round up {x} towards Infinity.
VARIABLE(var_x, MachineRepresentation::kFloat64, Float64Ceil(x));
GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
&return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
BIND(&return_x);
return TNode<Float64T>::UncheckedCast(var_x.value());
}
TNode<Float64T> CodeStubAssembler::Float64Ceil(SloppyTNode<Float64T> x) {
if (IsFloat64RoundUpSupported()) {
return Float64RoundUp(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
Label return_x(this), return_minus_x(this);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
BIND(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoIfNot(Float64LessThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_x);
}
BIND(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoIfNot(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
BIND(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
BIND(&return_x);
return TNode<Float64T>::UncheckedCast(var_x.value());
}
TNode<Float64T> CodeStubAssembler::Float64Floor(SloppyTNode<Float64T> x) {
if (IsFloat64RoundDownSupported()) {
return Float64RoundDown(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
Label return_x(this), return_minus_x(this);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
BIND(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
}
BIND(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoIfNot(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoIfNot(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_minus_x);
}
BIND(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
BIND(&return_x);
return TNode<Float64T>::UncheckedCast(var_x.value());
}
TNode<Float64T> CodeStubAssembler::Float64RoundToEven(SloppyTNode<Float64T> x) {
if (IsFloat64RoundTiesEvenSupported()) {
return Float64RoundTiesEven(x);
}
// See ES#sec-touint8clamp for details.
Node* f = Float64Floor(x);
Node* f_and_half = Float64Add(f, Float64Constant(0.5));
VARIABLE(var_result, MachineRepresentation::kFloat64);
Label return_f(this), return_f_plus_one(this), done(this);
GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one);
GotoIf(Float64LessThan(x, f_and_half), &return_f);
{
Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0));
Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f,
&return_f_plus_one);
}
BIND(&return_f);
var_result.Bind(f);
Goto(&done);
BIND(&return_f_plus_one);
var_result.Bind(Float64Add(f, Float64Constant(1.0)));
Goto(&done);
BIND(&done);
return TNode<Float64T>::UncheckedCast(var_result.value());
}
TNode<Float64T> CodeStubAssembler::Float64Trunc(SloppyTNode<Float64T> x) {
if (IsFloat64RoundTruncateSupported()) {
return Float64RoundTruncate(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
VARIABLE(var_x, MachineRepresentation::kFloat64, x);
Label return_x(this), return_minus_x(this);
// Check if {x} is greater than 0.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
BIND(&if_xgreaterthanzero);
{
if (IsFloat64RoundDownSupported()) {
var_x.Bind(Float64RoundDown(x));
} else {
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
}
Goto(&return_x);
}
BIND(&if_xnotgreaterthanzero);
{
if (IsFloat64RoundUpSupported()) {
var_x.Bind(Float64RoundUp(x));
Goto(&return_x);
} else {
// Just return {x} unless its in the range ]-2^52,0[.
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoIfNot(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
}
BIND(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
BIND(&return_x);
return TNode<Float64T>::UncheckedCast(var_x.value());
}
TNode<BoolT> CodeStubAssembler::IsValidSmi(TNode<Smi> smi) {
if (SmiValuesAre31Bits() && kSystemPointerSize == kInt64Size) {
// Check that the Smi value is properly sign-extended.
TNode<IntPtrT> value = Signed(BitcastTaggedToWord(smi));
return WordEqual(value, ChangeInt32ToIntPtr(TruncateIntPtrToInt32(value)));
}
return Int32TrueConstant();
}
Node* CodeStubAssembler::SmiShiftBitsConstant() {
return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
}
TNode<Smi> CodeStubAssembler::SmiFromInt32(SloppyTNode<Int32T> value) {
TNode<IntPtrT> value_intptr = ChangeInt32ToIntPtr(value);
TNode<Smi> smi =
BitcastWordToTaggedSigned(WordShl(value_intptr, SmiShiftBitsConstant()));
return smi;
}
TNode<BoolT> CodeStubAssembler::IsValidPositiveSmi(TNode<IntPtrT> value) {
intptr_t constant_value;
if (ToIntPtrConstant(value, constant_value)) {
return (static_cast<uintptr_t>(constant_value) <=
static_cast<uintptr_t>(Smi::kMaxValue))
? Int32TrueConstant()
: Int32FalseConstant();
}
return UintPtrLessThanOrEqual(value, IntPtrConstant(Smi::kMaxValue));
}
TNode<Smi> CodeStubAssembler::SmiTag(SloppyTNode<IntPtrT> value) {
int32_t constant_value;
if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
return SmiConstant(constant_value);
}
TNode<Smi> smi =
BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
return smi;
}
TNode<IntPtrT> CodeStubAssembler::SmiUntag(SloppyTNode<Smi> value) {
intptr_t constant_value;
if (ToIntPtrConstant(value, constant_value)) {
return IntPtrConstant(constant_value >> (kSmiShiftSize + kSmiTagSize));
}
return Signed(WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant()));
}
TNode<Int32T> CodeStubAssembler::SmiToInt32(SloppyTNode<Smi> value) {
TNode<IntPtrT> result = SmiUntag(value);
return TruncateIntPtrToInt32(result);
}
TNode<Float64T> CodeStubAssembler::SmiToFloat64(SloppyTNode<Smi> value) {
return ChangeInt32ToFloat64(SmiToInt32(value));
}
TNode<Smi> CodeStubAssembler::SmiMax(TNode<Smi> a, TNode<Smi> b) {
return SelectConstant<Smi>(SmiLessThan(a, b), b, a);
}
TNode<Smi> CodeStubAssembler::SmiMin(TNode<Smi> a, TNode<Smi> b) {
return SelectConstant<Smi>(SmiLessThan(a, b), a, b);
}
TNode<IntPtrT> CodeStubAssembler::TryIntPtrAdd(TNode<IntPtrT> a,
TNode<IntPtrT> b,
Label* if_overflow) {
TNode<PairT<IntPtrT, BoolT>> pair = IntPtrAddWithOverflow(a, b);
TNode<BoolT> overflow = Projection<1>(pair);
GotoIf(overflow, if_overflow);
return Projection<0>(pair);
}
TNode<Smi> CodeStubAssembler::TrySmiAdd(TNode<Smi> lhs, TNode<Smi> rhs,
Label* if_overflow) {
if (SmiValuesAre32Bits()) {
return BitcastWordToTaggedSigned(TryIntPtrAdd(
BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs), if_overflow));
} else {
DCHECK(SmiValuesAre31Bits());
TNode<PairT<Int32T, BoolT>> pair =
Int32AddWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)),
TruncateIntPtrToInt32(BitcastTaggedToWord(rhs)));
TNode<BoolT> overflow = Projection<1>(pair);
GotoIf(overflow, if_overflow);
TNode<Int32T> result = Projection<0>(pair);
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result));
}
}
TNode<Smi> CodeStubAssembler::TrySmiSub(TNode<Smi> lhs, TNode<Smi> rhs,
Label* if_overflow) {
if (SmiValuesAre32Bits()) {
TNode<PairT<IntPtrT, BoolT>> pair = IntPtrSubWithOverflow(
BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs));
TNode<BoolT> overflow = Projection<1>(pair);
GotoIf(overflow, if_overflow);
TNode<IntPtrT> result = Projection<0>(pair);
return BitcastWordToTaggedSigned(result);
} else {
DCHECK(SmiValuesAre31Bits());
TNode<PairT<Int32T, BoolT>> pair =
Int32SubWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)),
TruncateIntPtrToInt32(BitcastTaggedToWord(rhs)));
TNode<BoolT> overflow = Projection<1>(pair);
GotoIf(overflow, if_overflow);
TNode<Int32T> result = Projection<0>(pair);
return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result));
}
}
TNode<Number> CodeStubAssembler::NumberMax(SloppyTNode<Number> a,
SloppyTNode<Number> b) {
// TODO(danno): This could be optimized by specifically handling smi cases.
TVARIABLE(Number, result);
Label done(this), greater_than_equal_a(this), greater_than_equal_b(this);
GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a);
GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b);
result = NanConstant();
Goto(&done);
BIND(&greater_than_equal_a);
result = a;
Goto(&done);
BIND(&greater_than_equal_b);
result = b;
Goto(&done);
BIND(&done);
return result.value();
}
TNode<Number> CodeStubAssembler::NumberMin(SloppyTNode<Number> a,
SloppyTNode<Number> b) {
// TODO(danno): This could be optimized by specifically handling smi cases.
TVARIABLE(Number, result);
Label done(this), greater_than_equal_a(this), greater_than_equal_b(this);
GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a);
GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b);
result = NanConstant();
Goto(&done);
BIND(&greater_than_equal_a);
result = b;
Goto(&done);
BIND(&greater_than_equal_b);
result = a;
Goto(&done);
BIND(&done);
return result.value();
}
TNode<IntPtrT> CodeStubAssembler::ConvertToRelativeIndex(
TNode<Context> context, TNode<Object> index, TNode<IntPtrT> length) {
TVARIABLE(IntPtrT, result);
TNode<Number> const index_int =
ToInteger_Inline(context, index, CodeStubAssembler::kTruncateMinusZero);
TNode<IntPtrT> zero = IntPtrConstant(0);
Label done(this);
Label if_issmi(this), if_isheapnumber(this, Label::kDeferred);
Branch(TaggedIsSmi(index_int), &if_issmi, &if_isheapnumber);
BIND(&if_issmi);
{
TNode<Smi> const index_smi = CAST(index_int);
result = Select<IntPtrT>(
IntPtrLessThan(SmiUntag(index_smi), zero),
[=] { return IntPtrMax(IntPtrAdd(length, SmiUntag(index_smi)), zero); },
[=] { return IntPtrMin(SmiUntag(index_smi), length); });
Goto(&done);
}
BIND(&if_isheapnumber);
{
// If {index} is a heap number, it is definitely out of bounds. If it is
// negative, {index} = max({length} + {index}),0) = 0'. If it is positive,
// set {index} to {length}.
TNode<HeapNumber> const index_hn = CAST(index_int);
TNode<Float64T> const float_zero = Float64Constant(0.);
TNode<Float64T> const index_float = LoadHeapNumberValue(index_hn);
result = SelectConstant<IntPtrT>(Float64LessThan(index_float, float_zero),
zero, length);
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<Number> CodeStubAssembler::SmiMod(TNode<Smi> a, TNode<Smi> b) {
TVARIABLE(Number, var_result);
Label return_result(this, &var_result),
return_minuszero(this, Label::kDeferred),
return_nan(this, Label::kDeferred);
// Untag {a} and {b}.
TNode<Int32T> int_a = SmiToInt32(a);
TNode<Int32T> int_b = SmiToInt32(b);
// Return NaN if {b} is zero.
GotoIf(Word32Equal(int_b, Int32Constant(0)), &return_nan);
// Check if {a} is non-negative.
Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred);
Branch(Int32LessThanOrEqual(Int32Constant(0), int_a), &if_aisnotnegative,
&if_aisnegative);
BIND(&if_aisnotnegative);
{
// Fast case, don't need to check any other edge cases.
TNode<Int32T> r = Int32Mod(int_a, int_b);
var_result = SmiFromInt32(r);
Goto(&return_result);
}
BIND(&if_aisnegative);
{
if (SmiValuesAre32Bits()) {
// Check if {a} is kMinInt and {b} is -1 (only relevant if the
// kMinInt is actually representable as a Smi).
Label join(this);
GotoIfNot(Word32Equal(int_a, Int32Constant(kMinInt)), &join);
GotoIf(Word32Equal(int_b, Int32Constant(-1)), &return_minuszero);
Goto(&join);
BIND(&join);
}
// Perform the integer modulus operation.
TNode<Int32T> r = Int32Mod(int_a, int_b);
// Check if {r} is zero, and if so return -0, because we have to
// take the sign of the left hand side {a}, which is negative.
GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero);
// The remainder {r} can be outside the valid Smi range on 32bit
// architectures, so we cannot just say SmiFromInt32(r) here.
var_result = ChangeInt32ToTagged(r);
Goto(&return_result);
}
BIND(&return_minuszero);
var_result = MinusZeroConstant();
Goto(&return_result);
BIND(&return_nan);
var_result = NanConstant();
Goto(&return_result);
BIND(&return_result);
return var_result.value();
}
TNode<Number> CodeStubAssembler::SmiMul(TNode<Smi> a, TNode<Smi> b) {
TVARIABLE(Number, var_result);
VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64);
VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64);
Label return_result(this, &var_result);
// Both {a} and {b} are Smis. Convert them to integers and multiply.
Node* lhs32 = SmiToInt32(a);
Node* rhs32 = SmiToInt32(b);
Node* pair = Int32MulWithOverflow(lhs32, rhs32);
Node* overflow = Projection(1, pair);
// Check if the multiplication overflowed.
Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
BIND(&if_notoverflow);
{
// If the answer is zero, we may need to return -0.0, depending on the
// input.
Label answer_zero(this), answer_not_zero(this);
Node* answer = Projection(0, pair);
Node* zero = Int32Constant(0);
Branch(Word32Equal(answer, zero), &answer_zero, &answer_not_zero);
BIND(&answer_not_zero);
{
var_result = ChangeInt32ToTagged(answer);
Goto(&return_result);
}
BIND(&answer_zero);
{
Node* or_result = Word32Or(lhs32, rhs32);
Label if_should_be_negative_zero(this), if_should_be_zero(this);
Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero,
&if_should_be_zero);
BIND(&if_should_be_negative_zero);
{
var_result = MinusZeroConstant();
Goto(&return_result);
}
BIND(&if_should_be_zero);
{
var_result = SmiConstant(0);
Goto(&return_result);
}
}
}
BIND(&if_overflow);
{
var_lhs_float64.Bind(SmiToFloat64(a));
var_rhs_float64.Bind(SmiToFloat64(b));
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
var_result = AllocateHeapNumberWithValue(value);
Goto(&return_result);
}
BIND(&return_result);
return var_result.value();
}
TNode<Smi> CodeStubAssembler::TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor,
Label* bailout) {
// Both {a} and {b} are Smis. Bailout to floating point division if {divisor}
// is zero.
GotoIf(WordEqual(divisor, SmiConstant(0)), bailout);
// Do floating point division if {dividend} is zero and {divisor} is
// negative.
Label dividend_is_zero(this), dividend_is_not_zero(this);
Branch(WordEqual(dividend, SmiConstant(0)), &dividend_is_zero,
&dividend_is_not_zero);
BIND(&dividend_is_zero);
{
GotoIf(SmiLessThan(divisor, SmiConstant(0)), bailout);
Goto(&dividend_is_not_zero);
}
BIND(&dividend_is_not_zero);
TNode<Int32T> untagged_divisor = SmiToInt32(divisor);
TNode<Int32T> untagged_dividend = SmiToInt32(dividend);
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
// if the Smi size is 31) and {divisor} is -1.
Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
&divisor_is_minus_one, &divisor_is_not_minus_one);
BIND(&divisor_is_minus_one);
{
GotoIf(Word32Equal(
untagged_dividend,
Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))),
bailout);
Goto(&divisor_is_not_minus_one);
}
BIND(&divisor_is_not_minus_one);
TNode<Int32T> untagged_result = Int32Div(untagged_dividend, untagged_divisor);
TNode<Int32T> truncated = Signed(Int32Mul(untagged_result, untagged_divisor));
// Do floating point division if the remainder is not 0.
GotoIf(Word32NotEqual(untagged_dividend, truncated), bailout);
return SmiFromInt32(untagged_result);
}
TNode<Smi> CodeStubAssembler::SmiLexicographicCompare(TNode<Smi> x,
TNode<Smi> y) {
TNode<ExternalReference> smi_lexicographic_compare =
ExternalConstant(ExternalReference::smi_lexicographic_compare_function());
TNode<ExternalReference> isolate_ptr =
ExternalConstant(ExternalReference::isolate_address(isolate()));
return CAST(CallCFunction(smi_lexicographic_compare, MachineType::AnyTagged(),
std::make_pair(MachineType::Pointer(), isolate_ptr),
std::make_pair(MachineType::AnyTagged(), x),
std::make_pair(MachineType::AnyTagged(), y)));
}
TNode<Int32T> CodeStubAssembler::TruncateIntPtrToInt32(
SloppyTNode<IntPtrT> value) {
if (Is64()) {
return TruncateInt64ToInt32(ReinterpretCast<Int64T>(value));
}
return ReinterpretCast<Int32T>(value);
}
TNode<BoolT> CodeStubAssembler::TaggedIsSmi(SloppyTNode<Object> a) {
return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
IntPtrConstant(0));
}
TNode<BoolT> CodeStubAssembler::TaggedIsSmi(TNode<MaybeObject> a) {
return WordEqual(
WordAnd(BitcastMaybeObjectToWord(a), IntPtrConstant(kSmiTagMask)),
IntPtrConstant(0));
}
TNode<BoolT> CodeStubAssembler::TaggedIsNotSmi(SloppyTNode<Object> a) {
return WordNotEqual(
WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
IntPtrConstant(0));
}
TNode<BoolT> CodeStubAssembler::TaggedIsPositiveSmi(SloppyTNode<Object> a) {
return WordEqual(WordAnd(BitcastTaggedToWord(a),
IntPtrConstant(kSmiTagMask | kSmiSignMask)),
IntPtrConstant(0));
}
TNode<BoolT> CodeStubAssembler::WordIsAligned(SloppyTNode<WordT> word,
size_t alignment) {
DCHECK(base::bits::IsPowerOfTwo(alignment));
return WordEqual(IntPtrConstant(0),
WordAnd(word, IntPtrConstant(alignment - 1)));
}
#if DEBUG
void CodeStubAssembler::Bind(Label* label, AssemblerDebugInfo debug_info) {
CodeAssembler::Bind(label, debug_info);
}
#endif // DEBUG
void CodeStubAssembler::Bind(Label* label) { CodeAssembler::Bind(label); }
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
TNode<FixedDoubleArray> array, TNode<Smi> index, Label* if_hole) {
return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0,
SMI_PARAMETERS, if_hole);
}
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
TNode<FixedDoubleArray> array, TNode<IntPtrT> index, Label* if_hole) {
return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0,
INTPTR_PARAMETERS, if_hole);
}
void CodeStubAssembler::BranchIfPrototypesHaveNoElements(
Node* receiver_map, Label* definitely_no_elements,
Label* possibly_elements) {
CSA_SLOW_ASSERT(this, IsMap(receiver_map));
VARIABLE(var_map, MachineRepresentation::kTagged, receiver_map);
Label loop_body(this, &var_map);
Node* empty_fixed_array = LoadRoot(RootIndex::kEmptyFixedArray);
Node* empty_slow_element_dictionary =
LoadRoot(RootIndex::kEmptySlowElementDictionary);
Goto(&loop_body);
BIND(&loop_body);
{
Node* map = var_map.value();
Node* prototype = LoadMapPrototype(map);
GotoIf(IsNull(prototype), definitely_no_elements);
Node* prototype_map = LoadMap(prototype);
TNode<Int32T> prototype_instance_type = LoadMapInstanceType(prototype_map);
// Pessimistically assume elements if a Proxy, Special API Object,
// or JSValue wrapper is found on the prototype chain. After this
// instance type check, it's not necessary to check for interceptors or
// access checks.
Label if_custom(this, Label::kDeferred), if_notcustom(this);
Branch(IsCustomElementsReceiverInstanceType(prototype_instance_type),
&if_custom, &if_notcustom);
BIND(&if_custom);
{
// For string JSValue wrappers we still support the checks as long
// as they wrap the empty string.
GotoIfNot(InstanceTypeEqual(prototype_instance_type, JS_VALUE_TYPE),
possibly_elements);
Node* prototype_value = LoadJSValueValue(prototype);
Branch(IsEmptyString(prototype_value), &if_notcustom, possibly_elements);
}
BIND(&if_notcustom);
{
Node* prototype_elements = LoadElements(prototype);
var_map.Bind(prototype_map);
GotoIf(WordEqual(prototype_elements, empty_fixed_array), &loop_body);
Branch(WordEqual(prototype_elements, empty_slow_element_dictionary),
&loop_body, possibly_elements);
}
}
}
void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true,
Label* if_false) {
GotoIf(TaggedIsSmi(object), if_false);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
Branch(IsJSReceiver(object), if_true, if_false);
}
void CodeStubAssembler::GotoIfForceSlowPath(Label* if_true) {
#ifdef V8_ENABLE_FORCE_SLOW_PATH
Node* const force_slow_path_addr =
ExternalConstant(ExternalReference::force_slow_path(isolate()));
Node* const force_slow = Load(MachineType::Uint8(), force_slow_path_addr);
GotoIf(force_slow, if_true);
#endif
}
void CodeStubAssembler::GotoIfDebugExecutionModeChecksSideEffects(
Label* if_true) {
STATIC_ASSERT(sizeof(DebugInfo::ExecutionMode) >= sizeof(int32_t));
TNode<ExternalReference> execution_mode_address = ExternalConstant(
ExternalReference::debug_execution_mode_address(isolate()));
TNode<Int32T> execution_mode =
UncheckedCast<Int32T>(Load(MachineType::Int32(), execution_mode_address));
GotoIf(Word32Equal(execution_mode, Int32Constant(DebugInfo::kSideEffects)),
if_true);
}
TNode<HeapObject> CodeStubAssembler::AllocateRaw(TNode<IntPtrT> size_in_bytes,
AllocationFlags flags,
TNode<RawPtrT> top_address,
TNode<RawPtrT> limit_address) {
Label if_out_of_memory(this, Label::kDeferred);
// TODO(jgruber,jkummerow): Extract the slow paths (= probably everything
// but bump pointer allocation) into a builtin to save code space. The
// size_in_bytes check may be moved there as well since a non-smi
// size_in_bytes probably doesn't fit into the bump pointer region
// (double-check that).
intptr_t size_in_bytes_constant;
bool size_in_bytes_is_constant = false;
if (ToIntPtrConstant(size_in_bytes, size_in_bytes_constant)) {
size_in_bytes_is_constant = true;
CHECK(Internals::IsValidSmi(size_in_bytes_constant));
CHECK_GT(size_in_bytes_constant, 0);
} else {
GotoIfNot(IsValidPositiveSmi(size_in_bytes), &if_out_of_memory);
}
TNode<RawPtrT> top =
UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), top_address));
TNode<RawPtrT> limit =
UncheckedCast<RawPtrT>(Load(MachineType::Pointer(), limit_address));
// If there's not enough space, call the runtime.
TVARIABLE(Object, result);
Label runtime_call(this, Label::kDeferred), no_runtime_call(this), out(this);
bool needs_double_alignment = flags & kDoubleAlignment;
if (flags & kAllowLargeObjectAllocation) {
Label next(this);
GotoIf(IsRegularHeapObjectSize(size_in_bytes), &next);
if (FLAG_young_generation_large_objects) {
result = CallRuntime(Runtime::kAllocateInYoungGeneration,
NoContextConstant(), SmiTag(size_in_bytes));
} else {
TNode<Smi> alignment_flag = SmiConstant(Smi::FromInt(
AllocateDoubleAlignFlag::encode(needs_double_alignment)));
result =
CallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiTag(size_in_bytes), alignment_flag);
}
Goto(&out);
BIND(&next);
}
TVARIABLE(IntPtrT, adjusted_size, size_in_bytes);
if (needs_double_alignment) {
Label next(this);
GotoIfNot(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &next);
adjusted_size = IntPtrAdd(size_in_bytes, IntPtrConstant(4));
Goto(&next);
BIND(&next);
}
TNode<IntPtrT> new_top =
IntPtrAdd(UncheckedCast<IntPtrT>(top), adjusted_size.value());
Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
&no_runtime_call);
BIND(&runtime_call);
{
if (flags & kPretenured) {
TNode<Smi> runtime_flags = SmiConstant(Smi::FromInt(
AllocateDoubleAlignFlag::encode(needs_double_alignment)));
result =
CallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiTag(size_in_bytes), runtime_flags);
} else {
result = CallRuntime(Runtime::kAllocateInYoungGeneration,
NoContextConstant(), SmiTag(size_in_bytes));
}
Goto(&out);
}
// When there is enough space, return `top' and bump it up.
BIND(&no_runtime_call);
{
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
new_top);
TVARIABLE(IntPtrT, address, UncheckedCast<IntPtrT>(top));
if (needs_double_alignment) {
Label next(this);
GotoIf(IntPtrEqual(adjusted_size.value(), size_in_bytes), &next);
// Store a filler and increase the address by 4.
StoreNoWriteBarrier(MachineRepresentation::kTagged, top,
LoadRoot(RootIndex::kOnePointerFillerMap));
address = IntPtrAdd(UncheckedCast<IntPtrT>(top), IntPtrConstant(4));
Goto(&next);
BIND(&next);
}
result = BitcastWordToTagged(
IntPtrAdd(address.value(), IntPtrConstant(kHeapObjectTag)));
Goto(&out);
}
if (!size_in_bytes_is_constant) {
BIND(&if_out_of_memory);
CallRuntime(Runtime::kFatalProcessOutOfMemoryInAllocateRaw,
NoContextConstant());
Unreachable();
}
BIND(&out);
return UncheckedCast<HeapObject>(result.value());
}
TNode<HeapObject> CodeStubAssembler::AllocateRawUnaligned(
TNode<IntPtrT> size_in_bytes, AllocationFlags flags,
TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) {
DCHECK_EQ(flags & kDoubleAlignment, 0);
return AllocateRaw(size_in_bytes, flags, top_address, limit_address);
}
TNode<HeapObject> CodeStubAssembler::AllocateRawDoubleAligned(
TNode<IntPtrT> size_in_bytes, AllocationFlags flags,
TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address) {
#if defined(V8_HOST_ARCH_32_BIT)
return AllocateRaw(size_in_bytes, flags | kDoubleAlignment, top_address,
limit_address);
#elif defined(V8_HOST_ARCH_64_BIT)
#ifdef V8_COMPRESS_POINTERS
// TODO(ishell, v8:8875): Consider using aligned allocations once the
// allocation alignment inconsistency is fixed. For now we keep using
// unaligned access since both x64 and arm64 architectures (where pointer
// compression is supported) allow unaligned access to doubles and full words.
#endif // V8_COMPRESS_POINTERS
// Allocation on 64 bit machine is naturally double aligned
return AllocateRaw(size_in_bytes, flags & ~kDoubleAlignment, top_address,
limit_address);
#else
#error Architecture not supported
#endif
}
TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace(
TNode<IntPtrT> size_in_bytes, AllocationFlags flags) {
DCHECK(flags == kNone || flags == kDoubleAlignment);
CSA_ASSERT(this, IsRegularHeapObjectSize(size_in_bytes));
return Allocate(size_in_bytes, flags);
}
TNode<HeapObject> CodeStubAssembler::Allocate(TNode<IntPtrT> size_in_bytes,
AllocationFlags flags) {
Comment("Allocate");
bool const new_space = !(flags & kPretenured);
bool const allow_large_objects = flags & kAllowLargeObjectAllocation;
// For optimized allocations, we don't allow the allocation to happen in a
// different generation than requested.
bool const always_allocated_in_requested_space =
!new_space || !allow_large_objects || FLAG_young_generation_large_objects;
if (!allow_large_objects) {
intptr_t size_constant;
if (ToIntPtrConstant(size_in_bytes, size_constant)) {
CHECK_LE(size_constant, kMaxRegularHeapObjectSize);
}
}
if (!(flags & kDoubleAlignment) && always_allocated_in_requested_space) {
return OptimizedAllocate(
size_in_bytes,
new_space ? AllocationType::kYoung : AllocationType::kOld,
allow_large_objects ? AllowLargeObjects::kTrue
: AllowLargeObjects::kFalse);
}
TNode<ExternalReference> top_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
DCHECK_EQ(kSystemPointerSize,
ExternalReference::new_space_allocation_limit_address(isolate())
.address() -
ExternalReference::new_space_allocation_top_address(isolate())
.address());
DCHECK_EQ(kSystemPointerSize,
ExternalReference::old_space_allocation_limit_address(isolate())
.address() -
ExternalReference::old_space_allocation_top_address(isolate())
.address());
TNode<IntPtrT> limit_address =
IntPtrAdd(ReinterpretCast<IntPtrT>(top_address),
IntPtrConstant(kSystemPointerSize));
if (flags & kDoubleAlignment) {
return AllocateRawDoubleAligned(size_in_bytes, flags,
ReinterpretCast<RawPtrT>(top_address),
ReinterpretCast<RawPtrT>(limit_address));
} else {
return AllocateRawUnaligned(size_in_bytes, flags,
ReinterpretCast<RawPtrT>(top_address),
ReinterpretCast<RawPtrT>(limit_address));
}
}
TNode<HeapObject> CodeStubAssembler::AllocateInNewSpace(int size_in_bytes,
AllocationFlags flags) {
CHECK(flags == kNone || flags == kDoubleAlignment);
DCHECK_LE(size_in_bytes, kMaxRegularHeapObjectSize);
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
}
TNode<HeapObject> CodeStubAssembler::Allocate(int size_in_bytes,
AllocationFlags flags) {
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
}
TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous,
TNode<IntPtrT> offset) {
return UncheckedCast<HeapObject>(
BitcastWordToTagged(IntPtrAdd(BitcastTaggedToWord(previous), offset)));
}
TNode<HeapObject> CodeStubAssembler::InnerAllocate(TNode<HeapObject> previous,
int offset) {
return InnerAllocate(previous, IntPtrConstant(offset));
}
TNode<BoolT> CodeStubAssembler::IsRegularHeapObjectSize(TNode<IntPtrT> size) {
return UintPtrLessThanOrEqual(size,
IntPtrConstant(kMaxRegularHeapObjectSize));
}
void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true,
Label* if_false) {
Label if_smi(this), if_notsmi(this), if_heapnumber(this, Label::kDeferred),
if_bigint(this, Label::kDeferred);
// Rule out false {value}.
GotoIf(WordEqual(value, FalseConstant()), if_false);
// Check if {value} is a Smi or a HeapObject.
Branch(TaggedIsSmi(value), &if_smi, &if_notsmi);
BIND(&if_smi);
{
// The {value} is a Smi, only need to check against zero.
BranchIfSmiEqual(CAST(value), SmiConstant(0), if_false, if_true);
}
BIND(&if_notsmi);
{
// Check if {value} is the empty string.
GotoIf(IsEmptyString(value), if_false);
// The {value} is a HeapObject, load its map.
Node* value_map = LoadMap(value);
// Only null, undefined and document.all have the undetectable bit set,
// so we can return false immediately when that bit is set.
GotoIf(IsUndetectableMap(value_map), if_false);
// We still need to handle numbers specially, but all other {value}s
// that make it here yield true.
GotoIf(IsHeapNumberMap(value_map), &if_heapnumber);
Branch(IsBigInt(value), &if_bigint, if_true);
BIND(&if_heapnumber);
{
// Load the floating point value of {value}.
Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset,
MachineType::Float64());
// Check if the floating point {value} is neither 0.0, -0.0 nor NaN.
Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)),
if_true, if_false);
}
BIND(&if_bigint);
{
TNode<BigInt> bigint = CAST(value);
TNode<Word32T> bitfield = LoadBigIntBitfield(bigint);
TNode<Uint32T> length = DecodeWord32<BigIntBase::LengthBits>(bitfield);
Branch(Word32Equal(length, Int32Constant(0)), if_false, if_true);
}
}
}
Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType type) {
Node* frame_pointer = LoadParentFramePointer();
return Load(type, frame_pointer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
MachineType type) {
return Load(type, buffer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object,
int offset, MachineType type) {
CSA_ASSERT(this, IsStrong(object));
return Load(type, object, IntPtrConstant(offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object,
SloppyTNode<IntPtrT> offset,
MachineType type) {
CSA_ASSERT(this, IsStrong(object));
return Load(type, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)));
}
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagObjectField(
SloppyTNode<HeapObject> object, int offset) {
if (SmiValuesAre32Bits()) {
#if V8_TARGET_LITTLE_ENDIAN
offset += 4;
#endif
return ChangeInt32ToIntPtr(
LoadObjectField(object, offset, MachineType::Int32()));
} else {
return SmiToIntPtr(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
}
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object,
int offset) {
if (SmiValuesAre32Bits()) {
#if V8_TARGET_LITTLE_ENDIAN
offset += 4;
#endif
return UncheckedCast<Int32T>(
LoadObjectField(object, offset, MachineType::Int32()));
} else {
return SmiToInt32(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
}
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) {
if (SmiValuesAre32Bits()) {
#if V8_TARGET_LITTLE_ENDIAN
index += 4;
#endif
return ChangeInt32ToIntPtr(
Load(MachineType::Int32(), base, IntPtrConstant(index)));
} else {
return SmiToIntPtr(
Load(MachineType::AnyTagged(), base, IntPtrConstant(index)));
}
}
void CodeStubAssembler::StoreAndTagSmi(Node* base, int offset, Node* value) {
if (SmiValuesAre32Bits()) {
int zero_offset = offset + 4;
int payload_offset = offset;
#if V8_TARGET_LITTLE_ENDIAN
std::swap(zero_offset, payload_offset);
#endif
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
IntPtrConstant(zero_offset), Int32Constant(0));
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
IntPtrConstant(payload_offset),
TruncateInt64ToInt32(value));
} else {
StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, base,
IntPtrConstant(offset), SmiTag(value));
}
}
TNode<Float64T> CodeStubAssembler::LoadHeapNumberValue(
SloppyTNode<HeapNumber> object) {
return TNode<Float64T>::UncheckedCast(LoadObjectField(
object, HeapNumber::kValueOffset, MachineType::Float64()));
}
TNode<Map> CodeStubAssembler::LoadMap(SloppyTNode<HeapObject> object) {
return UncheckedCast<Map>(LoadObjectField(object, HeapObject::kMapOffset,
MachineType::TaggedPointer()));
}
TNode<Int32T> CodeStubAssembler::LoadInstanceType(
SloppyTNode<HeapObject> object) {
return LoadMapInstanceType(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::HasInstanceType(SloppyTNode<HeapObject> object,
InstanceType instance_type) {
return InstanceTypeEqual(LoadInstanceType(object), instance_type);
}
TNode<BoolT> CodeStubAssembler::DoesntHaveInstanceType(
SloppyTNode<HeapObject> object, InstanceType instance_type) {
return Word32NotEqual(LoadInstanceType(object), Int32Constant(instance_type));
}
TNode<BoolT> CodeStubAssembler::TaggedDoesntHaveInstanceType(
SloppyTNode<HeapObject> any_tagged, InstanceType type) {
/* return Phi <TaggedIsSmi(val), DoesntHaveInstanceType(val, type)> */
TNode<BoolT> tagged_is_smi = TaggedIsSmi(any_tagged);
return Select<BoolT>(
tagged_is_smi, [=]() { return tagged_is_smi; },
[=]() { return DoesntHaveInstanceType(any_tagged, type); });
}
TNode<HeapObject> CodeStubAssembler::LoadFastProperties(
SloppyTNode<JSObject> object) {
CSA_SLOW_ASSERT(this, Word32BinaryNot(IsDictionaryMap(LoadMap(object))));
TNode<Object> properties = LoadJSReceiverPropertiesOrHash(object);
return Select<HeapObject>(TaggedIsSmi(properties),
[=] { return EmptyFixedArrayConstant(); },
[=] { return CAST(properties); });
}
TNode<HeapObject> CodeStubAssembler::LoadSlowProperties(
SloppyTNode<JSObject> object) {
CSA_SLOW_ASSERT(this, IsDictionaryMap(LoadMap(object)));
TNode<Object> properties = LoadJSReceiverPropertiesOrHash(object);
return Select<HeapObject>(TaggedIsSmi(properties),
[=] { return EmptyPropertyDictionaryConstant(); },
[=] { return CAST(properties); });
}
TNode<Number> CodeStubAssembler::LoadJSArrayLength(SloppyTNode<JSArray> array) {
CSA_ASSERT(this, IsJSArray(array));
return CAST(LoadObjectField(array, JSArray::kLengthOffset));
}
TNode<Object> CodeStubAssembler::LoadJSArgumentsObjectWithLength(
SloppyTNode<JSArgumentsObjectWithLength> array) {
return LoadObjectField(array, JSArgumentsObjectWithLength::kLengthOffset);
}
TNode<Smi> CodeStubAssembler::LoadFastJSArrayLength(
SloppyTNode<JSArray> array) {
TNode<Object> length = LoadJSArrayLength(array);
CSA_ASSERT(this, Word32Or(IsFastElementsKind(LoadElementsKind(array)),
IsElementsKindInRange(LoadElementsKind(array),
PACKED_SEALED_ELEMENTS,
HOLEY_FROZEN_ELEMENTS)));
// JSArray length is always a positive Smi for fast arrays.
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
return UncheckedCast<Smi>(length);
}
TNode<Smi> CodeStubAssembler::LoadFixedArrayBaseLength(
SloppyTNode<FixedArrayBase> array) {
CSA_SLOW_ASSERT(this, IsNotWeakFixedArraySubclass(array));
return CAST(LoadObjectField(array, FixedArrayBase::kLengthOffset));
}
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(
SloppyTNode<FixedArrayBase> array) {
return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset);
}
TNode<IntPtrT> CodeStubAssembler::LoadFeedbackVectorLength(
TNode<FeedbackVector> vector) {
return ChangeInt32ToIntPtr(
LoadObjectField<Int32T>(vector, FeedbackVector::kLengthOffset));
}
TNode<Smi> CodeStubAssembler::LoadWeakFixedArrayLength(
TNode<WeakFixedArray> array) {
return CAST(LoadObjectField(array, WeakFixedArray::kLengthOffset));
}
TNode<IntPtrT> CodeStubAssembler::LoadAndUntagWeakFixedArrayLength(
SloppyTNode<WeakFixedArray> array) {
return LoadAndUntagObjectField(array, WeakFixedArray::kLengthOffset);
}
TNode<Int32T> CodeStubAssembler::LoadNumberOfDescriptors(
TNode<DescriptorArray> array) {
return UncheckedCast<Int32T>(
LoadObjectField(array, DescriptorArray::kNumberOfDescriptorsOffset,
MachineType::Int16()));
}
TNode<Int32T> CodeStubAssembler::LoadMapBitField(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return UncheckedCast<Int32T>(
LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8()));
}
TNode<Int32T> CodeStubAssembler::LoadMapBitField2(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return UncheckedCast<Int32T>(
LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8()));
}
TNode<Uint32T> CodeStubAssembler::LoadMapBitField3(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return UncheckedCast<Uint32T>(
LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32()));
}
TNode<Int32T> CodeStubAssembler::LoadMapInstanceType(SloppyTNode<Map> map) {
return UncheckedCast<Int32T>(
LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint16()));
}
TNode<Int32T> CodeStubAssembler::LoadMapElementsKind(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
Node* bit_field2 = LoadMapBitField2(map);
return Signed(DecodeWord32<Map::ElementsKindBits>(bit_field2));
}
TNode<Int32T> CodeStubAssembler::LoadElementsKind(
SloppyTNode<HeapObject> object) {
return LoadMapElementsKind(LoadMap(object));
}
TNode<DescriptorArray> CodeStubAssembler::LoadMapDescriptors(
SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return CAST(LoadObjectField(map, Map::kDescriptorsOffset));
}
TNode<HeapObject> CodeStubAssembler::LoadMapPrototype(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return CAST(LoadObjectField(map, Map::kPrototypeOffset));
}
TNode<PrototypeInfo> CodeStubAssembler::LoadMapPrototypeInfo(
SloppyTNode<Map> map, Label* if_no_proto_info) {
Label if_strong_heap_object(this);
CSA_ASSERT(this, IsMap(map));
TNode<MaybeObject> maybe_prototype_info =
LoadMaybeWeakObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
TVARIABLE(Object, prototype_info);
DispatchMaybeObject(maybe_prototype_info, if_no_proto_info, if_no_proto_info,
if_no_proto_info, &if_strong_heap_object,
&prototype_info);
BIND(&if_strong_heap_object);
GotoIfNot(WordEqual(LoadMap(CAST(prototype_info.value())),
LoadRoot(RootIndex::kPrototypeInfoMap)),
if_no_proto_info);
return CAST(prototype_info.value());
}
TNode<IntPtrT> CodeStubAssembler::LoadMapInstanceSizeInWords(
SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
return ChangeInt32ToIntPtr(LoadObjectField(
map, Map::kInstanceSizeInWordsOffset, MachineType::Uint8()));
}
TNode<IntPtrT> CodeStubAssembler::LoadMapInobjectPropertiesStartInWords(
SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
// See Map::GetInObjectPropertiesStartInWords() for details.
CSA_ASSERT(this, IsJSObjectMap(map));
return ChangeInt32ToIntPtr(LoadObjectField(
map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset,
MachineType::Uint8()));
}
TNode<IntPtrT> CodeStubAssembler::LoadMapConstructorFunctionIndex(
SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
// See Map::GetConstructorFunctionIndex() for details.
CSA_ASSERT(this, IsPrimitiveInstanceType(LoadMapInstanceType(map)));
return ChangeInt32ToIntPtr(LoadObjectField(
map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset,
MachineType::Uint8()));
}
TNode<Object> CodeStubAssembler::LoadMapConstructor(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
TVARIABLE(Object, result,
LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
Label done(this), loop(this, &result);
Goto(&loop);
BIND(&loop);
{
GotoIf(TaggedIsSmi(result.value()), &done);
Node* is_map_type =
InstanceTypeEqual(LoadInstanceType(CAST(result.value())), MAP_TYPE);
GotoIfNot(is_map_type, &done);
result = LoadObjectField(CAST(result.value()),
Map::kConstructorOrBackPointerOffset);
Goto(&loop);
}
BIND(&done);
return result.value();
}
Node* CodeStubAssembler::LoadMapEnumLength(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
Node* bit_field3 = LoadMapBitField3(map);
return DecodeWordFromWord32<Map::EnumLengthBits>(bit_field3);
}
TNode<Object> CodeStubAssembler::LoadMapBackPointer(SloppyTNode<Map> map) {
TNode<HeapObject> object =
CAST(LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
return Select<Object>(IsMap(object), [=] { return object; },
[=] { return UndefinedConstant(); });
}
TNode<Uint32T> CodeStubAssembler::EnsureOnlyHasSimpleProperties(
TNode<Map> map, TNode<Int32T> instance_type, Label* bailout) {
// This check can have false positives, since it applies to any JSValueType.
GotoIf(IsCustomElementsReceiverInstanceType(instance_type), bailout);
TNode<Uint32T> bit_field3 = LoadMapBitField3(map);
GotoIf(IsSetWord32(bit_field3, Map::IsDictionaryMapBit::kMask |
Map::HasHiddenPrototypeBit::kMask),
bailout);
return bit_field3;
}
TNode<IntPtrT> CodeStubAssembler::LoadJSReceiverIdentityHash(
SloppyTNode<Object> receiver, Label* if_no_hash) {
TVARIABLE(IntPtrT, var_hash);
Label done(this), if_smi(this), if_property_array(this),
if_property_dictionary(this), if_fixed_array(this);
TNode<Object> properties_or_hash =
LoadObjectField(TNode<HeapObject>::UncheckedCast(receiver),
JSReceiver::kPropertiesOrHashOffset);
GotoIf(TaggedIsSmi(properties_or_hash), &if_smi);
TNode<HeapObject> properties =
TNode<HeapObject>::UncheckedCast(properties_or_hash);
TNode<Int32T> properties_instance_type = LoadInstanceType(properties);
GotoIf(InstanceTypeEqual(properties_instance_type, PROPERTY_ARRAY_TYPE),
&if_property_array);
Branch(InstanceTypeEqual(properties_instance_type, NAME_DICTIONARY_TYPE),
&if_property_dictionary, &if_fixed_array);
BIND(&if_fixed_array);
{
var_hash = IntPtrConstant(PropertyArray::kNoHashSentinel);
Goto(&done);
}
BIND(&if_smi);
{
var_hash = SmiUntag(TNode<Smi>::UncheckedCast(properties_or_hash));
Goto(&done);
}
BIND(&if_property_array);
{
TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField(
properties, PropertyArray::kLengthAndHashOffset);
var_hash = TNode<IntPtrT>::UncheckedCast(
DecodeWord<PropertyArray::HashField>(length_and_hash));
Goto(&done);
}
BIND(&if_property_dictionary);
{
var_hash = SmiUntag(CAST(LoadFixedArrayElement(
CAST(properties), NameDictionary::kObjectHashIndex)));
Goto(&done);
}
BIND(&done);
if (if_no_hash != nullptr) {
GotoIf(IntPtrEqual(var_hash.value(),
IntPtrConstant(PropertyArray::kNoHashSentinel)),
if_no_hash);
}
return var_hash.value();
}
TNode<Uint32T> CodeStubAssembler::LoadNameHashField(SloppyTNode<Name> name) {
CSA_ASSERT(this, IsName(name));
return LoadObjectField<Uint32T>(name, Name::kHashFieldOffset);
}
TNode<Uint32T> CodeStubAssembler::LoadNameHash(SloppyTNode<Name> name,
Label* if_hash_not_computed) {
TNode<Uint32T> hash_field = LoadNameHashField(name);
if (if_hash_not_computed != nullptr) {
GotoIf(IsSetWord32(hash_field, Name::kHashNotComputedMask),
if_hash_not_computed);
}
return Unsigned(Word32Shr(hash_field, Int32Constant(Name::kHashShift)));
}
TNode<Smi> CodeStubAssembler::LoadStringLengthAsSmi(
SloppyTNode<String> string) {
return SmiFromIntPtr(LoadStringLengthAsWord(string));
}
TNode<IntPtrT> CodeStubAssembler::LoadStringLengthAsWord(
SloppyTNode<String> string) {
return Signed(ChangeUint32ToWord(LoadStringLengthAsWord32(string)));
}
TNode<Uint32T> CodeStubAssembler::LoadStringLengthAsWord32(
SloppyTNode<String> string) {
CSA_ASSERT(this, IsString(string));
return LoadObjectField<Uint32T>(string, String::kLengthOffset);
}
Node* CodeStubAssembler::PointerToSeqStringData(Node* seq_string) {
CSA_ASSERT(this, IsString(seq_string));
CSA_ASSERT(this,
IsSequentialStringInstanceType(LoadInstanceType(seq_string)));
STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
return IntPtrAdd(
BitcastTaggedToWord(seq_string),
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadJSValueValue(Node* object) {
CSA_ASSERT(this, IsJSValue(object));
return LoadObjectField(object, JSValue::kValueOffset);
}
void CodeStubAssembler::DispatchMaybeObject(TNode<MaybeObject> maybe_object,
Label* if_smi, Label* if_cleared,
Label* if_weak, Label* if_strong,
TVariable<Object>* extracted) {
Label inner_if_smi(this), inner_if_strong(this);
GotoIf(TaggedIsSmi(maybe_object), &inner_if_smi);
GotoIf(IsCleared(maybe_object), if_cleared);
GotoIf(Word32Equal(Word32And(TruncateIntPtrToInt32(
BitcastMaybeObjectToWord(maybe_object)),
Int32Constant(kHeapObjectTagMask)),
Int32Constant(kHeapObjectTag)),
&inner_if_strong);
*extracted =
BitcastWordToTagged(WordAnd(BitcastMaybeObjectToWord(maybe_object),
IntPtrConstant(~kWeakHeapObjectMask)));
Goto(if_weak);
BIND(&inner_if_smi);
*extracted = CAST(maybe_object);
Goto(if_smi);
BIND(&inner_if_strong);
*extracted = CAST(maybe_object);
Goto(if_strong);
}
TNode<BoolT> CodeStubAssembler::IsStrong(TNode<MaybeObject> value) {
return WordEqual(WordAnd(BitcastMaybeObjectToWord(value),
IntPtrConstant(kHeapObjectTagMask)),
IntPtrConstant(kHeapObjectTag));
}
TNode<HeapObject> CodeStubAssembler::GetHeapObjectIfStrong(
TNode<MaybeObject> value, Label* if_not_strong) {
GotoIfNot(IsStrong(value), if_not_strong);
return CAST(value);
}
TNode<BoolT> CodeStubAssembler::IsWeakOrCleared(TNode<MaybeObject> value) {
return Word32Equal(
Word32And(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
Int32Constant(kHeapObjectTagMask)),
Int32Constant(kWeakHeapObjectTag));
}
TNode<BoolT> CodeStubAssembler::IsCleared(TNode<MaybeObject> value) {
return Word32Equal(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
Int32Constant(kClearedWeakHeapObjectLower32));
}
TNode<BoolT> CodeStubAssembler::IsNotCleared(TNode<MaybeObject> value) {
return Word32NotEqual(TruncateIntPtrToInt32(BitcastMaybeObjectToWord(value)),
Int32Constant(kClearedWeakHeapObjectLower32));
}
TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak(
TNode<MaybeObject> value) {
CSA_ASSERT(this, IsWeakOrCleared(value));
CSA_ASSERT(this, IsNotCleared(value));
return UncheckedCast<HeapObject>(BitcastWordToTagged(WordAnd(
BitcastMaybeObjectToWord(value), IntPtrConstant(~kWeakHeapObjectMask))));
}
TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak(
TNode<MaybeObject> value, Label* if_cleared) {
GotoIf(IsCleared(value), if_cleared);
return GetHeapObjectAssumeWeak(value);
}
TNode<BoolT> CodeStubAssembler::IsWeakReferenceTo(TNode<MaybeObject> object,
TNode<Object> value) {
return WordEqual(WordAnd(BitcastMaybeObjectToWord(object),
IntPtrConstant(~kWeakHeapObjectMask)),
BitcastTaggedToWord(value));
}
TNode<BoolT> CodeStubAssembler::IsStrongReferenceTo(TNode<MaybeObject> object,
TNode<Object> value) {
return WordEqual(BitcastMaybeObjectToWord(object),
BitcastTaggedToWord(value));
}
TNode<BoolT> CodeStubAssembler::IsNotWeakReferenceTo(TNode<MaybeObject> object,
TNode<Object> value) {
return WordNotEqual(WordAnd(BitcastMaybeObjectToWord(object),
IntPtrConstant(~kWeakHeapObjectMask)),
BitcastTaggedToWord(value));
}
TNode<MaybeObject> CodeStubAssembler::MakeWeak(TNode<HeapObject> value) {
return ReinterpretCast<MaybeObject>(BitcastWordToTagged(
WordOr(BitcastTaggedToWord(value), IntPtrConstant(kWeakHeapObjectTag))));
}
template <>
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<FixedArray> array) {
return LoadAndUntagFixedArrayBaseLength(array);
}
template <>
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<WeakFixedArray> array) {
return LoadAndUntagWeakFixedArrayLength(array);
}
template <>
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(TNode<PropertyArray> array) {
return LoadPropertyArrayLength(array);
}
template <>
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(
TNode<DescriptorArray> array) {
return IntPtrMul(ChangeInt32ToIntPtr(LoadNumberOfDescriptors(array)),
IntPtrConstant(DescriptorArray::kEntrySize));
}
template <>
TNode<IntPtrT> CodeStubAssembler::LoadArrayLength(
TNode<TransitionArray> array) {
return LoadAndUntagWeakFixedArrayLength(array);
}
template <typename Array>
TNode<MaybeObject> CodeStubAssembler::LoadArrayElement(
TNode<Array> array, int array_header_size, Node* index_node,
int additional_offset, ParameterMode parameter_mode,
LoadSensitivity needs_poisoning) {
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(
ParameterToIntPtr(index_node, parameter_mode),
IntPtrConstant(0)));
DCHECK(IsAligned(additional_offset, kTaggedSize));
int32_t header_size = array_header_size + additional_offset - kHeapObjectTag;
TNode<IntPtrT> offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
parameter_mode, header_size);
CSA_ASSERT(this, IsOffsetInBounds(offset, LoadArrayLength(array),
array_header_size));
return UncheckedCast<MaybeObject>(
Load(MachineType::AnyTagged(), array, offset, needs_poisoning));
}
template TNode<MaybeObject>
CodeStubAssembler::LoadArrayElement<TransitionArray>(TNode<TransitionArray>,
int, Node*, int,
ParameterMode,
LoadSensitivity);
template TNode<MaybeObject>
CodeStubAssembler::LoadArrayElement<DescriptorArray>(TNode<DescriptorArray>,
int, Node*, int,
ParameterMode,
LoadSensitivity);
void CodeStubAssembler::FixedArrayBoundsCheck(TNode<FixedArrayBase> array,
Node* index,
int additional_offset,
ParameterMode parameter_mode) {
if (!FLAG_fixed_array_bounds_checks) return;
DCHECK(IsAligned(additional_offset, kTaggedSize));
if (parameter_mode == ParameterMode::SMI_PARAMETERS) {
TNode<Smi> effective_index;
Smi constant_index;
bool index_is_constant = ToSmiConstant(index, &constant_index);
if (index_is_constant) {
effective_index = SmiConstant(Smi::ToInt(constant_index) +
additional_offset / kTaggedSize);
} else if (additional_offset != 0) {
effective_index =
SmiAdd(CAST(index), SmiConstant(additional_offset / kTaggedSize));
} else {
effective_index = CAST(index);
}
CSA_CHECK(this, SmiBelow(effective_index, LoadFixedArrayBaseLength(array)));
} else {
// IntPtrAdd does constant-folding automatically.
TNode<IntPtrT> effective_index =
IntPtrAdd(UncheckedCast<IntPtrT>(index),
IntPtrConstant(additional_offset / kTaggedSize));
CSA_CHECK(this, UintPtrLessThan(effective_index,
LoadAndUntagFixedArrayBaseLength(array)));
}
}
TNode<Object> CodeStubAssembler::LoadFixedArrayElement(
TNode<FixedArray> object, Node* index_node, int additional_offset,
ParameterMode parameter_mode, LoadSensitivity needs_poisoning,
CheckBounds check_bounds) {
CSA_ASSERT(this, IsFixedArraySubclass(object));
CSA_ASSERT(this, IsNotWeakFixedArraySubclass(object));
if (NeedsBoundsCheck(check_bounds)) {
FixedArrayBoundsCheck(object, index_node, additional_offset,
parameter_mode);
}
TNode<MaybeObject> element =
LoadArrayElement(object, FixedArray::kHeaderSize, index_node,
additional_offset, parameter_mode, needs_poisoning);
return CAST(element);
}
TNode<Object> CodeStubAssembler::LoadPropertyArrayElement(
TNode<PropertyArray> object, SloppyTNode<IntPtrT> index) {
int additional_offset = 0;
ParameterMode parameter_mode = INTPTR_PARAMETERS;
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe;
return CAST(LoadArrayElement(object, PropertyArray::kHeaderSize, index,
additional_offset, parameter_mode,
needs_poisoning));
}
TNode<IntPtrT> CodeStubAssembler::LoadPropertyArrayLength(
TNode<PropertyArray> object) {
TNode<IntPtrT> value =
LoadAndUntagObjectField(object, PropertyArray::kLengthAndHashOffset);
return Signed(DecodeWord<PropertyArray::LengthField>(value));
}
TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayBackingStore(
TNode<FixedTypedArrayBase> typed_array) {
// Backing store = external_pointer + base_pointer.
Node* external_pointer =
LoadObjectField(typed_array, FixedTypedArrayBase::kExternalPointerOffset,
MachineType::Pointer());
Node* base_pointer =
LoadObjectField(typed_array, FixedTypedArrayBase::kBasePointerOffset);
return UncheckedCast<RawPtrT>(
IntPtrAdd(external_pointer, BitcastTaggedToWord(base_pointer)));
}
TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayOnHeapBackingStore(
TNode<FixedTypedArrayBase> typed_array) {
// This is specialized method of retrieving the backing store pointer for on
// heap allocated typed array buffer. On heap allocated buffer's backing
// stores are a fixed offset from the pointer to a typed array's elements. See
// TypedArrayBuiltinsAssembler::AllocateOnHeapElements().
TNode<WordT> backing_store =
IntPtrAdd(BitcastTaggedToWord(typed_array),
IntPtrConstant(
FixedTypedArrayBase::ExternalPointerValueForOnHeapArray()));
#ifdef DEBUG
// Verify that this is an on heap backing store.
TNode<RawPtrT> expected_backing_store_pointer =
LoadFixedTypedArrayBackingStore(typed_array);
CSA_ASSERT(this, WordEqual(backing_store, expected_backing_store_pointer));
#endif
return UncheckedCast<RawPtrT>(backing_store);
}
Node* CodeStubAssembler::LoadFixedBigInt64ArrayElementAsTagged(
Node* data_pointer, Node* offset) {
if (Is64()) {
TNode<IntPtrT> value = UncheckedCast<IntPtrT>(
Load(MachineType::IntPtr(), data_pointer, offset));
return BigIntFromInt64(value);
} else {
DCHECK(!Is64());
#if defined(V8_TARGET_BIG_ENDIAN)
TNode<IntPtrT> high = UncheckedCast<IntPtrT>(
Load(MachineType::UintPtr(), data_pointer, offset));
TNode<IntPtrT> low = UncheckedCast<IntPtrT>(
Load(MachineType::UintPtr(), data_pointer,
Int32Add(offset, Int32Constant(kSystemPointerSize))));
#else
TNode<IntPtrT> low = UncheckedCast<IntPtrT>(
Load(MachineType::UintPtr(), data_pointer, offset));
TNode<IntPtrT> high = UncheckedCast<IntPtrT>(
Load(MachineType::UintPtr(), data_pointer,
Int32Add(offset, Int32Constant(kSystemPointerSize))));
#endif
return BigIntFromInt32Pair(low, high);
}
}
TNode<BigInt> CodeStubAssembler::BigIntFromInt32Pair(TNode<IntPtrT> low,
TNode<IntPtrT> high) {
DCHECK(!Is64());
TVARIABLE(BigInt, var_result);
TVARIABLE(Word32T, var_sign, Int32Constant(BigInt::SignBits::encode(false)));
TVARIABLE(IntPtrT, var_high, high);
TVARIABLE(IntPtrT, var_low, low);
Label high_zero(this), negative(this), allocate_one_digit(this),
allocate_two_digits(this), if_zero(this), done(this);
GotoIf(WordEqual(var_high.value(), IntPtrConstant(0)), &high_zero);
Branch(IntPtrLessThan(var_high.value(), IntPtrConstant(0)), &negative,
&allocate_two_digits);
BIND(&high_zero);
Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &if_zero,
&allocate_one_digit);
BIND(&negative);
{
var_sign = Int32Constant(BigInt::SignBits::encode(true));
// We must negate the value by computing "0 - (high|low)", performing
// both parts of the subtraction separately and manually taking care
// of the carry bit (which is 1 iff low != 0).
var_high = IntPtrSub(IntPtrConstant(0), var_high.value());
Label carry(this), no_carry(this);
Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &no_carry, &carry);
BIND(&carry);
var_high = IntPtrSub(var_high.value(), IntPtrConstant(1));
Goto(&no_carry);
BIND(&no_carry);
var_low = IntPtrSub(IntPtrConstant(0), var_low.value());
// var_high was non-zero going into this block, but subtracting the
// carry bit from it could bring us back onto the "one digit" path.
Branch(WordEqual(var_high.value(), IntPtrConstant(0)), &allocate_one_digit,
&allocate_two_digits);
}
BIND(&allocate_one_digit);
{
var_result = AllocateRawBigInt(IntPtrConstant(1));
StoreBigIntBitfield(var_result.value(),
Word32Or(var_sign.value(),
Int32Constant(BigInt::LengthBits::encode(1))));
StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value()));
Goto(&done);
}
BIND(&allocate_two_digits);
{
var_result = AllocateRawBigInt(IntPtrConstant(2));
StoreBigIntBitfield(var_result.value(),
Word32Or(var_sign.value(),
Int32Constant(BigInt::LengthBits::encode(2))));
StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value()));
StoreBigIntDigit(var_result.value(), 1, Unsigned(var_high.value()));
Goto(&done);
}
BIND(&if_zero);
var_result = AllocateBigInt(IntPtrConstant(0));
Goto(&done);
BIND(&done);
return var_result.value();
}
TNode<BigInt> CodeStubAssembler::BigIntFromInt64(TNode<IntPtrT> value) {
DCHECK(Is64());
TVARIABLE(BigInt, var_result);
Label done(this), if_positive(this), if_negative(this), if_zero(this);
GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero);
var_result = AllocateRawBigInt(IntPtrConstant(1));
Branch(IntPtrGreaterThan(value, IntPtrConstant(0)), &if_positive,
&if_negative);
BIND(&if_positive);
{
StoreBigIntBitfield(var_result.value(),
Int32Constant(BigInt::SignBits::encode(false) |
BigInt::LengthBits::encode(1)));
StoreBigIntDigit(var_result.value(), 0, Unsigned(value));
Goto(&done);
}
BIND(&if_negative);
{
StoreBigIntBitfield(var_result.value(),
Int32Constant(BigInt::SignBits::encode(true) |
BigInt::LengthBits::encode(1)));
StoreBigIntDigit(var_result.value(), 0,
Unsigned(IntPtrSub(IntPtrConstant(0), value)));
Goto(&done);
}
BIND(&if_zero);
{
var_result = AllocateBigInt(IntPtrConstant(0));
Goto(&done);
}
BIND(&done);
return var_result.value();
}
Node* CodeStubAssembler::LoadFixedBigUint64ArrayElementAsTagged(
Node* data_pointer, Node* offset) {
Label if_zero(this), done(this);
if (Is64()) {
TNode<UintPtrT> value = UncheckedCast<UintPtrT>(
Load(MachineType::UintPtr(), data_pointer, offset));
return BigIntFromUint64(value);
} else {
DCHECK(!Is64());
#if defined(V8_TARGET_BIG_ENDIAN)
TNode<UintPtrT> high = UncheckedCast<UintPtrT>(
Load(MachineType::UintPtr(), data_pointer, offset));
TNode<UintPtrT> low = UncheckedCast<UintPtrT>(
Load(MachineType::UintPtr(), data_pointer,
Int32Add(offset, Int32Constant(kSystemPointerSize))));
#else
TNode<UintPtrT> low = UncheckedCast<UintPtrT>(
Load(MachineType::UintPtr(), data_pointer, offset));
TNode<UintPtrT> high = UncheckedCast<UintPtrT>(
Load(MachineType::UintPtr(), data_pointer,
Int32Add(offset, Int32Constant(kSystemPointerSize))));
#endif
return BigIntFromUint32Pair(low, high);
}
}
TNode<BigInt> CodeStubAssembler::BigIntFromUint32Pair(TNode<UintPtrT> low,
TNode<UintPtrT> high) {
DCHECK(!Is64());
TVARIABLE(BigInt, var_result);
Label high_zero(this), if_zero(this), done(this);
GotoIf(WordEqual(high, IntPtrConstant(0)), &high_zero);
var_result = AllocateBigInt(IntPtrConstant(2));
StoreBigIntDigit(var_result.value(), 0, low);
StoreBigIntDigit(var_result.value(), 1, high);
Goto(&done);
BIND(&high_zero);
GotoIf(WordEqual(low, IntPtrConstant(0)), &if_zero);
var_result = AllocateBigInt(IntPtrConstant(1));
StoreBigIntDigit(var_result.value(), 0, low);
Goto(&done);
BIND(&if_zero);
var_result = AllocateBigInt(IntPtrConstant(0));
Goto(&done);
BIND(&done);
return var_result.value();
}
TNode<BigInt> CodeStubAssembler::BigIntFromUint64(TNode<UintPtrT> value) {
DCHECK(Is64());
TVARIABLE(BigInt, var_result);
Label done(this), if_zero(this);
GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero);
var_result = AllocateBigInt(IntPtrConstant(1));
StoreBigIntDigit(var_result.value(), 0, value);
Goto(&done);
BIND(&if_zero);
var_result = AllocateBigInt(IntPtrConstant(0));
Goto(&done);
BIND(&done);
return var_result.value();
}
Node* CodeStubAssembler::LoadFixedTypedArrayElementAsTagged(
Node* data_pointer, Node* index_node, ElementsKind elements_kind,
ParameterMode parameter_mode) {
Node* offset =
ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
switch (elements_kind) {
case UINT8_ELEMENTS: /* fall through */
case UINT8_CLAMPED_ELEMENTS:
return SmiFromInt32(Load(MachineType::Uint8(), data_pointer, offset));
case INT8_ELEMENTS:
return SmiFromInt32(Load(MachineType::Int8(), data_pointer, offset));
case UINT16_ELEMENTS:
return SmiFromInt32(Load(MachineType::Uint16(), data_pointer, offset));
case INT16_ELEMENTS:
return SmiFromInt32(Load(MachineType::Int16(), data_pointer, offset));
case UINT32_ELEMENTS:
return ChangeUint32ToTagged(
Load(MachineType::Uint32(), data_pointer, offset));
case INT32_ELEMENTS:
return ChangeInt32ToTagged(
Load(MachineType::Int32(), data_pointer, offset));
case FLOAT32_ELEMENTS:
return AllocateHeapNumberWithValue(ChangeFloat32ToFloat64(
Load(MachineType::Float32(), data_pointer, offset)));
case FLOAT64_ELEMENTS:
return AllocateHeapNumberWithValue(
Load(MachineType::Float64(), data_pointer, offset));
case BIGINT64_ELEMENTS:
return LoadFixedBigInt64ArrayElementAsTagged(data_pointer, offset);
case BIGUINT64_ELEMENTS:
return LoadFixedBigUint64ArrayElementAsTagged(data_pointer, offset);
default:
UNREACHABLE();
}
}
TNode<Numeric> CodeStubAssembler::LoadFixedTypedArrayElementAsTagged(
TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind) {
TVARIABLE(Numeric, var_result);
Label done(this), if_unknown_type(this, Label::kDeferred);
int32_t elements_kinds[] = {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) TYPE##_ELEMENTS,
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
};
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) Label if_##type##array(this);
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
Label* elements_kind_labels[] = {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) &if_##type##array,
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
};
STATIC_ASSERT(arraysize(elements_kinds) == arraysize(elements_kind_labels));
Switch(elements_kind, &if_unknown_type, elements_kinds, elements_kind_labels,
arraysize(elements_kinds));
BIND(&if_unknown_type);
Unreachable();
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
BIND(&if_##type##array); \
{ \
var_result = CAST(LoadFixedTypedArrayElementAsTagged( \
data_pointer, index, TYPE##_ELEMENTS, SMI_PARAMETERS)); \
Goto(&done); \
}
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
BIND(&done);
return var_result.value();
}
void CodeStubAssembler::StoreFixedTypedArrayElementFromTagged(
TNode<Context> context, TNode<FixedTypedArrayBase> elements,
TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
ParameterMode parameter_mode) {
TNode<RawPtrT> data_pointer = LoadFixedTypedArrayBackingStore(elements);
switch (elements_kind) {
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
case INT8_ELEMENTS:
case UINT16_ELEMENTS:
case INT16_ELEMENTS:
StoreElement(data_pointer, elements_kind, index_node,
SmiToInt32(CAST(value)), parameter_mode);
break;
case UINT32_ELEMENTS:
case INT32_ELEMENTS:
StoreElement(data_pointer, elements_kind, index_node,
TruncateTaggedToWord32(context, value), parameter_mode);
break;
case FLOAT32_ELEMENTS:
StoreElement(data_pointer, elements_kind, index_node,
TruncateFloat64ToFloat32(LoadHeapNumberValue(CAST(value))),
parameter_mode);
break;
case FLOAT64_ELEMENTS:
StoreElement(data_pointer, elements_kind, index_node,
LoadHeapNumberValue(CAST(value)), parameter_mode);
break;
case BIGUINT64_ELEMENTS:
case BIGINT64_ELEMENTS: {
TNode<IntPtrT> offset =
ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
EmitBigTypedArrayElementStore(elements, data_pointer, offset,
CAST(value));
break;
}
default:
UNREACHABLE();
}
}
TNode<MaybeObject> CodeStubAssembler::LoadFeedbackVectorSlot(
Node* object, Node* slot_index_node, int additional_offset,
ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(this, IsFeedbackVector(object));
CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode));
int32_t header_size =
FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS,
parameter_mode, header_size);
CSA_SLOW_ASSERT(
this, IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)),
FeedbackVector::kHeaderSize));
return UncheckedCast<MaybeObject>(
Load(MachineType::AnyTagged(), object, offset));
}
template <typename Array>
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ArrayElement(
TNode<Array> object, int array_header_size, Node* index_node,
int additional_offset, ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
DCHECK(IsAligned(additional_offset, kTaggedSize));
int endian_correction = 0;
#if V8_TARGET_LITTLE_ENDIAN
if (SmiValuesAre32Bits()) endian_correction = 4;
#endif
int32_t header_size = array_header_size + additional_offset - kHeapObjectTag +
endian_correction;
Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
parameter_mode, header_size);
CSA_ASSERT(this, IsOffsetInBounds(offset, LoadArrayLength(object),
array_header_size + endian_correction));
if (SmiValuesAre32Bits()) {
return UncheckedCast<Int32T>(Load(MachineType::Int32(), object, offset));
} else {
return SmiToInt32(Load(MachineType::AnyTagged(), object, offset));
}
}
TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement(
TNode<FixedArray> object, Node* index_node, int additional_offset,
ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(this, IsFixedArraySubclass(object));
return LoadAndUntagToWord32ArrayElement(object, FixedArray::kHeaderSize,
index_node, additional_offset,
parameter_mode);
}
TNode<MaybeObject> CodeStubAssembler::LoadWeakFixedArrayElement(
TNode<WeakFixedArray> object, Node* index, int additional_offset,
ParameterMode parameter_mode, LoadSensitivity needs_poisoning) {
return LoadArrayElement(object, WeakFixedArray::kHeaderSize, index,
additional_offset, parameter_mode, needs_poisoning);
}
TNode<Float64T> CodeStubAssembler::LoadFixedDoubleArrayElement(
SloppyTNode<FixedDoubleArray> object, Node* index_node,
MachineType machine_type, int additional_offset,
ParameterMode parameter_mode, Label* if_hole) {
CSA_ASSERT(this, IsFixedDoubleArray(object));
DCHECK(IsAligned(additional_offset, kTaggedSize));
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
int32_t header_size =
FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag;
TNode<IntPtrT> offset = ElementOffsetFromIndex(
index_node, HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size);
CSA_ASSERT(this, IsOffsetInBounds(
offset, LoadAndUntagFixedArrayBaseLength(object),
FixedDoubleArray::kHeaderSize, HOLEY_DOUBLE_ELEMENTS));
return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type);
}
TNode<Object> CodeStubAssembler::LoadFixedArrayBaseElementAsTagged(
TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole) {
TVARIABLE(Object, var_result);
Label done(this), if_packed(this), if_holey(this), if_packed_double(this),
if_holey_double(this), if_dictionary(this, Label::kDeferred);
int32_t kinds[] = {// Handled by if_packed.
PACKED_SMI_ELEMENTS, PACKED_ELEMENTS,
PACKED_SEALED_ELEMENTS, PACKED_FROZEN_ELEMENTS,
// Handled by if_holey.
HOLEY_SMI_ELEMENTS, HOLEY_ELEMENTS, HOLEY_SEALED_ELEMENTS,
HOLEY_FROZEN_ELEMENTS,
// Handled by if_packed_double.
PACKED_DOUBLE_ELEMENTS,
// Handled by if_holey_double.
HOLEY_DOUBLE_ELEMENTS};
Label* labels[] = {// PACKED_{SMI,}_ELEMENTS
&if_packed, &if_packed, &if_packed, &if_packed,
// HOLEY_{SMI,}_ELEMENTS
&if_holey, &if_holey, &if_holey, &if_holey,
// PACKED_DOUBLE_ELEMENTS
&if_packed_double,
// HOLEY_DOUBLE_ELEMENTS
&if_holey_double};
Switch(elements_kind, &if_dictionary, kinds, labels, arraysize(kinds));
BIND(&if_packed);
{
var_result = LoadFixedArrayElement(CAST(elements), index, 0);
Goto(&done);
}
BIND(&if_holey);
{
var_result = LoadFixedArrayElement(CAST(elements), index);
Branch(WordEqual(var_result.value(), TheHoleConstant()), if_hole, &done);
}
BIND(&if_packed_double);
{
var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement(
CAST(elements), index, MachineType::Float64()));
Goto(&done);
}
BIND(&if_holey_double);
{
var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement(
CAST(elements), index, MachineType::Float64(), 0, INTPTR_PARAMETERS,
if_hole));
Goto(&done);
}
BIND(&if_dictionary);
{
CSA_ASSERT(this, IsDictionaryElementsKind(elements_kind));
var_result = BasicLoadNumberDictionaryElement(CAST(elements), index,
if_accessor, if_hole);
Goto(&done);
}
BIND(&done);
return var_result.value();
}
TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck(
SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
MachineType machine_type) {
if (if_hole) {
// TODO(ishell): Compare only the upper part for the hole once the
// compiler is able to fold addition of already complex |offset| with
// |kIeeeDoubleExponentWordOffset| into one addressing mode.
if (Is64()) {
Node* element = Load(MachineType::Uint64(), base, offset);
GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole);
} else {
Node* element_upper = Load(
MachineType::Uint32(), base,
IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset)));
GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)),
if_hole);
}
}
if (machine_type.IsNone()) {
// This means the actual value is not needed.
return TNode<Float64T>();
}
return UncheckedCast<Float64T>(Load(machine_type, base, offset));
}
TNode<Object> CodeStubAssembler::LoadContextElement(
SloppyTNode<Context> context, int slot_index) {
int offset = Context::SlotOffset(slot_index);
return UncheckedCast<Object>(
Load(MachineType::AnyTagged(), context, IntPtrConstant(offset)));
}
TNode<Object> CodeStubAssembler::LoadContextElement(
SloppyTNode<Context> context, SloppyTNode<IntPtrT> slot_index) {
Node* offset = ElementOffsetFromIndex(
slot_index, PACKED_ELEMENTS, INTPTR_PARAMETERS, Context::SlotOffset(0));
return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset));
}
TNode<Object> CodeStubAssembler::LoadContextElement(TNode<Context> context,
TNode<Smi> slot_index) {
Node* offset = ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS,
SMI_PARAMETERS, Context::SlotOffset(0));
return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset));
}
void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context,
int slot_index,
SloppyTNode<Object> value) {
int offset = Context::SlotOffset(slot_index);
Store(context, IntPtrConstant(offset), value);
}
void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context,
SloppyTNode<IntPtrT> slot_index,
SloppyTNode<Object> value) {
Node* offset = IntPtrAdd(TimesTaggedSize(slot_index),
IntPtrConstant(Context::SlotOffset(0)));
Store(context, offset, value);
}
void CodeStubAssembler::StoreContextElementNoWriteBarrier(
SloppyTNode<Context> context, int slot_index, SloppyTNode<Object> value) {
int offset = Context::SlotOffset(slot_index);
StoreNoWriteBarrier(MachineRepresentation::kTagged, context,
IntPtrConstant(offset), value);
}
TNode<Context> CodeStubAssembler::LoadNativeContext(
SloppyTNode<Context> context) {
return UncheckedCast<Context>(
LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX));
}
TNode<Context> CodeStubAssembler::LoadModuleContext(
SloppyTNode<Context> context) {
Node* module_map = LoadRoot(RootIndex::kModuleContextMap);
Variable cur_context(this, MachineRepresentation::kTaggedPointer);
cur_context.Bind(context);
Label context_found(this);
Variable* context_search_loop_variables[1] = {&cur_context};
Label context_search(this, 1, context_search_loop_variables);
// Loop until cur_context->map() is module_map.
Goto(&context_search);
BIND(&context_search);
{
CSA_ASSERT(this, Word32BinaryNot(IsNativeContext(cur_context.value())));
GotoIf(WordEqual(LoadMap(cur_context.value()), module_map), &context_found);
cur_context.Bind(
LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX));
Goto(&context_search);
}
BIND(&context_found);
return UncheckedCast<Context>(cur_context.value());
}
TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap(
SloppyTNode<Int32T> kind, SloppyTNode<Context> native_context) {
CSA_ASSERT(this, IsFastElementsKind(kind));
CSA_ASSERT(this, IsNativeContext(native_context));
Node* offset = IntPtrAdd(IntPtrConstant(Context::FIRST_JS_ARRAY_MAP_SLOT),
ChangeInt32ToIntPtr(kind));
return UncheckedCast<Map>(LoadContextElement(native_context, offset));
}
TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap(
ElementsKind kind, SloppyTNode<Context> native_context) {
CSA_ASSERT(this, IsNativeContext(native_context));
return UncheckedCast<Map>(
LoadContextElement(native_context, Context::ArrayMapIndex(kind)));
}
TNode<BoolT> CodeStubAssembler::IsGeneratorFunction(
TNode<JSFunction> function) {
TNode<SharedFunctionInfo> const shared_function_info =
CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset));
TNode<Uint32T> const function_kind =
DecodeWord32<SharedFunctionInfo::FunctionKindBits>(LoadObjectField(
shared_function_info, SharedFunctionInfo::kFlagsOffset,
MachineType::Uint32()));
return TNode<BoolT>::UncheckedCast(Word32Or(
Word32Or(
Word32Or(
Word32Equal(function_kind,
Int32Constant(FunctionKind::kAsyncGeneratorFunction)),
Word32Equal(
function_kind,
Int32Constant(FunctionKind::kAsyncConciseGeneratorMethod))),
Word32Equal(function_kind,
Int32Constant(FunctionKind::kGeneratorFunction))),
Word32Equal(function_kind,
Int32Constant(FunctionKind::kConciseGeneratorMethod))));
}
TNode<BoolT> CodeStubAssembler::HasPrototypeProperty(TNode<JSFunction> function,
TNode<Map> map) {
// (has_prototype_slot() && IsConstructor()) ||
// IsGeneratorFunction(shared()->kind())
uint32_t mask =
Map::HasPrototypeSlotBit::kMask | Map::IsConstructorBit::kMask;
return TNode<BoolT>::UncheckedCast(
Word32Or(IsAllSetWord32(LoadMapBitField(map), mask),
IsGeneratorFunction(function)));
}
void CodeStubAssembler::GotoIfPrototypeRequiresRuntimeLookup(
TNode<JSFunction> function, TNode<Map> map, Label* runtime) {
// !has_prototype_property() || has_non_instance_prototype()
GotoIfNot(HasPrototypeProperty(function, map), runtime);
GotoIf(IsSetWord32<Map::HasNonInstancePrototypeBit>(LoadMapBitField(map)),
runtime);
}
Node* CodeStubAssembler::LoadJSFunctionPrototype(Node* function,
Label* if_bailout) {
CSA_ASSERT(this, TaggedIsNotSmi(function));
CSA_ASSERT(this, IsJSFunction(function));
CSA_ASSERT(this, IsFunctionWithPrototypeSlotMap(LoadMap(function)));
CSA_ASSERT(this, IsClearWord32<Map::HasNonInstancePrototypeBit>(
LoadMapBitField(LoadMap(function))));
Node* proto_or_map =
LoadObjectField(function, JSFunction::kPrototypeOrInitialMapOffset);
GotoIf(IsTheHole(proto_or_map), if_bailout);
VARIABLE(var_result, MachineRepresentation::kTagged, proto_or_map);
Label done(this, &var_result);
GotoIfNot(IsMap(proto_or_map), &done);
var_result.Bind(LoadMapPrototype(proto_or_map));
Goto(&done);
BIND(&done);
return var_result.value();
}
TNode<BytecodeArray> CodeStubAssembler::LoadSharedFunctionInfoBytecodeArray(
SloppyTNode<SharedFunctionInfo> shared) {
Node* function_data =
LoadObjectField(shared, SharedFunctionInfo::kFunctionDataOffset);
VARIABLE(var_result, MachineRepresentation::kTagged, function_data);
Label done(this, &var_result);
GotoIfNot(HasInstanceType(function_data, INTERPRETER_DATA_TYPE), &done);
Node* bytecode_array =
LoadObjectField(function_data, InterpreterData::kBytecodeArrayOffset);
var_result.Bind(bytecode_array);
Goto(&done);
BIND(&done);
return CAST(var_result.value());
}
void CodeStubAssembler::StoreObjectByteNoWriteBarrier(TNode<HeapObject> object,
int offset,
TNode<Word32T> value) {
StoreNoWriteBarrier(MachineRepresentation::kWord8, object,
IntPtrConstant(offset - kHeapObjectTag), value);
}
void CodeStubAssembler::StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
SloppyTNode<Float64T> value) {
StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value,
MachineRepresentation::kFloat64);
}
void CodeStubAssembler::StoreMutableHeapNumberValue(
SloppyTNode<MutableHeapNumber> object, SloppyTNode<Float64T> value) {
StoreObjectFieldNoWriteBarrier(object, MutableHeapNumber::kValueOffset, value,
MachineRepresentation::kFloat64);
}
void CodeStubAssembler::StoreObjectField(Node* object, int offset,
Node* value) {
DCHECK_NE(HeapObject::kMapOffset, offset); // Use StoreMap instead.
OptimizedStoreField(MachineRepresentation::kTagged,
UncheckedCast<HeapObject>(object), offset, value);
}
void CodeStubAssembler::StoreObjectField(Node* object, Node* offset,
Node* value) {
int const_offset;
if (ToInt32Constant(offset, const_offset)) {
StoreObjectField(object, const_offset, value);
} else {
Store(object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
}
}
void CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value, MachineRepresentation rep) {
if (CanBeTaggedPointer(rep)) {
OptimizedStoreFieldAssertNoWriteBarrier(
rep, UncheckedCast<HeapObject>(object), offset, value);
} else {
OptimizedStoreFieldUnsafeNoWriteBarrier(
rep, UncheckedCast<HeapObject>(object), offset, value);
}
}
void CodeStubAssembler::UnsafeStoreObjectFieldNoWriteBarrier(
TNode<HeapObject> object, int offset, TNode<Object> value) {
OptimizedStoreFieldUnsafeNoWriteBarrier(MachineRepresentation::kTagged,
object, offset, value);
}
void CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
Node* object, SloppyTNode<IntPtrT> offset, Node* value,
MachineRepresentation rep) {
int const_offset;
if (ToInt32Constant(offset, const_offset)) {
return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep);
}
StoreNoWriteBarrier(rep, object,
IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
}
void CodeStubAssembler::StoreMap(Node* object, Node* map) {
OptimizedStoreMap(UncheckedCast<HeapObject>(object), CAST(map));
}
void CodeStubAssembler::StoreMapNoWriteBarrier(Node* object,
RootIndex map_root_index) {
StoreMapNoWriteBarrier(object, LoadRoot(map_root_index));
}
void CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
CSA_SLOW_ASSERT(this, IsMap(map));
OptimizedStoreFieldAssertNoWriteBarrier(MachineRepresentation::kTaggedPointer,
UncheckedCast<HeapObject>(object),
HeapObject::kMapOffset, map);
}
void CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset,
RootIndex root_index) {
if (RootsTable::IsImmortalImmovable(root_index)) {
return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index));
} else {
return StoreObjectField(object, offset, LoadRoot(root_index));
}
}
void CodeStubAssembler::StoreJSArrayLength(TNode<JSArray> array,
TNode<Smi> length) {
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
}
void CodeStubAssembler::StoreElements(TNode<Object> object,
TNode<FixedArrayBase> elements) {
StoreObjectField(object, JSObject::kElementsOffset, elements);
}
void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement(
Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode,
int additional_offset, ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(
this, Word32Or(IsFixedArraySubclass(object), IsPropertyArray(object)));
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
barrier_mode == UNSAFE_SKIP_WRITE_BARRIER ||
barrier_mode == UPDATE_WRITE_BARRIER ||
barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER);
DCHECK(IsAligned(additional_offset, kTaggedSize));
STATIC_ASSERT(static_cast<int>(FixedArray::kHeaderSize) ==
static_cast<int>(PropertyArray::kHeaderSize));
int header_size =
FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS,
parameter_mode, header_size);
STATIC_ASSERT(static_cast<int>(FixedArrayBase::kLengthOffset) ==
static_cast<int>(WeakFixedArray::kLengthOffset));
STATIC_ASSERT(static_cast<int>(FixedArrayBase::kLengthOffset) ==
static_cast<int>(PropertyArray::kLengthAndHashOffset));
// Check that index_node + additional_offset <= object.length.
// TODO(cbruni): Use proper LoadXXLength helpers
CSA_ASSERT(
this,
IsOffsetInBounds(
offset,
Select<IntPtrT>(
IsPropertyArray(object),
[=] {
TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField(
object, PropertyArray::kLengthAndHashOffset);
return TNode<IntPtrT>::UncheckedCast(
DecodeWord<PropertyArray::LengthField>(length_and_hash));
},
[=] {
return LoadAndUntagObjectField(object,
FixedArrayBase::kLengthOffset);
}),
FixedArray::kHeaderSize));
if (barrier_mode == SKIP_WRITE_BARRIER) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value);
} else if (barrier_mode == UNSAFE_SKIP_WRITE_BARRIER) {
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
value);
} else if (barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER) {
StoreEphemeronKey(object, offset, value);
} else {
Store(object, offset, value);
}
}
void CodeStubAssembler::StoreFixedDoubleArrayElement(
TNode<FixedDoubleArray> object, Node* index_node, TNode<Float64T> value,
ParameterMode parameter_mode, CheckBounds check_bounds) {
CSA_ASSERT(this, IsFixedDoubleArray(object));
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
if (NeedsBoundsCheck(check_bounds)) {
FixedArrayBoundsCheck(object, index_node, 0, parameter_mode);
}
Node* offset =
ElementOffsetFromIndex(index_node, PACKED_DOUBLE_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
MachineRepresentation rep = MachineRepresentation::kFloat64;
// Make sure we do not store signalling NaNs into double arrays.
TNode<Float64T> value_silenced = Float64SilenceNaN(value);
StoreNoWriteBarrier(rep, object, offset, value_silenced);
}
void CodeStubAssembler::StoreFeedbackVectorSlot(Node* object,
Node* slot_index_node,
Node* value,
WriteBarrierMode barrier_mode,
int additional_offset,
ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(this, IsFeedbackVector(object));
CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode));
DCHECK(IsAligned(additional_offset, kTaggedSize));
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
barrier_mode == UNSAFE_SKIP_WRITE_BARRIER ||
barrier_mode == UPDATE_WRITE_BARRIER);
int header_size =
FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS,
parameter_mode, header_size);
// Check that slot_index_node <= object.length.
CSA_ASSERT(this,
IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)),
FeedbackVector::kHeaderSize));
if (barrier_mode == SKIP_WRITE_BARRIER) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value);
} else if (barrier_mode == UNSAFE_SKIP_WRITE_BARRIER) {
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset,
value);
} else {
Store(object, offset, value);
}
}
void CodeStubAssembler::EnsureArrayLengthWritable(TNode<Map> map,
Label* bailout) {
// Don't support arrays in dictionary named property mode.
GotoIf(IsDictionaryMap(map), bailout);
// Check whether the length property is writable. The length property is the
// only default named property on arrays. It's nonconfigurable, hence is
// guaranteed to stay the first property.
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
int length_index = JSArray::kLengthDescriptorIndex;
#ifdef DEBUG
TNode<Name> maybe_length =
LoadKeyByDescriptorEntry(descriptors, length_index);
CSA_ASSERT(this,
WordEqual(maybe_length, LoadRoot(RootIndex::klength_string)));
#endif
TNode<Uint32T> details =
LoadDetailsByDescriptorEntry(descriptors, length_index);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
bailout);
}
TNode<Int32T> CodeStubAssembler::EnsureArrayPushable(TNode<Map> map,
Label* bailout) {
// Disallow pushing onto prototypes. It might be the JSArray prototype.
// Disallow pushing onto non-extensible objects.
Comment("Disallow pushing onto prototypes");
Node* bit_field2 = LoadMapBitField2(map);
int mask = Map::IsPrototypeMapBit::kMask | Map::IsExtensibleBit::kMask;
Node* test = Word32And(bit_field2, Int32Constant(mask));
GotoIf(Word32NotEqual(test, Int32Constant(Map::IsExtensibleBit::kMask)),
bailout);
EnsureArrayLengthWritable(map, bailout);
TNode<Uint32T> kind = DecodeWord32<Map::ElementsKindBits>(bit_field2);
return Signed(kind);
}
void CodeStubAssembler::PossiblyGrowElementsCapacity(
ParameterMode mode, ElementsKind kind, Node* array, Node* length,
Variable* var_elements, Node* growth, Label* bailout) {
Label fits(this, var_elements);
Node* capacity =
TaggedToParameter(LoadFixedArrayBaseLength(var_elements->value()), mode);
// length and growth nodes are already in a ParameterMode appropriate
// representation.
Node* new_length = IntPtrOrSmiAdd(growth, length, mode);
GotoIfNot(IntPtrOrSmiGreaterThan(new_length, capacity, mode), &fits);
Node* new_capacity = CalculateNewElementsCapacity(new_length, mode);
var_elements->Bind(GrowElementsCapacity(array, var_elements->value(), kind,
kind, capacity, new_capacity, mode,
bailout));
Goto(&fits);
BIND(&fits);
}
TNode<Smi> CodeStubAssembler::BuildAppendJSArray(ElementsKind kind,
SloppyTNode<JSArray> array,
CodeStubArguments* args,
TVariable<IntPtrT>* arg_index,
Label* bailout) {
CSA_SLOW_ASSERT(this, IsJSArray(array));
Comment("BuildAppendJSArray: ", ElementsKindToString(kind));
Label pre_bailout(this);
Label success(this);
TVARIABLE(Smi, var_tagged_length);
ParameterMode mode = OptimalParameterMode();
VARIABLE(var_length, OptimalParameterRepresentation(),
TaggedToParameter(LoadFastJSArrayLength(array), mode));
VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array));
// Resize the capacity of the fixed array if it doesn't fit.
TNode<IntPtrT> first = arg_index->value();
Node* growth = IntPtrToParameter(
IntPtrSub(UncheckedCast<IntPtrT>(args->GetLength(INTPTR_PARAMETERS)),
first),
mode);
PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(),
&var_elements, growth, &pre_bailout);
// Push each argument onto the end of the array now that there is enough
// capacity.
CodeStubAssembler::VariableList push_vars({&var_length}, zone());
Node* elements = var_elements.value();
args->ForEach(
push_vars,
[this, kind, mode, elements, &var_length, &pre_bailout](Node* arg) {
TryStoreArrayElement(kind, mode, &pre_bailout, elements,
var_length.value(), arg);
Increment(&var_length, 1, mode);
},
first, nullptr);
{
TNode<Smi> length = ParameterToTagged(var_length.value(), mode);
var_tagged_length = length;
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
Goto(&success);
}
BIND(&pre_bailout);
{
TNode<Smi> length = ParameterToTagged(var_length.value(), mode);
var_tagged_length = length;
Node* diff = SmiSub(length, LoadFastJSArrayLength(array));
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
*arg_index = IntPtrAdd(arg_index->value(), SmiUntag(diff));
Goto(bailout);
}
BIND(&success);
return var_tagged_length.value();
}
void CodeStubAssembler::TryStoreArrayElement(ElementsKind kind,
ParameterMode mode, Label* bailout,
Node* elements, Node* index,
Node* value) {
if (IsSmiElementsKind(kind)) {
GotoIf(TaggedIsNotSmi(value), bailout);
} else if (IsDoubleElementsKind(kind)) {
GotoIfNotNumber(value, bailout);
}
if (IsDoubleElementsKind(kind)) {
value = ChangeNumberToFloat64(value);
}
StoreElement(elements, kind, index, value, mode);
}
void CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, Node* array,
Node* value, Label* bailout) {
CSA_SLOW_ASSERT(this, IsJSArray(array));
Comment("BuildAppendJSArray: ", ElementsKindToString(kind));
ParameterMode mode = OptimalParameterMode();
VARIABLE(var_length, OptimalParameterRepresentation(),
TaggedToParameter(LoadFastJSArrayLength(array), mode));
VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array));
// Resize the capacity of the fixed array if it doesn't fit.
Node* growth = IntPtrOrSmiConstant(1, mode);
PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(),
&var_elements, growth, bailout);
// Push each argument onto the end of the array now that there is enough
// capacity.
TryStoreArrayElement(kind, mode, bailout, var_elements.value(),
var_length.value(), value);
Increment(&var_length, 1, mode);
Node* length = ParameterToTagged(var_length.value(), mode);
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
}
Node* CodeStubAssembler::AllocateCellWithValue(Node* value,
WriteBarrierMode mode) {
Node* result = Allocate(Cell::kSize, kNone);
StoreMapNoWriteBarrier(result, RootIndex::kCellMap);
StoreCellValue(result, value, mode);
return result;
}
Node* CodeStubAssembler::LoadCellValue(Node* cell) {
CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE));
return LoadObjectField(cell, Cell::kValueOffset);
}
void CodeStubAssembler::StoreCellValue(Node* cell, Node* value,
WriteBarrierMode mode) {
CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE));
DCHECK(mode == SKIP_WRITE_BARRIER || mode == UPDATE_WRITE_BARRIER);
if (mode == UPDATE_WRITE_BARRIER) {
StoreObjectField(cell, Cell::kValueOffset, value);
} else {
StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, value);
}
}
TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumber() {
Node* result = Allocate(HeapNumber::kSize, kNone);
RootIndex heap_map_index = RootIndex::kHeapNumberMap;
StoreMapNoWriteBarrier(result, heap_map_index);
return UncheckedCast<HeapNumber>(result);
}
TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumberWithValue(
SloppyTNode<Float64T> value) {
TNode<HeapNumber> result = AllocateHeapNumber();
StoreHeapNumberValue(result, value);
return result;
}
TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumber() {
Node* result = Allocate(MutableHeapNumber::kSize, kNone);
RootIndex heap_map_index = RootIndex::kMutableHeapNumberMap;
StoreMapNoWriteBarrier(result, heap_map_index);
return UncheckedCast<MutableHeapNumber>(result);
}
TNode<Object> CodeStubAssembler::CloneIfMutablePrimitive(TNode<Object> object) {
TVARIABLE(Object, result, object);
Label done(this);
GotoIf(TaggedIsSmi(object), &done);
GotoIfNot(IsMutableHeapNumber(UncheckedCast<HeapObject>(object)), &done);
{
// Mutable heap number found --- allocate a clone.
TNode<Float64T> value =
LoadHeapNumberValue(UncheckedCast<HeapNumber>(object));
result = AllocateMutableHeapNumberWithValue(value);
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumberWithValue(
SloppyTNode<Float64T> value) {
TNode<MutableHeapNumber> result = AllocateMutableHeapNumber();
StoreMutableHeapNumberValue(result, value);
return result;
}
TNode<BigInt> CodeStubAssembler::AllocateBigInt(TNode<IntPtrT> length) {
TNode<BigInt> result = AllocateRawBigInt(length);
StoreBigIntBitfield(result,
Word32Shl(TruncateIntPtrToInt32(length),
Int32Constant(BigInt::LengthBits::kShift)));
return result;
}
TNode<BigInt> CodeStubAssembler::AllocateRawBigInt(TNode<IntPtrT> length) {
// This is currently used only for 64-bit wide BigInts. If more general
// applicability is required, a large-object check must be added.
CSA_ASSERT(this, UintPtrLessThan(length, IntPtrConstant(3)));
TNode<IntPtrT> size =
IntPtrAdd(IntPtrConstant(BigInt::kHeaderSize),
Signed(WordShl(length, kSystemPointerSizeLog2)));
Node* raw_result = Allocate(size, kNone);
StoreMapNoWriteBarrier(raw_result, RootIndex::kBigIntMap);
if (FIELD_SIZE(BigInt::kOptionalPaddingOffset) != 0) {
DCHECK_EQ(4, FIELD_SIZE(BigInt::kOptionalPaddingOffset));
StoreObjectFieldNoWriteBarrier(raw_result, BigInt::kOptionalPaddingOffset,
Int32Constant(0),
MachineRepresentation::kWord32);
}
return UncheckedCast<BigInt>(raw_result);
}
void CodeStubAssembler::StoreBigIntBitfield(TNode<BigInt> bigint,
TNode<Word32T> bitfield) {
StoreObjectFieldNoWriteBarrier(bigint, BigInt::kBitfieldOffset, bitfield,
MachineRepresentation::kWord32);
}
void CodeStubAssembler::StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
TNode<UintPtrT> digit) {
StoreObjectFieldNoWriteBarrier(
bigint, BigInt::kDigitsOffset + digit_index * kSystemPointerSize, digit,
UintPtrT::kMachineRepresentation);
}
TNode<Word32T> CodeStubAssembler::LoadBigIntBitfield(TNode<BigInt> bigint) {
return UncheckedCast<Word32T>(
LoadObjectField(bigint, BigInt::kBitfieldOffset, MachineType::Uint32()));
}
TNode<UintPtrT> CodeStubAssembler::LoadBigIntDigit(TNode<BigInt> bigint,
int digit_index) {
return UncheckedCast<UintPtrT>(LoadObjectField(
bigint, BigInt::kDigitsOffset + digit_index * kSystemPointerSize,
MachineType::UintPtr()));
}
TNode<String> CodeStubAssembler::AllocateSeqOneByteString(
uint32_t length, AllocationFlags flags) {
Comment("AllocateSeqOneByteString");
if (length == 0) {
return CAST(LoadRoot(RootIndex::kempty_string));
}
Node* result = Allocate(SeqOneByteString::SizeFor(length), flags);
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap));
StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap);
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
Uint32Constant(length),
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
return CAST(result);
}
TNode<BoolT> CodeStubAssembler::IsZeroOrContext(SloppyTNode<Object> object) {
return Select<BoolT>(WordEqual(object, SmiConstant(0)),
[=] { return Int32TrueConstant(); },
[=] { return IsContext(CAST(object)); });
}
TNode<String> CodeStubAssembler::AllocateSeqOneByteString(
Node* context, TNode<Uint32T> length, AllocationFlags flags) {
Comment("AllocateSeqOneByteString");
CSA_SLOW_ASSERT(this, IsZeroOrContext(context));
VARIABLE(var_result, MachineRepresentation::kTagged);
// Compute the SeqOneByteString size and check if it fits into new space.
Label if_lengthiszero(this), if_sizeissmall(this),
if_notsizeissmall(this, Label::kDeferred), if_join(this);
GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero);
Node* raw_size = GetArrayAllocationSize(
Signed(ChangeUint32ToWord(length)), UINT8_ELEMENTS, INTPTR_PARAMETERS,
SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
&if_sizeissmall, &if_notsizeissmall);
BIND(&if_sizeissmall);
{
// Just allocate the SeqOneByteString in new space.
TNode<Object> result =
AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags);
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap));
StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap);
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
length, MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
var_result.Bind(result);
Goto(&if_join);
}
BIND(&if_notsizeissmall);
{
// We might need to allocate in large object space, go to the runtime.
Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context,
ChangeUint32ToTagged(length));
var_result.Bind(result);
Goto(&if_join);
}
BIND(&if_lengthiszero);
{
var_result.Bind(LoadRoot(RootIndex::kempty_string));
Goto(&if_join);
}
BIND(&if_join);
return CAST(var_result.value());
}
TNode<String> CodeStubAssembler::AllocateSeqTwoByteString(
uint32_t length, AllocationFlags flags) {
Comment("AllocateSeqTwoByteString");
if (length == 0) {
return CAST(LoadRoot(RootIndex::kempty_string));
}
Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags);
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap));
StoreMapNoWriteBarrier(result, RootIndex::kStringMap);
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
Uint32Constant(length),
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
return CAST(result);
}
TNode<String> CodeStubAssembler::AllocateSeqTwoByteString(
Node* context, TNode<Uint32T> length, AllocationFlags flags) {
CSA_SLOW_ASSERT(this, IsZeroOrContext(context));
Comment("AllocateSeqTwoByteString");
VARIABLE(var_result, MachineRepresentation::kTagged);
// Compute the SeqTwoByteString size and check if it fits into new space.
Label if_lengthiszero(this), if_sizeissmall(this),
if_notsizeissmall(this, Label::kDeferred), if_join(this);
GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero);
Node* raw_size = GetArrayAllocationSize(
Signed(ChangeUint32ToWord(length)), UINT16_ELEMENTS, INTPTR_PARAMETERS,
SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
TNode<WordT> size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
&if_sizeissmall, &if_notsizeissmall);
BIND(&if_sizeissmall);
{
// Just allocate the SeqTwoByteString in new space.
TNode<Object> result =
AllocateInNewSpace(UncheckedCast<IntPtrT>(size), flags);
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap));
StoreMapNoWriteBarrier(result, RootIndex::kStringMap);
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
length, MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
var_result.Bind(result);
Goto(&if_join);
}
BIND(&if_notsizeissmall);
{
// We might need to allocate in large object space, go to the runtime.
Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context,
ChangeUint32ToTagged(length));
var_result.Bind(result);
Goto(&if_join);
}
BIND(&if_lengthiszero);
{
var_result.Bind(LoadRoot(RootIndex::kempty_string));
Goto(&if_join);
}
BIND(&if_join);
return CAST(var_result.value());
}
TNode<String> CodeStubAssembler::AllocateSlicedString(RootIndex map_root_index,
TNode<Uint32T> length,
TNode<String> parent,
TNode<Smi> offset) {
DCHECK(map_root_index == RootIndex::kSlicedOneByteStringMap ||
map_root_index == RootIndex::kSlicedStringMap);
Node* result = Allocate(SlicedString::kSize);
DCHECK(RootsTable::IsImmortalImmovable(map_root_index));
StoreMapNoWriteBarrier(result, map_root_index);
StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length,
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent,
MachineRepresentation::kTagged);
StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset,
MachineRepresentation::kTagged);
return CAST(result);
}
TNode<String> CodeStubAssembler::AllocateSlicedOneByteString(
TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) {
return AllocateSlicedString(RootIndex::kSlicedOneByteStringMap, length,
parent, offset);
}
TNode<String> CodeStubAssembler::AllocateSlicedTwoByteString(
TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) {
return AllocateSlicedString(RootIndex::kSlicedStringMap, length, parent,
offset);
}
TNode<String> CodeStubAssembler::AllocateConsString(TNode<Uint32T> length,
TNode<String> left,
TNode<String> right) {
// Added string can be a cons string.
Comment("Allocating ConsString");
Node* left_instance_type = LoadInstanceType(left);
Node* right_instance_type = LoadInstanceType(right);
// Determine the resulting ConsString map to use depending on whether
// any of {left} or {right} has two byte encoding.
STATIC_ASSERT(kOneByteStringTag != 0);
STATIC_ASSERT(kTwoByteStringTag == 0);
Node* combined_instance_type =
Word32And(left_instance_type, right_instance_type);
TNode<Map> result_map = CAST(Select<Object>(
IsSetWord32(combined_instance_type, kStringEncodingMask),
[=] { return LoadRoot(RootIndex::kConsOneByteStringMap); },
[=] { return LoadRoot(RootIndex::kConsStringMap); }));
Node* result = AllocateInNewSpace(ConsString::kSize);
StoreMapNoWriteBarrier(result, result_map);
StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length,
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset,
Int32Constant(String::kEmptyHashField),
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, left);
StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, right);
return CAST(result);
}
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary(
int at_least_space_for) {
return AllocateNameDictionary(IntPtrConstant(at_least_space_for));
}
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary(
TNode<IntPtrT> at_least_space_for) {
CSA_ASSERT(this, UintPtrLessThanOrEqual(
at_least_space_for,
IntPtrConstant(NameDictionary::kMaxCapacity)));
TNode<IntPtrT> capacity = HashTableComputeCapacity(at_least_space_for);
return AllocateNameDictionaryWithCapacity(capacity);
}
TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionaryWithCapacity(
TNode<IntPtrT> capacity) {
CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
CSA_ASSERT(this, IntPtrGreaterThan(capacity, IntPtrConstant(0)));
TNode<IntPtrT> length = EntryToIndex<NameDictionary>(capacity);
TNode<IntPtrT> store_size = IntPtrAdd(
TimesTaggedSize(length), IntPtrConstant(NameDictionary::kHeaderSize));
TNode<NameDictionary> result =
UncheckedCast<NameDictionary>(AllocateInNewSpace(store_size));
Comment("Initialize NameDictionary");
// Initialize FixedArray fields.
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kNameDictionaryMap));
StoreMapNoWriteBarrier(result, RootIndex::kNameDictionaryMap);
StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
SmiFromIntPtr(length));
// Initialized HashTable fields.
TNode<Smi> zero = SmiConstant(0);
StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero,
SKIP_WRITE_BARRIER);
StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex,
zero, SKIP_WRITE_BARRIER);
StoreFixedArrayElement(result, NameDictionary::kCapacityIndex,
SmiTag(capacity), SKIP_WRITE_BARRIER);
// Initialize Dictionary fields.
TNode<HeapObject> filler = UndefinedConstant();
StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex,
SmiConstant(PropertyDetails::kInitialIndex),
SKIP_WRITE_BARRIER);
StoreFixedArrayElement(result, NameDictionary::kObjectHashIndex,
SmiConstant(PropertyArray::kNoHashSentinel),
SKIP_WRITE_BARRIER);
// Initialize NameDictionary elements.
TNode<WordT> result_word = BitcastTaggedToWord(result);
TNode<WordT> start_address = IntPtrAdd(
result_word, IntPtrConstant(NameDictionary::OffsetOfElementAt(
NameDictionary::kElementsStartIndex) -
kHeapObjectTag));
TNode<WordT> end_address = IntPtrAdd(
result_word, IntPtrSub(store_size, IntPtrConstant(kHeapObjectTag)));
StoreFieldsNoWriteBarrier(start_address, end_address, filler);
return result;
}
TNode<NameDictionary> CodeStubAssembler::CopyNameDictionary(
TNode<NameDictionary> dictionary, Label* large_object_fallback) {
Comment("Copy boilerplate property dict");
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NameDictionary>(dictionary));
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(capacity, IntPtrConstant(0)));
GotoIf(UintPtrGreaterThan(
capacity, IntPtrConstant(NameDictionary::kMaxRegularCapacity)),
large_object_fallback);
TNode<NameDictionary> properties =
AllocateNameDictionaryWithCapacity(capacity);
TNode<IntPtrT> length = SmiUntag(LoadFixedArrayBaseLength(dictionary));
CopyFixedArrayElements(PACKED_ELEMENTS, dictionary, properties, length,
SKIP_WRITE_BARRIER, INTPTR_PARAMETERS);
return properties;
}
template <typename CollectionType>
Node* CodeStubAssembler::AllocateOrderedHashTable() {
static const int kCapacity = CollectionType::kMinCapacity;
static const int kBucketCount = kCapacity / CollectionType::kLoadFactor;
static const int kDataTableLength = kCapacity * CollectionType::kEntrySize;
static const int kFixedArrayLength =
CollectionType::HashTableStartIndex() + kBucketCount + kDataTableLength;
static const int kDataTableStartIndex =
CollectionType::HashTableStartIndex() + kBucketCount;
STATIC_ASSERT(base::bits::IsPowerOfTwo(kCapacity));
STATIC_ASSERT(kCapacity <= CollectionType::MaxCapacity());
// Allocate the table and add the proper map.
const ElementsKind elements_kind = HOLEY_ELEMENTS;
TNode<IntPtrT> length_intptr = IntPtrConstant(kFixedArrayLength);
TNode<Map> fixed_array_map =
CAST(LoadRoot(CollectionType::GetMapRootIndex()));
TNode<FixedArray> table =
CAST(AllocateFixedArray(elements_kind, length_intptr,
kAllowLargeObjectAllocation, fixed_array_map));
// Initialize the OrderedHashTable fields.
const WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER;
StoreFixedArrayElement(table, CollectionType::NumberOfElementsIndex(),
SmiConstant(0), barrier_mode);
StoreFixedArrayElement(table, CollectionType::NumberOfDeletedElementsIndex(),
SmiConstant(0), barrier_mode);
StoreFixedArrayElement(table, CollectionType::NumberOfBucketsIndex(),
SmiConstant(kBucketCount), barrier_mode);
// Fill the buckets with kNotFound.
TNode<Smi> not_found = SmiConstant(CollectionType::kNotFound);
STATIC_ASSERT(CollectionType::HashTableStartIndex() ==
CollectionType::NumberOfBucketsIndex() + 1);
STATIC_ASSERT((CollectionType::HashTableStartIndex() + kBucketCount) ==
kDataTableStartIndex);
for (int i = 0; i < kBucketCount; i++) {
StoreFixedArrayElement(table, CollectionType::HashTableStartIndex() + i,
not_found, barrier_mode);
}
// Fill the data table with undefined.
STATIC_ASSERT(kDataTableStartIndex + kDataTableLength == kFixedArrayLength);
for (int i = 0; i < kDataTableLength; i++) {
StoreFixedArrayElement(table, kDataTableStartIndex + i, UndefinedConstant(),
barrier_mode);
}
return table;
}
template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashMap>();
template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashSet>();
template <typename CollectionType>
TNode<CollectionType> CodeStubAssembler::AllocateSmallOrderedHashTable(
TNode<IntPtrT> capacity) {
CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
CSA_ASSERT(this, IntPtrLessThan(
capacity, IntPtrConstant(CollectionType::kMaxCapacity)));
TNode<IntPtrT> data_table_start_offset =
IntPtrConstant(CollectionType::DataTableStartOffset());
TNode<IntPtrT> data_table_size = IntPtrMul(
capacity, IntPtrConstant(CollectionType::kEntrySize * kTaggedSize));
TNode<Int32T> hash_table_size =
Int32Div(TruncateIntPtrToInt32(capacity),
Int32Constant(CollectionType::kLoadFactor));
TNode<IntPtrT> hash_table_start_offset =
IntPtrAdd(data_table_start_offset, data_table_size);
TNode<IntPtrT> hash_table_and_chain_table_size =
IntPtrAdd(ChangeInt32ToIntPtr(hash_table_size), capacity);
TNode<IntPtrT> total_size =
IntPtrAdd(hash_table_start_offset, hash_table_and_chain_table_size);
TNode<IntPtrT> total_size_word_aligned =
IntPtrAdd(total_size, IntPtrConstant(kTaggedSize - 1));
total_size_word_aligned = ChangeInt32ToIntPtr(
Int32Div(TruncateIntPtrToInt32(total_size_word_aligned),
Int32Constant(kTaggedSize)));
total_size_word_aligned =
UncheckedCast<IntPtrT>(TimesTaggedSize(total_size_word_aligned));
// Allocate the table and add the proper map.
TNode<Map> small_ordered_hash_map =
CAST(LoadRoot(CollectionType::GetMapRootIndex()));
TNode<Object> table_obj = AllocateInNewSpace(total_size_word_aligned);
StoreMapNoWriteBarrier(table_obj, small_ordered_hash_map);
TNode<CollectionType> table = UncheckedCast<CollectionType>(table_obj);
// Initialize the SmallOrderedHashTable fields.
StoreObjectByteNoWriteBarrier(
table, CollectionType::NumberOfBucketsOffset(),
Word32And(Int32Constant(0xFF), hash_table_size));
StoreObjectByteNoWriteBarrier(table, CollectionType::NumberOfElementsOffset(),
Int32Constant(0));
StoreObjectByteNoWriteBarrier(
table, CollectionType::NumberOfDeletedElementsOffset(), Int32Constant(0));
TNode<IntPtrT> table_address =
IntPtrSub(BitcastTaggedToWord(table), IntPtrConstant(kHeapObjectTag));
TNode<IntPtrT> hash_table_start_address =
IntPtrAdd(table_address, hash_table_start_offset);
// Initialize the HashTable part.
Node* memset = ExternalConstant(ExternalReference::libc_memset_function());
CallCFunction(
memset, MachineType::AnyTagged(),
std::make_pair(MachineType::Pointer(), hash_table_start_address),
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0xFF)),
std::make_pair(MachineType::UintPtr(), hash_table_and_chain_table_size));
// Initialize the DataTable part.
TNode<HeapObject> filler = TheHoleConstant();
TNode<WordT> data_table_start_address =
IntPtrAdd(table_address, data_table_start_offset);
TNode<WordT> data_table_end_address =
IntPtrAdd(data_table_start_address, data_table_size);
StoreFieldsNoWriteBarrier(data_table_start_address, data_table_end_address,
filler);
return table;
}
template V8_EXPORT_PRIVATE TNode<SmallOrderedHashMap>
CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
TNode<IntPtrT> capacity);
template V8_EXPORT_PRIVATE TNode<SmallOrderedHashSet>
CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
TNode<IntPtrT> capacity);
template <typename CollectionType>
void CodeStubAssembler::FindOrderedHashTableEntry(
Node* table, Node* hash,
const std::function<void(Node*, Label*, Label*)>& key_compare,
Variable* entry_start_position, Label* entry_found, Label* not_found) {
// Get the index of the bucket.
Node* const number_of_buckets = SmiUntag(CAST(UnsafeLoadFixedArrayElement(
CAST(table), CollectionType::NumberOfBucketsIndex())));
Node* const bucket =
WordAnd(hash, IntPtrSub(number_of_buckets, IntPtrConstant(1)));
Node* const first_entry = SmiUntag(CAST(UnsafeLoadFixedArrayElement(
CAST(table), bucket,
CollectionType::HashTableStartIndex() * kTaggedSize)));
// Walk the bucket chain.
Node* entry_start;
Label if_key_found(this);
{
VARIABLE(var_entry, MachineType::PointerRepresentation(), first_entry);
Label loop(this, {&var_entry, entry_start_position}),
continue_next_entry(this);
Goto(&loop);
BIND(&loop);
// If the entry index is the not-found sentinel, we are done.
GotoIf(
WordEqual(var_entry.value(), IntPtrConstant(CollectionType::kNotFound)),
not_found);
// Make sure the entry index is within range.
CSA_ASSERT(
this,
UintPtrLessThan(
var_entry.value(),
SmiUntag(SmiAdd(
CAST(UnsafeLoadFixedArrayElement(
CAST(table), CollectionType::NumberOfElementsIndex())),
CAST(UnsafeLoadFixedArrayElement(
CAST(table),
CollectionType::NumberOfDeletedElementsIndex()))))));
// Compute the index of the entry relative to kHashTableStartIndex.
entry_start =
IntPtrAdd(IntPtrMul(var_entry.value(),
IntPtrConstant(CollectionType::kEntrySize)),
number_of_buckets);
// Load the key from the entry.
Node* const candidate_key = UnsafeLoadFixedArrayElement(
CAST(table), entry_start,
CollectionType::HashTableStartIndex() * kTaggedSize);
key_compare(candidate_key, &if_key_found, &continue_next_entry);
BIND(&continue_next_entry);
// Load the index of the next entry in the bucket chain.
var_entry.Bind(SmiUntag(CAST(UnsafeLoadFixedArrayElement(
CAST(table), entry_start,
(CollectionType::HashTableStartIndex() + CollectionType::kChainOffset) *
kTaggedSize))));
Goto(&loop);
}
BIND(&if_key_found);
entry_start_position->Bind(entry_start);
Goto(entry_found);
}
template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashMap>(
Node* table, Node* hash,
const std::function<void(Node*, Label*, Label*)>& key_compare,
Variable* entry_start_position, Label* entry_found, Label* not_found);
template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashSet>(
Node* table, Node* hash,
const std::function<void(Node*, Label*, Label*)>& key_compare,
Variable* entry_start_position, Label* entry_found, Label* not_found);
Node* CodeStubAssembler::AllocateStruct(Node* map, AllocationFlags flags) {
Comment("AllocateStruct");
CSA_ASSERT(this, IsMap(map));
TNode<IntPtrT> size = TimesTaggedSize(LoadMapInstanceSizeInWords(map));
TNode<Object> object = Allocate(size, flags);
StoreMapNoWriteBarrier(object, map);
InitializeStructBody(object, map, size, Struct::kHeaderSize);
return object;
}
void CodeStubAssembler::InitializeStructBody(Node* object, Node* map,
Node* size, int start_offset) {
CSA_SLOW_ASSERT(this, IsMap(map));
Comment("InitializeStructBody");
Node* filler = UndefinedConstant();
// Calculate the untagged field addresses.
object = BitcastTaggedToWord(object);
Node* start_address =
IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag));
Node* end_address =
IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag));
StoreFieldsNoWriteBarrier(start_address, end_address, filler);
}
Node* CodeStubAssembler::AllocateJSObjectFromMap(
Node* map, Node* properties, Node* elements, AllocationFlags flags,
SlackTrackingMode slack_tracking_mode) {
CSA_ASSERT(this, IsMap(map));
CSA_ASSERT(this, Word32BinaryNot(IsJSFunctionMap(map)));
CSA_ASSERT(this, Word32BinaryNot(InstanceTypeEqual(LoadMapInstanceType(map),
JS_GLOBAL_OBJECT_TYPE)));
TNode<IntPtrT> instance_size =
TimesTaggedSize(LoadMapInstanceSizeInWords(map));
TNode<Object> object = AllocateInNewSpace(instance_size, flags);
StoreMapNoWriteBarrier(object, map);
InitializeJSObjectFromMap(object, map, instance_size, properties, elements,
slack_tracking_mode);
return object;
}
void CodeStubAssembler::InitializeJSObjectFromMap(
Node* object, Node* map, Node* instance_size, Node* properties,
Node* elements, SlackTrackingMode slack_tracking_mode) {
CSA_SLOW_ASSERT(this, IsMap(map));
// This helper assumes that the object is in new-space, as guarded by the
// check in AllocatedJSObjectFromMap.
if (properties == nullptr) {
CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map))));
StoreObjectFieldRoot(object, JSObject::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
} else {
CSA_ASSERT(this, Word32Or(Word32Or(IsPropertyArray(properties),
IsNameDictionary(properties)),
IsEmptyFixedArray(properties)));
StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOrHashOffset,
properties);
}
if (elements == nullptr) {
StoreObjectFieldRoot(object, JSObject::kElementsOffset,
RootIndex::kEmptyFixedArray);
} else {
CSA_ASSERT(this, IsFixedArray(elements));
StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements);
}
if (slack_tracking_mode == kNoSlackTracking) {
InitializeJSObjectBodyNoSlackTracking(object, map, instance_size);
} else {
DCHECK_EQ(slack_tracking_mode, kWithSlackTracking);
InitializeJSObjectBodyWithSlackTracking(object, map, instance_size);
}
}
void CodeStubAssembler::InitializeJSObjectBodyNoSlackTracking(
Node* object, Node* map, Node* instance_size, int start_offset) {
STATIC_ASSERT(Map::kNoSlackTracking == 0);
CSA_ASSERT(
this, IsClearWord32<Map::ConstructionCounterBits>(LoadMapBitField3(map)));
InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), instance_size,
RootIndex::kUndefinedValue);
}
void CodeStubAssembler::InitializeJSObjectBodyWithSlackTracking(
Node* object, Node* map, Node* instance_size) {
CSA_SLOW_ASSERT(this, IsMap(map));
Comment("InitializeJSObjectBodyNoSlackTracking");
// Perform in-object slack tracking if requested.
int start_offset = JSObject::kHeaderSize;
Node* bit_field3 = LoadMapBitField3(map);
Label end(this), slack_tracking(this), complete(this, Label::kDeferred);
STATIC_ASSERT(Map::kNoSlackTracking == 0);
GotoIf(IsSetWord32<Map::ConstructionCounterBits>(bit_field3),
&slack_tracking);
Comment("No slack tracking");
InitializeJSObjectBodyNoSlackTracking(object, map, instance_size);
Goto(&end);
BIND(&slack_tracking);
{
Comment("Decrease construction counter");
// Slack tracking is only done on initial maps.
CSA_ASSERT(this, IsUndefined(LoadMapBackPointer(map)));
STATIC_ASSERT(Map::ConstructionCounterBits::kNext == 32);
Node* new_bit_field3 = Int32Sub(
bit_field3, Int32Constant(1 << Map::ConstructionCounterBits::kShift));
StoreObjectFieldNoWriteBarrier(map, Map::kBitField3Offset, new_bit_field3,
MachineRepresentation::kWord32);
STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
// The object still has in-object slack therefore the |unsed_or_unused|
// field contain the "used" value.
Node* used_size = TimesTaggedSize(ChangeUint32ToWord(
LoadObjectField(map, Map::kUsedOrUnusedInstanceSizeInWordsOffset,
MachineType::Uint8())));
Comment("iInitialize filler fields");
InitializeFieldsWithRoot(object, used_size, instance_size,
RootIndex::kOnePointerFillerMap);
Comment("Initialize undefined fields");
InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), used_size,
RootIndex::kUndefinedValue);
STATIC_ASSERT(Map::kNoSlackTracking == 0);
GotoIf(IsClearWord32<Map::ConstructionCounterBits>(new_bit_field3),
&complete);
Goto(&end);
}
// Finalize the instance size.
BIND(&complete);
{
// ComplextInobjectSlackTracking doesn't allocate and thus doesn't need a
// context.
CallRuntime(Runtime::kCompleteInobjectSlackTrackingForMap,
NoContextConstant(), map);
Goto(&end);
}
BIND(&end);
}
void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address,
Node* end_address,
Node* value) {
Comment("StoreFieldsNoWriteBarrier");
CSA_ASSERT(this, WordIsAligned(start_address, kTaggedSize));
CSA_ASSERT(this, WordIsAligned(end_address, kTaggedSize));
BuildFastLoop(
start_address, end_address,
[this, value](Node* current) {
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged, current,
value);
},
kTaggedSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
}
TNode<BoolT> CodeStubAssembler::IsValidFastJSArrayCapacity(
Node* capacity, ParameterMode capacity_mode) {
return UncheckedCast<BoolT>(
UintPtrLessThanOrEqual(ParameterToIntPtr(capacity, capacity_mode),
IntPtrConstant(JSArray::kMaxFastArrayLength)));
}
TNode<JSArray> CodeStubAssembler::AllocateJSArray(
TNode<Map> array_map, TNode<FixedArrayBase> elements, TNode<Smi> length,
Node* allocation_site) {
Comment("begin allocation of JSArray passing in elements");
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
int base_size = JSArray::kSize;
if (allocation_site != nullptr) {
base_size += AllocationMemento::kSize;
}
TNode<IntPtrT> size = IntPtrConstant(base_size);
TNode<JSArray> result =
AllocateUninitializedJSArray(array_map, length, allocation_site, size);
StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, elements);
return result;
}
std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
CodeStubAssembler::AllocateUninitializedJSArrayWithElements(
ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
Node* allocation_site, Node* capacity, ParameterMode capacity_mode,
AllocationFlags allocation_flags) {
Comment("begin allocation of JSArray with elements");
CHECK_EQ(allocation_flags & ~kAllowLargeObjectAllocation, 0);
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
TVARIABLE(JSArray, array);
TVARIABLE(FixedArrayBase, elements);
Label out(this), empty(this), nonempty(this);
int capacity_int;
if (TryGetIntPtrOrSmiConstantValue(capacity, &capacity_int, capacity_mode)) {
if (capacity_int == 0) {
TNode<FixedArrayBase> empty_array = EmptyFixedArrayConstant();
array = AllocateJSArray(array_map, empty_array, length, allocation_site);
return {array.value(), empty_array};
} else {
Goto(&nonempty);
}
} else {
Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)),
&empty, &nonempty);
BIND(&empty);
{
TNode<FixedArrayBase> empty_array = EmptyFixedArrayConstant();
array = AllocateJSArray(array_map, empty_array, length, allocation_site);
elements = empty_array;
Goto(&out);
}
}
BIND(&nonempty);
{
int base_size = JSArray::kSize;
if (allocation_site != nullptr) base_size += AllocationMemento::kSize;
const int elements_offset = base_size;
// Compute space for elements
base_size += FixedArray::kHeaderSize;
TNode<IntPtrT> size =
ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size);
// For very large arrays in which the requested allocation exceeds the
// maximal size of a regular heap object, we cannot use the allocation
// folding trick. Instead, we first allocate the elements in large object
// space, and then allocate the JSArray (and possibly the allocation
// memento) in new space.
if (allocation_flags & kAllowLargeObjectAllocation) {
Label next(this);
GotoIf(IsRegularHeapObjectSize(size), &next);
CSA_CHECK(this, IsValidFastJSArrayCapacity(capacity, capacity_mode));
// Allocate and initialize the elements first. Full initialization is
// needed because the upcoming JSArray allocation could trigger GC.
elements =
AllocateFixedArray(kind, capacity, capacity_mode, allocation_flags);
if (IsDoubleElementsKind(kind)) {
FillFixedDoubleArrayWithZero(
CAST(elements.value()), ParameterToIntPtr(capacity, capacity_mode));
} else {
FillFixedArrayWithSmiZero(CAST(elements.value()),
ParameterToIntPtr(capacity, capacity_mode));
}
// The JSArray and possibly allocation memento next. Note that
// allocation_flags are *not* passed on here and the resulting JSArray
// will always be in new space.
array =
AllocateJSArray(array_map, elements.value(), length, allocation_site);
Goto(&out);
BIND(&next);
}
// Fold all objects into a single new space allocation.
array =
AllocateUninitializedJSArray(array_map, length, allocation_site, size);
elements = UncheckedCast<FixedArrayBase>(
InnerAllocate(array.value(), elements_offset));
StoreObjectFieldNoWriteBarrier(array.value(), JSObject::kElementsOffset,
elements.value());
// Setup elements object.
STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kTaggedSize);
RootIndex elements_map_index = IsDoubleElementsKind(kind)
? RootIndex::kFixedDoubleArrayMap
: RootIndex::kFixedArrayMap;
DCHECK(RootsTable::IsImmortalImmovable(elements_map_index));
StoreMapNoWriteBarrier(elements.value(), elements_map_index);
TNode<Smi> capacity_smi = ParameterToTagged(capacity, capacity_mode);
CSA_ASSERT(this, SmiGreaterThan(capacity_smi, SmiConstant(0)));
StoreObjectFieldNoWriteBarrier(elements.value(), FixedArray::kLengthOffset,
capacity_smi);
Goto(&out);
}
BIND(&out);
return {array.value(), elements.value()};
}
TNode<JSArray> CodeStubAssembler::AllocateUninitializedJSArray(
TNode<Map> array_map, TNode<Smi> length, Node* allocation_site,
TNode<IntPtrT> size_in_bytes) {
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
// Allocate space for the JSArray and the elements FixedArray in one go.
TNode<Object> array = AllocateInNewSpace(size_in_bytes);
StoreMapNoWriteBarrier(array, array_map);
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
if (allocation_site != nullptr) {
InitializeAllocationMemento(array, IntPtrConstant(JSArray::kSize),
allocation_site);
}
return CAST(array);
}
TNode<JSArray> CodeStubAssembler::AllocateJSArray(
ElementsKind kind, TNode<Map> array_map, Node* capacity, TNode<Smi> length,
Node* allocation_site, ParameterMode capacity_mode,
AllocationFlags allocation_flags) {
CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length));
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, capacity_mode));
TNode<JSArray> array;
TNode<FixedArrayBase> elements;
std::tie(array, elements) = AllocateUninitializedJSArrayWithElements(
kind, array_map, length, allocation_site, capacity, capacity_mode,
allocation_flags);
Label out(this), nonempty(this);
Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)),
&out, &nonempty);
BIND(&nonempty);
{
FillFixedArrayWithValue(kind, elements,
IntPtrOrSmiConstant(0, capacity_mode), capacity,
RootIndex::kTheHoleValue, capacity_mode);
Goto(&out);
}
BIND(&out);
return array;
}
Node* CodeStubAssembler::ExtractFastJSArray(Node* context, Node* array,
Node* begin, Node* count,
ParameterMode mode, Node* capacity,
Node* allocation_site) {
Node* original_array_map = LoadMap(array);
Node* elements_kind = LoadMapElementsKind(original_array_map);
// Use the cannonical map for the Array's ElementsKind
Node* native_context = LoadNativeContext(context);
TNode<Map> array_map = LoadJSArrayElementsMap(elements_kind, native_context);
TNode<FixedArrayBase> new_elements = ExtractFixedArray(
LoadElements(array), begin, count, capacity,
ExtractFixedArrayFlag::kAllFixedArrays, mode, nullptr, elements_kind);
TNode<Object> result = AllocateJSArray(
array_map, new_elements, ParameterToTagged(count, mode), allocation_site);
return result;
}
Node* CodeStubAssembler::CloneFastJSArray(Node* context, Node* array,
ParameterMode mode,
Node* allocation_site,
HoleConversionMode convert_holes) {
// TODO(dhai): we should be able to assert IsFastJSArray(array) here, but this
// function is also used to copy boilerplates even when the no-elements
// protector is invalid. This function should be renamed to reflect its uses.
CSA_ASSERT(this, IsJSArray(array));
Node* length = LoadJSArrayLength(array);
Node* new_elements = nullptr;
VARIABLE(var_new_elements, MachineRepresentation::kTagged);
TVARIABLE(Int32T, var_elements_kind, LoadMapElementsKind(LoadMap(array)));
Label allocate_jsarray(this), holey_extract(this);
bool need_conversion =
convert_holes == HoleConversionMode::kConvertToUndefined;
if (need_conversion) {
// We need to take care of holes, if the array is of holey elements kind.
GotoIf(IsHoleyFastElementsKind(var_elements_kind.value()), &holey_extract);
}
// Simple extraction that preserves holes.
new_elements =
ExtractFixedArray(LoadElements(array), IntPtrOrSmiConstant(0, mode),
TaggedToParameter(length, mode), nullptr,
ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW, mode,
nullptr, var_elements_kind.value());
var_new_elements.Bind(new_elements);
Goto(&allocate_jsarray);
if (need_conversion) {
BIND(&holey_extract);
// Convert holes to undefined.
TVARIABLE(BoolT, var_holes_converted, Int32FalseConstant());
// Copy |array|'s elements store. The copy will be compatible with the
// original elements kind unless there are holes in the source. Any holes
// get converted to undefined, hence in that case the copy is compatible
// only with PACKED_ELEMENTS and HOLEY_ELEMENTS, and we will choose
// PACKED_ELEMENTS. Also, if we want to replace holes, we must not use
// ExtractFixedArrayFlag::kDontCopyCOW.
new_elements = ExtractFixedArray(
LoadElements(array), IntPtrOrSmiConstant(0, mode),
TaggedToParameter(length, mode), nullptr,
ExtractFixedArrayFlag::kAllFixedArrays, mode, &var_holes_converted);
var_new_elements.Bind(new_elements);
// If the array type didn't change, use the original elements kind.
GotoIfNot(var_holes_converted.value(), &allocate_jsarray);
// Otherwise use PACKED_ELEMENTS for the target's elements kind.
var_elements_kind = Int32Constant(PACKED_ELEMENTS);
Goto(&allocate_jsarray);
}
BIND(&allocate_jsarray);
// Use the cannonical map for the chosen elements kind.
Node* native_context = LoadNativeContext(context);
TNode<Map> array_map =
LoadJSArrayElementsMap(var_elements_kind.value(), native_context);
TNode<Object> result = AllocateJSArray(
array_map, CAST(var_new_elements.value()), CAST(length), allocation_site);
return result;
}
TNode<FixedArrayBase> CodeStubAssembler::AllocateFixedArray(
ElementsKind kind, Node* capacity, ParameterMode mode,
AllocationFlags flags, SloppyTNode<Map> fixed_array_map) {
Comment("AllocateFixedArray");
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity,
IntPtrOrSmiConstant(0, mode), mode));
const intptr_t kMaxLength = IsDoubleElementsKind(kind)
? FixedDoubleArray::kMaxLength
: FixedArray::kMaxLength;
intptr_t capacity_constant;
if (ToParameterConstant(capacity, &capacity_constant, mode)) {
CHECK_LE(capacity_constant, kMaxLength);
} else {
Label if_out_of_memory(this, Label::kDeferred), next(this);
Branch(IntPtrOrSmiGreaterThan(
capacity,
IntPtrOrSmiConstant(static_cast<int>(kMaxLength), mode), mode),
&if_out_of_memory, &next);
BIND(&if_out_of_memory);
CallRuntime(Runtime::kFatalProcessOutOfMemoryInvalidArrayLength,
NoContextConstant());
Unreachable();
BIND(&next);
}
TNode<IntPtrT> total_size = GetFixedArrayAllocationSize(capacity, kind, mode);
if (IsDoubleElementsKind(kind)) flags |= kDoubleAlignment;
// Allocate both array and elements object, and initialize the JSArray.
Node* array = Allocate(total_size, flags);
if (fixed_array_map != nullptr) {
// Conservatively only skip the write barrier if there are no allocation
// flags, this ensures that the object hasn't ended up in LOS. Note that the
// fixed array map is currently always immortal and technically wouldn't
// need the write barrier even in LOS, but it's better to not take chances
// in case this invariant changes later, since it's difficult to enforce
// locally here.
if (flags == CodeStubAssembler::kNone) {
StoreMapNoWriteBarrier(array, fixed_array_map);
} else {
StoreMap(array, fixed_array_map);
}
} else {
RootIndex map_index = IsDoubleElementsKind(kind)
? RootIndex::kFixedDoubleArrayMap
: RootIndex::kFixedArrayMap;
DCHECK(RootsTable::IsImmortalImmovable(map_index));
StoreMapNoWriteBarrier(array, map_index);
}
StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset,
ParameterToTagged(capacity, mode));
return UncheckedCast<FixedArray>(array);
}
TNode<FixedArray> CodeStubAssembler::ExtractToFixedArray(
Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
ElementsKind from_kind, AllocationFlags allocation_flags,
ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode,
HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted,
Node* source_elements_kind) {
DCHECK_NE(first, nullptr);
DCHECK_NE(count, nullptr);
DCHECK_NE(capacity, nullptr);
DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays);
CSA_ASSERT(this,
WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity));
CSA_ASSERT(this, WordEqual(source_map, LoadMap(source)));
VARIABLE(var_result, MachineRepresentation::kTagged);
VARIABLE(var_target_map, MachineRepresentation::kTagged, source_map);
Label done(this, {&var_result}), is_cow(this),
new_space_check(this, {&var_target_map});
// If source_map is either FixedDoubleArrayMap, or FixedCOWArrayMap but
// we can't just use COW, use FixedArrayMap as the target map. Otherwise, use
// source_map as the target map.
if (IsDoubleElementsKind(from_kind)) {
CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map));
var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap));
Goto(&new_space_check);
} else {
CSA_ASSERT(this, Word32BinaryNot(IsFixedDoubleArrayMap(source_map)));
Branch(WordEqual(var_target_map.value(),
LoadRoot(RootIndex::kFixedCOWArrayMap)),
&is_cow, &new_space_check);
BIND(&is_cow);
{
// |source| is a COW array, so we don't actually need to allocate a new
// array unless:
// 1) |extract_flags| forces us to, or
// 2) we're asked to extract only part of the |source| (|first| != 0).
if (extract_flags & ExtractFixedArrayFlag::kDontCopyCOW) {
Branch(WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), first),
&new_space_check, [&] {
var_result.Bind(source);
Goto(&done);
});
} else {
var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap));
Goto(&new_space_check);
}
}
}
BIND(&new_space_check);
{
bool handle_old_space = !FLAG_young_generation_large_objects;
if (handle_old_space) {
if (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) {
handle_old_space = false;
CSA_ASSERT(this, Word32BinaryNot(FixedArraySizeDoesntFitInNewSpace(
count, FixedArray::kHeaderSize, parameter_mode)));
} else {
int constant_count;
handle_old_space =
!TryGetIntPtrOrSmiConstantValue(count, &constant_count,
parameter_mode) ||
(constant_count >
FixedArray::GetMaxLengthForNewSpaceAllocation(PACKED_ELEMENTS));
}
}
Label old_space(this, Label::kDeferred);
if (handle_old_space) {
GotoIfFixedArraySizeDoesntFitInNewSpace(
capacity, &old_space, FixedArray::kHeaderSize, parameter_mode);
}
Comment("Copy FixedArray in young generation");
// We use PACKED_ELEMENTS to tell AllocateFixedArray and
// CopyFixedArrayElements that we want a FixedArray.
const ElementsKind to_kind = PACKED_ELEMENTS;
TNode<FixedArrayBase> to_elements =
AllocateFixedArray(to_kind, capacity, parameter_mode, allocation_flags,
var_target_map.value());
var_result.Bind(to_elements);
#ifdef DEBUG
TNode<IntPtrT> object_word = BitcastTaggedToWord(to_elements);
TNode<IntPtrT> object_page = PageFromAddress(object_word);
TNode<IntPtrT> page_flags =
UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page,
IntPtrConstant(Page::kFlagsOffset)));
CSA_ASSERT(
this,
WordNotEqual(
WordAnd(page_flags,
IntPtrConstant(MemoryChunk::kIsInYoungGenerationMask)),
IntPtrConstant(0)));
#endif
if (convert_holes == HoleConversionMode::kDontConvert &&
!IsDoubleElementsKind(from_kind)) {
// We can use CopyElements (memcpy) because we don't need to replace or
// convert any values. Since {to_elements} is in new-space, CopyElements
// will efficiently use memcpy.
FillFixedArrayWithValue(to_kind, to_elements, count, capacity,
RootIndex::kTheHoleValue, parameter_mode);
CopyElements(to_kind, to_elements, IntPtrConstant(0), CAST(source),
ParameterToIntPtr(first, parameter_mode),
ParameterToIntPtr(count, parameter_mode),
SKIP_WRITE_BARRIER);
} else {
CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first,
count, capacity, SKIP_WRITE_BARRIER,
parameter_mode, convert_holes,
var_holes_converted);
}
Goto(&done);
if (handle_old_space) {
BIND(&old_space);
{
Comment("Copy FixedArray in old generation");
Label copy_one_by_one(this);
// Try to use memcpy if we don't need to convert holes to undefined.
if (convert_holes == HoleConversionMode::kDontConvert &&
source_elements_kind != nullptr) {
// Only try memcpy if we're not copying object pointers.
GotoIfNot(IsFastSmiElementsKind(source_elements_kind),
&copy_one_by_one);
const ElementsKind to_smi_kind = PACKED_SMI_ELEMENTS;
to_elements =
AllocateFixedArray(to_smi_kind, capacity, parameter_mode,
allocation_flags, var_target_map.value());
var_result.Bind(to_elements);
FillFixedArrayWithValue(to_smi_kind, to_elements, count, capacity,
RootIndex::kTheHoleValue, parameter_mode);
// CopyElements will try to use memcpy if it's not conflicting with
// GC. Otherwise it will copy elements by elements, but skip write
// barriers (since we're copying smis to smis).
CopyElements(to_smi_kind, to_elements, IntPtrConstant(0),
CAST(source), ParameterToIntPtr(first, parameter_mode),
ParameterToIntPtr(count, parameter_mode),
SKIP_WRITE_BARRIER);
Goto(&done);
} else {
Goto(&copy_one_by_one);
}
BIND(&copy_one_by_one);
{
to_elements =
AllocateFixedArray(to_kind, capacity, parameter_mode,
allocation_flags, var_target_map.value());
var_result.Bind(to_elements);
CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first,
count, capacity, UPDATE_WRITE_BARRIER,
parameter_mode, convert_holes,
var_holes_converted);
Goto(&done);
}
}
}
}
BIND(&done);
return UncheckedCast<FixedArray>(var_result.value());
}
TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedDoubleArrayFillingHoles(
Node* from_array, Node* first, Node* count, Node* capacity,
Node* fixed_array_map, TVariable<BoolT>* var_holes_converted,
AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags,
ParameterMode mode) {
DCHECK_NE(first, nullptr);
DCHECK_NE(count, nullptr);
DCHECK_NE(capacity, nullptr);
DCHECK_NE(var_holes_converted, nullptr);
CSA_ASSERT(this, IsFixedDoubleArrayMap(fixed_array_map));
VARIABLE(var_result, MachineRepresentation::kTagged);
const ElementsKind kind = PACKED_DOUBLE_ELEMENTS;
Node* to_elements = AllocateFixedArray(kind, capacity, mode, allocation_flags,
fixed_array_map);
var_result.Bind(to_elements);
// We first try to copy the FixedDoubleArray to a new FixedDoubleArray.
// |var_holes_converted| is set to False preliminarily.
*var_holes_converted = Int32FalseConstant();
// The construction of the loop and the offsets for double elements is
// extracted from CopyFixedArrayElements.
CSA_SLOW_ASSERT(this, MatchesParameterMode(count, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, kind));
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
Comment("[ ExtractFixedDoubleArrayFillingHoles");
// This copy can trigger GC, so we pre-initialize the array with holes.
FillFixedArrayWithValue(kind, to_elements, IntPtrOrSmiConstant(0, mode),
capacity, RootIndex::kTheHoleValue, mode);
const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
Node* first_from_element_offset =
ElementOffsetFromIndex(first, kind, mode, 0);
Node* limit_offset = IntPtrAdd(first_from_element_offset,
IntPtrConstant(first_element_offset));
VARIABLE(var_from_offset, MachineType::PointerRepresentation(),
ElementOffsetFromIndex(IntPtrOrSmiAdd(first, count, mode), kind,
mode, first_element_offset));
Label decrement(this, {&var_from_offset}), done(this);
Node* to_array_adjusted =
IntPtrSub(BitcastTaggedToWord(to_elements), first_from_element_offset);
Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
BIND(&decrement);
{
Node* from_offset =
IntPtrSub(var_from_offset.value(), IntPtrConstant(kDoubleSize));
var_from_offset.Bind(from_offset);
Node* to_offset = from_offset;
Label if_hole(this);
Node* value = LoadElementAndPrepareForStore(
from_array, var_from_offset.value(), kind, kind, &if_hole);
StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted,
to_offset, value);
Node* compare = WordNotEqual(from_offset, limit_offset);
Branch(compare, &decrement, &done);
BIND(&if_hole);
// We are unlucky: there are holes! We need to restart the copy, this time
// we will copy the FixedDoubleArray to a new FixedArray with undefined
// replacing holes. We signal this to the caller through
// |var_holes_converted|.
*var_holes_converted = Int32TrueConstant();
to_elements =
ExtractToFixedArray(from_array, first, count, capacity, fixed_array_map,
kind, allocation_flags, extract_flags, mode,
HoleConversionMode::kConvertToUndefined);
var_result.Bind(to_elements);
Goto(&done);
}
BIND(&done);
Comment("] ExtractFixedDoubleArrayFillingHoles");
return UncheckedCast<FixedArrayBase>(var_result.value());
}
TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedArray(
Node* source, Node* first, Node* count, Node* capacity,
ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode,
TVariable<BoolT>* var_holes_converted, Node* source_runtime_kind) {
DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays ||
extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays);
// If we want to replace holes, ExtractFixedArrayFlag::kDontCopyCOW should not
// be used, because that disables the iteration which detects holes.
DCHECK_IMPLIES(var_holes_converted != nullptr,
!(extract_flags & ExtractFixedArrayFlag::kDontCopyCOW));
HoleConversionMode convert_holes =
var_holes_converted != nullptr ? HoleConversionMode::kConvertToUndefined
: HoleConversionMode::kDontConvert;
VARIABLE(var_result, MachineRepresentation::kTagged);
const AllocationFlags allocation_flags =
(extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly)
? CodeStubAssembler::kNone
: CodeStubAssembler::kAllowLargeObjectAllocation;
if (first == nullptr) {
first = IntPtrOrSmiConstant(0, parameter_mode);
}
if (count == nullptr) {
count = IntPtrOrSmiSub(
TaggedToParameter(LoadFixedArrayBaseLength(source), parameter_mode),
first, parameter_mode);
CSA_ASSERT(
this, IntPtrOrSmiLessThanOrEqual(IntPtrOrSmiConstant(0, parameter_mode),
count, parameter_mode));
}
if (capacity == nullptr) {
capacity = count;
} else {
CSA_ASSERT(this, Word32BinaryNot(IntPtrOrSmiGreaterThan(
IntPtrOrSmiAdd(first, count, parameter_mode), capacity,
parameter_mode)));
}
Label if_fixed_double_array(this), empty(this), done(this, {&var_result});
Node* source_map = LoadMap(source);
GotoIf(WordEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity), &empty);
if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) {
if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) {
GotoIf(IsFixedDoubleArrayMap(source_map), &if_fixed_double_array);
} else {
CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map));
}
}
if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) {
// Here we can only get |source| as FixedArray, never FixedDoubleArray.
// PACKED_ELEMENTS is used to signify that the source is a FixedArray.
Node* to_elements = ExtractToFixedArray(
source, first, count, capacity, source_map, PACKED_ELEMENTS,
allocation_flags, extract_flags, parameter_mode, convert_holes,
var_holes_converted, source_runtime_kind);
var_result.Bind(to_elements);
Goto(&done);
}
if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) {
BIND(&if_fixed_double_array);
Comment("Copy FixedDoubleArray");
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
Node* to_elements = ExtractFixedDoubleArrayFillingHoles(
source, first, count, capacity, source_map, var_holes_converted,
allocation_flags, extract_flags, parameter_mode);
var_result.Bind(to_elements);
} else {
// We use PACKED_DOUBLE_ELEMENTS to signify that both the source and
// the target are FixedDoubleArray. That it is PACKED or HOLEY does not
// matter.
ElementsKind kind = PACKED_DOUBLE_ELEMENTS;
TNode<FixedArrayBase> to_elements = AllocateFixedArray(
kind, capacity, parameter_mode, allocation_flags, source_map);
FillFixedArrayWithValue(kind, to_elements, count, capacity,
RootIndex::kTheHoleValue, parameter_mode);
CopyElements(kind, to_elements, IntPtrConstant(0), CAST(source),
ParameterToIntPtr(first, parameter_mode),
ParameterToIntPtr(count, parameter_mode));
var_result.Bind(to_elements);
}
Goto(&done);
}
BIND(&empty);
{
Comment("Copy empty array");
var_result.Bind(EmptyFixedArrayConstant());
Goto(&done);
}
BIND(&done);
return UncheckedCast<FixedArray>(var_result.value());
}
void CodeStubAssembler::InitializePropertyArrayLength(Node* property_array,
Node* length,
ParameterMode mode) {
CSA_SLOW_ASSERT(this, IsPropertyArray(property_array));
CSA_ASSERT(
this, IntPtrOrSmiGreaterThan(length, IntPtrOrSmiConstant(0, mode), mode));
CSA_ASSERT(
this,
IntPtrOrSmiLessThanOrEqual(
length, IntPtrOrSmiConstant(PropertyArray::LengthField::kMax, mode),
mode));
StoreObjectFieldNoWriteBarrier(
property_array, PropertyArray::kLengthAndHashOffset,
ParameterToTagged(length, mode), MachineRepresentation::kTaggedSigned);
}
Node* CodeStubAssembler::AllocatePropertyArray(Node* capacity_node,
ParameterMode mode,
AllocationFlags flags) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity_node, mode));
CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity_node,
IntPtrOrSmiConstant(0, mode), mode));
TNode<IntPtrT> total_size =
GetPropertyArrayAllocationSize(capacity_node, mode);
TNode<Object> array = Allocate(total_size, flags);
RootIndex map_index = RootIndex::kPropertyArrayMap;
DCHECK(RootsTable::IsImmortalImmovable(map_index));
StoreMapNoWriteBarrier(array, map_index);
InitializePropertyArrayLength(array, capacity_node, mode);
return array;
}
void CodeStubAssembler::FillPropertyArrayWithUndefined(Node* array,
Node* from_node,
Node* to_node,
ParameterMode mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode));
CSA_SLOW_ASSERT(this, IsPropertyArray(array));
ElementsKind kind = PACKED_ELEMENTS;
Node* value = UndefinedConstant();
BuildFastFixedArrayForEach(array, kind, from_node, to_node,
[this, value](Node* array, Node* offset) {
StoreNoWriteBarrier(
MachineRepresentation::kTagged, array,
offset, value);
},
mode);
}
void CodeStubAssembler::FillFixedArrayWithValue(ElementsKind kind, Node* array,
Node* from_node, Node* to_node,
RootIndex value_root_index,
ParameterMode mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKind(array, kind));
DCHECK(value_root_index == RootIndex::kTheHoleValue ||
value_root_index == RootIndex::kUndefinedValue);
// Determine the value to initialize the {array} based
// on the {value_root_index} and the elements {kind}.
Node* value = LoadRoot(value_root_index);
if (IsDoubleElementsKind(kind)) {
value = LoadHeapNumberValue(value);
}
BuildFastFixedArrayForEach(
array, kind, from_node, to_node,
[this, value, kind](Node* array, Node* offset) {
if (IsDoubleElementsKind(kind)) {
StoreNoWriteBarrier(MachineRepresentation::kFloat64, array, offset,
value);
} else {
StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset,
value);
}
},
mode);
}
void CodeStubAssembler::StoreFixedDoubleArrayHole(
TNode<FixedDoubleArray> array, Node* index, ParameterMode parameter_mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(index, parameter_mode));
Node* offset =
ElementOffsetFromIndex(index, PACKED_DOUBLE_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
CSA_ASSERT(this, IsOffsetInBounds(
offset, LoadAndUntagFixedArrayBaseLength(array),
FixedDoubleArray::kHeaderSize, PACKED_DOUBLE_ELEMENTS));
Node* double_hole =
Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64))
: ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32));
// TODO(danno): When we have a Float32/Float64 wrapper class that
// preserves double bits during manipulation, remove this code/change
// this to an indexed Float64 store.
if (Is64()) {
StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset,
double_hole);
} else {
StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset,
double_hole);
StoreNoWriteBarrier(MachineRepresentation::kWord32, array,
IntPtrAdd(offset, IntPtrConstant(kInt32Size)),
double_hole);
}
}
void CodeStubAssembler::FillFixedArrayWithSmiZero(TNode<FixedArray> array,
TNode<IntPtrT> length) {
CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array)));
TNode<IntPtrT> byte_length = TimesTaggedSize(length);
CSA_ASSERT(this, UintPtrLessThan(length, byte_length));
static const int32_t fa_base_data_offset =
FixedArray::kHeaderSize - kHeapObjectTag;
TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array),
IntPtrConstant(fa_base_data_offset));
// Call out to memset to perform initialization.
TNode<ExternalReference> memset =
ExternalConstant(ExternalReference::libc_memset_function());
STATIC_ASSERT(kSizetSize == kIntptrSize);
CallCFunction(memset, MachineType::Pointer(),
std::make_pair(MachineType::Pointer(), backing_store),
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0)),
std::make_pair(MachineType::UintPtr(), byte_length));
}
void CodeStubAssembler::FillFixedDoubleArrayWithZero(
TNode<FixedDoubleArray> array, TNode<IntPtrT> length) {
CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array)));
TNode<IntPtrT> byte_length = TimesDoubleSize(length);
CSA_ASSERT(this, UintPtrLessThan(length, byte_length));
static const int32_t fa_base_data_offset =
FixedDoubleArray::kHeaderSize - kHeapObjectTag;
TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array),
IntPtrConstant(fa_base_data_offset));
// Call out to memset to perform initialization.
TNode<ExternalReference> memset =
ExternalConstant(ExternalReference::libc_memset_function());
STATIC_ASSERT(kSizetSize == kIntptrSize);
CallCFunction(memset, MachineType::Pointer(),
std::make_pair(MachineType::Pointer(), backing_store),
std::make_pair(MachineType::IntPtr(), IntPtrConstant(0)),
std::make_pair(MachineType::UintPtr(), byte_length));
}
void CodeStubAssembler::JumpIfPointersFromHereAreInteresting(
TNode<Object> object, Label* interesting) {
Label finished(this);
TNode<IntPtrT> object_word = BitcastTaggedToWord(object);
TNode<IntPtrT> object_page = PageFromAddress(object_word);
TNode<IntPtrT> page_flags = UncheckedCast<IntPtrT>(Load(
MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset)));
Branch(
WordEqual(WordAnd(page_flags,
IntPtrConstant(
MemoryChunk::kPointersFromHereAreInterestingMask)),
IntPtrConstant(0)),
&finished, interesting);
BIND(&finished);
}
void CodeStubAssembler::MoveElements(ElementsKind kind,
TNode<FixedArrayBase> elements,
TNode<IntPtrT> dst_index,
TNode<IntPtrT> src_index,
TNode<IntPtrT> length) {
Label finished(this);
Label needs_barrier(this);
const bool needs_barrier_check = !IsDoubleElementsKind(kind);
DCHECK(IsFastElementsKind(kind));
CSA_ASSERT(this, IsFixedArrayWithKind(elements, kind));
CSA_ASSERT(this,
IntPtrLessThanOrEqual(IntPtrAdd(dst_index, length),
LoadAndUntagFixedArrayBaseLength(elements)));
CSA_ASSERT(this,
IntPtrLessThanOrEqual(IntPtrAdd(src_index, length),
LoadAndUntagFixedArrayBaseLength(elements)));
// The write barrier can be ignored if {dst_elements} is in new space, or if
// the elements pointer is FixedDoubleArray.
if (needs_barrier_check) {
JumpIfPointersFromHereAreInteresting(elements, &needs_barrier);
}
const TNode<IntPtrT> source_byte_length =
IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind)));
static const int32_t fa_base_data_offset =
FixedArrayBase::kHeaderSize - kHeapObjectTag;
TNode<IntPtrT> elements_intptr = BitcastTaggedToWord(elements);
TNode<IntPtrT> target_data_ptr =
IntPtrAdd(elements_intptr,
ElementOffsetFromIndex(dst_index, kind, INTPTR_PARAMETERS,
fa_base_data_offset));
TNode<IntPtrT> source_data_ptr =
IntPtrAdd(elements_intptr,
ElementOffsetFromIndex(src_index, kind, INTPTR_PARAMETERS,
fa_base_data_offset));
TNode<ExternalReference> memmove =
ExternalConstant(ExternalReference::libc_memmove_function());
CallCFunction(memmove, MachineType::Pointer(),
std::make_pair(MachineType::Pointer(), target_data_ptr),
std::make_pair(MachineType::Pointer(), source_data_ptr),
std::make_pair(MachineType::UintPtr(), source_byte_length));
if (needs_barrier_check) {
Goto(&finished);
BIND(&needs_barrier);
{
const TNode<IntPtrT> begin = src_index;
const TNode<IntPtrT> end = IntPtrAdd(begin, length);
// If dst_index is less than src_index, then walk forward.
const TNode<IntPtrT> delta =
IntPtrMul(IntPtrSub(dst_index, begin),
IntPtrConstant(ElementsKindToByteSize(kind)));
auto loop_body = [&](Node* array, Node* offset) {
Node* const element = Load(MachineType::AnyTagged(), array, offset);
Node* const delta_offset = IntPtrAdd(offset, delta);
Store(array, delta_offset, element);
};
Label iterate_forward(this);
Label iterate_backward(this);
Branch(IntPtrLessThan(delta, IntPtrConstant(0)), &iterate_forward,
&iterate_backward);
BIND(&iterate_forward);
{
// Make a loop for the stores.
BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body,
INTPTR_PARAMETERS,
ForEachDirection::kForward);
Goto(&finished);
}
BIND(&iterate_backward);
{
BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body,
INTPTR_PARAMETERS,
ForEachDirection::kReverse);
Goto(&finished);
}
}
BIND(&finished);
}
}
void CodeStubAssembler::CopyElements(ElementsKind kind,
TNode<FixedArrayBase> dst_elements,
TNode<IntPtrT> dst_index,
TNode<FixedArrayBase> src_elements,
TNode<IntPtrT> src_index,
TNode<IntPtrT> length,
WriteBarrierMode write_barrier) {
Label finished(this);
Label needs_barrier(this);
const bool needs_barrier_check = !IsDoubleElementsKind(kind);
DCHECK(IsFastElementsKind(kind));
CSA_ASSERT(this, IsFixedArrayWithKind(dst_elements, kind));
CSA_ASSERT(this, IsFixedArrayWithKind(src_elements, kind));
CSA_ASSERT(this, IntPtrLessThanOrEqual(
IntPtrAdd(dst_index, length),
LoadAndUntagFixedArrayBaseLength(dst_elements)));
CSA_ASSERT(this, IntPtrLessThanOrEqual(
IntPtrAdd(src_index, length),
LoadAndUntagFixedArrayBaseLength(src_elements)));
CSA_ASSERT(this, Word32Or(WordNotEqual(dst_elements, src_elements),
WordEqual(length, IntPtrConstant(0))));
// The write barrier can be ignored if {dst_elements} is in new space, or if
// the elements pointer is FixedDoubleArray.
if (needs_barrier_check) {
JumpIfPointersFromHereAreInteresting(dst_elements, &needs_barrier);
}
TNode<IntPtrT> source_byte_length =
IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind)));
static const int32_t fa_base_data_offset =
FixedArrayBase::kHeaderSize - kHeapObjectTag;
TNode<IntPtrT> src_offset_start = ElementOffsetFromIndex(
src_index, kind, INTPTR_PARAMETERS, fa_base_data_offset);
TNode<IntPtrT> dst_offset_start = ElementOffsetFromIndex(
dst_index, kind, INTPTR_PARAMETERS, fa_base_data_offset);
TNode<IntPtrT> src_elements_intptr = BitcastTaggedToWord(src_elements);
TNode<IntPtrT> source_data_ptr =
IntPtrAdd(src_elements_intptr, src_offset_start);
TNode<IntPtrT> dst_elements_intptr = BitcastTaggedToWord(dst_elements);
TNode<IntPtrT> dst_data_ptr =
IntPtrAdd(dst_elements_intptr, dst_offset_start);
TNode<ExternalReference> memcpy =
ExternalConstant(ExternalReference::libc_memcpy_function());
CallCFunction(memcpy, MachineType::Pointer(),
std::make_pair(MachineType::Pointer(), dst_data_ptr),
std::make_pair(MachineType::Pointer(), source_data_ptr),
std::make_pair(MachineType::UintPtr(), source_byte_length));
if (needs_barrier_check) {
Goto(&finished);
BIND(&needs_barrier);
{
const TNode<IntPtrT> begin = src_index;
const TNode<IntPtrT> end = IntPtrAdd(begin, length);
const TNode<IntPtrT> delta =
IntPtrMul(IntPtrSub(dst_index, src_index),
IntPtrConstant(ElementsKindToByteSize(kind)));
BuildFastFixedArrayForEach(
src_elements, kind, begin, end,
[&](Node* array, Node* offset) {
Node* const element = Load(MachineType::AnyTagged(), array, offset);
Node* const delta_offset = IntPtrAdd(offset, delta);
if (write_barrier == SKIP_WRITE_BARRIER) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, dst_elements,
delta_offset, element);
} else {
Store(dst_elements, delta_offset, element);
}
},
INTPTR_PARAMETERS, ForEachDirection::kForward);
Goto(&finished);
}
BIND(&finished);
}
}
void CodeStubAssembler::CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* first_element, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode, ParameterMode mode,
HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted) {
DCHECK_IMPLIES(var_holes_converted != nullptr,
convert_holes == HoleConversionMode::kConvertToUndefined);
CSA_SLOW_ASSERT(this, MatchesParameterMode(element_count, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, from_kind));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(to_array, to_kind));
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
Comment("[ CopyFixedArrayElements");
// Typed array elements are not supported.
DCHECK(!IsFixedTypedArrayElementsKind(from_kind));
DCHECK(!IsFixedTypedArrayElementsKind(to_kind));
Label done(this);
bool from_double_elements = IsDoubleElementsKind(from_kind);
bool to_double_elements = IsDoubleElementsKind(to_kind);
bool doubles_to_objects_conversion =
IsDoubleElementsKind(from_kind) && IsObjectElementsKind(to_kind);
bool needs_write_barrier =
doubles_to_objects_conversion ||
(barrier_mode == UPDATE_WRITE_BARRIER && IsObjectElementsKind(to_kind));
bool element_offset_matches =
!needs_write_barrier &&
(kTaggedSize == kDoubleSize ||
IsDoubleElementsKind(from_kind) == IsDoubleElementsKind(to_kind));
Node* double_hole =
Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64))
: ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32));
// If copying might trigger a GC, we pre-initialize the FixedArray such that
// it's always in a consistent state.
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
DCHECK(IsObjectElementsKind(to_kind));
// Use undefined for the part that we copy and holes for the rest.
// Later if we run into a hole in the source we can just skip the writing
// to the target and are still guaranteed that we get an undefined.
FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
element_count, RootIndex::kUndefinedValue, mode);
FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
RootIndex::kTheHoleValue, mode);
} else if (doubles_to_objects_conversion) {
// Pre-initialized the target with holes so later if we run into a hole in
// the source we can just skip the writing to the target.
FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
capacity, RootIndex::kTheHoleValue, mode);
} else if (element_count != capacity) {
FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
RootIndex::kTheHoleValue, mode);
}
Node* first_from_element_offset =
ElementOffsetFromIndex(first_element, from_kind, mode, 0);
Node* limit_offset = IntPtrAdd(first_from_element_offset,
IntPtrConstant(first_element_offset));
VARIABLE(
var_from_offset, MachineType::PointerRepresentation(),
ElementOffsetFromIndex(IntPtrOrSmiAdd(first_element, element_count, mode),
from_kind, mode, first_element_offset));
// This second variable is used only when the element sizes of source and
// destination arrays do not match.
VARIABLE(var_to_offset, MachineType::PointerRepresentation());
if (element_offset_matches) {
var_to_offset.Bind(var_from_offset.value());
} else {
var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode,
first_element_offset));
}
Variable* vars[] = {&var_from_offset, &var_to_offset, var_holes_converted};
int num_vars =
var_holes_converted != nullptr ? arraysize(vars) : arraysize(vars) - 1;
Label decrement(this, num_vars, vars);
Node* to_array_adjusted =
element_offset_matches
? IntPtrSub(BitcastTaggedToWord(to_array), first_from_element_offset)
: to_array;
Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
BIND(&decrement);
{
Node* from_offset = IntPtrSub(
var_from_offset.value(),
IntPtrConstant(from_double_elements ? kDoubleSize : kTaggedSize));
var_from_offset.Bind(from_offset);
Node* to_offset;
if (element_offset_matches) {
to_offset = from_offset;
} else {
to_offset = IntPtrSub(
var_to_offset.value(),
IntPtrConstant(to_double_elements ? kDoubleSize : kTaggedSize));
var_to_offset.Bind(to_offset);
}
Label next_iter(this), store_double_hole(this), signal_hole(this);
Label* if_hole;
if (convert_holes == HoleConversionMode::kConvertToUndefined) {
// The target elements array is already preinitialized with undefined
// so we only need to signal that a hole was found and continue the loop.
if_hole = &signal_hole;
} else if (doubles_to_objects_conversion) {
// The target elements array is already preinitialized with holes, so we
// can just proceed with the next iteration.
if_hole = &next_iter;
} else if (IsDoubleElementsKind(to_kind)) {
if_hole = &store_double_hole;
} else {
// In all the other cases don't check for holes and copy the data as is.
if_hole = nullptr;
}
Node* value = LoadElementAndPrepareForStore(
from_array, var_from_offset.value(), from_kind, to_kind, if_hole);
if (needs_write_barrier) {
CHECK_EQ(to_array, to_array_adjusted);
Store(to_array_adjusted, to_offset, value);
} else if (to_double_elements) {
StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted,
to_offset, value);
} else {
UnsafeStoreNoWriteBarrier(MachineRepresentation::kTagged,
to_array_adjusted, to_offset, value);
}
Goto(&next_iter);
if (if_hole == &store_double_hole) {
BIND(&store_double_hole);
// Don't use doubles to store the hole double, since manipulating the
// signaling NaN used for the hole in C++, e.g. with bit_cast, will
// change its value on ia32 (the x87 stack is used to return values
// and stores to the stack silently clear the signalling bit).
//
// TODO(danno): When we have a Float32/Float64 wrapper class that
// preserves double bits during manipulation, remove this code/change
// this to an indexed Float64 store.
if (Is64()) {
StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array_adjusted,
to_offset, double_hole);
} else {
StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted,
to_offset, double_hole);
StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted,
IntPtrAdd(to_offset, IntPtrConstant(kInt32Size)),
double_hole);
}
Goto(&next_iter);
} else if (if_hole == &signal_hole) {
// This case happens only when IsObjectElementsKind(to_kind).
BIND(&signal_hole);
if (var_holes_converted != nullptr) {
*var_holes_converted = Int32TrueConstant();
}
Goto(&next_iter);
}
BIND(&next_iter);
Node* compare = WordNotEqual(from_offset, limit_offset);
Branch(compare, &decrement, &done);
}
BIND(&done);
Comment("] CopyFixedArrayElements");
}
TNode<FixedArray> CodeStubAssembler::HeapObjectToFixedArray(
TNode<HeapObject> base, Label* cast_fail) {
Label fixed_array(this);
TNode<Map> map = LoadMap(base);
GotoIf(WordEqual(map, LoadRoot(RootIndex::kFixedArrayMap)), &fixed_array);
GotoIf(WordNotEqual(map, LoadRoot(RootIndex::kFixedCOWArrayMap)), cast_fail);
Goto(&fixed_array);
BIND(&fixed_array);
return UncheckedCast<FixedArray>(base);
}
void CodeStubAssembler::CopyPropertyArrayValues(Node* from_array,
Node* to_array,
Node* property_count,
WriteBarrierMode barrier_mode,
ParameterMode mode,
DestroySource destroy_source) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(property_count, mode));
CSA_SLOW_ASSERT(this, Word32Or(IsPropertyArray(from_array),
IsEmptyFixedArray(from_array)));
CSA_SLOW_ASSERT(this, IsPropertyArray(to_array));
Comment("[ CopyPropertyArrayValues");
bool needs_write_barrier = barrier_mode == UPDATE_WRITE_BARRIER;
if (destroy_source == DestroySource::kNo) {
// PropertyArray may contain MutableHeapNumbers, which will be cloned on the
// heap, requiring a write barrier.
needs_write_barrier = true;
}
Node* start = IntPtrOrSmiConstant(0, mode);
ElementsKind kind = PACKED_ELEMENTS;
BuildFastFixedArrayForEach(
from_array, kind, start, property_count,
[this, to_array, needs_write_barrier, destroy_source](Node* array,
Node* offset) {
Node* value = Load(MachineType::AnyTagged(), array, offset);
if (destroy_source == DestroySource::kNo) {
value = CloneIfMutablePrimitive(CAST(value));
}
if (needs_write_barrier) {
Store(to_array, offset, value);
} else {
StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, offset,
value);
}
},
mode);
#ifdef DEBUG
// Zap {from_array} if the copying above has made it invalid.
if (destroy_source == DestroySource::kYes) {
Label did_zap(this);
GotoIf(IsEmptyFixedArray(from_array), &did_zap);
FillPropertyArrayWithUndefined(from_array, start, property_count, mode);
Goto(&did_zap);
BIND(&did_zap);
}
#endif
Comment("] CopyPropertyArrayValues");
}
void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string,
TNode<IntPtrT> from_index,
TNode<IntPtrT> to_index,
TNode<IntPtrT> character_count,
String::Encoding from_encoding,
String::Encoding to_encoding) {
// Cannot assert IsString(from_string) and IsString(to_string) here because
// CSA::SubString can pass in faked sequential strings when handling external
// subject strings.
bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING;
bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING;
DCHECK_IMPLIES(to_one_byte, from_one_byte);
Comment("CopyStringCharacters ",
from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", " -> ",
to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING");
ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag;
Node* from_offset = ElementOffsetFromIndex(from_index, from_kind,
INTPTR_PARAMETERS, header_size);
Node* to_offset =
ElementOffsetFromIndex(to_index, to_kind, INTPTR_PARAMETERS, header_size);
Node* byte_count =
ElementOffsetFromIndex(character_count, from_kind, INTPTR_PARAMETERS);
Node* limit_offset = IntPtrAdd(from_offset, byte_count);
// Prepare the fast loop
MachineType type =
from_one_byte ? MachineType::Uint8() : MachineType::Uint16();
MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8
: MachineRepresentation::kWord16;
int from_increment = 1 << ElementsKindToShiftSize(from_kind);
int to_increment = 1 << ElementsKindToShiftSize(to_kind);
VARIABLE(current_to_offset, MachineType::PointerRepresentation(), to_offset);
VariableList vars({&current_to_offset}, zone());
int to_index_constant = 0, from_index_constant = 0;
bool index_same = (from_encoding == to_encoding) &&
(from_index == to_index ||
(ToInt32Constant(from_index, from_index_constant) &&
ToInt32Constant(to_index, to_index_constant) &&
from_index_constant == to_index_constant));
BuildFastLoop(vars, from_offset, limit_offset,
[this, from_string, to_string, &current_to_offset, to_increment,
type, rep, index_same](Node* offset) {
Node* value = Load(type, from_string, offset);
StoreNoWriteBarrier(
rep, to_string,
index_same ? offset : current_to_offset.value(), value);
if (!index_same) {
Increment(&current_to_offset, to_increment);
}
},
from_increment, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
}
Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array,
Node* offset,
ElementsKind from_kind,
ElementsKind to_kind,
Label* if_hole) {
CSA_ASSERT(this, IsFixedArrayWithKind(array, from_kind));
if (IsDoubleElementsKind(from_kind)) {
Node* value =
LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64());
if (!IsDoubleElementsKind(to_kind)) {
value = AllocateHeapNumberWithValue(value);
}
return value;
} else {
Node* value = Load(MachineType::AnyTagged(), array, offset);
if (if_hole) {
GotoIf(WordEqual(value, TheHoleConstant()), if_hole);
}
if (IsDoubleElementsKind(to_kind)) {
if (IsSmiElementsKind(from_kind)) {
value = SmiToFloat64(value);
} else {
value = LoadHeapNumberValue(value);
}
}
return value;
}
}
Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity,
ParameterMode mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(old_capacity, mode));
Node* half_old_capacity = WordOrSmiShr(old_capacity, 1, mode);
Node* new_capacity = IntPtrOrSmiAdd(half_old_capacity, old_capacity, mode);
Node* padding =
IntPtrOrSmiConstant(JSObject::kMinAddedElementsCapacity, mode);
return IntPtrOrSmiAdd(new_capacity, padding, mode);
}
Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
ElementsKind kind, Node* key,
Label* bailout) {
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind));
CSA_SLOW_ASSERT(this, TaggedIsSmi(key));
Node* capacity = LoadFixedArrayBaseLength(elements);
ParameterMode mode = OptimalParameterMode();
capacity = TaggedToParameter(capacity, mode);
key = TaggedToParameter(key, mode);
return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode,
bailout);
}
Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
ElementsKind kind, Node* key,
Node* capacity,
ParameterMode mode,
Label* bailout) {
Comment("TryGrowElementsCapacity");
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind));
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(key, mode));
// If the gap growth is too big, fall back to the runtime.
Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode);
Node* max_capacity = IntPtrOrSmiAdd(capacity, max_gap, mode);
GotoIf(UintPtrOrSmiGreaterThanOrEqual(key, max_capacity, mode), bailout);
// Calculate the capacity of the new backing store.
Node* new_capacity = CalculateNewElementsCapacity(
IntPtrOrSmiAdd(key, IntPtrOrSmiConstant(1, mode), mode), mode);
return GrowElementsCapacity(object, elements, kind, kind, capacity,
new_capacity, mode, bailout);
}
Node* CodeStubAssembler::GrowElementsCapacity(
Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind,
Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) {
Comment("[ GrowElementsCapacity");
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, from_kind));
CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(new_capacity, mode));
// If size of the allocation for the new capacity doesn't fit in a page
// that we can bump-pointer allocate from, fall back to the runtime.
int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind);
GotoIf(UintPtrOrSmiGreaterThanOrEqual(
new_capacity, IntPtrOrSmiConstant(max_size, mode), mode),
bailout);
// Allocate the new backing store.
Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode);
// Copy the elements from the old elements store to the new.
// The size-check above guarantees that the |new_elements| is allocated
// in new space so we can skip the write barrier.
CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity,
new_capacity, SKIP_WRITE_BARRIER, mode);
StoreObjectField(object, JSObject::kElementsOffset, new_elements);
Comment("] GrowElementsCapacity");
return new_elements;
}
void CodeStubAssembler::InitializeAllocationMemento(Node* base,
Node* base_allocation_size,
Node* allocation_site) {
Comment("[Initialize AllocationMemento");
TNode<Object> memento =
InnerAllocate(CAST(base), UncheckedCast<IntPtrT>(base_allocation_size));
StoreMapNoWriteBarrier(memento, RootIndex::kAllocationMementoMap);
StoreObjectFieldNoWriteBarrier(
memento, AllocationMemento::kAllocationSiteOffset, allocation_site);
if (FLAG_allocation_site_pretenuring) {
TNode<Int32T> count = UncheckedCast<Int32T>(LoadObjectField(
allocation_site, AllocationSite::kPretenureCreateCountOffset,
MachineType::Int32()));
TNode<Int32T> incremented_count = Int32Add(count, Int32Constant(1));
StoreObjectFieldNoWriteBarrier(
allocation_site, AllocationSite::kPretenureCreateCountOffset,
incremented_count, MachineRepresentation::kWord32);
}
Comment("]");
}
Node* CodeStubAssembler::TryTaggedToFloat64(Node* value,
Label* if_valueisnotnumber) {
Label out(this);
VARIABLE(var_result, MachineRepresentation::kFloat64);
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this), if_valueisnotsmi(this);
Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
BIND(&if_valueissmi);
{
// Convert the Smi {value}.
var_result.Bind(SmiToFloat64(value));
Goto(&out);
}
BIND(&if_valueisnotsmi);
{
// Check if {value} is a HeapNumber.
Label if_valueisheapnumber(this);
Branch(IsHeapNumber(value), &if_valueisheapnumber, if_valueisnotnumber);
BIND(&if_valueisheapnumber);
{
// Load the floating point value.
var_result.Bind(LoadHeapNumberValue(value));
Goto(&out);
}
}
BIND(&out);
return var_result.value();
}
Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
// We might need to loop once due to ToNumber conversion.
VARIABLE(var_value, MachineRepresentation::kTagged);
VARIABLE(var_result, MachineRepresentation::kFloat64);
Label loop(this, &var_value), done_loop(this, &var_result);
var_value.Bind(value);
Goto(&loop);
BIND(&loop);
{
Label if_valueisnotnumber(this, Label::kDeferred);
// Load the current {value}.
value = var_value.value();
// Convert {value} to Float64 if it is a number and convert it to a number
// otherwise.
Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber);
var_result.Bind(result);
Goto(&done_loop);
BIND(&if_valueisnotnumber);
{
// Convert the {value} to a Number first.
var_value.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, value));
Goto(&loop);
}
}
BIND(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
VARIABLE(var_result, MachineRepresentation::kWord32);
Label done(this);
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumber>(context, value,
&done, &var_result);
BIND(&done);
return var_result.value();
}
// Truncate {value} to word32 and jump to {if_number} if it is a Number,
// or find that it is a BigInt and jump to {if_bigint}.
void CodeStubAssembler::TaggedToWord32OrBigInt(Node* context, Node* value,
Label* if_number,
Variable* var_word32,
Label* if_bigint,
Variable* var_bigint) {
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>(
context, value, if_number, var_word32, if_bigint, var_bigint);
}
// Truncate {value} to word32 and jump to {if_number} if it is a Number,
// or find that it is a BigInt and jump to {if_bigint}. In either case,
// store the type feedback in {var_feedback}.
void CodeStubAssembler::TaggedToWord32OrBigIntWithFeedback(
Node* context, Node* value, Label* if_number, Variable* var_word32,
Label* if_bigint, Variable* var_bigint, Variable* var_feedback) {
TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>(
context, value, if_number, var_word32, if_bigint, var_bigint,
var_feedback);
}
template <Object::Conversion conversion>
void CodeStubAssembler::TaggedToWord32OrBigIntImpl(
Node* context, Node* value, Label* if_number, Variable* var_word32,
Label* if_bigint, Variable* var_bigint, Variable* var_feedback) {
DCHECK(var_word32->rep() == MachineRepresentation::kWord32);
DCHECK(var_bigint == nullptr ||
var_bigint->rep() == MachineRepresentation::kTagged);
DCHECK(var_feedback == nullptr ||
var_feedback->rep() == MachineRepresentation::kTaggedSigned);
// We might need to loop after conversion.
VARIABLE(var_value, MachineRepresentation::kTagged, value);
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNone);
Variable* loop_vars[] = {&var_value, var_feedback};
int num_vars =
var_feedback != nullptr ? arraysize(loop_vars) : arraysize(loop_vars) - 1;
Label loop(this, num_vars, loop_vars);
Goto(&loop);
BIND(&loop);
{
value = var_value.value();
Label not_smi(this), is_heap_number(this), is_oddball(this),
is_bigint(this);
GotoIf(TaggedIsNotSmi(value), &not_smi);
// {value} is a Smi.
var_word32->Bind(SmiToInt32(value));
CombineFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall);
Goto(if_number);
BIND(&not_smi);
Node* map = LoadMap(value);
GotoIf(IsHeapNumberMap(map), &is_heap_number);
Node* instance_type = LoadMapInstanceType(map);
if (conversion == Object::Conversion::kToNumeric) {
GotoIf(IsBigIntInstanceType(instance_type), &is_bigint);
}
// Not HeapNumber (or BigInt if conversion == kToNumeric).
{
if (var_feedback != nullptr) {
// We do not require an Or with earlier feedback here because once we
// convert the value to a Numeric, we cannot reach this path. We can
// only reach this path on the first pass when the feedback is kNone.
CSA_ASSERT(this, SmiEqual(CAST(var_feedback->value()),
SmiConstant(BinaryOperationFeedback::kNone)));
}
GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &is_oddball);
// Not an oddball either -> convert.
auto builtin = conversion == Object::Conversion::kToNumeric
? Builtins::kNonNumberToNumeric
: Builtins::kNonNumberToNumber;
var_value.Bind(CallBuiltin(builtin, context, value));
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny);
Goto(&loop);
BIND(&is_oddball);
var_value.Bind(LoadObjectField(value, Oddball::kToNumberOffset));
OverwriteFeedback(var_feedback,
BinaryOperationFeedback::kNumberOrOddball);
Goto(&loop);
}
BIND(&is_heap_number);
var_word32->Bind(TruncateHeapNumberValueToWord32(value));
CombineFeedback(var_feedback, BinaryOperationFeedback::kNumber);
Goto(if_number);
if (conversion == Object::Conversion::kToNumeric) {
BIND(&is_bigint);
var_bigint->Bind(value);
CombineFeedback(var_feedback, BinaryOperationFeedback::kBigInt);
Goto(if_bigint);
}
}
}
Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
Node* value = LoadHeapNumberValue(object);
return TruncateFloat64ToWord32(value);
}
void CodeStubAssembler::TryHeapNumberToSmi(TNode<HeapNumber> number,
TVariable<Smi>& var_result_smi,
Label* if_smi) {
TNode<Float64T> value = LoadHeapNumberValue(number);
TryFloat64ToSmi(value, var_result_smi, if_smi);
}
void CodeStubAssembler::TryFloat64ToSmi(TNode<Float64T> value,
TVariable<Smi>& var_result_smi,
Label* if_smi) {
TNode<Int32T> value32 = RoundFloat64ToInt32(value);
TNode<Float64T> value64 = ChangeInt32ToFloat64(value32);
Label if_int32(this), if_heap_number(this, Label::kDeferred);
GotoIfNot(Float64Equal(value, value64), &if_heap_number);
GotoIfNot(Word32Equal(value32, Int32Constant(0)), &if_int32);
Branch(Int32LessThan(UncheckedCast<Int32T>(Float64ExtractHighWord32(value)),
Int32Constant(0)),
&if_heap_number, &if_int32);
TVARIABLE(Number, var_result);
BIND(&if_int32);
{
if (SmiValuesAre32Bits()) {
var_result_smi = SmiTag(ChangeInt32ToIntPtr(value32));
} else {
DCHECK(SmiValuesAre31Bits());
TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value32, value32);
TNode<BoolT> overflow = Projection<1>(pair);
GotoIf(overflow, &if_heap_number);
var_result_smi =
BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Projection<0>(pair)));
}
Goto(if_smi);
}
BIND(&if_heap_number);
}
TNode<Number> CodeStubAssembler::ChangeFloat64ToTagged(
SloppyTNode<Float64T> value) {
Label if_smi(this), done(this);
TVARIABLE(Smi, var_smi_result);
TVARIABLE(Number, var_result);
TryFloat64ToSmi(value, var_smi_result, &if_smi);
var_result = AllocateHeapNumberWithValue(value);
Goto(&done);
BIND(&if_smi);
{
var_result = var_smi_result.value();
Goto(&done);
}
BIND(&done);
return var_result.value();
}
TNode<Number> CodeStubAssembler::ChangeInt32ToTagged(
SloppyTNode<Int32T> value) {
if (SmiValuesAre32Bits()) {
return SmiTag(ChangeInt32ToIntPtr(value));
}
DCHECK(SmiValuesAre31Bits());
TVARIABLE(Number, var_result);
TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value, value);
TNode<BoolT> overflow = Projection<1>(pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
if_join(this);
Branch(overflow, &if_overflow, &if_notoverflow);
BIND(&if_overflow);
{
TNode<Float64T> value64 = ChangeInt32ToFloat64(value);
TNode<HeapNumber> result = AllocateHeapNumberWithValue(value64);
var_result = result;
Goto(&if_join);
}
BIND(&if_notoverflow);
{
TNode<IntPtrT> almost_tagged_value =
ChangeInt32ToIntPtr(Projection<0>(pair));
TNode<Smi> result = BitcastWordToTaggedSigned(almost_tagged_value);
var_result = result;
Goto(&if_join);
}
BIND(&if_join);
return var_result.value();
}
TNode<Number> CodeStubAssembler::ChangeUint32ToTagged(
SloppyTNode<Uint32T> value) {
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
if_join(this);
TVARIABLE(Number, var_result);
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
Branch(Uint32LessThan(Uint32Constant(Smi::kMaxValue), value), &if_overflow,
&if_not_overflow);
BIND(&if_not_overflow);
{
// The {value} is definitely in valid Smi range.
var_result = SmiTag(Signed(ChangeUint32ToWord(value)));
}
Goto(&if_join);
BIND(&if_overflow);
{
TNode<Float64T> float64_value = ChangeUint32ToFloat64(value);
var_result = AllocateHeapNumberWithValue(float64_value);
}
Goto(&if_join);
BIND(&if_join);
return var_result.value();
}
TNode<Number> CodeStubAssembler::ChangeUintPtrToTagged(TNode<UintPtrT> value) {
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
if_join(this);
TVARIABLE(Number, var_result);
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
Branch(UintPtrLessThan(UintPtrConstant(Smi::kMaxValue), value), &if_overflow,
&if_not_overflow);
BIND(&if_not_overflow);
{
// The {value} is definitely in valid Smi range.
var_result = SmiTag(Signed(value));
}
Goto(&if_join);
BIND(&if_overflow);
{
TNode<Float64T> float64_value = ChangeUintPtrToFloat64(value);
var_result = AllocateHeapNumberWithValue(float64_value);
}
Goto(&if_join);
BIND(&if_join);
return var_result.value();
}
TNode<String> CodeStubAssembler::ToThisString(TNode<Context> context,
TNode<Object> value,
TNode<String> method_name) {
VARIABLE(var_value, MachineRepresentation::kTagged, value);
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
if_valueisstring(this);
Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
BIND(&if_valueisnotsmi);
{
// Load the instance type of the {value}.
Node* value_instance_type = LoadInstanceType(CAST(value));
// Check if the {value} is already String.
Label if_valueisnotstring(this, Label::kDeferred);
Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
&if_valueisnotstring);
BIND(&if_valueisnotstring);
{
// Check if the {value} is null.
Label if_valueisnullorundefined(this, Label::kDeferred);
GotoIf(IsNullOrUndefined(value), &if_valueisnullorundefined);
// Convert the {value} to a String.
var_value.Bind(CallBuiltin(Builtins::kToString, context, value));
Goto(&if_valueisstring);
BIND(&if_valueisnullorundefined);
{
// The {value} is either null or undefined.
ThrowTypeError(context, MessageTemplate::kCalledOnNullOrUndefined,
method_name);
}
}
}
BIND(&if_valueissmi);
{
// The {value} is a Smi, convert it to a String.
var_value.Bind(CallBuiltin(Builtins::kNumberToString, context, value));
Goto(&if_valueisstring);
}
BIND(&if_valueisstring);
return CAST(var_value.value());
}
TNode<Uint32T> CodeStubAssembler::ChangeNumberToUint32(TNode<Number> value) {
TVARIABLE(Uint32T, var_result);
Label if_smi(this), if_heapnumber(this, Label::kDeferred), done(this);
Branch(TaggedIsSmi(value), &if_smi, &if_heapnumber);
BIND(&if_smi);
{
var_result = Unsigned(SmiToInt32(CAST(value)));
Goto(&done);
}
BIND(&if_heapnumber);
{
var_result = ChangeFloat64ToUint32(LoadHeapNumberValue(CAST(value)));
Goto(&done);
}
BIND(&done);
return var_result.value();
}
TNode<Float64T> CodeStubAssembler::ChangeNumberToFloat64(
SloppyTNode<Number> value) {
// TODO(tebbi): Remove assert once argument is TNode instead of SloppyTNode.
CSA_SLOW_ASSERT(this, IsNumber(value));
TVARIABLE(Float64T, result);
Label smi(this);
Label done(this, &result);
GotoIf(TaggedIsSmi(value), &smi);
result = LoadHeapNumberValue(CAST(value));
Goto(&done);
BIND(&smi);
{
result = SmiToFloat64(CAST(value));
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<UintPtrT> CodeStubAssembler::TryNumberToUintPtr(TNode<Number> value,
Label* if_negative) {
TVARIABLE(UintPtrT, result);
Label done(this, &result);
Branch(TaggedIsSmi(value),
[&] {
TNode<Smi> value_smi = CAST(value);
if (if_negative == nullptr) {
CSA_SLOW_ASSERT(this, SmiLessThan(SmiConstant(-1), value_smi));
} else {
GotoIfNot(TaggedIsPositiveSmi(value), if_negative);
}
result = UncheckedCast<UintPtrT>(SmiToIntPtr(value_smi));
Goto(&done);
},
[&] {
TNode<HeapNumber> value_hn = CAST(value);
TNode<Float64T> value = LoadHeapNumberValue(value_hn);
if (if_negative != nullptr) {
GotoIf(Float64LessThan(value, Float64Constant(0.0)), if_negative);
}
result = ChangeFloat64ToUintPtr(value);
Goto(&done);
});
BIND(&done);
return result.value();
}
TNode<WordT> CodeStubAssembler::TimesSystemPointerSize(
SloppyTNode<WordT> value) {
return WordShl(value, kSystemPointerSizeLog2);
}
TNode<WordT> CodeStubAssembler::TimesTaggedSize(SloppyTNode<WordT> value) {
return WordShl(value, kTaggedSizeLog2);
}
TNode<WordT> CodeStubAssembler::TimesDoubleSize(SloppyTNode<WordT> value) {
return WordShl(value, kDoubleSizeLog2);
}
Node* CodeStubAssembler::ToThisValue(Node* context, Node* value,
PrimitiveType primitive_type,
char const* method_name) {
// We might need to loop once due to JSValue unboxing.
VARIABLE(var_value, MachineRepresentation::kTagged, value);
Label loop(this, &var_value), done_loop(this),
done_throw(this, Label::kDeferred);
Goto(&loop);
BIND(&loop);
{
// Load the current {value}.
value = var_value.value();
// Check if the {value} is a Smi or a HeapObject.
GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber)
? &done_loop
: &done_throw);
// Load the map of the {value}.
Node* value_map = LoadMap(value);
// Load the instance type of the {value}.
Node* value_instance_type = LoadMapInstanceType(value_map);
// Check if {value} is a JSValue.
Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this);
Branch(InstanceTypeEqual(value_instance_type, JS_VALUE_TYPE),
&if_valueisvalue, &if_valueisnotvalue);
BIND(&if_valueisvalue);
{
// Load the actual value from the {value}.
var_value.Bind(LoadObjectField(value, JSValue::kValueOffset));
Goto(&loop);
}
BIND(&if_valueisnotvalue);
{
switch (primitive_type) {
case PrimitiveType::kBoolean:
GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop);
break;
case PrimitiveType::kNumber:
GotoIf(WordEqual(value_map, HeapNumberMapConstant()), &done_loop);
break;
case PrimitiveType::kString:
GotoIf(IsStringInstanceType(value_instance_type), &done_loop);
break;
case PrimitiveType::kSymbol:
GotoIf(WordEqual(value_map, SymbolMapConstant()), &done_loop);
break;
}
Goto(&done_throw);
}
}
BIND(&done_throw);
{
const char* primitive_name = nullptr;
switch (primitive_type) {
case PrimitiveType::kBoolean:
primitive_name = "Boolean";
break;
case PrimitiveType::kNumber:
primitive_name = "Number";
break;
case PrimitiveType::kString:
primitive_name = "String";
break;
case PrimitiveType::kSymbol:
primitive_name = "Symbol";
break;
}
CHECK_NOT_NULL(primitive_name);
// The {value} is not a compatible receiver for this method.
ThrowTypeError(context, MessageTemplate::kNotGeneric, method_name,
primitive_name);
}
BIND(&done_loop);
return var_value.value();
}
Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value,
InstanceType instance_type,
char const* method_name) {
Label out(this), throw_exception(this, Label::kDeferred);
VARIABLE(var_value_map, MachineRepresentation::kTagged);
GotoIf(TaggedIsSmi(value), &throw_exception);
// Load the instance type of the {value}.
var_value_map.Bind(LoadMap(value));
Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out,
&throw_exception);
// The {value} is not a compatible receiver for this method.
BIND(&throw_exception);
ThrowTypeError(context, MessageTemplate::kIncompatibleMethodReceiver,
StringConstant(method_name), value);
BIND(&out);
return var_value_map.value();
}
Node* CodeStubAssembler::ThrowIfNotJSReceiver(Node* context, Node* value,
MessageTemplate msg_template,
const char* method_name) {
Label out(this), throw_exception(this, Label::kDeferred);
VARIABLE(var_value_map, MachineRepresentation::kTagged);
GotoIf(TaggedIsSmi(value), &throw_exception);
// Load the instance type of the {value}.
var_value_map.Bind(LoadMap(value));
Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
Branch(IsJSReceiverInstanceType(value_instance_type), &out, &throw_exception);
// The {value} is not a compatible receiver for this method.
BIND(&throw_exception);
ThrowTypeError(context, msg_template, method_name);
BIND(&out);
return var_value_map.value();
}
void CodeStubAssembler::ThrowIfNotCallable(TNode<Context> context,
TNode<Object> value,
const char* method_name) {
Label out(this), throw_exception(this, Label::kDeferred);
GotoIf(TaggedIsSmi(value), &throw_exception);
Branch(IsCallable(CAST(value)), &out, &throw_exception);
// The {value} is not a compatible receiver for this method.
BIND(&throw_exception);
ThrowTypeError(context, MessageTemplate::kCalledNonCallable, method_name);
BIND(&out);
}
void CodeStubAssembler::ThrowRangeError(Node* context, MessageTemplate message,
Node* arg0, Node* arg1, Node* arg2) {
Node* template_index = SmiConstant(static_cast<int>(message));
if (arg0 == nullptr) {
CallRuntime(Runtime::kThrowRangeError, context, template_index);
} else if (arg1 == nullptr) {
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0);
} else if (arg2 == nullptr) {
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1);
} else {
CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1,
arg2);
}
Unreachable();
}
void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message,
char const* arg0, char const* arg1) {
Node* arg0_node = nullptr;
if (arg0) arg0_node = StringConstant(arg0);
Node* arg1_node = nullptr;
if (arg1) arg1_node = StringConstant(arg1);
ThrowTypeError(context, message, arg0_node, arg1_node);
}
void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message,
Node* arg0, Node* arg1, Node* arg2) {
Node* template_index = SmiConstant(static_cast<int>(message));
if (arg0 == nullptr) {
CallRuntime(Runtime::kThrowTypeError, context, template_index);
} else if (arg1 == nullptr) {
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0);
} else if (arg2 == nullptr) {
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1);
} else {
CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1,
arg2);
}
Unreachable();
}
TNode<BoolT> CodeStubAssembler::InstanceTypeEqual(
SloppyTNode<Int32T> instance_type, int type) {
return Word32Equal(instance_type, Int32Constant(type));
}
TNode<BoolT> CodeStubAssembler::IsDictionaryMap(SloppyTNode<Map> map) {
CSA_SLOW_ASSERT(this, IsMap(map));
Node* bit_field3 = LoadMapBitField3(map);
return IsSetWord32<Map::IsDictionaryMapBit>(bit_field3);
}
TNode<BoolT> CodeStubAssembler::IsExtensibleMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::IsExtensibleBit>(LoadMapBitField2(map));
}
TNode<BoolT> CodeStubAssembler::IsFrozenOrSealedElementsKindMap(
SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsElementsKindInRange(LoadMapElementsKind(map), PACKED_SEALED_ELEMENTS,
HOLEY_FROZEN_ELEMENTS);
}
TNode<BoolT> CodeStubAssembler::IsExtensibleNonPrototypeMap(TNode<Map> map) {
int kMask = Map::IsExtensibleBit::kMask | Map::IsPrototypeMapBit::kMask;
int kExpected = Map::IsExtensibleBit::kMask;
return Word32Equal(Word32And(LoadMapBitField2(map), Int32Constant(kMask)),
Int32Constant(kExpected));
}
TNode<BoolT> CodeStubAssembler::IsCallableMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::IsCallableBit>(LoadMapBitField(map));
}
TNode<BoolT> CodeStubAssembler::IsDebugInfo(TNode<HeapObject> object) {
return HasInstanceType(object, DEBUG_INFO_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsDeprecatedMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::IsDeprecatedBit>(LoadMapBitField3(map));
}
TNode<BoolT> CodeStubAssembler::IsUndetectableMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::IsUndetectableBit>(LoadMapBitField(map));
}
TNode<BoolT> CodeStubAssembler::IsNoElementsProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kNoElementsProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsArrayIteratorProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kArrayIteratorProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsPromiseResolveProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kPromiseResolveProtector);
Node* cell_value = LoadObjectField(cell, Cell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsPromiseThenProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kPromiseThenProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsArraySpeciesProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kArraySpeciesProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsTypedArraySpeciesProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kTypedArraySpeciesProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsRegExpSpeciesProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kRegExpSpeciesProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsPromiseSpeciesProtectorCellInvalid() {
Node* invalid = SmiConstant(Isolate::kProtectorInvalid);
Node* cell = LoadRoot(RootIndex::kPromiseSpeciesProtector);
Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset);
return WordEqual(cell_value, invalid);
}
TNode<BoolT> CodeStubAssembler::IsPrototypeInitialArrayPrototype(
SloppyTNode<Context> context, SloppyTNode<Map> map) {
Node* const native_context = LoadNativeContext(context);
Node* const initial_array_prototype = LoadContextElement(
native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
Node* proto = LoadMapPrototype(map);
return WordEqual(proto, initial_array_prototype);
}
TNode<BoolT> CodeStubAssembler::IsPrototypeTypedArrayPrototype(
SloppyTNode<Context> context, SloppyTNode<Map> map) {
TNode<Context> const native_context = LoadNativeContext(context);
TNode<Object> const typed_array_prototype =
LoadContextElement(native_context, Context::TYPED_ARRAY_PROTOTYPE_INDEX);
TNode<HeapObject> proto = LoadMapPrototype(map);
TNode<HeapObject> proto_of_proto = Select<HeapObject>(
IsJSObject(proto), [=] { return LoadMapPrototype(LoadMap(proto)); },
[=] { return NullConstant(); });
return WordEqual(proto_of_proto, typed_array_prototype);
}
TNode<BoolT> CodeStubAssembler::IsFastAliasedArgumentsMap(
TNode<Context> context, TNode<Map> map) {
TNode<Context> const native_context = LoadNativeContext(context);
TNode<Object> const arguments_map = LoadContextElement(
native_context, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
return WordEqual(arguments_map, map);
}
TNode<BoolT> CodeStubAssembler::IsSlowAliasedArgumentsMap(
TNode<Context> context, TNode<Map> map) {
TNode<Context> const native_context = LoadNativeContext(context);
TNode<Object> const arguments_map = LoadContextElement(
native_context, Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX);
return WordEqual(arguments_map, map);
}
TNode<BoolT> CodeStubAssembler::IsSloppyArgumentsMap(TNode<Context> context,
TNode<Map> map) {
TNode<Context> const native_context = LoadNativeContext(context);
TNode<Object> const arguments_map =
LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX);
return WordEqual(arguments_map, map);
}
TNode<BoolT> CodeStubAssembler::IsStrictArgumentsMap(TNode<Context> context,
TNode<Map> map) {
TNode<Context> const native_context = LoadNativeContext(context);
TNode<Object> const arguments_map =
LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX);
return WordEqual(arguments_map, map);
}
TNode<BoolT> CodeStubAssembler::TaggedIsCallable(TNode<Object> object) {
return Select<BoolT>(
TaggedIsSmi(object), [=] { return Int32FalseConstant(); },
[=] {
return IsCallableMap(LoadMap(UncheckedCast<HeapObject>(object)));
});
}
TNode<BoolT> CodeStubAssembler::IsCallable(SloppyTNode<HeapObject> object) {
return IsCallableMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsCell(SloppyTNode<HeapObject> object) {
return WordEqual(LoadMap(object), LoadRoot(RootIndex::kCellMap));
}
TNode<BoolT> CodeStubAssembler::IsCode(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, CODE_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsConstructorMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::IsConstructorBit>(LoadMapBitField(map));
}
TNode<BoolT> CodeStubAssembler::IsConstructor(SloppyTNode<HeapObject> object) {
return IsConstructorMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsFunctionWithPrototypeSlotMap(
SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsSetWord32<Map::HasPrototypeSlotBit>(LoadMapBitField(map));
}
TNode<BoolT> CodeStubAssembler::IsSpecialReceiverInstanceType(
TNode<Int32T> instance_type) {
STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
return Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_SPECIAL_RECEIVER_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsCustomElementsReceiverInstanceType(
TNode<Int32T> instance_type) {
return Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER));
}
TNode<BoolT> CodeStubAssembler::IsStringInstanceType(
SloppyTNode<Int32T> instance_type) {
STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE);
return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsOneByteStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
return Word32Equal(
Word32And(instance_type, Int32Constant(kStringEncodingMask)),
Int32Constant(kOneByteStringTag));
}
TNode<BoolT> CodeStubAssembler::IsSequentialStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
return Word32Equal(
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
Int32Constant(kSeqStringTag));
}
TNode<BoolT> CodeStubAssembler::IsConsStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
return Word32Equal(
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
Int32Constant(kConsStringTag));
}
TNode<BoolT> CodeStubAssembler::IsIndirectStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
STATIC_ASSERT(kIsIndirectStringMask == 0x1);
STATIC_ASSERT(kIsIndirectStringTag == 0x1);
return UncheckedCast<BoolT>(
Word32And(instance_type, Int32Constant(kIsIndirectStringMask)));
}
TNode<BoolT> CodeStubAssembler::IsExternalStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
return Word32Equal(
Word32And(instance_type, Int32Constant(kStringRepresentationMask)),
Int32Constant(kExternalStringTag));
}
TNode<BoolT> CodeStubAssembler::IsUncachedExternalStringInstanceType(
SloppyTNode<Int32T> instance_type) {
CSA_ASSERT(this, IsStringInstanceType(instance_type));
STATIC_ASSERT(kUncachedExternalStringTag != 0);
return IsSetWord32(instance_type, kUncachedExternalStringMask);
}
TNode<BoolT> CodeStubAssembler::IsJSReceiverInstanceType(
SloppyTNode<Int32T> instance_type) {
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
return Int32GreaterThanOrEqual(instance_type,
Int32Constant(FIRST_JS_RECEIVER_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsJSReceiverMap(SloppyTNode<Map> map) {
return IsJSReceiverInstanceType(LoadMapInstanceType(map));
}
TNode<BoolT> CodeStubAssembler::IsJSReceiver(SloppyTNode<HeapObject> object) {
return IsJSReceiverMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsNullOrJSReceiver(
SloppyTNode<HeapObject> object) {
return UncheckedCast<BoolT>(Word32Or(IsJSReceiver(object), IsNull(object)));
}
TNode<BoolT> CodeStubAssembler::IsNullOrUndefined(SloppyTNode<Object> value) {
return UncheckedCast<BoolT>(Word32Or(IsUndefined(value), IsNull(value)));
}
TNode<BoolT> CodeStubAssembler::IsJSGlobalProxyInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, JS_GLOBAL_PROXY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSObjectInstanceType(
SloppyTNode<Int32T> instance_type) {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
return Int32GreaterThanOrEqual(instance_type,
Int32Constant(FIRST_JS_OBJECT_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsJSObjectMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return IsJSObjectInstanceType(LoadMapInstanceType(map));
}
TNode<BoolT> CodeStubAssembler::IsJSObject(SloppyTNode<HeapObject> object) {
return IsJSObjectMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsJSPromiseMap(SloppyTNode<Map> map) {
CSA_ASSERT(this, IsMap(map));
return InstanceTypeEqual(LoadMapInstanceType(map), JS_PROMISE_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSPromise(SloppyTNode<HeapObject> object) {
return IsJSPromiseMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsJSProxy(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_PROXY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSStringIterator(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_STRING_ITERATOR_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSGlobalProxy(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_GLOBAL_PROXY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsMap(SloppyTNode<HeapObject> map) {
return IsMetaMap(LoadMap(map));
}
TNode<BoolT> CodeStubAssembler::IsJSValueInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, JS_VALUE_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSValue(SloppyTNode<HeapObject> object) {
return IsJSValueMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsJSValueMap(SloppyTNode<Map> map) {
return IsJSValueInstanceType(LoadMapInstanceType(map));
}
TNode<BoolT> CodeStubAssembler::IsJSArrayInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, JS_ARRAY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSArray(SloppyTNode<HeapObject> object) {
return IsJSArrayMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsJSArrayMap(SloppyTNode<Map> map) {
return IsJSArrayInstanceType(LoadMapInstanceType(map));
}
TNode<BoolT> CodeStubAssembler::IsJSArrayIterator(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_ARRAY_ITERATOR_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSAsyncGeneratorObject(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_ASYNC_GENERATOR_OBJECT_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsContext(SloppyTNode<HeapObject> object) {
Node* instance_type = LoadInstanceType(object);
return UncheckedCast<BoolT>(Word32And(
Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_CONTEXT_TYPE)),
Int32LessThanOrEqual(instance_type, Int32Constant(LAST_CONTEXT_TYPE))));
}
TNode<BoolT> CodeStubAssembler::IsFixedArray(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, FIXED_ARRAY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsFixedArraySubclass(
SloppyTNode<HeapObject> object) {
Node* instance_type = LoadInstanceType(object);
return UncheckedCast<BoolT>(
Word32And(Int32GreaterThanOrEqual(instance_type,
Int32Constant(FIRST_FIXED_ARRAY_TYPE)),
Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_FIXED_ARRAY_TYPE))));
}
TNode<BoolT> CodeStubAssembler::IsNotWeakFixedArraySubclass(
SloppyTNode<HeapObject> object) {
Node* instance_type = LoadInstanceType(object);
return UncheckedCast<BoolT>(Word32Or(
Int32LessThan(instance_type, Int32Constant(FIRST_WEAK_FIXED_ARRAY_TYPE)),
Int32GreaterThan(instance_type,
Int32Constant(LAST_WEAK_FIXED_ARRAY_TYPE))));
}
TNode<BoolT> CodeStubAssembler::IsPromiseCapability(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, PROMISE_CAPABILITY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsPropertyArray(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, PROPERTY_ARRAY_TYPE);
}
// This complicated check is due to elements oddities. If a smi array is empty
// after Array.p.shift, it is replaced by the empty array constant. If it is
// later filled with a double element, we try to grow it but pass in a double
// elements kind. Usually this would cause a size mismatch (since the source
// fixed array has HOLEY_ELEMENTS and destination has
// HOLEY_DOUBLE_ELEMENTS), but we don't have to worry about it when the
// source array is empty.
// TODO(jgruber): It might we worth creating an empty_double_array constant to
// simplify this case.
TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKindOrEmpty(
SloppyTNode<HeapObject> object, ElementsKind kind) {
Label out(this);
TVARIABLE(BoolT, var_result, Int32TrueConstant());
GotoIf(IsFixedArrayWithKind(object, kind), &out);
TNode<Smi> const length = LoadFixedArrayBaseLength(CAST(object));
GotoIf(SmiEqual(length, SmiConstant(0)), &out);
var_result = Int32FalseConstant();
Goto(&out);
BIND(&out);
return var_result.value();
}
TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKind(
SloppyTNode<HeapObject> object, ElementsKind kind) {
if (IsDoubleElementsKind(kind)) {
return IsFixedDoubleArray(object);
} else {
DCHECK(IsSmiOrObjectElementsKind(kind));
return IsFixedArraySubclass(object);
}
}
TNode<BoolT> CodeStubAssembler::IsBoolean(SloppyTNode<HeapObject> object) {
return IsBooleanMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsPropertyCell(SloppyTNode<HeapObject> object) {
return IsPropertyCellMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsAccessorInfo(SloppyTNode<HeapObject> object) {
return IsAccessorInfoMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsAccessorPair(SloppyTNode<HeapObject> object) {
return IsAccessorPairMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsAllocationSite(
SloppyTNode<HeapObject> object) {
return IsAllocationSiteInstanceType(LoadInstanceType(object));
}
TNode<BoolT> CodeStubAssembler::IsAnyHeapNumber(
SloppyTNode<HeapObject> object) {
return UncheckedCast<BoolT>(
Word32Or(IsMutableHeapNumber(object), IsHeapNumber(object)));
}
TNode<BoolT> CodeStubAssembler::IsHeapNumber(SloppyTNode<HeapObject> object) {
return IsHeapNumberMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsHeapNumberInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, HEAP_NUMBER_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsOddball(SloppyTNode<HeapObject> object) {
return IsOddballInstanceType(LoadInstanceType(object));
}
TNode<BoolT> CodeStubAssembler::IsOddballInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, ODDBALL_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsMutableHeapNumber(
SloppyTNode<HeapObject> object) {
return IsMutableHeapNumberMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsFeedbackCell(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, FEEDBACK_CELL_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsFeedbackVector(
SloppyTNode<HeapObject> object) {
return IsFeedbackVectorMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsName(SloppyTNode<HeapObject> object) {
return IsNameInstanceType(LoadInstanceType(object));
}
TNode<BoolT> CodeStubAssembler::IsNameInstanceType(
SloppyTNode<Int32T> instance_type) {
return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_NAME_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsString(SloppyTNode<HeapObject> object) {
return IsStringInstanceType(LoadInstanceType(object));
}
TNode<BoolT> CodeStubAssembler::IsSymbolInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, SYMBOL_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsSymbol(SloppyTNode<HeapObject> object) {
return IsSymbolMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsInternalizedStringInstanceType(
TNode<Int32T> instance_type) {
STATIC_ASSERT(kNotInternalizedTag != 0);
return Word32Equal(
Word32And(instance_type,
Int32Constant(kIsNotStringMask | kIsNotInternalizedMask)),
Int32Constant(kStringTag | kInternalizedTag));
}
TNode<BoolT> CodeStubAssembler::IsUniqueName(TNode<HeapObject> object) {
TNode<Int32T> instance_type = LoadInstanceType(object);
return Select<BoolT>(
IsInternalizedStringInstanceType(instance_type),
[=] { return Int32TrueConstant(); },
[=] { return IsSymbolInstanceType(instance_type); });
}
TNode<BoolT> CodeStubAssembler::IsUniqueNameNoIndex(TNode<HeapObject> object) {
TNode<Int32T> instance_type = LoadInstanceType(object);
return Select<BoolT>(
IsInternalizedStringInstanceType(instance_type),
[=] {
return IsSetWord32(LoadNameHashField(CAST(object)),
Name::kIsNotArrayIndexMask);
},
[=] { return IsSymbolInstanceType(instance_type); });
}
TNode<BoolT> CodeStubAssembler::IsBigIntInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, BIGINT_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsBigInt(SloppyTNode<HeapObject> object) {
return IsBigIntInstanceType(LoadInstanceType(object));
}
TNode<BoolT> CodeStubAssembler::IsPrimitiveInstanceType(
SloppyTNode<Int32T> instance_type) {
return Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_PRIMITIVE_TYPE));
}
TNode<BoolT> CodeStubAssembler::IsPrivateSymbol(
SloppyTNode<HeapObject> object) {
return Select<BoolT>(IsSymbol(object),
[=] {
TNode<Symbol> symbol = CAST(object);
TNode<Uint32T> flags = LoadObjectField<Uint32T>(
symbol, Symbol::kFlagsOffset);
return IsSetWord32<Symbol::IsPrivateBit>(flags);
},
[=] { return Int32FalseConstant(); });
}
TNode<BoolT> CodeStubAssembler::IsNativeContext(
SloppyTNode<HeapObject> object) {
return WordEqual(LoadMap(object), LoadRoot(RootIndex::kNativeContextMap));
}
TNode<BoolT> CodeStubAssembler::IsFixedDoubleArray(
SloppyTNode<HeapObject> object) {
return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant());
}
TNode<BoolT> CodeStubAssembler::IsHashTable(SloppyTNode<HeapObject> object) {
Node* instance_type = LoadInstanceType(object);
return UncheckedCast<BoolT>(
Word32And(Int32GreaterThanOrEqual(instance_type,
Int32Constant(FIRST_HASH_TABLE_TYPE)),
Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_HASH_TABLE_TYPE))));
}
TNode<BoolT> CodeStubAssembler::IsEphemeronHashTable(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, EPHEMERON_HASH_TABLE_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsNameDictionary(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, NAME_DICTIONARY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsGlobalDictionary(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, GLOBAL_DICTIONARY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsNumberDictionary(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, NUMBER_DICTIONARY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSGeneratorObject(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_GENERATOR_OBJECT_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSFunctionInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, JS_FUNCTION_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsAllocationSiteInstanceType(
SloppyTNode<Int32T> instance_type) {
return InstanceTypeEqual(instance_type, ALLOCATION_SITE_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSFunction(SloppyTNode<HeapObject> object) {
return IsJSFunctionMap(LoadMap(object));
}
TNode<BoolT> CodeStubAssembler::IsJSFunctionMap(SloppyTNode<Map> map) {
return IsJSFunctionInstanceType(LoadMapInstanceType(map));
}
TNode<BoolT> CodeStubAssembler::IsJSTypedArray(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_TYPED_ARRAY_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSArrayBuffer(
SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_ARRAY_BUFFER_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsJSDataView(TNode<HeapObject> object) {
return HasInstanceType(object, JS_DATA_VIEW_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsFixedTypedArray(
SloppyTNode<HeapObject> object) {
TNode<Int32T> instance_type = LoadInstanceType(object);
return UncheckedCast<BoolT>(Word32And(
Int32GreaterThanOrEqual(instance_type,
Int32Constant(FIRST_FIXED_TYPED_ARRAY_TYPE)),
Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_FIXED_TYPED_ARRAY_TYPE))));
}
TNode<BoolT> CodeStubAssembler::IsJSRegExp(SloppyTNode<HeapObject> object) {
return HasInstanceType(object, JS_REGEXP_TYPE);
}
TNode<BoolT> CodeStubAssembler::IsNumber(SloppyTNode<Object> object) {
return Select<BoolT>(TaggedIsSmi(object), [=] { return Int32TrueConstant(); },
[=] { return IsHeapNumber(CAST(object)); });
}
TNode<BoolT> CodeStubAssembler::IsNumeric(SloppyTNode<Object> object) {
return Select<BoolT>(
TaggedIsSmi(object), [=] { return Int32TrueConstant(); },
[=] {
return UncheckedCast<BoolT>(
Word32Or(IsHeapNumber(CAST(object)), IsBigInt(CAST(object))));
});
}
TNode<BoolT> CodeStubAssembler::IsNumberNormalized(SloppyTNode<Number> number) {
TVARIABLE(BoolT, var_result, Int32TrueConstant());
Label out(this);
GotoIf(TaggedIsSmi(number), &out);
TNode<Float64T> value = LoadHeapNumberValue(CAST(number));
TNode<Float64T> smi_min =
Float64Constant(static_cast<double>(Smi::kMinValue));
TNode<Float64T> smi_max =
Float64Constant(static_cast<double>(Smi::kMaxValue));
GotoIf(Float64LessThan(value, smi_min), &out);
GotoIf(Float64GreaterThan(value, smi_max), &out);
GotoIfNot(Float64Equal(value, value), &out); // NaN.
var_result = Int32FalseConstant();
Goto(&out);
BIND(&out);
return var_result.value();
}
TNode<BoolT> CodeStubAssembler::IsNumberPositive(SloppyTNode<Number> number) {
return Select<BoolT>(TaggedIsSmi(number),
[=] { return TaggedIsPositiveSmi(number); },
[=] { return IsHeapNumberPositive(CAST(number)); });
}
// TODO(cbruni): Use TNode<HeapNumber> instead of custom name.
TNode<BoolT> CodeStubAssembler::IsHeapNumberPositive(TNode<HeapNumber> number) {
TNode<Float64T> value = LoadHeapNumberValue(number);
TNode<Float64T> float_zero = Float64Constant(0.);
return Float64GreaterThanOrEqual(value, float_zero);
}
TNode<BoolT> CodeStubAssembler::IsNumberNonNegativeSafeInteger(
TNode<Number> number) {
return Select<BoolT>(
// TODO(cbruni): Introduce TaggedIsNonNegateSmi to avoid confusion.
TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); },
[=] {
TNode<HeapNumber> heap_number = CAST(number);
return Select<BoolT>(IsInteger(heap_number),
[=] { return IsHeapNumberPositive(heap_number); },
[=] { return Int32FalseConstant(); });
});
}
TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<Object> number) {
return Select<BoolT>(
TaggedIsSmi(number), [=] { return Int32TrueConstant(); },
[=] {
return Select<BoolT>(
IsHeapNumber(CAST(number)),
[=] { return IsSafeInteger(UncheckedCast<HeapNumber>(number)); },
[=] { return Int32FalseConstant(); });
});
}
TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<HeapNumber> number) {
// Load the actual value of {number}.
TNode<Float64T> number_value = LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
TNode<Float64T> integer = Float64Trunc(number_value);
return Select<BoolT>(
// Check if {number}s value matches the integer (ruling out the
// infinities).
Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)),
[=] {
// Check if the {integer} value is in safe integer range.
return Float64LessThanOrEqual(Float64Abs(integer),
Float64Constant(kMaxSafeInteger));
},
[=] { return Int32FalseConstant(); });
}
TNode<BoolT> CodeStubAssembler::IsInteger(TNode<Object> number) {
return Select<BoolT>(
TaggedIsSmi(number), [=] { return Int32TrueConstant(); },
[=] {
return Select<BoolT>(
IsHeapNumber(CAST(number)),
[=] { return IsInteger(UncheckedCast<HeapNumber>(number)); },
[=] { return Int32FalseConstant(); });
});
}
TNode<BoolT> CodeStubAssembler::IsInteger(TNode<HeapNumber> number) {
TNode<Float64T> number_value = LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
TNode<Float64T> integer = Float64Trunc(number_value);
// Check if {number}s value matches the integer (ruling out the infinities).
return Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0));
}
TNode<BoolT> CodeStubAssembler::IsHeapNumberUint32(TNode<HeapNumber> number) {
// Check that the HeapNumber is a valid uint32
return Select<BoolT>(
IsHeapNumberPositive(number),
[=] {
TNode<Float64T> value = LoadHeapNumberValue(number);
TNode<Uint32T> int_value = Unsigned(TruncateFloat64ToWord32(value));
return Float64Equal(value, ChangeUint32ToFloat64(int_value));
},
[=] { return Int32FalseConstant(); });
}
TNode<BoolT> CodeStubAssembler::IsNumberArrayIndex(TNode<Number> number) {
return Select<BoolT>(TaggedIsSmi(number),
[=] { return TaggedIsPositiveSmi(number); },
[=] { return IsHeapNumberUint32(CAST(number)); });
}
Node* CodeStubAssembler::FixedArraySizeDoesntFitInNewSpace(Node* element_count,
int base_size,
ParameterMode mode) {
int max_newspace_elements =
(kMaxRegularHeapObjectSize - base_size) / kTaggedSize;
return IntPtrOrSmiGreaterThan(
element_count, IntPtrOrSmiConstant(max_newspace_elements, mode), mode);
}
TNode<Int32T> CodeStubAssembler::StringCharCodeAt(SloppyTNode<String> string,
SloppyTNode<IntPtrT> index) {
CSA_ASSERT(this, IsString(string));
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(index, IntPtrConstant(0)));
CSA_ASSERT(this, IntPtrLessThan(index, LoadStringLengthAsWord(string)));
TVARIABLE(Int32T, var_result);
Label return_result(this), if_runtime(this, Label::kDeferred),
if_stringistwobyte(this), if_stringisonebyte(this);
ToDirectStringAssembler to_direct(state(), string);
to_direct.TryToDirect(&if_runtime);
Node* const offset = IntPtrAdd(index, to_direct.offset());
Node* const instance_type = to_direct.instance_type();
Node* const string_data = to_direct.PointerToData(&if_runtime);
// Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
Branch(IsOneByteStringInstanceType(instance_type), &if_stringisonebyte,
&if_stringistwobyte);
BIND(&if_stringisonebyte);
{
var_result =
UncheckedCast<Int32T>(Load(MachineType::Uint8(), string_data, offset));
Goto(&return_result);
}
BIND(&if_stringistwobyte);
{
var_result =
UncheckedCast<Int32T>(Load(MachineType::Uint16(), string_data,
WordShl(offset, IntPtrConstant(1))));
Goto(&return_result);
}
BIND(&if_runtime);
{
Node* result = CallRuntime(Runtime::kStringCharCodeAt, NoContextConstant(),
string, SmiTag(index));
var_result = SmiToInt32(result);
Goto(&return_result);
}
BIND(&return_result);
return var_result.value();
}
TNode<String> CodeStubAssembler::StringFromSingleCharCode(TNode<Int32T> code) {
VARIABLE(var_result, MachineRepresentation::kTagged);
// Check if the {code} is a one-byte char code.
Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
if_done(this);
Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
&if_codeisonebyte, &if_codeistwobyte);
BIND(&if_codeisonebyte);
{
// Load the isolate wide single character string cache.
TNode<FixedArray> cache =
CAST(LoadRoot(RootIndex::kSingleCharacterStringCache));
TNode<IntPtrT> code_index = Signed(ChangeUint32ToWord(code));
// Check if we have an entry for the {code} in the single character string
// cache already.
Label if_entryisundefined(this, Label::kDeferred),
if_entryisnotundefined(this);
Node* entry = UnsafeLoadFixedArrayElement(cache, code_index);
Branch(IsUndefined(entry), &if_entryisundefined, &if_entryisnotundefined);
BIND(&if_entryisundefined);
{
// Allocate a new SeqOneByteString for {code} and store it in the {cache}.
TNode<String> result = AllocateSeqOneByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord8, result,
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
StoreFixedArrayElement(cache, code_index, result);
var_result.Bind(result);
Goto(&if_done);
}
BIND(&if_entryisnotundefined);
{
// Return the entry from the {cache}.
var_result.Bind(entry);
Goto(&if_done);
}
}
BIND(&if_codeistwobyte);
{
// Allocate a new SeqTwoByteString for {code}.
Node* result = AllocateSeqTwoByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord16, result,
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
var_result.Bind(result);
Goto(&if_done);
}
BIND(&if_done);
CSA_ASSERT(this, IsString(var_result.value()));
return CAST(var_result.value());
}
// A wrapper around CopyStringCharacters which determines the correct string
// encoding, allocates a corresponding sequential string, and then copies the
// given character range using CopyStringCharacters.
// |from_string| must be a sequential string.
// 0 <= |from_index| <= |from_index| + |character_count| < from_string.length.
TNode<String> CodeStubAssembler::AllocAndCopyStringCharacters(
Node* from, Node* from_instance_type, TNode<IntPtrT> from_index,
TNode<IntPtrT> character_count) {
Label end(this), one_byte_sequential(this), two_byte_sequential(this);
TVARIABLE(String, var_result);
Branch(IsOneByteStringInstanceType(from_instance_type), &one_byte_sequential,
&two_byte_sequential);
// The subject string is a sequential one-byte string.
BIND(&one_byte_sequential);
{
TNode<String> result = AllocateSeqOneByteString(
NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count)));
CopyStringCharacters(from, result, from_index, IntPtrConstant(0),
character_count, String::ONE_BYTE_ENCODING,
String::ONE_BYTE_ENCODING);
var_result = result;
Goto(&end);
}
// The subject string is a sequential two-byte string.
BIND(&two_byte_sequential);
{
TNode<String> result = AllocateSeqTwoByteString(
NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count)));
CopyStringCharacters(from, result, from_index, IntPtrConstant(0),
character_count, String::TWO_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
var_result = result;
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<String> CodeStubAssembler::SubString(TNode<String> string,
TNode<IntPtrT> from,
TNode<IntPtrT> to) {
TVARIABLE(String, var_result);
ToDirectStringAssembler to_direct(state(), string);
Label end(this), runtime(this);
TNode<IntPtrT> const substr_length = IntPtrSub(to, from);
TNode<IntPtrT> const string_length = LoadStringLengthAsWord(string);
// Begin dispatching based on substring length.
Label original_string_or_invalid_length(this);
GotoIf(UintPtrGreaterThanOrEqual(substr_length, string_length),
&original_string_or_invalid_length);
// A real substring (substr_length < string_length).
Label empty(this);
GotoIf(IntPtrEqual(substr_length, IntPtrConstant(0)), &empty);
Label single_char(this);
GotoIf(IntPtrEqual(substr_length, IntPtrConstant(1)), &single_char);
// Deal with different string types: update the index if necessary
// and extract the underlying string.
TNode<String> direct_string = to_direct.TryToDirect(&runtime);
TNode<IntPtrT> offset = IntPtrAdd(from, to_direct.offset());
Node* const instance_type = to_direct.instance_type();
// The subject string can only be external or sequential string of either
// encoding at this point.
Label external_string(this);
{
if (FLAG_string_slices) {
Label next(this);
// Short slice. Copy instead of slicing.
GotoIf(IntPtrLessThan(substr_length,
IntPtrConstant(SlicedString::kMinLength)),
&next);
// Allocate new sliced string.
Counters* counters = isolate()->counters();
IncrementCounter(counters->sub_string_native(), 1);
Label one_byte_slice(this), two_byte_slice(this);
Branch(IsOneByteStringInstanceType(to_direct.instance_type()),
&one_byte_slice, &two_byte_slice);
BIND(&one_byte_slice);
{
var_result = AllocateSlicedOneByteString(
Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
SmiTag(offset));
Goto(&end);
}
BIND(&two_byte_slice);
{
var_result = AllocateSlicedTwoByteString(
Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string,
SmiTag(offset));
Goto(&end);
}
BIND(&next);
}
// The subject string can only be external or sequential string of either
// encoding at this point.
GotoIf(to_direct.is_external(), &external_string);
var_result = AllocAndCopyStringCharacters(direct_string, instance_type,
offset, substr_length);
Counters* counters = isolate()->counters();
IncrementCounter(counters->sub_string_native(), 1);
Goto(&end);
}
// Handle external string.
BIND(&external_string);
{
Node* const fake_sequential_string = to_direct.PointerToString(&runtime);
var_result = AllocAndCopyStringCharacters(
fake_sequential_string, instance_type, offset, substr_length);
Counters* counters = isolate()->counters();
IncrementCounter(counters->sub_string_native(), 1);
Goto(&end);
}
BIND(&empty);
{
var_result = EmptyStringConstant();
Goto(&end);
}
// Substrings of length 1 are generated through CharCodeAt and FromCharCode.
BIND(&single_char);
{
TNode<Int32T> char_code = StringCharCodeAt(string, from);
var_result = StringFromSingleCharCode(char_code);
Goto(&end);
}
BIND(&original_string_or_invalid_length);
{
CSA_ASSERT(this, IntPtrEqual(substr_length, string_length));
// Equal length - check if {from, to} == {0, str.length}.
GotoIf(UintPtrGreaterThan(from, IntPtrConstant(0)), &runtime);
// Return the original string (substr_length == string_length).
Counters* counters = isolate()->counters();
IncrementCounter(counters->sub_string_native(), 1);
var_result = string;
Goto(&end);
}
// Fall back to a runtime call.
BIND(&runtime);
{
var_result =
CAST(CallRuntime(Runtime::kStringSubstring, NoContextConstant(), string,
SmiTag(from), SmiTag(to)));
Goto(&end);
}
BIND(&end);
return var_result.value();
}
ToDirectStringAssembler::ToDirectStringAssembler(
compiler::CodeAssemblerState* state, Node* string, Flags flags)
: CodeStubAssembler(state),
var_string_(this, MachineRepresentation::kTagged, string),
var_instance_type_(this, MachineRepresentation::kWord32),
var_offset_(this, MachineType::PointerRepresentation()),
var_is_external_(this, MachineRepresentation::kWord32),
flags_(flags) {
CSA_ASSERT(this, TaggedIsNotSmi(string));
CSA_ASSERT(this, IsString(string));
var_string_.Bind(string);
var_offset_.Bind(IntPtrConstant(0));
var_instance_type_.Bind(LoadInstanceType(string));
var_is_external_.Bind(Int32Constant(0));
}
TNode<String> ToDirectStringAssembler::TryToDirect(Label* if_bailout) {
VariableList vars({&var_string_, &var_offset_, &var_instance_type_}, zone());
Label dispatch(this, vars);
Label if_iscons(this);
Label if_isexternal(this);
Label if_issliced(this);
Label if_isthin(this);
Label out(this);
Branch(IsSequentialStringInstanceType(var_instance_type_.value()), &out,
&dispatch);
// Dispatch based on string representation.
BIND(&dispatch);
{
int32_t values[] = {
kSeqStringTag, kConsStringTag, kExternalStringTag,
kSlicedStringTag, kThinStringTag,
};
Label* labels[] = {
&out, &if_iscons, &if_isexternal, &if_issliced, &if_isthin,
};
STATIC_ASSERT(arraysize(values) == arraysize(labels));
Node* const representation = Word32And(
var_instance_type_.value(), Int32Constant(kStringRepresentationMask));
Switch(representation, if_bailout, values, labels, arraysize(values));
}
// Cons string. Check whether it is flat, then fetch first part.
// Flat cons strings have an empty second part.
BIND(&if_iscons);
{
Node* const string = var_string_.value();
GotoIfNot(IsEmptyString(LoadObjectField(string, ConsString::kSecondOffset)),
if_bailout);
Node* const lhs = LoadObjectField(string, ConsString::kFirstOffset);
var_string_.Bind(lhs);
var_instance_type_.Bind(LoadInstanceType(lhs));
Goto(&dispatch);
}
// Sliced string. Fetch parent and correct start index by offset.
BIND(&if_issliced);
{
if (!FLAG_string_slices || (flags_ & kDontUnpackSlicedStrings)) {
Goto(if_bailout);
} else {
Node* const string = var_string_.value();
Node* const sliced_offset =
LoadAndUntagObjectField(string, SlicedString::kOffsetOffset);
var_offset_.Bind(IntPtrAdd(var_offset_.value(), sliced_offset));
Node* const parent = LoadObjectField(string, SlicedString::kParentOffset);
var_string_.Bind(parent);
var_instance_type_.Bind(LoadInstanceType(parent));
Goto(&dispatch);
}
}
// Thin string. Fetch the actual string.
BIND(&if_isthin);
{
Node* const string = var_string_.value();
Node* const actual_string =
LoadObjectField(string, ThinString::kActualOffset);
Node* const actual_instance_type = LoadInstanceType(actual_string);
var_string_.Bind(actual_string);
var_instance_type_.Bind(actual_instance_type);
Goto(&dispatch);
}
// External string.
BIND(&if_isexternal);
var_is_external_.Bind(Int32Constant(1));
Goto(&out);
BIND(&out);
return CAST(var_string_.value());
}
TNode<RawPtrT> ToDirectStringAssembler::TryToSequential(
StringPointerKind ptr_kind, Label* if_bailout) {
CHECK(ptr_kind == PTR_TO_DATA || ptr_kind == PTR_TO_STRING);
TVARIABLE(RawPtrT, var_result);
Label out(this), if_issequential(this), if_isexternal(this, Label::kDeferred);
Branch(is_external(), &if_isexternal, &if_issequential);
BIND(&if_issequential);
{
STATIC_ASSERT(SeqOneByteString::kHeaderSize ==
SeqTwoByteString::kHeaderSize);
TNode<IntPtrT> result = BitcastTaggedToWord(var_string_.value());
if (ptr_kind == PTR_TO_DATA) {
result = IntPtrAdd(result, IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag));
}
var_result = ReinterpretCast<RawPtrT>(result);
Goto(&out);
}
BIND(&if_isexternal);
{
GotoIf(IsUncachedExternalStringInstanceType(var_instance_type_.value()),
if_bailout);
TNode<String> string = CAST(var_string_.value());
TNode<IntPtrT> result =
LoadObjectField<IntPtrT>(string, ExternalString::kResourceDataOffset);
if (ptr_kind == PTR_TO_STRING) {
result = IntPtrSub(result, IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag));
}
var_result = ReinterpretCast<RawPtrT>(result);
Goto(&out);
}
BIND(&out);
return var_result.value();
}
void CodeStubAssembler::BranchIfCanDerefIndirectString(Node* string,
Node* instance_type,
Label* can_deref,
Label* cannot_deref) {
CSA_ASSERT(this, IsString(string));
Node* representation =
Word32And(instance_type, Int32Constant(kStringRepresentationMask));
GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), can_deref);
GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)),
cannot_deref);
// Cons string.
Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
GotoIf(IsEmptyString(rhs), can_deref);
Goto(cannot_deref);
}
Node* CodeStubAssembler::DerefIndirectString(TNode<String> string,
TNode<Int32T> instance_type,
Label* cannot_deref) {
Label deref(this);
BranchIfCanDerefIndirectString(string, instance_type, &deref, cannot_deref);
BIND(&deref);
STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
static_cast<int>(ConsString::kFirstOffset));
return LoadObjectField(string, ThinString::kActualOffset);
}
void CodeStubAssembler::DerefIndirectString(Variable* var_string,
Node* instance_type) {
#ifdef DEBUG
Label can_deref(this), cannot_deref(this);
BranchIfCanDerefIndirectString(var_string->value(), instance_type, &can_deref,
&cannot_deref);
BIND(&cannot_deref);
DebugBreak(); // Should be able to dereference string.
Goto(&can_deref);
BIND(&can_deref);
#endif // DEBUG
STATIC_ASSERT(static_cast<int>(ThinString::kActualOffset) ==
static_cast<int>(ConsString::kFirstOffset));
var_string->Bind(
LoadObjectField(var_string->value(), ThinString::kActualOffset));
}
void CodeStubAssembler::MaybeDerefIndirectString(Variable* var_string,
Node* instance_type,
Label* did_deref,
Label* cannot_deref) {
Label deref(this);
BranchIfCanDerefIndirectString(var_string->value(), instance_type, &deref,
cannot_deref);
BIND(&deref);
{
DerefIndirectString(var_string, instance_type);
Goto(did_deref);
}
}
void CodeStubAssembler::MaybeDerefIndirectStrings(Variable* var_left,
Node* left_instance_type,
Variable* var_right,
Node* right_instance_type,
Label* did_something) {
Label did_nothing_left(this), did_something_left(this),
didnt_do_anything(this);
MaybeDerefIndirectString(var_left, left_instance_type, &did_something_left,
&did_nothing_left);
BIND(&did_something_left);
{
MaybeDerefIndirectString(var_right, right_instance_type, did_something,
did_something);
}
BIND(&did_nothing_left);
{
MaybeDerefIndirectString(var_right, right_instance_type, did_something,
&didnt_do_anything);
}
BIND(&didnt_do_anything);
// Fall through if neither string was an indirect string.
}
TNode<String> CodeStubAssembler::StringAdd(Node* context, TNode<String> left,
TNode<String> right) {
TVARIABLE(String, result);
Label check_right(this), runtime(this, Label::kDeferred), cons(this),
done(this, &result), done_native(this, &result);
Counters* counters = isolate()->counters();
TNode<Uint32T> left_length = LoadStringLengthAsWord32(left);
GotoIfNot(Word32Equal(left_length, Uint32Constant(0)), &check_right);
result = right;
Goto(&done_native);
BIND(&check_right);
TNode<Uint32T> right_length = LoadStringLengthAsWord32(right);
GotoIfNot(Word32Equal(right_length, Uint32Constant(0)), &cons);
result = left;
Goto(&done_native);
BIND(&cons);
{
TNode<Uint32T> new_length = Uint32Add(left_length, right_length);
// If new length is greater than String::kMaxLength, goto runtime to
// throw. Note: we also need to invalidate the string length protector, so
// can't just throw here directly.
GotoIf(Uint32GreaterThan(new_length, Uint32Constant(String::kMaxLength)),
&runtime);
TVARIABLE(String, var_left, left);
TVARIABLE(String, var_right, right);
Variable* input_vars[2] = {&var_left, &var_right};
Label non_cons(this, 2, input_vars);
Label slow(this, Label::kDeferred);
GotoIf(Uint32LessThan(new_length, Uint32Constant(ConsString::kMinLength)),
&non_cons);
result =
AllocateConsString(new_length, var_left.value(), var_right.value());
Goto(&done_native);
BIND(&non_cons);
Comment("Full string concatenate");
Node* left_instance_type = LoadInstanceType(var_left.value());
Node* right_instance_type = LoadInstanceType(var_right.value());
// Compute intersection and difference of instance types.
Node* ored_instance_types =
Word32Or(left_instance_type, right_instance_type);
Node* xored_instance_types =
Word32Xor(left_instance_type, right_instance_type);
// Check if both strings have the same encoding and both are sequential.
GotoIf(IsSetWord32(xored_instance_types, kStringEncodingMask), &runtime);
GotoIf(IsSetWord32(ored_instance_types, kStringRepresentationMask), &slow);
TNode<IntPtrT> word_left_length = Signed(ChangeUint32ToWord(left_length));
TNode<IntPtrT> word_right_length = Signed(ChangeUint32ToWord(right_length));
Label two_byte(this);
GotoIf(Word32Equal(Word32And(ored_instance_types,
Int32Constant(kStringEncodingMask)),
Int32Constant(kTwoByteStringTag)),
&two_byte);
// One-byte sequential string case
result = AllocateSeqOneByteString(context, new_length);
CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
IntPtrConstant(0), word_left_length,
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
word_left_length, word_right_length,
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
Goto(&done_native);
BIND(&two_byte);
{
// Two-byte sequential string case
result = AllocateSeqTwoByteString(context, new_length);
CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0),
IntPtrConstant(0), word_left_length,
String::TWO_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0),
word_left_length, word_right_length,
String::TWO_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
Goto(&done_native);
}
BIND(&slow);
{
// Try to unwrap indirect strings, restart the above attempt on success.
MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right,
right_instance_type, &non_cons);
Goto(&runtime);
}
}
BIND(&runtime);
{
result = CAST(CallRuntime(Runtime::kStringAdd, context, left, right));
Goto(&done);
}
BIND(&done_native);
{
IncrementCounter(counters->string_add_native(), 1);
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<String> CodeStubAssembler::StringFromSingleCodePoint(
TNode<Int32T> codepoint, UnicodeEncoding encoding) {
VARIABLE(var_result, MachineRepresentation::kTagged, EmptyStringConstant());
Label if_isword16(this), if_isword32(this), return_result(this);
Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16,
&if_isword32);
BIND(&if_isword16);
{
var_result.Bind(StringFromSingleCharCode(codepoint));
Goto(&return_result);
}
BIND(&if_isword32);
{
switch (encoding) {
case UnicodeEncoding::UTF16:
break;
case UnicodeEncoding::UTF32: {
// Convert UTF32 to UTF16 code units, and store as a 32 bit word.
Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10));
// lead = (codepoint >> 10) + LEAD_OFFSET
Node* lead =
Int32Add(Word32Shr(codepoint, Int32Constant(10)), lead_offset);
// trail = (codepoint & 0x3FF) + 0xDC00;
Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)),
Int32Constant(0xDC00));
// codpoint = (trail << 16) | lead;
codepoint = Signed(Word32Or(Word32Shl(trail, Int32Constant(16)), lead));
break;
}
}
Node* value = AllocateSeqTwoByteString(2);
StoreNoWriteBarrier(
MachineRepresentation::kWord32, value,
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag),
codepoint);
var_result.Bind(value);
Goto(&return_result);
}
BIND(&return_result);
return CAST(var_result.value());
}
TNode<Number> CodeStubAssembler::StringToNumber(TNode<String> input) {
Label runtime(this, Label::kDeferred);
Label end(this);
TVARIABLE(Number, var_result);
// Check if string has a cached array index.
TNode<Uint32T> hash = LoadNameHashField(input);
GotoIf(IsSetWord32(hash, Name::kDoesNotContainCachedArrayIndexMask),
&runtime);
var_result =
SmiTag(Signed(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash)));
Goto(&end);
BIND(&runtime);
{
var_result =
CAST(CallRuntime(Runtime::kStringToNumber, NoContextConstant(), input));
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<String> CodeStubAssembler::NumberToString(TNode<Number> input) {
TVARIABLE(String, result);
TVARIABLE(Smi, smi_input);
Label runtime(this, Label::kDeferred), if_smi(this), if_heap_number(this),
done(this, &result);
// Load the number string cache.
Node* number_string_cache = LoadRoot(RootIndex::kNumberStringCache);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
// TODO(ishell): cleanup mask handling.
Node* mask =
BitcastTaggedToWord(LoadFixedArrayBaseLength(number_string_cache));
TNode<IntPtrT> one = IntPtrConstant(1);
mask = IntPtrSub(mask, one);
GotoIfNot(TaggedIsSmi(input), &if_heap_number);
smi_input = CAST(input);
Goto(&if_smi);
BIND(&if_heap_number);
{
TNode<HeapNumber> heap_number_input = CAST(input);
// Try normalizing the HeapNumber.
TryHeapNumberToSmi(heap_number_input, smi_input, &if_smi);
// Make a hash from the two 32-bit values of the double.
TNode<Int32T> low =
LoadObjectField<Int32T>(heap_number_input, HeapNumber::kValueOffset);
TNode<Int32T> high = LoadObjectField<Int32T>(
heap_number_input, HeapNumber::kValueOffset + kIntSize);
TNode<Word32T> hash = Word32Xor(low, high);
TNode<WordT> word_hash = WordShl(ChangeInt32ToIntPtr(hash), one);
TNode<WordT> index =
WordAnd(word_hash, WordSar(mask, SmiShiftBitsConstant()));
// Cache entry's key must be a heap number
Node* number_key =
UnsafeLoadFixedArrayElement(CAST(number_string_cache), index);
GotoIf(TaggedIsSmi(number_key), &runtime);
GotoIfNot(IsHeapNumber(number_key), &runtime);
// Cache entry's key must match the heap number value we're looking for.
Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset,
MachineType::Int32());
Node* high_compare = LoadObjectField(
number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32());
GotoIfNot(Word32Equal(low, low_compare), &runtime);
GotoIfNot(Word32Equal(high, high_compare), &runtime);
// Heap number match, return value from cache entry.
result = CAST(UnsafeLoadFixedArrayElement(CAST(number_string_cache), index,
kTaggedSize));
Goto(&done);
}
BIND(&if_smi);
{
// Load the smi key, make sure it matches the smi we're looking for.
Node* smi_index = BitcastWordToTagged(
WordAnd(WordShl(BitcastTaggedToWord(smi_input.value()), one), mask));
Node* smi_key = UnsafeLoadFixedArrayElement(CAST(number_string_cache),
smi_index, 0, SMI_PARAMETERS);
GotoIf(WordNotEqual(smi_key, smi_input.value()), &runtime);
// Smi match, return value from cache entry.
result = CAST(UnsafeLoadFixedArrayElement(
CAST(number_string_cache), smi_index, kTaggedSize, SMI_PARAMETERS));
Goto(&done);
}
BIND(&runtime);
{
// No cache entry, go to the runtime.
result =
CAST(CallRuntime(Runtime::kNumberToString, NoContextConstant(), input));
Goto(&done);
}
BIND(&done);
return result.value();
}
Node* CodeStubAssembler::NonNumberToNumberOrNumeric(
Node* context, Node* input, Object::Conversion mode,
BigIntHandling bigint_handling) {
CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input)));
CSA_ASSERT(this, Word32BinaryNot(IsHeapNumber(input)));
// We might need to loop once here due to ToPrimitive conversions.
VARIABLE(var_input, MachineRepresentation::kTagged, input);
VARIABLE(var_result, MachineRepresentation::kTagged);
Label loop(this, &var_input);
Label end(this);
Goto(&loop);
BIND(&loop);
{
// Load the current {input} value (known to be a HeapObject).
Node* input = var_input.value();
// Dispatch on the {input} instance type.
Node* input_instance_type = LoadInstanceType(input);
Label if_inputisstring(this), if_inputisoddball(this),
if_inputisbigint(this), if_inputisreceiver(this, Label::kDeferred),
if_inputisother(this, Label::kDeferred);
GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring);
GotoIf(IsBigIntInstanceType(input_instance_type), &if_inputisbigint);
GotoIf(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE),
&if_inputisoddball);
Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver,
&if_inputisother);
BIND(&if_inputisstring);
{
// The {input} is a String, use the fast stub to convert it to a Number.
TNode<String> string_input = CAST(input);
var_result.Bind(StringToNumber(string_input));
Goto(&end);
}
BIND(&if_inputisbigint);
if (mode == Object::Conversion::kToNumeric) {
var_result.Bind(input);
Goto(&end);
} else {
DCHECK_EQ(mode, Object::Conversion::kToNumber);
if (bigint_handling == BigIntHandling::kThrow) {
Goto(&if_inputisother);
} else {
DCHECK_EQ(bigint_handling, BigIntHandling::kConvertToNumber);
var_result.Bind(CallRuntime(Runtime::kBigIntToNumber, context, input));
Goto(&end);
}
}
BIND(&if_inputisoddball);
{
// The {input} is an Oddball, we just need to load the Number value of it.
var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset));
Goto(&end);
}
BIND(&if_inputisreceiver);
{
// The {input} is a JSReceiver, we need to convert it to a Primitive first
// using the ToPrimitive type conversion, preferably yielding a Number.
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
isolate(), ToPrimitiveHint::kNumber);
Node* result = CallStub(callable, context, input);
// Check if the {result} is already a Number/Numeric.
Label if_done(this), if_notdone(this);
Branch(mode == Object::Conversion::kToNumber ? IsNumber(result)
: IsNumeric(result),
&if_done, &if_notdone);
BIND(&if_done);
{
// The ToPrimitive conversion already gave us a Number/Numeric, so we're
// done.
var_result.Bind(result);
Goto(&end);
}
BIND(&if_notdone);
{
// We now have a Primitive {result}, but it's not yet a Number/Numeric.
var_input.Bind(result);
Goto(&loop);
}
}
BIND(&if_inputisother);
{
// The {input} is something else (e.g. Symbol), let the runtime figure
// out the correct exception.
// Note: We cannot tail call to the runtime here, as js-to-wasm
// trampolines also use this code currently, and they declare all
// outgoing parameters as untagged, while we would push a tagged
// object here.
auto function_id = mode == Object::Conversion::kToNumber
? Runtime::kToNumber
: Runtime::kToNumeric;
var_result.Bind(CallRuntime(function_id, context, input));
Goto(&end);
}
}
BIND(&end);
if (mode == Object::Conversion::kToNumeric) {
CSA_ASSERT(this, IsNumeric(var_result.value()));
} else {
DCHECK_EQ(mode, Object::Conversion::kToNumber);
CSA_ASSERT(this, IsNumber(var_result.value()));
}
return var_result.value();
}
TNode<Number> CodeStubAssembler::NonNumberToNumber(
SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
BigIntHandling bigint_handling) {
return CAST(NonNumberToNumberOrNumeric(
context, input, Object::Conversion::kToNumber, bigint_handling));
}
TNode<Numeric> CodeStubAssembler::NonNumberToNumeric(
SloppyTNode<Context> context, SloppyTNode<HeapObject> input) {
Node* result = NonNumberToNumberOrNumeric(context, input,
Object::Conversion::kToNumeric);
CSA_SLOW_ASSERT(this, IsNumeric(result));
return UncheckedCast<Numeric>(result);
}
TNode<Number> CodeStubAssembler::ToNumber_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
TVARIABLE(Number, var_result);
Label end(this), not_smi(this, Label::kDeferred);
GotoIfNot(TaggedIsSmi(input), &not_smi);
var_result = CAST(input);
Goto(&end);
BIND(&not_smi);
{
var_result =
Select<Number>(IsHeapNumber(CAST(input)), [=] { return CAST(input); },
[=] {
return CAST(CallBuiltin(Builtins::kNonNumberToNumber,
context, input));
});
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<Number> CodeStubAssembler::ToNumber(SloppyTNode<Context> context,
SloppyTNode<Object> input,
BigIntHandling bigint_handling) {
TVARIABLE(Number, var_result);
Label end(this);
Label not_smi(this, Label::kDeferred);
GotoIfNot(TaggedIsSmi(input), &not_smi);
TNode<Smi> input_smi = CAST(input);
var_result = input_smi;
Goto(&end);
BIND(&not_smi);
{
Label not_heap_number(this, Label::kDeferred);
TNode<HeapObject> input_ho = CAST(input);
GotoIfNot(IsHeapNumber(input_ho), &not_heap_number);
TNode<HeapNumber> input_hn = CAST(input_ho);
var_result = input_hn;
Goto(&end);
BIND(&not_heap_number);
{
var_result = NonNumberToNumber(context, input_ho, bigint_handling);
Goto(&end);
}
}
BIND(&end);
return var_result.value();
}
TNode<BigInt> CodeStubAssembler::ToBigInt(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
TVARIABLE(BigInt, var_result);
Label if_bigint(this), done(this), if_throw(this);
GotoIf(TaggedIsSmi(input), &if_throw);
GotoIf(IsBigInt(CAST(input)), &if_bigint);
var_result = CAST(CallRuntime(Runtime::kToBigInt, context, input));
Goto(&done);
BIND(&if_bigint);
var_result = CAST(input);
Goto(&done);
BIND(&if_throw);
ThrowTypeError(context, MessageTemplate::kBigIntFromObject, input);
BIND(&done);
return var_result.value();
}
void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric) {
TaggedToNumeric(context, value, done, var_numeric, nullptr);
}
void CodeStubAssembler::TaggedToNumericWithFeedback(Node* context, Node* value,
Label* done,
Variable* var_numeric,
Variable* var_feedback) {
DCHECK_NOT_NULL(var_feedback);
TaggedToNumeric(context, value, done, var_numeric, var_feedback);
}
void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric,
Variable* var_feedback) {
var_numeric->Bind(value);
Label if_smi(this), if_heapnumber(this), if_bigint(this), if_oddball(this);
GotoIf(TaggedIsSmi(value), &if_smi);
Node* map = LoadMap(value);
GotoIf(IsHeapNumberMap(map), &if_heapnumber);
Node* instance_type = LoadMapInstanceType(map);
GotoIf(IsBigIntInstanceType(instance_type), &if_bigint);
// {value} is not a Numeric yet.
GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball);
var_numeric->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context, value));
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny);
Goto(done);
BIND(&if_smi);
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall);
Goto(done);
BIND(&if_heapnumber);
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumber);
Goto(done);
BIND(&if_bigint);
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kBigInt);
Goto(done);
BIND(&if_oddball);
OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumberOrOddball);
var_numeric->Bind(LoadObjectField(value, Oddball::kToNumberOffset));
Goto(done);
}
// ES#sec-touint32
TNode<Number> CodeStubAssembler::ToUint32(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
Node* const float_zero = Float64Constant(0.0);
Node* const float_two_32 = Float64Constant(static_cast<double>(1ULL << 32));
Label out(this);
VARIABLE(var_result, MachineRepresentation::kTagged, input);
// Early exit for positive smis.
{
// TODO(jgruber): This branch and the recheck below can be removed once we
// have a ToNumber with multiple exits.
Label next(this, Label::kDeferred);
Branch(TaggedIsPositiveSmi(input), &out, &next);
BIND(&next);
}
Node* const number = ToNumber(context, input);
var_result.Bind(number);
// Perhaps we have a positive smi now.
{
Label next(this, Label::kDeferred);
Branch(TaggedIsPositiveSmi(number), &out, &next);
BIND(&next);
}
Label if_isnegativesmi(this), if_isheapnumber(this);
Branch(TaggedIsSmi(number), &if_isnegativesmi, &if_isheapnumber);
BIND(&if_isnegativesmi);
{
Node* const uint32_value = SmiToInt32(number);
Node* float64_value = ChangeUint32ToFloat64(uint32_value);
var_result.Bind(AllocateHeapNumberWithValue(float64_value));
Goto(&out);
}
BIND(&if_isheapnumber);
{
Label return_zero(this);
Node* const value = LoadHeapNumberValue(number);
{
// +-0.
Label next(this);
Branch(Float64Equal(value, float_zero), &return_zero, &next);
BIND(&next);
}
{
// NaN.
Label next(this);
Branch(Float64Equal(value, value), &next, &return_zero);
BIND(&next);
}
{
// +Infinity.
Label next(this);
Node* const positive_infinity =
Float64Constant(std::numeric_limits<double>::infinity());
Branch(Float64Equal(value, positive_infinity), &return_zero, &next);
BIND(&next);
}
{
// -Infinity.
Label next(this);
Node* const negative_infinity =
Float64Constant(-1.0 * std::numeric_limits<double>::infinity());
Branch(Float64Equal(value, negative_infinity), &return_zero, &next);
BIND(&next);
}
// * Let int be the mathematical value that is the same sign as number and
// whose magnitude is floor(abs(number)).
// * Let int32bit be int modulo 2^32.
// * Return int32bit.
{
Node* x = Float64Trunc(value);
x = Float64Mod(x, float_two_32);
x = Float64Add(x, float_two_32);
x = Float64Mod(x, float_two_32);
Node* const result = ChangeFloat64ToTagged(x);
var_result.Bind(result);
Goto(&out);
}
BIND(&return_zero);
{
var_result.Bind(SmiConstant(0));
Goto(&out);
}
}
BIND(&out);
return CAST(var_result.value());
}
TNode<String> CodeStubAssembler::ToString_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
VARIABLE(var_result, MachineRepresentation::kTagged, input);
Label stub_call(this, Label::kDeferred), out(this);
GotoIf(TaggedIsSmi(input), &stub_call);
Branch(IsString(CAST(input)), &out, &stub_call);
BIND(&stub_call);
var_result.Bind(CallBuiltin(Builtins::kToString, context, input));
Goto(&out);
BIND(&out);
return CAST(var_result.value());
}
Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) {
Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this);
VARIABLE(result, MachineRepresentation::kTagged);
Label done(this, &result);
BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
BIND(&if_isreceiver);
{
// Convert {input} to a primitive first passing Number hint.
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
result.Bind(CallStub(callable, context, input));
Goto(&done);
}
BIND(&if_isnotreceiver);
{
result.Bind(input);
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<JSReceiver> CodeStubAssembler::ToObject(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
return CAST(CallBuiltin(Builtins::kToObject, context, input));
}
TNode<JSReceiver> CodeStubAssembler::ToObject_Inline(TNode<Context> context,
TNode<Object> input) {
TVARIABLE(JSReceiver, result);
Label if_isreceiver(this), if_isnotreceiver(this, Label::kDeferred);
Label done(this);
BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
BIND(&if_isreceiver);
{
result = CAST(input);
Goto(&done);
}
BIND(&if_isnotreceiver);
{
result = ToObject(context, input);
Goto(&done);
}
BIND(&done);
return result.value();
}
TNode<Smi> CodeStubAssembler::ToSmiIndex(TNode<Context> context,
TNode<Object> input,
Label* range_error) {
TVARIABLE(Smi, result);
Label check_undefined(this), return_zero(this), defined(this),
negative_check(this), done(this);
GotoIfNot(TaggedIsSmi(input), &check_undefined);
result = CAST(input);
Goto(&negative_check);
BIND(&check_undefined);
Branch(IsUndefined(input), &return_zero, &defined);
BIND(&defined);
TNode<Number> integer_input =
CAST(CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input));
GotoIfNot(TaggedIsSmi(integer_input), range_error);
result = CAST(integer_input);
Goto(&negative_check);
BIND(&negative_check);
Branch(SmiLessThan(result.value(), SmiConstant(0)), range_error, &done);
BIND(&return_zero);
result = SmiConstant(0);
Goto(&done);
BIND(&done);
return result.value();
}
TNode<Smi> CodeStubAssembler::ToSmiLength(TNode<Context> context,
TNode<Object> input,
Label* range_error) {
TVARIABLE(Smi, result);
Label to_integer(this), negative_check(this),
heap_number_negative_check(this), return_zero(this), done(this);
GotoIfNot(TaggedIsSmi(input), &to_integer);
result = CAST(input);
Goto(&negative_check);
BIND(&to_integer);
{
TNode<Number> integer_input = CAST(
CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input));
GotoIfNot(TaggedIsSmi(integer_input), &heap_number_negative_check);
result = CAST(integer_input);
Goto(&negative_check);
// integer_input can still be a negative HeapNumber here.
BIND(&heap_number_negative_check);
TNode<HeapNumber> heap_number_input = CAST(integer_input);
Branch(IsTrue(CallBuiltin(Builtins::kLessThan, context, heap_number_input,
SmiConstant(0))),
&return_zero, range_error);
}
BIND(&negative_check);
Branch(SmiLessThan(result.value(), SmiConstant(0)), &return_zero, &done);
BIND(&return_zero);
result = SmiConstant(0);
Goto(&done);
BIND(&done);
return result.value();
}
TNode<Number> CodeStubAssembler::ToLength_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input) {
TNode<Smi> smi_zero = SmiConstant(0);
return Select<Number>(
TaggedIsSmi(input), [=] { return SmiMax(CAST(input), smi_zero); },
[=] { return CAST(CallBuiltin(Builtins::kToLength, context, input)); });
}
TNode<Number> CodeStubAssembler::ToInteger_Inline(
SloppyTNode<Context> context, SloppyTNode<Object> input,
ToIntegerTruncationMode mode) {
Builtins::Name builtin = (mode == kNoTruncation)
? Builtins::kToInteger
: Builtins::kToInteger_TruncateMinusZero;
return Select<Number>(
TaggedIsSmi(input), [=] { return CAST(input); },
[=] { return CAST(CallBuiltin(builtin, context, input)); });
}
TNode<Number> CodeStubAssembler::ToInteger(SloppyTNode<Context> context,
SloppyTNode<Object> input,
ToIntegerTruncationMode mode) {
// We might need to loop once for ToNumber conversion.
TVARIABLE(Object, var_arg, input);
Label loop(this, &var_arg), out(this);
Goto(&loop);
BIND(&loop);
{
// Shared entry points.
Label return_zero(this, Label::kDeferred);
// Load the current {arg} value.
TNode<Object> arg = var_arg.value();
// Check if {arg} is a Smi.
GotoIf(TaggedIsSmi(arg), &out);
// Check if {arg} is a HeapNumber.
Label if_argisheapnumber(this),
if_argisnotheapnumber(this, Label::kDeferred);
Branch(IsHeapNumber(CAST(arg)), &if_argisheapnumber,
&if_argisnotheapnumber);
BIND(&if_argisheapnumber);
{
TNode<HeapNumber> arg_hn = CAST(arg);
// Load the floating-point value of {arg}.
Node* arg_value = LoadHeapNumberValue(arg_hn);
// Check if {arg} is NaN.
GotoIfNot(Float64Equal(arg_value, arg_value), &return_zero);
// Truncate {arg} towards zero.
TNode<Float64T> value = Float64Trunc(arg_value);
if (mode == kTruncateMinusZero) {
// Truncate -0.0 to 0.
GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero);
}
var_arg = ChangeFloat64ToTagged(value);
Goto(&out);
}
BIND(&if_argisnotheapnumber);
{
// Need to convert {arg} to a Number first.
var_arg = UncheckedCast<Object>(
CallBuiltin(Builtins::kNonNumberToNumber, context, arg));
Goto(&loop);
}
BIND(&return_zero);
var_arg = SmiConstant(0);
Goto(&out);
}
BIND(&out);
if (mode == kTruncateMinusZero) {
CSA_ASSERT(this, IsNumberNormalized(CAST(var_arg.value())));
}
return CAST(var_arg.value());
}
TNode<Uint32T> CodeStubAssembler::DecodeWord32(SloppyTNode<Word32T> word32,
uint32_t shift, uint32_t mask) {
return UncheckedCast<Uint32T>(Word32Shr(
Word32And(word32, Int32Constant(mask)), static_cast<int>(shift)));
}
TNode<UintPtrT> CodeStubAssembler::DecodeWord(SloppyTNode<WordT> word,
uint32_t shift, uint32_t mask) {
return Unsigned(
WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift)));
}
TNode<WordT> CodeStubAssembler::UpdateWord(TNode<WordT> word,
TNode<WordT> value, uint32_t shift,
uint32_t mask) {
TNode<WordT> encoded_value = WordShl(value, static_cast<int>(shift));
TNode<IntPtrT> inverted_mask = IntPtrConstant(~static_cast<intptr_t>(mask));
// Ensure the {value} fits fully in the mask.
CSA_ASSERT(this, WordEqual(WordAnd(encoded_value, inverted_mask),
IntPtrConstant(0)));
return WordOr(WordAnd(word, inverted_mask), encoded_value);
}
void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address =
ExternalConstant(ExternalReference::Create(counter));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address,
Int32Constant(value));
}
}
void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) {
DCHECK_GT(delta, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address =
ExternalConstant(ExternalReference::Create(counter));
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
Node* value = Load(MachineType::Int32(), counter_address);
value = Int32Add(value, Int32Constant(delta));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
}
}
void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) {
DCHECK_GT(delta, 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address =
ExternalConstant(ExternalReference::Create(counter));
// This operation has to be exactly 32-bit wide in case the external
// reference table redirects the counter to a uint32_t dummy_stats_counter_
// field.
Node* value = Load(MachineType::Int32(), counter_address);
value = Int32Sub(value, Int32Constant(delta));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
}
}
void CodeStubAssembler::Increment(Variable* variable, int value,
ParameterMode mode) {
DCHECK_IMPLIES(mode == INTPTR_PARAMETERS,
variable->rep() == MachineType::PointerRepresentation());
DCHECK_IMPLIES(mode == SMI_PARAMETERS, CanBeTaggedSigned(variable->rep()));
variable->Bind(IntPtrOrSmiAdd(variable->value(),
IntPtrOrSmiConstant(value, mode), mode));
}
void CodeStubAssembler::Use(Label* label) {
GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label);
}
void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
Variable* var_index, Label* if_keyisunique,
Variable* var_unique, Label* if_bailout,
Label* if_notinternalized) {
DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep());
DCHECK_EQ(MachineRepresentation::kTagged, var_unique->rep());
Comment("TryToName");
Label if_hascachedindex(this), if_keyisnotindex(this), if_thinstring(this),
if_keyisother(this, Label::kDeferred);
// Handle Smi and HeapNumber keys.
var_index->Bind(TryToIntptr(key, &if_keyisnotindex));
Goto(if_keyisindex);
BIND(&if_keyisnotindex);
Node* key_map = LoadMap(key);
var_unique->Bind(key);
// Symbols are unique.
GotoIf(IsSymbolMap(key_map), if_keyisunique);
Node* key_instance_type = LoadMapInstanceType(key_map);
// Miss if |key| is not a String.
STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
GotoIfNot(IsStringInstanceType(key_instance_type), &if_keyisother);
// |key| is a String. Check if it has a cached array index.
Node* hash = LoadNameHashField(key);
GotoIf(IsClearWord32(hash, Name::kDoesNotContainCachedArrayIndexMask),
&if_hascachedindex);
// No cached array index. If the string knows that it contains an index,
// then it must be an uncacheable index. Handle this case in the runtime.
GotoIf(IsClearWord32(hash, Name::kIsNotArrayIndexMask), if_bailout);
// Check if we have a ThinString.
GotoIf(InstanceTypeEqual(key_instance_type, THIN_STRING_TYPE),
&if_thinstring);
GotoIf(InstanceTypeEqual(key_instance_type, THIN_ONE_BYTE_STRING_TYPE),
&if_thinstring);
// Finally, check if |key| is internalized.
STATIC_ASSERT(kNotInternalizedTag != 0);
GotoIf(IsSetWord32(key_instance_type, kIsNotInternalizedMask),
if_notinternalized != nullptr ? if_notinternalized : if_bailout);
Goto(if_keyisunique);
BIND(&if_thinstring);
var_unique->Bind(LoadObjectField(key, ThinString::kActualOffset));
Goto(if_keyisunique);
BIND(&if_hascachedindex);
var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash));
Goto(if_keyisindex);
BIND(&if_keyisother);
GotoIfNot(InstanceTypeEqual(key_instance_type, ODDBALL_TYPE), if_bailout);
var_unique->Bind(LoadObjectField(key, Oddball::kToStringOffset));
Goto(if_keyisunique);
}
void CodeStubAssembler::TryInternalizeString(
Node* string, Label* if_index, Variable* var_index, Label* if_internalized,
Variable* var_internalized, Label* if_not_internalized, Label* if_bailout) {
DCHECK(var_index->rep() == MachineType::PointerRepresentation());
DCHECK_EQ(var_internalized->rep(), MachineRepresentation::kTagged);
CSA_SLOW_ASSERT(this, IsString(string));
Node* function =
ExternalConstant(ExternalReference::try_internalize_string_function());
Node* const isolate_ptr =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* result =
CallCFunction(function, MachineType::AnyTagged(),
std::make_pair(MachineType::Pointer(), isolate_ptr),
std::make_pair(MachineType::AnyTagged(), string));
Label internalized(this);
GotoIf(TaggedIsNotSmi(result), &internalized);
Node* word_result = SmiUntag(result);
GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kNotFound)),
if_not_internalized);
GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kUnsupported)),
if_bailout);
var_index->Bind(word_result);
Goto(if_index);
BIND(&internalized);
var_internalized->Bind(result);
Goto(if_internalized);
}
template <typename Dictionary>
TNode<IntPtrT> CodeStubAssembler::EntryToIndex(TNode<IntPtrT> entry,
int field_index) {
TNode<IntPtrT> entry_index =
IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize));
return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex +
field_index));
}
TNode<MaybeObject> CodeStubAssembler::LoadDescriptorArrayElement(
TNode<DescriptorArray> object, Node* index, int additional_offset) {
return LoadArrayElement(object, DescriptorArray::kHeaderSize, index,
additional_offset);
}
TNode<Name> CodeStubAssembler::LoadKeyByKeyIndex(
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
return CAST(LoadDescriptorArrayElement(container, key_index, 0));
}
TNode<Uint32T> CodeStubAssembler::LoadDetailsByKeyIndex(
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
const int kKeyToDetails =
DescriptorArray::ToDetailsIndex(0) - DescriptorArray::ToKeyIndex(0);
return Unsigned(
LoadAndUntagToWord32ArrayElement(container, DescriptorArray::kHeaderSize,
key_index, kKeyToDetails * kTaggedSize));
}
TNode<Object> CodeStubAssembler::LoadValueByKeyIndex(
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
const int kKeyToValue =
DescriptorArray::ToValueIndex(0) - DescriptorArray::ToKeyIndex(0);
return CAST(LoadDescriptorArrayElement(container, key_index,
kKeyToValue * kTaggedSize));
}
TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByKeyIndex(
TNode<DescriptorArray> container, TNode<IntPtrT> key_index) {
const int kKeyToValue =
DescriptorArray::ToValueIndex(0) - DescriptorArray::ToKeyIndex(0);
return LoadDescriptorArrayElement(container, key_index,
kKeyToValue * kTaggedSize);
}
TNode<IntPtrT> CodeStubAssembler::DescriptorEntryToIndex(
TNode<IntPtrT> descriptor_entry) {
return IntPtrMul(descriptor_entry,
IntPtrConstant(DescriptorArray::kEntrySize));
}
TNode<Name> CodeStubAssembler::LoadKeyByDescriptorEntry(
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
return CAST(LoadDescriptorArrayElement(
container, DescriptorEntryToIndex(descriptor_entry),
DescriptorArray::ToKeyIndex(0) * kTaggedSize));
}
TNode<Name> CodeStubAssembler::LoadKeyByDescriptorEntry(
TNode<DescriptorArray> container, int descriptor_entry) {
return CAST(LoadDescriptorArrayElement(
container, IntPtrConstant(0),
DescriptorArray::ToKeyIndex(descriptor_entry) * kTaggedSize));
}
TNode<Uint32T> CodeStubAssembler::LoadDetailsByDescriptorEntry(
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
return Unsigned(LoadAndUntagToWord32ArrayElement(
container, DescriptorArray::kHeaderSize,
DescriptorEntryToIndex(descriptor_entry),
DescriptorArray::ToDetailsIndex(0) * kTaggedSize));
}
TNode<Uint32T> CodeStubAssembler::LoadDetailsByDescriptorEntry(
TNode<DescriptorArray> container, int descriptor_entry) {
return Unsigned(LoadAndUntagToWord32ArrayElement(
container, DescriptorArray::kHeaderSize, IntPtrConstant(0),
DescriptorArray::ToDetailsIndex(descriptor_entry) * kTaggedSize));
}
TNode<Object> CodeStubAssembler::LoadValueByDescriptorEntry(
TNode<DescriptorArray> container, int descriptor_entry) {
return CAST(LoadDescriptorArrayElement(
container, IntPtrConstant(0),
DescriptorArray::ToValueIndex(descriptor_entry) * kTaggedSize));
}
TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByDescriptorEntry(
TNode<DescriptorArray> container, TNode<IntPtrT> descriptor_entry) {
return LoadDescriptorArrayElement(
container, DescriptorEntryToIndex(descriptor_entry),
DescriptorArray::ToValueIndex(0) * kTaggedSize);
}
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NameDictionary>(
TNode<IntPtrT>, int);
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<GlobalDictionary>(
TNode<IntPtrT>, int);
template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NumberDictionary>(
TNode<IntPtrT>, int);
// This must be kept in sync with HashTableBase::ComputeCapacity().
TNode<IntPtrT> CodeStubAssembler::HashTableComputeCapacity(
TNode<IntPtrT> at_least_space_for) {
TNode<IntPtrT> capacity = IntPtrRoundUpToPowerOfTwo32(
IntPtrAdd(at_least_space_for, WordShr(at_least_space_for, 1)));
return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity));
}
TNode<IntPtrT> CodeStubAssembler::IntPtrMax(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right) {
intptr_t left_constant;
intptr_t right_constant;
if (ToIntPtrConstant(left, left_constant) &&
ToIntPtrConstant(right, right_constant)) {
return IntPtrConstant(std::max(left_constant, right_constant));
}
return SelectConstant<IntPtrT>(IntPtrGreaterThanOrEqual(left, right), left,
right);
}
TNode<IntPtrT> CodeStubAssembler::IntPtrMin(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right) {
intptr_t left_constant;
intptr_t right_constant;
if (ToIntPtrConstant(left, left_constant) &&
ToIntPtrConstant(right, right_constant)) {
return IntPtrConstant(std::min(left_constant, right_constant));
}
return SelectConstant<IntPtrT>(IntPtrLessThanOrEqual(left, right), left,
right);
}
template <>
TNode<HeapObject> CodeStubAssembler::LoadName<NameDictionary>(
TNode<HeapObject> key) {
CSA_ASSERT(this, Word32Or(IsTheHole(key), IsName(key)));
return key;
}
template <>
TNode<HeapObject> CodeStubAssembler::LoadName<GlobalDictionary>(
TNode<HeapObject> key) {
TNode<PropertyCell> property_cell = CAST(key);
return CAST(LoadObjectField(property_cell, PropertyCell::kNameOffset));
}
template <typename Dictionary>
void CodeStubAssembler::NameDictionaryLookup(
TNode<Dictionary> dictionary, TNode<Name> unique_name, Label* if_found,
TVariable<IntPtrT>* var_name_index, Label* if_not_found, LookupMode mode) {
static_assert(std::is_same<Dictionary, NameDictionary>::value ||
std::is_same<Dictionary, GlobalDictionary>::value,
"Unexpected NameDictionary");
DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
DCHECK_IMPLIES(mode == kFindInsertionIndex, if_found == nullptr);
Comment("NameDictionaryLookup");
CSA_ASSERT(this, IsUniqueName(unique_name));
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<Dictionary>(dictionary));
TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1));
TNode<WordT> hash = ChangeUint32ToWord(LoadNameHash(unique_name));
// See Dictionary::FirstProbe().
TNode<IntPtrT> count = IntPtrConstant(0);
TNode<IntPtrT> entry = Signed(WordAnd(hash, mask));
Node* undefined = UndefinedConstant();
// Appease the variable merging algorithm for "Goto(&loop)" below.
*var_name_index = IntPtrConstant(0);
TVARIABLE(IntPtrT, var_count, count);
TVARIABLE(IntPtrT, var_entry, entry);
Variable* loop_vars[] = {&var_count, &var_entry, var_name_index};
Label loop(this, arraysize(loop_vars), loop_vars);
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> entry = var_entry.value();
TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry);
*var_name_index = index;
TNode<HeapObject> current =
CAST(UnsafeLoadFixedArrayElement(dictionary, index));
GotoIf(WordEqual(current, undefined), if_not_found);
if (mode == kFindExisting) {
current = LoadName<Dictionary>(current);
GotoIf(WordEqual(current, unique_name), if_found);
} else {
DCHECK_EQ(kFindInsertionIndex, mode);
GotoIf(WordEqual(current, TheHoleConstant()), if_not_found);
}
// See Dictionary::NextProbe().
Increment(&var_count);
entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask));
var_entry = entry;
Goto(&loop);
}
}
// Instantiate template methods to workaround GCC compilation issue.
template V8_EXPORT_PRIVATE void
CodeStubAssembler::NameDictionaryLookup<NameDictionary>(TNode<NameDictionary>,
TNode<Name>, Label*,
TVariable<IntPtrT>*,
Label*, LookupMode);
template V8_EXPORT_PRIVATE void CodeStubAssembler::NameDictionaryLookup<
GlobalDictionary>(TNode<GlobalDictionary>, TNode<Name>, Label*,
TVariable<IntPtrT>*, Label*, LookupMode);
Node* CodeStubAssembler::ComputeUnseededHash(Node* key) {
// See v8::internal::ComputeUnseededHash()
Node* hash = TruncateIntPtrToInt32(key);
hash = Int32Add(Word32Xor(hash, Int32Constant(0xFFFFFFFF)),
Word32Shl(hash, Int32Constant(15)));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12)));
hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2)));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4)));
hash = Int32Mul(hash, Int32Constant(2057));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16)));
return Word32And(hash, Int32Constant(0x3FFFFFFF));
}
Node* CodeStubAssembler::ComputeSeededHash(Node* key) {
Node* const function_addr =
ExternalConstant(ExternalReference::compute_integer_hash());
Node* const isolate_ptr =
ExternalConstant(ExternalReference::isolate_address(isolate()));
MachineType type_ptr = MachineType::Pointer();
MachineType type_uint32 = MachineType::Uint32();
Node* const result = CallCFunction(
function_addr, type_uint32, std::make_pair(type_ptr, isolate_ptr),
std::make_pair(type_uint32, TruncateIntPtrToInt32(key)));
return result;
}
void CodeStubAssembler::NumberDictionaryLookup(
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
Label* if_found, TVariable<IntPtrT>* var_entry, Label* if_not_found) {
CSA_ASSERT(this, IsNumberDictionary(dictionary));
DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep());
Comment("NumberDictionaryLookup");
TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NumberDictionary>(dictionary));
TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1));
TNode<WordT> hash = ChangeUint32ToWord(ComputeSeededHash(intptr_index));
Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index);
// See Dictionary::FirstProbe().
TNode<IntPtrT> count = IntPtrConstant(0);
TNode<IntPtrT> entry = Signed(WordAnd(hash, mask));
Node* undefined = UndefinedConstant();
Node* the_hole = TheHoleConstant();
TVARIABLE(IntPtrT, var_count, count);
Variable* loop_vars[] = {&var_count, var_entry};
Label loop(this, 2, loop_vars);
*var_entry = entry;
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> entry = var_entry->value();
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(entry);
Node* current = UnsafeLoadFixedArrayElement(dictionary, index);
GotoIf(WordEqual(current, undefined), if_not_found);
Label next_probe(this);
{
Label if_currentissmi(this), if_currentisnotsmi(this);
Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi);
BIND(&if_currentissmi);
{
Node* current_value = SmiUntag(current);
Branch(WordEqual(current_value, intptr_index), if_found, &next_probe);
}
BIND(&if_currentisnotsmi);
{
GotoIf(WordEqual(current, the_hole), &next_probe);
// Current must be the Number.
Node* current_value = LoadHeapNumberValue(current);
Branch(Float64Equal(current_value, key_as_float64), if_found,
&next_probe);
}
}
BIND(&next_probe);
// See Dictionary::NextProbe().
Increment(&var_count);
entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask));
*var_entry = entry;
Goto(&loop);
}
}
TNode<Object> CodeStubAssembler::BasicLoadNumberDictionaryElement(
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
Label* not_data, Label* if_hole) {
TVARIABLE(IntPtrT, var_entry);
Label if_found(this);
NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry,
if_hole);
BIND(&if_found);
// Check that the value is a data property.
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value());
TNode<Uint32T> details =
LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index);
TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details);
// TODO(jkummerow): Support accessors without missing?
GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data);
// Finally, load the value.
return LoadValueByKeyIndex<NumberDictionary>(dictionary, index);
}
void CodeStubAssembler::BasicStoreNumberDictionaryElement(
TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
TNode<Object> value, Label* not_data, Label* if_hole, Label* read_only) {
TVARIABLE(IntPtrT, var_entry);
Label if_found(this);
NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry,
if_hole);
BIND(&if_found);
// Check that the value is a data property.
TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value());
TNode<Uint32T> details =
LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index);
TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details);
// TODO(jkummerow): Support accessors without missing?
GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data);
// Check that the property is writeable.
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask),
read_only);
// Finally, store the value.
StoreValueByKeyIndex<NumberDictionary>(dictionary, index, value);
}
template <class Dictionary>
void CodeStubAssembler::FindInsertionEntry(TNode<Dictionary> dictionary,
TNode<Name> key,
TVariable<IntPtrT>* var_key_index) {
UNREACHABLE();
}
template <>
void CodeStubAssembler::FindInsertionEntry<NameDictionary>(
TNode<NameDictionary> dictionary, TNode<Name> key,
TVariable<IntPtrT>* var_key_index) {
Label done(this);
NameDictionaryLookup<NameDictionary>(dictionary, key, nullptr, var_key_index,
&done, kFindInsertionIndex);
BIND(&done);
}
template <class Dictionary>
void CodeStubAssembler::InsertEntry(TNode<Dictionary> dictionary,
TNode<Name> key, TNode<Object> value,
TNode<IntPtrT> index,
TNode<Smi> enum_index) {
UNREACHABLE(); // Use specializations instead.
}
template <>
void CodeStubAssembler::InsertEntry<NameDictionary>(
TNode<NameDictionary> dictionary, TNode<Name> name, TNode<Object> value,
TNode<IntPtrT> index, TNode<Smi> enum_index) {
// Store name and value.
StoreFixedArrayElement(dictionary, index, name);
StoreValueByKeyIndex<NameDictionary>(dictionary, index, value);
// Prepare details of the new property.
PropertyDetails d(kData, NONE, PropertyCellType::kNoCell);
enum_index =
SmiShl(enum_index, PropertyDetails::DictionaryStorageField::kShift);
// We OR over the actual index below, so we expect the initial value to be 0.
DCHECK_EQ(0, d.dictionary_index());
TVARIABLE(Smi, var_details, SmiOr(SmiConstant(d.AsSmi()), enum_index));
// Private names must be marked non-enumerable.
Label not_private(this, &var_details);
GotoIfNot(IsPrivateSymbol(name), &not_private);
TNode<Smi> dont_enum =
SmiShl(SmiConstant(DONT_ENUM), PropertyDetails::AttributesField::kShift);
var_details = SmiOr(var_details.value(), dont_enum);
Goto(&not_private);
BIND(&not_private);
// Finally, store the details.
StoreDetailsByKeyIndex<NameDictionary>(dictionary, index,
var_details.value());
}
template <>
void CodeStubAssembler::InsertEntry<GlobalDictionary>(
TNode<GlobalDictionary> dictionary, TNode<Name> key, TNode<Object> value,
TNode<IntPtrT> index, TNode<Smi> enum_index) {
UNIMPLEMENTED();
}
template <class Dictionary>
void CodeStubAssembler::Add(TNode<Dictionary> dictionary, TNode<Name> key,
TNode<Object> value, Label* bailout) {
CSA_ASSERT(this, Word32BinaryNot(IsEmptyPropertyDictionary(dictionary)));
TNode<Smi> capacity = GetCapacity<Dictionary>(dictionary);
TNode<Smi> nof = GetNumberOfElements<Dictionary>(dictionary);
TNode<Smi> new_nof = SmiAdd(nof, SmiConstant(1));
// Require 33% to still be free after adding additional_elements.
// Computing "x + (x >> 1)" on a Smi x does not return a valid Smi!
// But that's OK here because it's only used for a comparison.
TNode<Smi> required_capacity_pseudo_smi = SmiAdd(new_nof, SmiShr(new_nof, 1));
GotoIf(SmiBelow(capacity, required_capacity_pseudo_smi), bailout);
// Require rehashing if more than 50% of free elements are deleted elements.
TNode<Smi> deleted = GetNumberOfDeletedElements<Dictionary>(dictionary);
CSA_ASSERT(this, SmiAbove(capacity, new_nof));
TNode<Smi> half_of_free_elements = SmiShr(SmiSub(capacity, new_nof), 1);
GotoIf(SmiAbove(deleted, half_of_free_elements), bailout);
TNode<Smi> enum_index = GetNextEnumerationIndex<Dictionary>(dictionary);
TNode<Smi> new_enum_index = SmiAdd(enum_index, SmiConstant(1));
TNode<Smi> max_enum_index =
SmiConstant(PropertyDetails::DictionaryStorageField::kMax);
GotoIf(SmiAbove(new_enum_index, max_enum_index), bailout);
// No more bailouts after this point.
// Operations from here on can have side effects.
SetNextEnumerationIndex<Dictionary>(dictionary, new_enum_index);
SetNumberOfElements<Dictionary>(dictionary, new_nof);
TVARIABLE(IntPtrT, var_key_index);
FindInsertionEntry<Dictionary>(dictionary, key, &var_key_index);
InsertEntry<Dictionary>(dictionary, key, value, var_key_index.value(),
enum_index);
}
template void CodeStubAssembler::Add<NameDictionary>(TNode<NameDictionary>,
TNode<Name>, TNode<Object>,
Label*);
template <typename Array>
void CodeStubAssembler::LookupLinear(TNode<Name> unique_name,
TNode<Array> array,
TNode<Uint32T> number_of_valid_entries,
Label* if_found,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found) {
static_assert(std::is_base_of<FixedArray, Array>::value ||
std::is_base_of<WeakFixedArray, Array>::value ||
std::is_base_of<DescriptorArray, Array>::value,
"T must be a descendant of FixedArray or a WeakFixedArray");
Comment("LookupLinear");
CSA_ASSERT(this, IsUniqueName(unique_name));
TNode<IntPtrT> first_inclusive = IntPtrConstant(Array::ToKeyIndex(0));
TNode<IntPtrT> factor = IntPtrConstant(Array::kEntrySize);
TNode<IntPtrT> last_exclusive = IntPtrAdd(
first_inclusive,
IntPtrMul(ChangeInt32ToIntPtr(number_of_valid_entries), factor));
BuildFastLoop(last_exclusive, first_inclusive,
[=](SloppyTNode<IntPtrT> name_index) {
TNode<MaybeObject> element =
LoadArrayElement(array, Array::kHeaderSize, name_index);
TNode<Name> candidate_name = CAST(element);
*var_name_index = name_index;
GotoIf(WordEqual(candidate_name, unique_name), if_found);
},
-Array::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPre);
Goto(if_not_found);
}
template <>
TNode<Uint32T> CodeStubAssembler::NumberOfEntries<DescriptorArray>(
TNode<DescriptorArray> descriptors) {
return Unsigned(LoadNumberOfDescriptors(descriptors));
}
template <>
TNode<Uint32T> CodeStubAssembler::NumberOfEntries<TransitionArray>(
TNode<TransitionArray> transitions) {
TNode<IntPtrT> length = LoadAndUntagWeakFixedArrayLength(transitions);
return Select<Uint32T>(
UintPtrLessThan(length, IntPtrConstant(TransitionArray::kFirstIndex)),
[=] { return Unsigned(Int32Constant(0)); },
[=] {
return Unsigned(LoadAndUntagToWord32ArrayElement(
transitions, WeakFixedArray::kHeaderSize,
IntPtrConstant(TransitionArray::kTransitionLengthIndex)));
});
}
template <typename Array>
TNode<IntPtrT> CodeStubAssembler::EntryIndexToIndex(
TNode<Uint32T> entry_index) {
TNode<Int32T> entry_size = Int32Constant(Array::kEntrySize);
TNode<Word32T> index = Int32Mul(entry_index, entry_size);
return ChangeInt32ToIntPtr(index);
}
template <typename Array>
TNode<IntPtrT> CodeStubAssembler::ToKeyIndex(TNode<Uint32T> entry_index) {
return IntPtrAdd(IntPtrConstant(Array::ToKeyIndex(0)),
EntryIndexToIndex<Array>(entry_index));
}
template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<DescriptorArray>(
TNode<Uint32T>);
template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<TransitionArray>(
TNode<Uint32T>);
template <>
TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<DescriptorArray>(
TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) {
TNode<Uint32T> details =
DescriptorArrayGetDetails(descriptors, descriptor_number);
return DecodeWord32<PropertyDetails::DescriptorPointer>(details);
}
template <>
TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<TransitionArray>(
TNode<TransitionArray> transitions, TNode<Uint32T> transition_number) {
return transition_number;
}
template <typename Array>
TNode<Name> CodeStubAssembler::GetKey(TNode<Array> array,
TNode<Uint32T> entry_index) {
static_assert(std::is_base_of<TransitionArray, Array>::value ||
std::is_base_of<DescriptorArray, Array>::value,
"T must be a descendant of DescriptorArray or TransitionArray");
const int key_offset = Array::ToKeyIndex(0) * kTaggedSize;
TNode<MaybeObject> element =
LoadArrayElement(array, Array::kHeaderSize,
EntryIndexToIndex<Array>(entry_index), key_offset);
return CAST(element);
}
template TNode<Name> CodeStubAssembler::GetKey<DescriptorArray>(
TNode<DescriptorArray>, TNode<Uint32T>);
template TNode<Name> CodeStubAssembler::GetKey<TransitionArray>(
TNode<TransitionArray>, TNode<Uint32T>);
TNode<Uint32T> CodeStubAssembler::DescriptorArrayGetDetails(
TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) {
const int details_offset = DescriptorArray::ToDetailsIndex(0) * kTaggedSize;
return Unsigned(LoadAndUntagToWord32ArrayElement(
descriptors, DescriptorArray::kHeaderSize,
EntryIndexToIndex<DescriptorArray>(descriptor_number), details_offset));
}
template <typename Array>
void CodeStubAssembler::LookupBinary(TNode<Name> unique_name,
TNode<Array> array,
TNode<Uint32T> number_of_valid_entries,
Label* if_found,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found) {
Comment("LookupBinary");
TVARIABLE(Uint32T, var_low, Unsigned(Int32Constant(0)));
TNode<Uint32T> limit =
Unsigned(Int32Sub(NumberOfEntries<Array>(array), Int32Constant(1)));
TVARIABLE(Uint32T, var_high, limit);
TNode<Uint32T> hash = LoadNameHashField(unique_name);
CSA_ASSERT(this, Word32NotEqual(hash, Int32Constant(0)));
// Assume non-empty array.
CSA_ASSERT(this, Uint32LessThanOrEqual(var_low.value(), var_high.value()));
Label binary_loop(this, {&var_high, &var_low});
Goto(&binary_loop);
BIND(&binary_loop);
{
// mid = low + (high - low) / 2 (to avoid overflow in "(low + high) / 2").
TNode<Uint32T> mid = Unsigned(
Int32Add(var_low.value(),
Word32Shr(Int32Sub(var_high.value(), var_low.value()), 1)));
// mid_name = array->GetSortedKey(mid).
TNode<Uint32T> sorted_key_index = GetSortedKeyIndex<Array>(array, mid);
TNode<Name> mid_name = GetKey<Array>(array, sorted_key_index);
TNode<Uint32T> mid_hash = LoadNameHashField(mid_name);
Label mid_greater(this), mid_less(this), merge(this);
Branch(Uint32GreaterThanOrEqual(mid_hash, hash), &mid_greater, &mid_less);
BIND(&mid_greater);
{
var_high = mid;
Goto(&merge);
}
BIND(&mid_less);
{
var_low = Unsigned(Int32Add(mid, Int32Constant(1)));
Goto(&merge);
}
BIND(&merge);
GotoIf(Word32NotEqual(var_low.value(), var_high.value()), &binary_loop);
}
Label scan_loop(this, &var_low);
Goto(&scan_loop);
BIND(&scan_loop);
{
GotoIf(Int32GreaterThan(var_low.value(), limit), if_not_found);
TNode<Uint32T> sort_index =
GetSortedKeyIndex<Array>(array, var_low.value());
TNode<Name> current_name = GetKey<Array>(array, sort_index);
TNode<Uint32T> current_hash = LoadNameHashField(current_name);
GotoIf(Word32NotEqual(current_hash, hash), if_not_found);
Label next(this);
GotoIf(WordNotEqual(current_name, unique_name), &next);
GotoIf(Uint32GreaterThanOrEqual(sort_index, number_of_valid_entries),
if_not_found);
*var_name_index = ToKeyIndex<Array>(sort_index);
Goto(if_found);
BIND(&next);
var_low = Unsigned(Int32Add(var_low.value(), Int32Constant(1)));
Goto(&scan_loop);
}
}
void CodeStubAssembler::ForEachEnumerableOwnProperty(
TNode<Context> context, TNode<Map> map, TNode<JSObject> object,
ForEachEnumerationMode mode, const ForEachKeyValueFunction& body,
Label* bailout) {
TNode<Int32T> type = LoadMapInstanceType(map);
TNode<Uint32T> bit_field3 = EnsureOnlyHasSimpleProperties(map, type, bailout);
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
TNode<Uint32T> nof_descriptors =
DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3);
TVARIABLE(BoolT, var_stable, Int32TrueConstant());
TVARIABLE(BoolT, var_has_symbol, Int32FalseConstant());
// false - iterate only string properties, true - iterate only symbol
// properties
TVARIABLE(BoolT, var_is_symbol_processing_loop, Int32FalseConstant());
TVARIABLE(IntPtrT, var_start_key_index,
ToKeyIndex<DescriptorArray>(Unsigned(Int32Constant(0))));
// Note: var_end_key_index is exclusive for the loop
TVARIABLE(IntPtrT, var_end_key_index,
ToKeyIndex<DescriptorArray>(nof_descriptors));
VariableList list(
{&var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
&var_start_key_index, &var_end_key_index},
zone());
Label descriptor_array_loop(
this, {&var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
&var_start_key_index, &var_end_key_index});
Goto(&descriptor_array_loop);
BIND(&descriptor_array_loop);
BuildFastLoop(
list, var_start_key_index.value(), var_end_key_index.value(),
[=, &var_stable, &var_has_symbol, &var_is_symbol_processing_loop,
&var_start_key_index, &var_end_key_index](Node* index) {
TNode<IntPtrT> descriptor_key_index =
TNode<IntPtrT>::UncheckedCast(index);
TNode<Name> next_key =
LoadKeyByKeyIndex(descriptors, descriptor_key_index);
TVARIABLE(Object, var_value, SmiConstant(0));
Label callback(this), next_iteration(this);
if (mode == kEnumerationOrder) {
// |next_key| is either a string or a symbol
// Skip strings or symbols depending on
// |var_is_symbol_processing_loop|.
Label if_string(this), if_symbol(this), if_name_ok(this);
Branch(IsSymbol(next_key), &if_symbol, &if_string);
BIND(&if_symbol);
{
// Process symbol property when |var_is_symbol_processing_loop| is
// true.
GotoIf(var_is_symbol_processing_loop.value(), &if_name_ok);
// First iteration need to calculate smaller range for processing
// symbols
Label if_first_symbol(this);
// var_end_key_index is still inclusive at this point.
var_end_key_index = descriptor_key_index;
Branch(var_has_symbol.value(), &next_iteration, &if_first_symbol);
BIND(&if_first_symbol);
{
var_start_key_index = descriptor_key_index;
var_has_symbol = Int32TrueConstant();
Goto(&next_iteration);
}
}
BIND(&if_string);
{
CSA_ASSERT(this, IsString(next_key));
// Process string property when |var_is_symbol_processing_loop| is
// false.
Branch(var_is_symbol_processing_loop.value(), &next_iteration,
&if_name_ok);
}
BIND(&if_name_ok);
}
{
TVARIABLE(Map, var_map);
TVARIABLE(HeapObject, var_meta_storage);
TVARIABLE(IntPtrT, var_entry);
TVARIABLE(Uint32T, var_details);
Label if_found(this);
Label if_found_fast(this), if_found_dict(this);
Label if_stable(this), if_not_stable(this);
Branch(var_stable.value(), &if_stable, &if_not_stable);
BIND(&if_stable);
{
// Directly decode from the descriptor array if |object| did not
// change shape.
var_map = map;
var_meta_storage = descriptors;
var_entry = Signed(descriptor_key_index);
Goto(&if_found_fast);
}
BIND(&if_not_stable);
{
// If the map did change, do a slower lookup. We are still
// guaranteed that the object has a simple shape, and that the key
// is a name.
var_map = LoadMap(object);
TryLookupPropertyInSimpleObject(
object, var_map.value(), next_key, &if_found_fast,
&if_found_dict, &var_meta_storage, &var_entry, &next_iteration);
}
BIND(&if_found_fast);
{
TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value());
TNode<IntPtrT> name_index = var_entry.value();
// Skip non-enumerable properties.
var_details = LoadDetailsByKeyIndex(descriptors, name_index);
GotoIf(IsSetWord32(var_details.value(),
PropertyDetails::kAttributesDontEnumMask),
&next_iteration);
LoadPropertyFromFastObject(object, var_map.value(), descriptors,
name_index, var_details.value(),
&var_value);
Goto(&if_found);
}
BIND(&if_found_dict);
{
TNode<NameDictionary> dictionary = CAST(var_meta_storage.value());
TNode<IntPtrT> entry = var_entry.value();
TNode<Uint32T> details =
LoadDetailsByKeyIndex<NameDictionary>(dictionary, entry);
// Skip non-enumerable properties.
GotoIf(
IsSetWord32(details, PropertyDetails::kAttributesDontEnumMask),
&next_iteration);
var_details = details;
var_value = LoadValueByKeyIndex<NameDictionary>(dictionary, entry);
Goto(&if_found);
}
// Here we have details and value which could be an accessor.
BIND(&if_found);
{
Label slow_load(this, Label::kDeferred);
var_value = CallGetterIfAccessor(var_value.value(),
var_details.value(), context,
object, &slow_load, kCallJSGetter);
Goto(&callback);
BIND(&slow_load);
var_value =
CallRuntime(Runtime::kGetProperty, context, object, next_key);
Goto(&callback);
BIND(&callback);
body(next_key, var_value.value());
// Check if |object| is still stable, i.e. we can proceed using
// property details from preloaded |descriptors|.
var_stable =
Select<BoolT>(var_stable.value(),
[=] { return WordEqual(LoadMap(object), map); },
[=] { return Int32FalseConstant(); });
Goto(&next_iteration);
}
}
BIND(&next_iteration);
},
DescriptorArray::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost);
if (mode == kEnumerationOrder) {
Label done(this);
GotoIf(var_is_symbol_processing_loop.value(), &done);
GotoIfNot(var_has_symbol.value(), &done);
// All string properties are processed, now process symbol properties.
var_is_symbol_processing_loop = Int32TrueConstant();
// Add DescriptorArray::kEntrySize to make the var_end_key_index exclusive
// as BuildFastLoop() expects.
Increment(&var_end_key_index, DescriptorArray::kEntrySize,
INTPTR_PARAMETERS);
Goto(&descriptor_array_loop);
BIND(&done);
}
}
void CodeStubAssembler::DescriptorLookup(
SloppyTNode<Name> unique_name, SloppyTNode<DescriptorArray> descriptors,
SloppyTNode<Uint32T> bitfield3, Label* if_found,
TVariable<IntPtrT>* var_name_index, Label* if_not_found) {
Comment("DescriptorArrayLookup");
TNode<Uint32T> nof = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3);
Lookup<DescriptorArray>(unique_name, descriptors, nof, if_found,
var_name_index, if_not_found);
}
void CodeStubAssembler::TransitionLookup(
SloppyTNode<Name> unique_name, SloppyTNode<TransitionArray> transitions,
Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) {
Comment("TransitionArrayLookup");
TNode<Uint32T> number_of_valid_transitions =
NumberOfEntries<TransitionArray>(transitions);
Lookup<TransitionArray>(unique_name, transitions, number_of_valid_transitions,
if_found, var_name_index, if_not_found);
}
template <typename Array>
void CodeStubAssembler::Lookup(TNode<Name> unique_name, TNode<Array> array,
TNode<Uint32T> number_of_valid_entries,
Label* if_found,
TVariable<IntPtrT>* var_name_index,
Label* if_not_found) {
Comment("ArrayLookup");
if (!number_of_valid_entries) {
number_of_valid_entries = NumberOfEntries(array);
}
GotoIf(Word32Equal(number_of_valid_entries, Int32Constant(0)), if_not_found);
Label linear_search(this), binary_search(this);
const int kMaxElementsForLinearSearch = 32;
Branch(Uint32LessThanOrEqual(number_of_valid_entries,
Int32Constant(kMaxElementsForLinearSearch)),
&linear_search, &binary_search);
BIND(&linear_search);
{
LookupLinear<Array>(unique_name, array, number_of_valid_entries, if_found,
var_name_index, if_not_found);
}
BIND(&binary_search);
{
LookupBinary<Array>(unique_name, array, number_of_valid_entries, if_found,
var_name_index, if_not_found);
}
}
TNode<BoolT> CodeStubAssembler::IsSimpleObjectMap(TNode<Map> map) {
uint32_t mask =
Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask;
// !IsSpecialReceiverType && !IsNamedInterceptor && !IsAccessCheckNeeded
return Select<BoolT>(
IsSpecialReceiverInstanceType(LoadMapInstanceType(map)),
[=] { return Int32FalseConstant(); },
[=] { return IsClearWord32(LoadMapBitField(map), mask); });
}
void CodeStubAssembler::TryLookupPropertyInSimpleObject(
TNode<JSObject> object, TNode<Map> map, TNode<Name> unique_name,
Label* if_found_fast, Label* if_found_dict,
TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index,
Label* if_not_found) {
CSA_ASSERT(this, IsSimpleObjectMap(map));
CSA_ASSERT(this, IsUniqueNameNoIndex(unique_name));
TNode<Uint32T> bit_field3 = LoadMapBitField3(map);
Label if_isfastmap(this), if_isslowmap(this);
Branch(IsSetWord32<Map::IsDictionaryMapBit>(bit_field3), &if_isslowmap,
&if_isfastmap);
BIND(&if_isfastmap);
{
TNode<DescriptorArray> descriptors = LoadMapDescriptors(map);
*var_meta_storage = descriptors;
DescriptorLookup(unique_name, descriptors, bit_field3, if_found_fast,
var_name_index, if_not_found);
}
BIND(&if_isslowmap);
{
TNode<NameDictionary> dictionary = CAST(LoadSlowProperties(object));
*var_meta_storage = dictionary;
NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict,
var_name_index, if_not_found);
}
}
void CodeStubAssembler::TryLookupProperty(
SloppyTNode<JSObject> object, SloppyTNode<Map> map,
SloppyTNode<Int32T> instance_type, SloppyTNode<Name> unique_name,
Label* if_found_fast, Label* if_found_dict, Label* if_found_global,
TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index,
Label* if_not_found, Label* if_bailout) {
Label if_objectisspecial(this);
GotoIf(IsSpecialReceiverInstanceType(instance_type), &if_objectisspecial);
TryLookupPropertyInSimpleObject(object, map, unique_name, if_found_fast,
if_found_dict, var_meta_storage,
var_name_index, if_not_found);
BIND(&if_objectisspecial);
{
// Handle global object here and bailout for other special objects.
GotoIfNot(InstanceTypeEqual(instance_type, JS_GLOBAL_OBJECT_TYPE),
if_bailout);
// Handle interceptors and access checks in runtime.
TNode<Int32T> bit_field = LoadMapBitField(map);
int mask =
Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask;
GotoIf(IsSetWord32(bit_field, mask), if_bailout);
TNode<GlobalDictionary> dictionary = CAST(LoadSlowProperties(object));
*var_meta_storage = dictionary;
NameDictionaryLookup<GlobalDictionary>(
dictionary, unique_name, if_found_global, var_name_index, if_not_found);
}
}
void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map,
Node* instance_type,
Node* unique_name, Label* if_found,
Label* if_not_found,
Label* if_bailout) {
Comment("TryHasOwnProperty");
CSA_ASSERT(this, IsUniqueNameNoIndex(CAST(unique_name)));
TVARIABLE(HeapObject, var_meta_storage);
TVARIABLE(IntPtrT, var_name_index);
Label if_found_global(this);
TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found,
&if_found_global, &var_meta_storage, &var_name_index,
if_not_found, if_bailout);
BIND(&if_found_global);
{
VARIABLE(var_value, MachineRepresentation::kTagged);
VARIABLE(var_details, MachineRepresentation::kWord32);
// Check if the property cell is not deleted.
LoadPropertyFromGlobalDictionary(var_meta_storage.value(),
var_name_index.value(), &var_value,
&var_details, if_not_found);
Goto(if_found);
}
}
Node* CodeStubAssembler::GetMethod(Node* context, Node* object,
Handle<Name> name,
Label* if_null_or_undefined) {
Node* method = GetProperty(context, object, name);
GotoIf(IsUndefined(method), if_null_or_undefined);
GotoIf(IsNull(method), if_null_or_undefined);
return method;
}
TNode<Object> CodeStubAssembler::GetIteratorMethod(
TNode<Context> context, TNode<HeapObject> heap_obj,
Label* if_iteratorundefined) {
return CAST(GetMethod(context, heap_obj,
isolate()->factory()->iterator_symbol(),
if_iteratorundefined));
}
void CodeStubAssembler::LoadPropertyFromFastObject(
Node* object, Node* map, TNode<DescriptorArray> descriptors,
Node* name_index, Variable* var_details, Variable* var_value) {
DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep());
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
Node* details =
LoadDetailsByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index));
var_details->Bind(details);
LoadPropertyFromFastObject(object, map, descriptors, name_index, details,
var_value);
}
void CodeStubAssembler::LoadPropertyFromFastObject(
Node* object, Node* map, TNode<DescriptorArray> descriptors,
Node* name_index, Node* details, Variable* var_value) {
Comment("[ LoadPropertyFromFastObject");
Node* location = DecodeWord32<PropertyDetails::LocationField>(details);
Label if_in_field(this), if_in_descriptor(this), done(this);
Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field,
&if_in_descriptor);
BIND(&if_in_field);
{
Node* field_index =
DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details);
Node* representation =
DecodeWord32<PropertyDetails::RepresentationField>(details);
field_index =
IntPtrAdd(field_index, LoadMapInobjectPropertiesStartInWords(map));
Node* instance_size_in_words = LoadMapInstanceSizeInWords(map);
Label if_inobject(this), if_backing_store(this);
VARIABLE(var_double_value, MachineRepresentation::kFloat64);
Label rebox_double(this, &var_double_value);
Branch(UintPtrLessThan(field_index, instance_size_in_words), &if_inobject,
&if_backing_store);
BIND(&if_inobject);
{
Comment("if_inobject");
Node* field_offset = TimesTaggedSize(field_index);
Label if_double(this), if_tagged(this);
Branch(Word32NotEqual(representation,
Int32Constant(Representation::kDouble)),
&if_tagged, &if_double);
BIND(&if_tagged);
{
var_value->Bind(LoadObjectField(object, field_offset));
Goto(&done);
}
BIND(&if_double);
{
if (FLAG_unbox_double_fields) {
var_double_value.Bind(
LoadObjectField(object, field_offset, MachineType::Float64()));
} else {
Node* mutable_heap_number = LoadObjectField(object, field_offset);
var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
}
Goto(&rebox_double);
}
}
BIND(&if_backing_store);
{
Comment("if_backing_store");
TNode<HeapObject> properties = LoadFastProperties(object);
field_index = IntPtrSub(field_index, instance_size_in_words);
Node* value = LoadPropertyArrayElement(CAST(properties), field_index);
Label if_double(this), if_tagged(this);
Branch(Word32NotEqual(representation,
Int32Constant(Representation::kDouble)),
&if_tagged, &if_double);
BIND(&if_tagged);
{
var_value->Bind(value);
Goto(&done);
}
BIND(&if_double);
{
var_double_value.Bind(LoadHeapNumberValue(value));
Goto(&rebox_double);
}
}
BIND(&rebox_double);
{
Comment("rebox_double");
Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value());
var_value->Bind(heap_number);
Goto(&done);
}
}
BIND(&if_in_descriptor);
{
var_value->Bind(
LoadValueByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index)));
Goto(&done);
}
BIND(&done);
Comment("] LoadPropertyFromFastObject");
}
void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary,
Node* name_index,
Variable* var_details,
Variable* var_value) {
Comment("LoadPropertyFromNameDictionary");
CSA_ASSERT(this, IsNameDictionary(dictionary));
var_details->Bind(
LoadDetailsByKeyIndex<NameDictionary>(dictionary, name_index));
var_value->Bind(LoadValueByKeyIndex<NameDictionary>(dictionary, name_index));
Comment("] LoadPropertyFromNameDictionary");
}
void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary,
Node* name_index,
Variable* var_details,
Variable* var_value,
Label* if_deleted) {
Comment("[ LoadPropertyFromGlobalDictionary");
CSA_ASSERT(this, IsGlobalDictionary(dictionary));
Node* property_cell = LoadFixedArrayElement(CAST(dictionary), name_index);
CSA_ASSERT(this, IsPropertyCell(property_cell));
Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
GotoIf(WordEqual(value, TheHoleConstant()), if_deleted);
var_value->Bind(value);
Node* details = LoadAndUntagToWord32ObjectField(
property_cell, PropertyCell::kPropertyDetailsRawOffset);
var_details->Bind(details);
Comment("] LoadPropertyFromGlobalDictionary");
}
// |value| is the property backing store's contents, which is either a value
// or an accessor pair, as specified by |details|.
// Returns either the original value, or the result of the getter call.
TNode<Object> CodeStubAssembler::CallGetterIfAccessor(
Node* value, Node* details, Node* context, Node* receiver,
Label* if_bailout, GetOwnPropertyMode mode) {
VARIABLE(var_value, MachineRepresentation::kTagged, value);
Label done(this), if_accessor_info(this, Label::kDeferred);
Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
GotoIf(Word32Equal(kind, Int32Constant(kData)), &done);
// Accessor case.
GotoIfNot(IsAccessorPair(value), &if_accessor_info);
// AccessorPair case.
{
if (mode == kCallJSGetter) {
Node* accessor_pair = value;
Node* getter =
LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
Node* getter_map = LoadMap(getter);
Node* instance_type = LoadMapInstanceType(getter_map);
// FunctionTemplateInfo getters are not supported yet.
GotoIf(InstanceTypeEqual(instance_type, FUNCTION_TEMPLATE_INFO_TYPE),
if_bailout);
// Return undefined if the {getter} is not callable.
var_value.Bind(UndefinedConstant());
GotoIfNot(IsCallableMap(getter_map), &done);
// Call the accessor.
Callable callable = CodeFactory::Call(isolate());
Node* result = CallJS(callable, context, getter, receiver);
var_value.Bind(result);
}
Goto(&done);
}
// AccessorInfo case.
BIND(&if_accessor_info);
{
Node* accessor_info = value;
CSA_ASSERT(this, IsAccessorInfo(value));
CSA_ASSERT(this, TaggedIsNotSmi(receiver));
Label if_array(this), if_function(this), if_value(this);
// Dispatch based on {receiver} instance type.
Node* receiver_map = LoadMap(receiver);
Node* receiver_instance_type = LoadMapInstanceType(receiver_map);
GotoIf(IsJSArrayInstanceType(receiver_instance_type), &if_array);
GotoIf(IsJSFunctionInstanceType(receiver_instance_type), &if_function);
Branch(IsJSValueInstanceType(receiver_instance_type), &if_value,
if_bailout);
// JSArray AccessorInfo case.
BIND(&if_array);
{
// We only deal with the "length" accessor on JSArray.
GotoIfNot(IsLengthString(
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
if_bailout);
var_value.Bind(LoadJSArrayLength(receiver));
Goto(&done);
}
// JSFunction AccessorInfo case.
BIND(&if_function);
{
// We only deal with the "prototype" accessor on JSFunction here.
GotoIfNot(IsPrototypeString(
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
if_bailout);
GotoIfPrototypeRequiresRuntimeLookup(CAST(receiver), CAST(receiver_map),
if_bailout);
var_value.Bind(LoadJSFunctionPrototype(receiver, if_bailout));
Goto(&done);
}
// JSValue AccessorInfo case.
BIND(&if_value);
{
// We only deal with the "length" accessor on JSValue string wrappers.
GotoIfNot(IsLengthString(
LoadObjectField(accessor_info, AccessorInfo::kNameOffset)),
if_bailout);
Node* receiver_value = LoadJSValueValue(receiver);
GotoIfNot(TaggedIsNotSmi(receiver_value), if_bailout);
GotoIfNot(IsString(receiver_value), if_bailout);
var_value.Bind(LoadStringLengthAsSmi(receiver_value));
Goto(&done);
}
}
BIND(&done);
return UncheckedCast<Object>(var_value.value());
}
void CodeStubAssembler::TryGetOwnProperty(
Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found_value, Variable* var_value,
Label* if_not_found, Label* if_bailout) {
TryGetOwnProperty(context, receiver, object, map, instance_type, unique_name,
if_found_value, var_value, nullptr, nullptr, if_not_found,
if_bailout, kCallJSGetter);
}
void CodeStubAssembler::TryGetOwnProperty(
Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found_value, Variable* var_value,
Variable* var_details, Variable* var_raw_value, Label* if_not_found,
Label* if_bailout, GetOwnPropertyMode mode) {
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
Comment("TryGetOwnProperty");
CSA_ASSERT(this, IsUniqueNameNoIndex(CAST(unique_name)));
TVARIABLE(HeapObject, var_meta_storage);
TVARIABLE(IntPtrT, var_entry);
Label if_found_fast(this), if_found_dict(this), if_found_global(this);
VARIABLE(local_var_details, MachineRepresentation::kWord32);
if (!var_details) {
var_details = &local_var_details;
}
Label if_found(this);
TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast,
&if_found_dict, &if_found_global, &var_meta_storage,
&var_entry, if_not_found, if_bailout);
BIND(&if_found_fast);
{
TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value());
Node* name_index = var_entry.value();
LoadPropertyFromFastObject(object, map, descriptors, name_index,
var_details, var_value);
Goto(&if_found);
}
BIND(&if_found_dict);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
LoadPropertyFromNameDictionary(dictionary, entry, var_details, var_value);
Goto(&if_found);
}
BIND(&if_found_global);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
LoadPropertyFromGlobalDictionary(dictionary, entry, var_details, var_value,
if_not_found);
Goto(&if_found);
}
// Here we have details and value which could be an accessor.
BIND(&if_found);
{
// TODO(ishell): Execute C++ accessor in case of accessor info
if (var_raw_value) {
var_raw_value->Bind(var_value->value());
}
Node* value = CallGetterIfAccessor(var_value->value(), var_details->value(),
context, receiver, if_bailout, mode);
var_value->Bind(value);
Goto(if_found_value);
}
}
void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
SloppyTNode<Int32T> instance_type,
SloppyTNode<IntPtrT> intptr_index,
Label* if_found, Label* if_absent,
Label* if_not_found,
Label* if_bailout) {
// Handle special objects in runtime.
GotoIf(IsSpecialReceiverInstanceType(instance_type), if_bailout);
Node* elements_kind = LoadMapElementsKind(map);
// TODO(verwaest): Support other elements kinds as well.
Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this),
if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this),
if_typedarray(this);
// clang-format off
int32_t values[] = {
// Handled by {if_isobjectorsmi}.
PACKED_SMI_ELEMENTS, HOLEY_SMI_ELEMENTS, PACKED_ELEMENTS,
HOLEY_ELEMENTS,
// Handled by {if_isdouble}.
PACKED_DOUBLE_ELEMENTS, HOLEY_DOUBLE_ELEMENTS,
// Handled by {if_isdictionary}.
DICTIONARY_ELEMENTS,
// Handled by {if_isfaststringwrapper}.
FAST_STRING_WRAPPER_ELEMENTS,
// Handled by {if_isslowstringwrapper}.
SLOW_STRING_WRAPPER_ELEMENTS,
// Handled by {if_not_found}.
NO_ELEMENTS,
// Handled by {if_typed_array}.
UINT8_ELEMENTS,
INT8_ELEMENTS,
UINT16_ELEMENTS,
INT16_ELEMENTS,
UINT32_ELEMENTS,
INT32_ELEMENTS,
FLOAT32_ELEMENTS,
FLOAT64_ELEMENTS,
UINT8_CLAMPED_ELEMENTS,
BIGUINT64_ELEMENTS,
BIGINT64_ELEMENTS,
};
Label* labels[] = {
&if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi,
&if_isobjectorsmi,
&if_isdouble, &if_isdouble,
&if_isdictionary,
&if_isfaststringwrapper,
&if_isslowstringwrapper,
if_not_found,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
&if_typedarray,
};
// clang-format on
STATIC_ASSERT(arraysize(values) == arraysize(labels));
Switch(elements_kind, if_bailout, values, labels, arraysize(values));
BIND(&if_isobjectorsmi);
{
TNode<FixedArray> elements = CAST(LoadElements(object));
TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements);
GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob);
TNode<Object> element = UnsafeLoadFixedArrayElement(elements, intptr_index);
TNode<Oddball> the_hole = TheHoleConstant();
Branch(WordEqual(element, the_hole), if_not_found, if_found);
}
BIND(&if_isdouble);
{
TNode<FixedArrayBase> elements = LoadElements(object);
TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements);
GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob);
// Check if the element is a double hole, but don't load it.
LoadFixedDoubleArrayElement(CAST(elements), intptr_index,
MachineType::None(), 0, INTPTR_PARAMETERS,
if_not_found);
Goto(if_found);
}
BIND(&if_isdictionary);
{
// Negative keys must be converted to property names.
GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
TVARIABLE(IntPtrT, var_entry);
TNode<NumberDictionary> elements = CAST(LoadElements(object));
NumberDictionaryLookup(elements, intptr_index, if_found, &var_entry,
if_not_found);
}
BIND(&if_isfaststringwrapper);
{
CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
Node* string = LoadJSValueValue(object);
CSA_ASSERT(this, IsString(string));
Node* length = LoadStringLengthAsWord(string);
GotoIf(UintPtrLessThan(intptr_index, length), if_found);
Goto(&if_isobjectorsmi);
}
BIND(&if_isslowstringwrapper);
{
CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
Node* string = LoadJSValueValue(object);
CSA_ASSERT(this, IsString(string));
Node* length = LoadStringLengthAsWord(string);
GotoIf(UintPtrLessThan(intptr_index, length), if_found);
Goto(&if_isdictionary);
}
BIND(&if_typedarray);
{
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
GotoIf(IsDetachedBuffer(buffer), if_absent);
TNode<UintPtrT> length = LoadJSTypedArrayLength(CAST(object));
Branch(UintPtrLessThan(intptr_index, length), if_found, if_absent);
}
BIND(&if_oob);
{
// Positive OOB indices mean "not found", negative indices must be
// converted to property names.
GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
Goto(if_not_found);
}
}
void CodeStubAssembler::BranchIfMaybeSpecialIndex(TNode<String> name_string,
Label* if_maybe_special_index,
Label* if_not_special_index) {
// TODO(cwhan.tunz): Implement fast cases more.
// If a name is empty or too long, it's not a special index
// Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
const int kBufferSize = 24;
TNode<Smi> string_length = LoadStringLengthAsSmi(name_string);
GotoIf(SmiEqual(string_length, SmiConstant(0)), if_not_special_index);
GotoIf(SmiGreaterThan(string_length, SmiConstant(kBufferSize)),
if_not_special_index);
// If the first character of name is not a digit or '-', or we can't match it
// to Infinity or NaN, then this is not a special index.
TNode<Int32T> first_char = StringCharCodeAt(name_string, IntPtrConstant(0));
// If the name starts with '-', it can be a negative index.
GotoIf(Word32Equal(first_char, Int32Constant('-')), if_maybe_special_index);
// If the name starts with 'I', it can be "Infinity".
GotoIf(Word32Equal(first_char, Int32Constant('I')), if_maybe_special_index);
// If the name starts with 'N', it can be "NaN".
GotoIf(Word32Equal(first_char, Int32Constant('N')), if_maybe_special_index);
// Finally, if the first character is not a digit either, then we are sure
// that the name is not a special index.
GotoIf(Uint32LessThan(first_char, Int32Constant('0')), if_not_special_index);
GotoIf(Uint32LessThan(Int32Constant('9'), first_char), if_not_special_index);
Goto(if_maybe_special_index);
}
void CodeStubAssembler::TryPrototypeChainLookup(
Node* receiver, Node* key, const LookupInHolder& lookup_property_in_holder,
const LookupInHolder& lookup_element_in_holder, Label* if_end,
Label* if_bailout, Label* if_proxy) {
// Ensure receiver is JSReceiver, otherwise bailout.
Label if_objectisnotsmi(this);
Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi);
BIND(&if_objectisnotsmi);
Node* map = LoadMap(receiver);
Node* instance_type = LoadMapInstanceType(map);
{
Label if_objectisreceiver(this);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE);
Branch(IsJSReceiverInstanceType(instance_type), &if_objectisreceiver,
if_bailout);
BIND(&if_objectisreceiver);
if (if_proxy) {
GotoIf(InstanceTypeEqual(instance_type, JS_PROXY_TYPE), if_proxy);
}
}
VARIABLE(var_index, MachineType::PointerRepresentation());
VARIABLE(var_unique, MachineRepresentation::kTagged);
Label if_keyisindex(this), if_iskeyunique(this);
TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, &var_unique,
if_bailout);
BIND(&if_iskeyunique);
{
VARIABLE(var_holder, MachineRepresentation::kTagged, receiver);
VARIABLE(var_holder_map, MachineRepresentation::kTagged, map);
VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32,
instance_type);
Variable* merged_variables[] = {&var_holder, &var_holder_map,
&var_holder_instance_type};
Label loop(this, arraysize(merged_variables), merged_variables);
Goto(&loop);
BIND(&loop);
{
Node* holder_map = var_holder_map.value();
Node* holder_instance_type = var_holder_instance_type.value();
Label next_proto(this), check_integer_indexed_exotic(this);
lookup_property_in_holder(receiver, var_holder.value(), holder_map,
holder_instance_type, var_unique.value(),
&check_integer_indexed_exotic, if_bailout);
BIND(&check_integer_indexed_exotic);
{
// Bailout if it can be an integer indexed exotic case.
GotoIfNot(InstanceTypeEqual(holder_instance_type, JS_TYPED_ARRAY_TYPE),
&next_proto);
GotoIfNot(IsString(var_unique.value()), &next_proto);
BranchIfMaybeSpecialIndex(CAST(var_unique.value()), if_bailout,
&next_proto);
}
BIND(&next_proto);
Node* proto = LoadMapPrototype(holder_map);
GotoIf(IsNull(proto), if_end);
Node* map = LoadMap(proto);
Node* instance_type = LoadMapInstanceType(map);
var_holder.Bind(proto);
var_holder_map.Bind(map);
var_holder_instance_type.Bind(instance_type);
Goto(&loop);
}
}
BIND(&if_keyisindex);
{
VARIABLE(var_holder, MachineRepresentation::kTagged, receiver);
VARIABLE(var_holder_map, MachineRepresentation::kTagged, map);
VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32,
instance_type);
Variable* merged_variables[] = {&var_holder, &var_holder_map,
&var_holder_instance_type};
Label loop(this, arraysize(merged_variables), merged_variables);
Goto(&loop);
BIND(&loop);
{
Label next_proto(this);
lookup_element_in_holder(receiver, var_holder.value(),
var_holder_map.value(),
var_holder_instance_type.value(),
var_index.value(), &next_proto, if_bailout);
BIND(&next_proto);
Node* proto = LoadMapPrototype(var_holder_map.value());
GotoIf(IsNull(proto), if_end);
Node* map = LoadMap(proto);
Node* instance_type = LoadMapInstanceType(map);
var_holder.Bind(proto);
var_holder_map.Bind(map);
var_holder_instance_type.Bind(instance_type);
Goto(&loop);
}
}
}
Node* CodeStubAssembler::HasInPrototypeChain(Node* context, Node* object,
Node* prototype) {
CSA_ASSERT(this, TaggedIsNotSmi(object));
VARIABLE(var_result, MachineRepresentation::kTagged);
Label return_false(this), return_true(this),
return_runtime(this, Label::kDeferred), return_result(this);
// Loop through the prototype chain looking for the {prototype}.
VARIABLE(var_object_map, MachineRepresentation::kTagged, LoadMap(object));
Label loop(this, &var_object_map);
Goto(&loop);
BIND(&loop);
{
// Check if we can determine the prototype directly from the {object_map}.
Label if_objectisdirect(this), if_objectisspecial(this, Label::kDeferred);
Node* object_map = var_object_map.value();
TNode<Int32T> object_instance_type = LoadMapInstanceType(object_map);
Branch(IsSpecialReceiverInstanceType(object_instance_type),
&if_objectisspecial, &if_objectisdirect);
BIND(&if_objectisspecial);
{
// The {object_map} is a special receiver map or a primitive map, check
// if we need to use the if_objectisspecial path in the runtime.
GotoIf(InstanceTypeEqual(object_instance_type, JS_PROXY_TYPE),
&return_runtime);
Node* object_bitfield = LoadMapBitField(object_map);
int mask = Map::HasNamedInterceptorBit::kMask |
Map::IsAccessCheckNeededBit::kMask;
Branch(IsSetWord32(object_bitfield, mask), &return_runtime,
&if_objectisdirect);
}
BIND(&if_objectisdirect);
// Check the current {object} prototype.
Node* object_prototype = LoadMapPrototype(object_map);
GotoIf(IsNull(object_prototype), &return_false);
GotoIf(WordEqual(object_prototype, prototype), &return_true);
// Continue with the prototype.
CSA_ASSERT(this, TaggedIsNotSmi(object_prototype));
var_object_map.Bind(LoadMap(object_prototype));
Goto(&loop);
}
BIND(&return_true);
var_result.Bind(TrueConstant());
Goto(&return_result);
BIND(&return_false);
var_result.Bind(FalseConstant());
Goto(&return_result);
BIND(&return_runtime);
{
// Fallback to the runtime implementation.
var_result.Bind(
CallRuntime(Runtime::kHasInPrototypeChain, context, object, prototype));
}
Goto(&return_result);
BIND(&return_result);
return var_result.value();
}
Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
Node* object) {
VARIABLE(var_result, MachineRepresentation::kTagged);
Label return_runtime(this, Label::kDeferred), return_result(this);
GotoIfForceSlowPath(&return_runtime);
// Goto runtime if {object} is a Smi.
GotoIf(TaggedIsSmi(object), &return_runtime);
// Goto runtime if {callable} is a Smi.
GotoIf(TaggedIsSmi(callable), &return_runtime);
// Load map of {callable}.
Node* callable_map = LoadMap(callable);
// Goto runtime if {callable} is not a JSFunction.
Node* callable_instance_type = LoadMapInstanceType(callable_map);
GotoIfNot(InstanceTypeEqual(callable_instance_type, JS_FUNCTION_TYPE),
&return_runtime);
GotoIfPrototypeRequiresRuntimeLookup(CAST(callable), CAST(callable_map),
&return_runtime);
// Get the "prototype" (or initial map) of the {callable}.
Node* callable_prototype =
LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
{
Label no_initial_map(this), walk_prototype_chain(this);
VARIABLE(var_callable_prototype, MachineRepresentation::kTagged,
callable_prototype);
// Resolve the "prototype" if the {callable} has an initial map.
GotoIfNot(IsMap(callable_prototype), &no_initial_map);
var_callable_prototype.Bind(
LoadObjectField(callable_prototype, Map::kPrototypeOffset));
Goto(&walk_prototype_chain);
BIND(&no_initial_map);
// {callable_prototype} is the hole if the "prototype" property hasn't been
// requested so far.
Branch(WordEqual(callable_prototype, TheHoleConstant()), &return_runtime,
&walk_prototype_chain);
BIND(&walk_prototype_chain);
callable_prototype = var_callable_prototype.value();
}
// Loop through the prototype chain looking for the {callable} prototype.
CSA_ASSERT(this, IsJSReceiver(callable_prototype));
var_result.Bind(HasInPrototypeChain(context, object, callable_prototype));
Goto(&return_result);
BIND(&return_runtime);
{
// Fallback to the runtime implementation.
var_result.Bind(
CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
}
Goto(&return_result);
BIND(&return_result);
return var_result.value();
}
TNode<IntPtrT> CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
ElementsKind kind,
ParameterMode mode,
int base_size) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, mode));
int element_size_shift = ElementsKindToShiftSize(kind);
int element_size = 1 << element_size_shift;
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
intptr_t index = 0;
bool constant_index = false;
if (mode == SMI_PARAMETERS) {
element_size_shift -= kSmiShiftBits;
Smi smi_index;
constant_index = ToSmiConstant(index_node, &smi_index);
if (constant_index) index = smi_index->value();
index_node = BitcastTaggedToWord(index_node);
} else {
DCHECK(mode == INTPTR_PARAMETERS);
constant_index = ToIntPtrConstant(index_node, index);
}
if (constant_index) {
return IntPtrConstant(base_size + element_size * index);
}
TNode<WordT> shifted_index =
(element_size_shift == 0)
? UncheckedCast<WordT>(index_node)
: ((element_size_shift > 0)
? WordShl(index_node, IntPtrConstant(element_size_shift))
: WordSar(index_node, IntPtrConstant(-element_size_shift)));
return IntPtrAdd(IntPtrConstant(base_size), Signed(shifted_index));
}
TNode<BoolT> CodeStubAssembler::IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
SloppyTNode<IntPtrT> length,
int header_size,
ElementsKind kind) {
// Make sure we point to the last field.
int element_size = 1 << ElementsKindToShiftSize(kind);
int correction = header_size - kHeapObjectTag - element_size;
TNode<IntPtrT> last_offset =
ElementOffsetFromIndex(length, kind, INTPTR_PARAMETERS, correction);
return IntPtrLessThanOrEqual(offset, last_offset);
}
TNode<HeapObject> CodeStubAssembler::LoadFeedbackCellValue(
SloppyTNode<JSFunction> closure) {
TNode<FeedbackCell> feedback_cell =
CAST(LoadObjectField(closure, JSFunction::kFeedbackCellOffset));
return CAST(LoadObjectField(feedback_cell, FeedbackCell::kValueOffset));
}
TNode<HeapObject> CodeStubAssembler::LoadFeedbackVector(
SloppyTNode<JSFunction> closure) {
TVARIABLE(HeapObject, maybe_vector, LoadFeedbackCellValue(closure));
Label done(this);
// If the closure doesn't have a feedback vector allocated yet, return
// undefined. FeedbackCell can contain Undefined / FixedArray (for lazy
// allocations) / FeedbackVector.
GotoIf(IsFeedbackVector(maybe_vector.value()), &done);
// In all other cases return Undefined.
maybe_vector = UndefinedConstant();
Goto(&done);
BIND(&done);
return maybe_vector.value();
}
TNode<ClosureFeedbackCellArray> CodeStubAssembler::LoadClosureFeedbackArray(
SloppyTNode<JSFunction> closure) {
TVARIABLE(HeapObject, feedback_cell_array, LoadFeedbackCellValue(closure));
Label end(this);
// When feedback vectors are not yet allocated feedback cell contains a
// an array of feedback cells used by create closures.
GotoIf(HasInstanceType(feedback_cell_array.value(),
CLOSURE_FEEDBACK_CELL_ARRAY_TYPE),
&end);
// Load FeedbackCellArray from feedback vector.
TNode<FeedbackVector> vector = CAST(feedback_cell_array.value());
feedback_cell_array = CAST(
LoadObjectField(vector, FeedbackVector::kClosureFeedbackCellArrayOffset));
Goto(&end);
BIND(&end);
return CAST(feedback_cell_array.value());
}
TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVectorForStub() {
TNode<JSFunction> function =
CAST(LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset));
return CAST(LoadFeedbackVector(function));
}
void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* maybe_vector,
Node* slot_id) {
Label end(this);
// If feedback_vector is not valid, then nothing to do.
GotoIf(IsUndefined(maybe_vector), &end);
// This method is used for binary op and compare feedback. These
// vector nodes are initialized with a smi 0, so we can simply OR
// our new feedback in place.
TNode<FeedbackVector> feedback_vector = CAST(maybe_vector);
TNode<MaybeObject> feedback_element =
LoadFeedbackVectorSlot(feedback_vector, slot_id);
TNode<Smi> previous_feedback = CAST(feedback_element);
TNode<Smi> combined_feedback = SmiOr(previous_feedback, CAST(feedback));
GotoIf(SmiEqual(previous_feedback, combined_feedback), &end);
{
StoreFeedbackVectorSlot(feedback_vector, slot_id, combined_feedback,
SKIP_WRITE_BARRIER);
ReportFeedbackUpdate(feedback_vector, slot_id, "UpdateFeedback");
Goto(&end);
}
BIND(&end);
}
void CodeStubAssembler::ReportFeedbackUpdate(
SloppyTNode<FeedbackVector> feedback_vector, SloppyTNode<IntPtrT> slot_id,
const char* reason) {
// Reset profiler ticks.
StoreObjectFieldNoWriteBarrier(
feedback_vector, FeedbackVector::kProfilerTicksOffset, Int32Constant(0),
MachineRepresentation::kWord32);
#ifdef V8_TRACE_FEEDBACK_UPDATES
// Trace the update.
CallRuntime(Runtime::kInterpreterTraceUpdateFeedback, NoContextConstant(),
LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset),
SmiTag(slot_id), StringConstant(reason));
#endif // V8_TRACE_FEEDBACK_UPDATES
}
void CodeStubAssembler::OverwriteFeedback(Variable* existing_feedback,
int new_feedback) {
if (existing_feedback == nullptr) return;
existing_feedback->Bind(SmiConstant(new_feedback));
}
void CodeStubAssembler::CombineFeedback(Variable* existing_feedback,
int feedback) {
if (existing_feedback == nullptr) return;
existing_feedback->Bind(
SmiOr(CAST(existing_feedback->value()), SmiConstant(feedback)));
}
void CodeStubAssembler::CombineFeedback(Variable* existing_feedback,
Node* feedback) {
if (existing_feedback == nullptr) return;
existing_feedback->Bind(
SmiOr(CAST(existing_feedback->value()), CAST(feedback)));
}
void CodeStubAssembler::CheckForAssociatedProtector(Node* name,
Label* if_protector) {
// This list must be kept in sync with LookupIterator::UpdateProtector!
// TODO(jkummerow): Would it be faster to have a bit in Symbol::flags()?
GotoIf(WordEqual(name, LoadRoot(RootIndex::kconstructor_string)),
if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::kiterator_symbol)), if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::knext_string)), if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::kspecies_symbol)), if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::kis_concat_spreadable_symbol)),
if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::kresolve_string)), if_protector);
GotoIf(WordEqual(name, LoadRoot(RootIndex::kthen_string)), if_protector);
// Fall through if no case matched.
}
TNode<Map> CodeStubAssembler::LoadReceiverMap(SloppyTNode<Object> receiver) {
return Select<Map>(
TaggedIsSmi(receiver),
[=] { return CAST(LoadRoot(RootIndex::kHeapNumberMap)); },
[=] { return LoadMap(UncheckedCast<HeapObject>(receiver)); });
}
TNode<IntPtrT> CodeStubAssembler::TryToIntptr(Node* key, Label* miss) {
TVARIABLE(IntPtrT, var_intptr_key);
Label done(this, &var_intptr_key), key_is_smi(this);
GotoIf(TaggedIsSmi(key), &key_is_smi);
// Try to convert a heap number to a Smi.
GotoIfNot(IsHeapNumber(key), miss);
{
TNode<Float64T> value = LoadHeapNumberValue(key);
TNode<Int32T> int_value = RoundFloat64ToInt32(value);
GotoIfNot(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss);
var_intptr_key = ChangeInt32ToIntPtr(int_value);
Goto(&done);
}
BIND(&key_is_smi);
{
var_intptr_key = SmiUntag(key);
Goto(&done);
}
BIND(&done);
return var_intptr_key.value();
}
Node* CodeStubAssembler::EmitKeyedSloppyArguments(
Node* receiver, Node* key, Node* value, Label* bailout,
ArgumentsAccessMode access_mode) {
// Mapped arguments are actual arguments. Unmapped arguments are values added
// to the arguments object after it was created for the call. Mapped arguments
// are stored in the context at indexes given by elements[key + 2]. Unmapped
// arguments are stored as regular indexed properties in the arguments array,
// held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed
// look at argument object construction.
//
// The sloppy arguments elements array has a special format:
//
// 0: context
// 1: unmapped arguments array
// 2: mapped_index0,
// 3: mapped_index1,
// ...
//
// length is 2 + min(number_of_actual_arguments, number_of_formal_arguments).
// If key + 2 >= elements.length then attempt to look in the unmapped
// arguments array (given by elements[1]) and return the value at key, missing
// to the runtime if the unmapped arguments array is not a fixed array or if
// key >= unmapped_arguments_array.length.
//
// Otherwise, t = elements[key + 2]. If t is the hole, then look up the value
// in the unmapped arguments array, as described above. Otherwise, t is a Smi
// index into the context array given at elements[0]. Return the value at
// context[t].
GotoIfNot(TaggedIsSmi(key), bailout);
key = SmiUntag(key);
GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout);
TNode<FixedArray> elements = CAST(LoadElements(receiver));
TNode<IntPtrT> elements_length = LoadAndUntagFixedArrayBaseLength(elements);
VARIABLE(var_result, MachineRepresentation::kTagged);
if (access_mode == ArgumentsAccessMode::kStore) {
var_result.Bind(value);
} else {
DCHECK(access_mode == ArgumentsAccessMode::kLoad ||
access_mode == ArgumentsAccessMode::kHas);
}
Label if_mapped(this), if_unmapped(this), end(this, &var_result);
Node* intptr_two = IntPtrConstant(2);
Node* adjusted_length = IntPtrSub(elements_length, intptr_two);
GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped);
TNode<Object> mapped_index =
LoadFixedArrayElement(elements, IntPtrAdd(key, intptr_two));
Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped);
BIND(&if_mapped);
{
TNode<IntPtrT> mapped_index_intptr = SmiUntag(CAST(mapped_index));
TNode<Context> the_context = CAST(LoadFixedArrayElement(elements, 0));
if (access_mode == ArgumentsAccessMode::kLoad) {
Node* result = LoadContextElement(the_context, mapped_index_intptr);
CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant()));
var_result.Bind(result);
} else if (access_mode == ArgumentsAccessMode::kHas) {
CSA_ASSERT(this, Word32BinaryNot(IsTheHole(LoadContextElement(
the_context, mapped_index_intptr))));
var_result.Bind(TrueConstant());
} else {
StoreContextElement(the_context, mapped_index_intptr, value);
}
Goto(&end);
}
BIND(&if_unmapped);
{
TNode<HeapObject> backing_store_ho =
CAST(LoadFixedArrayElement(elements, 1));
GotoIf(WordNotEqual(LoadMap(backing_store_ho), FixedArrayMapConstant()),
bailout);
TNode<FixedArray> backing_store = CAST(backing_store_ho);
TNode<IntPtrT> backing_store_length =
LoadAndUntagFixedArrayBaseLength(backing_store);
if (access_mode == ArgumentsAccessMode::kHas) {
Label out_of_bounds(this);
GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length),
&out_of_bounds);
Node* result = LoadFixedArrayElement(backing_store, key);
var_result.Bind(
SelectBooleanConstant(WordNotEqual(result, TheHoleConstant())));
Goto(&end);
BIND(&out_of_bounds);
var_result.Bind(FalseConstant());
Goto(&end);
} else {
GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout);
// The key falls into unmapped range.
if (access_mode == ArgumentsAccessMode::kLoad) {
Node* result = LoadFixedArrayElement(backing_store, key);
GotoIf(WordEqual(result, TheHoleConstant()), bailout);
var_result.Bind(result);
} else {
StoreFixedArrayElement(backing_store, key, value);
}
Goto(&end);
}
}
BIND(&end);
return var_result.value();
}
TNode<Context> CodeStubAssembler::LoadScriptContext(
TNode<Context> context, TNode<IntPtrT> context_index) {
TNode<Context> native_context = LoadNativeContext(context);
TNode<ScriptContextTable> script_context_table = CAST(
LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX));
TNode<Context> script_context = CAST(LoadFixedArrayElement(
script_context_table, context_index,
ScriptContextTable::kFirstContextSlotIndex * kTaggedSize));
return script_context;
}
namespace {
// Converts typed array elements kind to a machine representations.
MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) {
switch (kind) {
case UINT8_CLAMPED_ELEMENTS:
case UINT8_ELEMENTS:
case INT8_ELEMENTS:
return MachineRepresentation::kWord8;
case UINT16_ELEMENTS:
case INT16_ELEMENTS:
return MachineRepresentation::kWord16;
case UINT32_ELEMENTS:
case INT32_ELEMENTS:
return MachineRepresentation::kWord32;
case FLOAT32_ELEMENTS:
return MachineRepresentation::kFloat32;
case FLOAT64_ELEMENTS:
return MachineRepresentation::kFloat64;
default:
UNREACHABLE();
}
}
} // namespace
void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind,
Node* index, Node* value,
ParameterMode mode) {
if (IsFixedTypedArrayElementsKind(kind)) {
if (kind == UINT8_CLAMPED_ELEMENTS) {
CSA_ASSERT(this,
Word32Equal(value, Word32And(Int32Constant(0xFF), value)));
}
Node* offset = ElementOffsetFromIndex(index, kind, mode, 0);
// TODO(cbruni): Add OOB check once typed.
MachineRepresentation rep = ElementsKindToMachineRepresentation(kind);
StoreNoWriteBarrier(rep, elements, offset, value);
return;
} else if (IsDoubleElementsKind(kind)) {
TNode<Float64T> value_float64 = UncheckedCast<Float64T>(value);
StoreFixedDoubleArrayElement(CAST(elements), index, value_float64, mode);
} else {
WriteBarrierMode barrier_mode = IsSmiElementsKind(kind)
? UNSAFE_SKIP_WRITE_BARRIER
: UPDATE_WRITE_BARRIER;
StoreFixedArrayElement(CAST(elements), index, value, barrier_mode, 0, mode);
}
}
Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) {
Label done(this);
Node* int32_zero = Int32Constant(0);
Node* int32_255 = Int32Constant(255);
VARIABLE(var_value, MachineRepresentation::kWord32, int32_value);
GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done);
var_value.Bind(int32_zero);
GotoIf(Int32LessThan(int32_value, int32_zero), &done);
var_value.Bind(int32_255);
Goto(&done);
BIND(&done);
return var_value.value();
}
Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) {
Label done(this);
VARIABLE(var_value, MachineRepresentation::kWord32, Int32Constant(0));
GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done);
var_value.Bind(Int32Constant(255));
GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done);
{
Node* rounded_value = Float64RoundToEven(float64_value);
var_value.Bind(TruncateFloat64ToWord32(rounded_value));
Goto(&done);
}
BIND(&done);
return var_value.value();
}
Node* CodeStubAssembler::PrepareValueForWriteToTypedArray(
TNode<Object> input, ElementsKind elements_kind, TNode<Context> context) {
DCHECK(IsFixedTypedArrayElementsKind(elements_kind));
MachineRepresentation rep;
switch (elements_kind) {
case UINT8_ELEMENTS:
case INT8_ELEMENTS:
case UINT16_ELEMENTS:
case INT16_ELEMENTS:
case UINT32_ELEMENTS:
case INT32_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
rep = MachineRepresentation::kWord32;
break;
case FLOAT32_ELEMENTS:
rep = MachineRepresentation::kFloat32;
break;
case FLOAT64_ELEMENTS:
rep = MachineRepresentation::kFloat64;
break;
case BIGINT64_ELEMENTS:
case BIGUINT64_ELEMENTS:
return ToBigInt(context, input);
default:
UNREACHABLE();
}
VARIABLE(var_result, rep);
VARIABLE(var_input, MachineRepresentation::kTagged, input);
Label done(this, &var_result), if_smi(this), if_heapnumber_or_oddball(this),
convert(this), loop(this, &var_input);
Goto(&loop);
BIND(&loop);
GotoIf(TaggedIsSmi(var_input.value()), &if_smi);
// We can handle both HeapNumber and Oddball here, since Oddball has the
// same layout as the HeapNumber for the HeapNumber::value field. This
// way we can also properly optimize stores of oddballs to typed arrays.
GotoIf(IsHeapNumber(var_input.value()), &if_heapnumber_or_oddball);
STATIC_ASSERT_FIELD_OFFSETS_EQUAL(HeapNumber::kValueOffset,
Oddball::kToNumberRawOffset);
Branch(HasInstanceType(var_input.value(), ODDBALL_TYPE),
&if_heapnumber_or_oddball, &convert);
BIND(&if_heapnumber_or_oddball);
{
Node* value = UncheckedCast<Float64T>(LoadObjectField(
var_input.value(), HeapNumber::kValueOffset, MachineType::Float64()));
if (rep == MachineRepresentation::kWord32) {
if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
value = Float64ToUint8Clamped(value);
} else {
value = TruncateFloat64ToWord32(value);
}
} else if (rep == MachineRepresentation::kFloat32) {
value = TruncateFloat64ToFloat32(value);
} else {
DCHECK_EQ(MachineRepresentation::kFloat64, rep);
}
var_result.Bind(value);
Goto(&done);
}
BIND(&if_smi);
{
Node* value = SmiToInt32(var_input.value());
if (rep == MachineRepresentation::kFloat32) {
value = RoundInt32ToFloat32(value);
} else if (rep == MachineRepresentation::kFloat64) {
value = ChangeInt32ToFloat64(value);
} else {
DCHECK_EQ(MachineRepresentation::kWord32, rep);
if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
value = Int32ToUint8Clamped(value);
}
}
var_result.Bind(value);
Goto(&done);
}
BIND(&convert);
{
var_input.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, input));
Goto(&loop);
}
BIND(&done);
return var_result.value();
}
void CodeStubAssembler::EmitBigTypedArrayElementStore(
TNode<JSTypedArray> object, TNode<FixedTypedArrayBase> elements,
TNode<IntPtrT> intptr_key, TNode<Object> value, TNode<Context> context,
Label* opt_if_detached) {
TNode<BigInt> bigint_value = ToBigInt(context, value);
if (opt_if_detached != nullptr) {
// Check if buffer has been detached. Must happen after {ToBigInt}!
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
GotoIf(IsDetachedBuffer(buffer), opt_if_detached);
}
TNode<RawPtrT> backing_store = LoadFixedTypedArrayBackingStore(elements);
TNode<IntPtrT> offset = ElementOffsetFromIndex(intptr_key, BIGINT64_ELEMENTS,
INTPTR_PARAMETERS, 0);
EmitBigTypedArrayElementStore(elements, backing_store, offset, bigint_value);
}
void CodeStubAssembler::BigIntToRawBytes(TNode<BigInt> bigint,
TVariable<UintPtrT>* var_low,
TVariable<UintPtrT>* var_high) {
Label done(this);
*var_low = Unsigned(IntPtrConstant(0));
*var_high = Unsigned(IntPtrConstant(0));
TNode<Word32T> bitfield = LoadBigIntBitfield(bigint);
TNode<Uint32T> length = DecodeWord32<BigIntBase::LengthBits>(bitfield);
TNode<Uint32T> sign = DecodeWord32<BigIntBase::SignBits>(bitfield);
GotoIf(Word32Equal(length, Int32Constant(0)), &done);
*var_low = LoadBigIntDigit(bigint, 0);
if (!Is64()) {
Label load_done(this);
GotoIf(Word32Equal(length, Int32Constant(1)), &load_done);
*var_high = LoadBigIntDigit(bigint, 1);
Goto(&load_done);
BIND(&load_done);
}
GotoIf(Word32Equal(sign, Int32Constant(0)), &done);
// Negative value. Simulate two's complement.
if (!Is64()) {
*var_high = Unsigned(IntPtrSub(IntPtrConstant(0), var_high->value()));
Label no_carry(this);
GotoIf(WordEqual(var_low->value(), IntPtrConstant(0)), &no_carry);
*var_high = Unsigned(IntPtrSub(var_high->value(), IntPtrConstant(1)));
Goto(&no_carry);
BIND(&no_carry);
}
*var_low = Unsigned(IntPtrSub(IntPtrConstant(0), var_low->value()));
Goto(&done);
BIND(&done);
}
void CodeStubAssembler::EmitBigTypedArrayElementStore(
TNode<FixedTypedArrayBase> elements, TNode<RawPtrT> backing_store,
TNode<IntPtrT> offset, TNode<BigInt> bigint_value) {
TVARIABLE(UintPtrT, var_low);
// Only used on 32-bit platforms.
TVARIABLE(UintPtrT, var_high);
BigIntToRawBytes(bigint_value, &var_low, &var_high);
MachineRepresentation rep = WordT::kMachineRepresentation;
#if defined(V8_TARGET_BIG_ENDIAN)
if (!Is64()) {
StoreNoWriteBarrier(rep, backing_store, offset, var_high.value());
StoreNoWriteBarrier(rep, backing_store,
IntPtrAdd(offset, IntPtrConstant(kSystemPointerSize)),
var_low.value());
} else {
StoreNoWriteBarrier(rep, backing_store, offset, var_low.value());
}
#else
StoreNoWriteBarrier(rep, backing_store, offset, var_low.value());
if (!Is64()) {
StoreNoWriteBarrier(rep, backing_store,
IntPtrAdd(offset, IntPtrConstant(kSystemPointerSize)),
var_high.value());
}
#endif
}
void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value,
ElementsKind elements_kind,
KeyedAccessStoreMode store_mode,
Label* bailout, Node* context) {
CSA_ASSERT(this, Word32BinaryNot(IsJSProxy(object)));
Node* elements = LoadElements(object);
if (!(IsSmiOrObjectElementsKind(elements_kind) ||
IsSealedElementsKind(elements_kind))) {
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
} else if (!IsCOWHandlingStoreMode(store_mode)) {
GotoIf(IsFixedCOWArrayMap(LoadMap(elements)), bailout);
}
// TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode().
ParameterMode parameter_mode = INTPTR_PARAMETERS;
TNode<IntPtrT> intptr_key = TryToIntptr(key, bailout);
if (IsFixedTypedArrayElementsKind(elements_kind)) {
Label done(this);
// IntegerIndexedElementSet converts value to a Number/BigInt prior to the
// bounds check.
value = PrepareValueForWriteToTypedArray(CAST(value), elements_kind,
CAST(context));
// There must be no allocations between the buffer load and
// and the actual store to backing store, because GC may decide that
// the buffer is not alive or move the elements.
// TODO(ishell): introduce DisallowHeapAllocationCode scope here.
// Check if buffer has been detached.
Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
GotoIf(IsDetachedBuffer(buffer), bailout);
// Bounds check.
TNode<UintPtrT> length = LoadJSTypedArrayLength(CAST(object));
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
// Skip the store if we write beyond the length or
// to a property with a negative integer index.
GotoIfNot(UintPtrLessThan(intptr_key, length), &done);
} else if (store_mode == STANDARD_STORE) {
GotoIfNot(UintPtrLessThan(intptr_key, length), bailout);
} else {
// This case is produced due to the dispatched call in
// ElementsTransitionAndStore and StoreFastElement.
// TODO(jgruber): Avoid generating unsupported combinations to save code
// size.
DebugBreak();
}
if (elements_kind == BIGINT64_ELEMENTS ||
elements_kind == BIGUINT64_ELEMENTS) {
TNode<BigInt> bigint_value = UncheckedCast<BigInt>(value);
TNode<RawPtrT> backing_store =
LoadFixedTypedArrayBackingStore(CAST(elements));
TNode<IntPtrT> offset = ElementOffsetFromIndex(
intptr_key, BIGINT64_ELEMENTS, INTPTR_PARAMETERS, 0);
EmitBigTypedArrayElementStore(CAST(elements), backing_store, offset,
bigint_value);
} else {
Node* backing_store = LoadFixedTypedArrayBackingStore(CAST(elements));
StoreElement(backing_store, elements_kind, intptr_key, value,
parameter_mode);
}
Goto(&done);
BIND(&done);
return;
}
DCHECK(
IsFastElementsKind(elements_kind) ||
IsInRange(elements_kind, PACKED_SEALED_ELEMENTS, HOLEY_SEALED_ELEMENTS));
Node* length =
SelectImpl(IsJSArray(object), [=]() { return LoadJSArrayLength(object); },
[=]() { return LoadFixedArrayBaseLength(elements); },
MachineRepresentation::kTagged);
length = TaggedToParameter(length, parameter_mode);
// In case value is stored into a fast smi array, assure that the value is
// a smi before manipulating the backing store. Otherwise the backing store
// may be left in an invalid state.
if (IsSmiElementsKind(elements_kind)) {
GotoIfNot(TaggedIsSmi(value), bailout);
} else if (IsDoubleElementsKind(elements_kind)) {
value = TryTaggedToFloat64(value, bailout);
}
if (IsGrowStoreMode(store_mode) &&
!(IsInRange(elements_kind, PACKED_SEALED_ELEMENTS,
HOLEY_SEALED_ELEMENTS))) {
elements = CheckForCapacityGrow(object, elements, elements_kind, length,
intptr_key, parameter_mode, bailout);
} else {
GotoIfNot(UintPtrLessThan(intptr_key, length), bailout);
}
// If we didn't grow {elements}, it might still be COW, in which case we
// copy it now.
if (!IsSmiOrObjectElementsKind(elements_kind)) {
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
} else if (IsCOWHandlingStoreMode(store_mode)) {
elements = CopyElementsOnWrite(object, elements, elements_kind, length,
parameter_mode, bailout);
}
CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements))));
StoreElement(elements, elements_kind, intptr_key, value, parameter_mode);
}
Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements,
ElementsKind kind, Node* length,
Node* key, ParameterMode mode,
Label* bailout) {
DCHECK(IsFastElementsKind(kind));
VARIABLE(checked_elements, MachineRepresentation::kTagged);
Label grow_case(this), no_grow_case(this), done(this),
grow_bailout(this, Label::kDeferred);
Node* condition;
if (IsHoleyElementsKind(kind)) {
condition = UintPtrGreaterThanOrEqual(key, length);
} else {
// We don't support growing here unless the value is being appended.
condition = WordEqual(key, length);
}
Branch(condition, &grow_case, &no_grow_case);
BIND(&grow_case);
{
Node* current_capacity =
TaggedToParameter(LoadFixedArrayBaseLength(elements), mode);
checked_elements.Bind(elements);
Label fits_capacity(this);
// If key is negative, we will notice in Runtime::kGrowArrayElements.
GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity);
{
Node* new_elements = TryGrowElementsCapacity(
object, elements, kind, key, current_capacity, mode, &grow_bailout);
checked_elements.Bind(new_elements);
Goto(&fits_capacity);
}
BIND(&grow_bailout);
{
Node* tagged_key = mode == SMI_PARAMETERS
? key
: ChangeInt32ToTagged(TruncateIntPtrToInt32(key));
Node* maybe_elements = CallRuntime(
Runtime::kGrowArrayElements, NoContextConstant(), object, tagged_key);
GotoIf(TaggedIsSmi(maybe_elements), bailout);
CSA_ASSERT(this, IsFixedArrayWithKind(maybe_elements, kind));
checked_elements.Bind(maybe_elements);
Goto(&fits_capacity);
}
BIND(&fits_capacity);
GotoIfNot(IsJSArray(object), &done);
Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode));
StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset,
ParameterToTagged(new_length, mode));
Goto(&done);
}
BIND(&no_grow_case);
{
GotoIfNot(UintPtrLessThan(key, length), bailout);
checked_elements.Bind(elements);
Goto(&done);
}
BIND(&done);
return checked_elements.value();
}
Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements,
ElementsKind kind, Node* length,
ParameterMode mode,
Label* bailout) {
VARIABLE(new_elements_var, MachineRepresentation::kTagged, elements);
Label done(this);
GotoIfNot(IsFixedCOWArrayMap(LoadMap(elements)), &done);
{
Node* capacity =
TaggedToParameter(LoadFixedArrayBaseLength(elements), mode);
Node* new_elements = GrowElementsCapacity(object, elements, kind, kind,
length, capacity, mode, bailout);
new_elements_var.Bind(new_elements);
Goto(&done);
}
BIND(&done);
return new_elements_var.value();
}
void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map,
ElementsKind from_kind,
ElementsKind to_kind,
Label* bailout) {
DCHECK(!IsHoleyElementsKind(from_kind) || IsHoleyElementsKind(to_kind));
if (AllocationSite::ShouldTrack(from_kind, to_kind)) {
TrapAllocationMemento(object, bailout);
}
if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
Comment("Non-simple map transition");
Node* elements = LoadElements(object);
Label done(this);
GotoIf(WordEqual(elements, EmptyFixedArrayConstant()), &done);
// TODO(ishell): Use OptimalParameterMode().
ParameterMode mode = INTPTR_PARAMETERS;
Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements));
Node* array_length = SelectImpl(
IsJSArray(object),
[=]() {
CSA_ASSERT(this, IsFastElementsKind(LoadElementsKind(object)));
return SmiUntag(LoadFastJSArrayLength(object));
},
[=]() { return elements_length; },
MachineType::PointerRepresentation());
CSA_ASSERT(this, WordNotEqual(elements_length, IntPtrConstant(0)));
GrowElementsCapacity(object, elements, from_kind, to_kind, array_length,
elements_length, mode, bailout);
Goto(&done);
BIND(&done);
}
StoreMap(object, map);
}
void CodeStubAssembler::TrapAllocationMemento(Node* object,
Label* memento_found) {
Comment("[ TrapAllocationMemento");
Label no_memento_found(this);
Label top_check(this), map_check(this);
TNode<ExternalReference> new_space_top_address = ExternalConstant(
ExternalReference::new_space_allocation_top_address(isolate()));
const int kMementoMapOffset = JSArray::kSize;
const int kMementoLastWordOffset =
kMementoMapOffset + AllocationMemento::kSize - kTaggedSize;
// Bail out if the object is not in new space.
TNode<IntPtrT> object_word = BitcastTaggedToWord(object);
TNode<IntPtrT> object_page = PageFromAddress(object_word);
{
TNode<IntPtrT> page_flags =
UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page,
IntPtrConstant(Page::kFlagsOffset)));
GotoIf(WordEqual(
WordAnd(page_flags,
IntPtrConstant(MemoryChunk::kIsInYoungGenerationMask)),
IntPtrConstant(0)),
&no_memento_found);
// TODO(ulan): Support allocation memento for a large object by allocating
// additional word for the memento after the large object.
GotoIf(WordNotEqual(WordAnd(page_flags,
IntPtrConstant(MemoryChunk::kIsLargePageMask)),
IntPtrConstant(0)),
&no_memento_found);
}
TNode<IntPtrT> memento_last_word = IntPtrAdd(
object_word, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag));
TNode<IntPtrT> memento_last_word_page = PageFromAddress(memento_last_word);
TNode<IntPtrT> new_space_top = UncheckedCast<IntPtrT>(
Load(MachineType::Pointer(), new_space_top_address));
TNode<IntPtrT> new_space_top_page = PageFromAddress(new_space_top);
// If the object is in new space, we need to check whether respective
// potential memento object is on the same page as the current top.
GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check);
// The object is on a different page than allocation top. Bail out if the
// object sits on the page boundary as no memento can follow and we cannot
// touch the memory following it.
Branch(WordEqual(object_page, memento_last_word_page), &map_check,
&no_memento_found);
// If top is on the same page as the current object, we need to check whether
// we are below top.
BIND(&top_check);
{
Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top),
&no_memento_found, &map_check);
}
// Memento map check.
BIND(&map_check);
{
TNode<Object> memento_map = LoadObjectField(object, kMementoMapOffset);
Branch(WordEqual(memento_map, LoadRoot(RootIndex::kAllocationMementoMap)),
memento_found, &no_memento_found);
}
BIND(&no_memento_found);
Comment("] TrapAllocationMemento");
}
TNode<IntPtrT> CodeStubAssembler::PageFromAddress(TNode<IntPtrT> address) {
return WordAnd(address, IntPtrConstant(~kPageAlignmentMask));
}
TNode<AllocationSite> CodeStubAssembler::CreateAllocationSiteInFeedbackVector(
SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot) {
TNode<IntPtrT> size = IntPtrConstant(AllocationSite::kSizeWithWeakNext);
Node* site = Allocate(size, CodeStubAssembler::kPretenured);
StoreMapNoWriteBarrier(site, RootIndex::kAllocationSiteWithWeakNextMap);
// Should match AllocationSite::Initialize.
TNode<WordT> field = UpdateWord<AllocationSite::ElementsKindBits>(
IntPtrConstant(0), IntPtrConstant(GetInitialFastElementsKind()));
StoreObjectFieldNoWriteBarrier(
site, AllocationSite::kTransitionInfoOrBoilerplateOffset,
SmiTag(Signed(field)));
// Unlike literals, constructed arrays don't have nested sites
TNode<Smi> zero = SmiConstant(0);
StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero);
// Pretenuring calculation field.
StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset,
Int32Constant(0),
MachineRepresentation::kWord32);
// Pretenuring memento creation count field.
StoreObjectFieldNoWriteBarrier(
site, AllocationSite::kPretenureCreateCountOffset, Int32Constant(0),
MachineRepresentation::kWord32);
// Store an empty fixed array for the code dependency.
StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset,
RootIndex::kEmptyWeakFixedArray);
// Link the object to the allocation site list
TNode<ExternalReference> site_list = ExternalConstant(
ExternalReference::allocation_sites_list_address(isolate()));
TNode<Object> next_site = CAST(LoadBufferObject(site_list, 0));
// TODO(mvstanton): This is a store to a weak pointer, which we may want to
// mark as such in order to skip the write barrier, once we have a unified
// system for weakness. For now we decided to keep it like this because having
// an initial write barrier backed store makes this pointer strong until the
// next GC, and allocation sites are designed to survive several GCs anyway.
StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site);
StoreFullTaggedNoWriteBarrier(site_list, site);
StoreFeedbackVectorSlot(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0,
SMI_PARAMETERS);
return CAST(site);
}
TNode<MaybeObject> CodeStubAssembler::StoreWeakReferenceInFeedbackVector(
SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
SloppyTNode<HeapObject> value, int additional_offset,
ParameterMode parameter_mode) {
TNode<MaybeObject> weak_value = MakeWeak(value);
StoreFeedbackVectorSlot(feedback_vector, slot, weak_value,
UPDATE_WRITE_BARRIER, additional_offset,
parameter_mode);
return weak_value;
}
TNode<BoolT> CodeStubAssembler::NotHasBoilerplate(
TNode<Object> maybe_literal_site) {
return TaggedIsSmi(maybe_literal_site);
}
TNode<Smi> CodeStubAssembler::LoadTransitionInfo(
TNode<AllocationSite> allocation_site) {
TNode<Smi> transition_info = CAST(LoadObjectField(
allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset));
return transition_info;
}
TNode<JSObject> CodeStubAssembler::LoadBoilerplate(
TNode<AllocationSite> allocation_site) {
TNode<JSObject> boilerplate = CAST(LoadObjectField(
allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset));
return boilerplate;
}
TNode<Int32T> CodeStubAssembler::LoadElementsKind(
TNode<AllocationSite> allocation_site) {
TNode<Smi> transition_info = LoadTransitionInfo(allocation_site);
TNode<Int32T> elements_kind =
Signed(DecodeWord32<AllocationSite::ElementsKindBits>(
SmiToInt32(transition_info)));
CSA_ASSERT(this, IsFastElementsKind(elements_kind));
return elements_kind;
}
Node* CodeStubAssembler::BuildFastLoop(
const CodeStubAssembler::VariableList& vars, Node* start_index,
Node* end_index, const FastLoopBody& body, int increment,
ParameterMode parameter_mode, IndexAdvanceMode advance_mode) {
CSA_SLOW_ASSERT(this, MatchesParameterMode(start_index, parameter_mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(end_index, parameter_mode));
MachineRepresentation index_rep = ParameterRepresentation(parameter_mode);
VARIABLE(var, index_rep, start_index);
VariableList vars_copy(vars.begin(), vars.end(), zone());
vars_copy.push_back(&var);
Label loop(this, vars_copy);
Label after_loop(this);
// Introduce an explicit second check of the termination condition before the
// loop that helps turbofan generate better code. If there's only a single
// check, then the CodeStubAssembler forces it to be at the beginning of the
// loop requiring a backwards branch at the end of the loop (it's not possible
// to force the loop header check at the end of the loop and branch forward to
// it from the pre-header). The extra branch is slower in the case that the
// loop actually iterates.
Node* first_check = WordEqual(var.value(), end_index);
int32_t first_check_val;
if (ToInt32Constant(first_check, first_check_val)) {
if (first_check_val) return var.value();
Goto(&loop);
} else {
Branch(first_check, &after_loop, &loop);
}
BIND(&loop);
{
if (advance_mode == IndexAdvanceMode::kPre) {
Increment(&var, increment, parameter_mode);
}
body(var.value());
if (advance_mode == IndexAdvanceMode::kPost) {
Increment(&var, increment, parameter_mode);
}
Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop);
}
BIND(&after_loop);
return var.value();
}
void CodeStubAssembler::BuildFastFixedArrayForEach(
const CodeStubAssembler::VariableList& vars, Node* fixed_array,
ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode, ForEachDirection direction) {
STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
CSA_SLOW_ASSERT(this, MatchesParameterMode(first_element_inclusive, mode));
CSA_SLOW_ASSERT(this, MatchesParameterMode(last_element_exclusive, mode));
CSA_SLOW_ASSERT(this, Word32Or(IsFixedArrayWithKind(fixed_array, kind),
IsPropertyArray(fixed_array)));
int32_t first_val;
bool constant_first = ToInt32Constant(first_element_inclusive, first_val);
int32_t last_val;
bool constent_last = ToInt32Constant(last_element_exclusive, last_val);
if (constant_first && constent_last) {
int delta = last_val - first_val;
DCHECK_GE(delta, 0);
if (delta <= kElementLoopUnrollThreshold) {
if (direction == ForEachDirection::kForward) {
for (int i = first_val; i < last_val; ++i) {
Node* index = IntPtrConstant(i);
Node* offset =
ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
FixedArray::kHeaderSize - kHeapObjectTag);
body(fixed_array, offset);
}
} else {
for (int i = last_val - 1; i >= first_val; --i) {
Node* index = IntPtrConstant(i);
Node* offset =
ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
FixedArray::kHeaderSize - kHeapObjectTag);
body(fixed_array, offset);
}
}
return;
}
}
Node* start =
ElementOffsetFromIndex(first_element_inclusive, kind, mode,
FixedArray::kHeaderSize - kHeapObjectTag);
Node* limit =
ElementOffsetFromIndex(last_element_exclusive, kind, mode,
FixedArray::kHeaderSize - kHeapObjectTag);
if (direction == ForEachDirection::kReverse) std::swap(start, limit);
int increment = IsDoubleElementsKind(kind) ? kDoubleSize : kTaggedSize;
BuildFastLoop(
vars, start, limit,
[fixed_array, &body](Node* offset) { body(fixed_array, offset); },
direction == ForEachDirection::kReverse ? -increment : increment,
INTPTR_PARAMETERS,
direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre
: IndexAdvanceMode::kPost);
}
void CodeStubAssembler::GotoIfFixedArraySizeDoesntFitInNewSpace(
Node* element_count, Label* doesnt_fit, int base_size, ParameterMode mode) {
GotoIf(FixedArraySizeDoesntFitInNewSpace(element_count, base_size, mode),
doesnt_fit);
}
void CodeStubAssembler::InitializeFieldsWithRoot(Node* object,
Node* start_offset,
Node* end_offset,
RootIndex root_index) {
CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object));
start_offset = IntPtrAdd(start_offset, IntPtrConstant(-kHeapObjectTag));
end_offset = IntPtrAdd(end_offset, IntPtrConstant(-kHeapObjectTag));
Node* root_value = LoadRoot(root_index);
BuildFastLoop(
end_offset, start_offset,
[this, object, root_value](Node* current) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, current,
root_value);
},
-kTaggedSize, INTPTR_PARAMETERS,
CodeStubAssembler::IndexAdvanceMode::kPre);
}
void CodeStubAssembler::BranchIfNumberRelationalComparison(
Operation op, Node* left, Node* right, Label* if_true, Label* if_false) {
CSA_SLOW_ASSERT(this, IsNumber(left));
CSA_SLOW_ASSERT(this, IsNumber(right));
Label do_float_comparison(this);
TVARIABLE(Float64T, var_left_float);
TVARIABLE(Float64T, var_right_float);
Branch(
TaggedIsSmi(left),
[&] {
TNode<Smi> smi_left = CAST(left);
Branch(
TaggedIsSmi(right),
[&] {
TNode<Smi> smi_right = CAST(right);
// Both {left} and {right} are Smi, so just perform a fast
// Smi comparison.
switch (op) {
case Operation::kEqual:
BranchIfSmiEqual(smi_left, smi_right, if_true, if_false);
break;
case Operation::kLessThan:
BranchIfSmiLessThan(smi_left, smi_right, if_true, if_false);
break;
case Operation::kLessThanOrEqual:
BranchIfSmiLessThanOrEqual(smi_left, smi_right, if_true,
if_false);
break;
case Operation::kGreaterThan:
BranchIfSmiLessThan(smi_right, smi_left, if_true, if_false);
break;
case Operation::kGreaterThanOrEqual:
BranchIfSmiLessThanOrEqual(smi_right, smi_left, if_true,
if_false);
break;
default:
UNREACHABLE();
}
},
[&] {
CSA_ASSERT(this, IsHeapNumber(right));
var_left_float = SmiToFloat64(smi_left);
var_right_float = LoadHeapNumberValue(right);
Goto(&do_float_comparison);
});
},
[&] {
CSA_ASSERT(this, IsHeapNumber(left));
var_left_float = LoadHeapNumberValue(left);
Branch(
TaggedIsSmi(right),
[&] {
var_right_float = SmiToFloat64(right);
Goto(&do_float_comparison);
},
[&] {
CSA_ASSERT(this, IsHeapNumber(right));
var_right_float = LoadHeapNumberValue(right);
Goto(&do_float_comparison);
});
});
BIND(&do_float_comparison);
{
switch (op) {
case Operation::kEqual:
Branch(Float64Equal(var_left_float.value(), var_right_float.value()),
if_true, if_false);
break;
case Operation::kLessThan:
Branch(Float64LessThan(var_left_float.value(), var_right_float.value()),
if_true, if_false);
break;
case Operation::kLessThanOrEqual:
Branch(Float64LessThanOrEqual(var_left_float.value(),
var_right_float.value()),
if_true, if_false);
break;
case Operation::kGreaterThan:
Branch(
Float64GreaterThan(var_left_float.value(), var_right_float.value()),
if_true, if_false);
break;
case Operation::kGreaterThanOrEqual:
Branch(Float64GreaterThanOrEqual(var_left_float.value(),
var_right_float.value()),
if_true, if_false);
break;
default:
UNREACHABLE();
}
}
}
void CodeStubAssembler::GotoIfNumberGreaterThanOrEqual(Node* left, Node* right,
Label* if_true) {
Label if_false(this);
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
right, if_true, &if_false);
BIND(&if_false);
}
namespace {
Operation Reverse(Operation op) {
switch (op) {
case Operation::kLessThan:
return Operation::kGreaterThan;
case Operation::kLessThanOrEqual:
return Operation::kGreaterThanOrEqual;
case Operation::kGreaterThan:
return Operation::kLessThan;
case Operation::kGreaterThanOrEqual:
return Operation::kLessThanOrEqual;
default:
break;
}
UNREACHABLE();
}
} // anonymous namespace
Node* CodeStubAssembler::RelationalComparison(Operation op, Node* left,
Node* right, Node* context,
Variable* var_type_feedback) {
Label return_true(this), return_false(this), do_float_comparison(this),
end(this);
TVARIABLE(Oddball, var_result); // Actually only "true" or "false".
TVARIABLE(Float64T, var_left_float);
TVARIABLE(Float64T, var_right_float);
// We might need to loop several times due to ToPrimitive and/or ToNumeric
// conversions.
VARIABLE(var_left, MachineRepresentation::kTagged, left);
VARIABLE(var_right, MachineRepresentation::kTagged, right);
VariableList loop_variable_list({&var_left, &var_right}, zone());
if (var_type_feedback != nullptr) {
// Initialize the type feedback to None. The current feedback is combined
// with the previous feedback.
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone));
loop_variable_list.push_back(var_type_feedback);
}
Label loop(this, loop_variable_list);
Goto(&loop);
BIND(&loop);
{
left = var_left.value();
right = var_right.value();
Label if_left_smi(this), if_left_not_smi(this);
Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi);
BIND(&if_left_smi);
{
TNode<Smi> smi_left = CAST(left);
Label if_right_smi(this), if_right_heapnumber(this),
if_right_bigint(this, Label::kDeferred),
if_right_not_numeric(this, Label::kDeferred);
GotoIf(TaggedIsSmi(right), &if_right_smi);
Node* right_map = LoadMap(right);
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
Node* right_instance_type = LoadMapInstanceType(right_map);
Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint,
&if_right_not_numeric);
BIND(&if_right_smi);
{
TNode<Smi> smi_right = CAST(right);
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kSignedSmall);
switch (op) {
case Operation::kLessThan:
BranchIfSmiLessThan(smi_left, smi_right, &return_true,
&return_false);
break;
case Operation::kLessThanOrEqual:
BranchIfSmiLessThanOrEqual(smi_left, smi_right, &return_true,
&return_false);
break;
case Operation::kGreaterThan:
BranchIfSmiLessThan(smi_right, smi_left, &return_true,
&return_false);
break;
case Operation::kGreaterThanOrEqual:
BranchIfSmiLessThanOrEqual(smi_right, smi_left, &return_true,
&return_false);
break;
default:
UNREACHABLE();
}
}
BIND(&if_right_heapnumber);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
var_left_float = SmiToFloat64(smi_left);
var_right_float = LoadHeapNumberValue(right);
Goto(&do_float_comparison);
}
BIND(&if_right_bigint);
{
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
NoContextConstant(),
SmiConstant(Reverse(op)), right, left));
Goto(&end);
}
BIND(&if_right_not_numeric);
{
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
// Convert {right} to a Numeric; we don't need to perform the
// dedicated ToPrimitive(right, hint Number) operation, as the
// ToNumeric(right) will by itself already invoke ToPrimitive with
// a Number hint.
var_right.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
Goto(&loop);
}
}
BIND(&if_left_not_smi);
{
Node* left_map = LoadMap(left);
Label if_right_smi(this), if_right_not_smi(this);
Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi);
BIND(&if_right_smi);
{
Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred),
if_left_not_numeric(this, Label::kDeferred);
GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber);
Node* left_instance_type = LoadMapInstanceType(left_map);
Branch(IsBigIntInstanceType(left_instance_type), &if_left_bigint,
&if_left_not_numeric);
BIND(&if_left_heapnumber);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
var_left_float = LoadHeapNumberValue(left);
var_right_float = SmiToFloat64(right);
Goto(&do_float_comparison);
}
BIND(&if_left_bigint);
{
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
NoContextConstant(), SmiConstant(op),
left, right));
Goto(&end);
}
BIND(&if_left_not_numeric);
{
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
// Convert {left} to a Numeric; we don't need to perform the
// dedicated ToPrimitive(left, hint Number) operation, as the
// ToNumeric(left) will by itself already invoke ToPrimitive with
// a Number hint.
var_left.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
Goto(&loop);
}
}
BIND(&if_right_not_smi);
{
Node* right_map = LoadMap(right);
Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred),
if_left_string(this, Label::kDeferred),
if_left_other(this, Label::kDeferred);
GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber);
Node* left_instance_type = LoadMapInstanceType(left_map);
GotoIf(IsBigIntInstanceType(left_instance_type), &if_left_bigint);
Branch(IsStringInstanceType(left_instance_type), &if_left_string,
&if_left_other);
BIND(&if_left_heapnumber);
{
Label if_right_heapnumber(this),
if_right_bigint(this, Label::kDeferred),
if_right_not_numeric(this, Label::kDeferred);
GotoIf(WordEqual(right_map, left_map), &if_right_heapnumber);
Node* right_instance_type = LoadMapInstanceType(right_map);
Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint,
&if_right_not_numeric);
BIND(&if_right_heapnumber);
{
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kNumber);
var_left_float = LoadHeapNumberValue(left);
var_right_float = LoadHeapNumberValue(right);
Goto(&do_float_comparison);
}
BIND(&if_right_bigint);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
var_result = CAST(CallRuntime(
Runtime::kBigIntCompareToNumber, NoContextConstant(),
SmiConstant(Reverse(op)), right, left));
Goto(&end);
}
BIND(&if_right_not_numeric);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
// Convert {right} to a Numeric; we don't need to perform
// dedicated ToPrimitive(right, hint Number) operation, as the
// ToNumeric(right) will by itself already invoke ToPrimitive with
// a Number hint.
var_right.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
Goto(&loop);
}
}
BIND(&if_left_bigint);
{
Label if_right_heapnumber(this), if_right_bigint(this),
if_right_string(this), if_right_other(this);
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
Node* right_instance_type = LoadMapInstanceType(right_map);
GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint);
Branch(IsStringInstanceType(right_instance_type), &if_right_string,
&if_right_other);
BIND(&if_right_heapnumber);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber,
NoContextConstant(), SmiConstant(op),
left, right));
Goto(&end);
}
BIND(&if_right_bigint);
{
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kBigInt);
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToBigInt,
NoContextConstant(), SmiConstant(op),
left, right));
Goto(&end);
}
BIND(&if_right_string);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
var_result = CAST(CallRuntime(Runtime::kBigIntCompareToString,
NoContextConstant(), SmiConstant(op),
left, right));
Goto(&end);
}
// {right} is not a Number, BigInt, or String.
BIND(&if_right_other);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
// Convert {right} to a Numeric; we don't need to perform
// dedicated ToPrimitive(right, hint Number) operation, as the
// ToNumeric(right) will by itself already invoke ToPrimitive with
// a Number hint.
var_right.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, right));
Goto(&loop);
}
}
BIND(&if_left_string);
{
Node* right_instance_type = LoadMapInstanceType(right_map);
Label if_right_not_string(this, Label::kDeferred);
GotoIfNot(IsStringInstanceType(right_instance_type),
&if_right_not_string);
// Both {left} and {right} are strings.
CombineFeedback(var_type_feedback, CompareOperationFeedback::kString);
Builtins::Name builtin;
switch (op) {
case Operation::kLessThan:
builtin = Builtins::kStringLessThan;
break;
case Operation::kLessThanOrEqual:
builtin = Builtins::kStringLessThanOrEqual;
break;
case Operation::kGreaterThan:
builtin = Builtins::kStringGreaterThan;
break;
case Operation::kGreaterThanOrEqual:
builtin = Builtins::kStringGreaterThanOrEqual;
break;
default:
UNREACHABLE();
}
var_result = CAST(CallBuiltin(builtin, context, left, right));
Goto(&end);
BIND(&if_right_not_string);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
// {left} is a String, while {right} isn't. Check if {right} is
// a BigInt, otherwise call ToPrimitive(right, hint Number) if
// {right} is a receiver, or ToNumeric(left) and then
// ToNumeric(right) in the other cases.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
Label if_right_bigint(this),
if_right_receiver(this, Label::kDeferred);
GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint);
GotoIf(IsJSReceiverInstanceType(right_instance_type),
&if_right_receiver);
var_left.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right));
Goto(&loop);
BIND(&if_right_bigint);
{
var_result = CAST(CallRuntime(
Runtime::kBigIntCompareToString, NoContextConstant(),
SmiConstant(Reverse(op)), right, left));
Goto(&end);
}
BIND(&if_right_receiver);
{
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
isolate(), ToPrimitiveHint::kNumber);
var_right.Bind(CallStub(callable, context, right));
Goto(&loop);
}
}
}
BIND(&if_left_other);
{
// {left} is neither a Numeric nor a String, and {right} is not a Smi.
if (var_type_feedback != nullptr) {
// Collect NumberOrOddball feedback if {left} is an Oddball
// and {right} is either a HeapNumber or Oddball. Otherwise collect
// Any feedback.
Label collect_any_feedback(this), collect_oddball_feedback(this),
collect_feedback_done(this);
GotoIfNot(InstanceTypeEqual(left_instance_type, ODDBALL_TYPE),
&collect_any_feedback);
GotoIf(IsHeapNumberMap(right_map), &collect_oddball_feedback);
Node* right_instance_type = LoadMapInstanceType(right_map);
Branch(InstanceTypeEqual(right_instance_type, ODDBALL_TYPE),
&collect_oddball_feedback, &collect_any_feedback);
BIND(&collect_oddball_feedback);
{
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kNumberOrOddball);
Goto(&collect_feedback_done);
}
BIND(&collect_any_feedback);
{
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kAny);
Goto(&collect_feedback_done);
}
BIND(&collect_feedback_done);
}
// If {left} is a receiver, call ToPrimitive(left, hint Number).
// Otherwise call ToNumeric(right) and then ToNumeric(left), the
// order here is important as it's observable by user code.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
Label if_left_receiver(this, Label::kDeferred);
GotoIf(IsJSReceiverInstanceType(left_instance_type),
&if_left_receiver);
var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right));
var_left.Bind(
CallBuiltin(Builtins::kNonNumberToNumeric, context, left));
Goto(&loop);
BIND(&if_left_receiver);
{
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
isolate(), ToPrimitiveHint::kNumber);
var_left.Bind(CallStub(callable, context, left));
Goto(&loop);
}
}
}
}
}
BIND(&do_float_comparison);
{
switch (op) {
case Operation::kLessThan:
Branch(Float64LessThan(var_left_float.value(), var_right_float.value()),
&return_true, &return_false);
break;
case Operation::kLessThanOrEqual:
Branch(Float64LessThanOrEqual(var_left_float.value(),
var_right_float.value()),
&return_true, &return_false);
break;
case Operation::kGreaterThan:
Branch(
Float64GreaterThan(var_left_float.value(), var_right_float.value()),
&return_true, &return_false);
break;
case Operation::kGreaterThanOrEqual:
Branch(Float64GreaterThanOrEqual(var_left_float.value(),
var_right_float.value()),
&return_true, &return_false);
break;
default:
UNREACHABLE();
}
}
BIND(&return_true);
{
var_result = TrueConstant();
Goto(&end);
}
BIND(&return_false);
{
var_result = FalseConstant();
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<Smi> CodeStubAssembler::CollectFeedbackForString(
SloppyTNode<Int32T> instance_type) {
TNode<Smi> feedback = SelectSmiConstant(
Word32Equal(
Word32And(instance_type, Int32Constant(kIsNotInternalizedMask)),
Int32Constant(kInternalizedTag)),
CompareOperationFeedback::kInternalizedString,
CompareOperationFeedback::kString);
return feedback;
}
void CodeStubAssembler::GenerateEqual_Same(Node* value, Label* if_equal,
Label* if_notequal,
Variable* var_type_feedback) {
// In case of abstract or strict equality checks, we need additional checks
// for NaN values because they are not considered equal, even if both the
// left and the right hand side reference exactly the same value.
Label if_smi(this), if_heapnumber(this);
GotoIf(TaggedIsSmi(value), &if_smi);
Node* value_map = LoadMap(value);
GotoIf(IsHeapNumberMap(value_map), &if_heapnumber);
// For non-HeapNumbers, all we do is collect type feedback.
if (var_type_feedback != nullptr) {
Node* instance_type = LoadMapInstanceType(value_map);
Label if_string(this), if_receiver(this), if_oddball(this), if_symbol(this),
if_bigint(this);
GotoIf(IsStringInstanceType(instance_type), &if_string);
GotoIf(IsJSReceiverInstanceType(instance_type), &if_receiver);
GotoIf(IsOddballInstanceType(instance_type), &if_oddball);
Branch(IsBigIntInstanceType(instance_type), &if_bigint, &if_symbol);
BIND(&if_string);
{
CSA_ASSERT(this, IsString(value));
CombineFeedback(var_type_feedback,
CollectFeedbackForString(instance_type));
Goto(if_equal);
}
BIND(&if_symbol);
{
CSA_ASSERT(this, IsSymbol(value));
CombineFeedback(var_type_feedback, CompareOperationFeedback::kSymbol);
Goto(if_equal);
}
BIND(&if_receiver);
{
CSA_ASSERT(this, IsJSReceiver(value));
CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver);
Goto(if_equal);
}
BIND(&if_bigint);
{
CSA_ASSERT(this, IsBigInt(value));
CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt);
Goto(if_equal);
}
BIND(&if_oddball);
{
CSA_ASSERT(this, IsOddball(value));
Label if_boolean(this), if_not_boolean(this);
Branch(IsBooleanMap(value_map), &if_boolean, &if_not_boolean);
BIND(&if_boolean);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kAny);
Goto(if_equal);
}
BIND(&if_not_boolean);
{
CSA_ASSERT(this, IsNullOrUndefined(value));
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kReceiverOrNullOrUndefined);
Goto(if_equal);
}
}
} else {
Goto(if_equal);
}
BIND(&if_heapnumber);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
Node* number_value = LoadHeapNumberValue(value);
BranchIfFloat64IsNaN(number_value, if_notequal, if_equal);
}
BIND(&if_smi);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall);
Goto(if_equal);
}
}
// ES6 section 7.2.12 Abstract Equality Comparison
Node* CodeStubAssembler::Equal(Node* left, Node* right, Node* context,
Variable* var_type_feedback) {
// This is a slightly optimized version of Object::Equals. Whenever you
// change something functionality wise in here, remember to update the
// Object::Equals method as well.
Label if_equal(this), if_notequal(this), do_float_comparison(this),
do_right_stringtonumber(this, Label::kDeferred), end(this);
VARIABLE(result, MachineRepresentation::kTagged);
TVARIABLE(Float64T, var_left_float);
TVARIABLE(Float64T, var_right_float);
// We can avoid code duplication by exploiting the fact that abstract equality
// is symmetric.
Label use_symmetry(this);
// We might need to loop several times due to ToPrimitive and/or ToNumber
// conversions.
VARIABLE(var_left, MachineRepresentation::kTagged, left);
VARIABLE(var_right, MachineRepresentation::kTagged, right);
VariableList loop_variable_list({&var_left, &var_right}, zone());
if (var_type_feedback != nullptr) {
// Initialize the type feedback to None. The current feedback will be
// combined with the previous feedback.
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone);
loop_variable_list.push_back(var_type_feedback);
}
Label loop(this, loop_variable_list);
Goto(&loop);
BIND(&loop);
{
left = var_left.value();
right = var_right.value();
Label if_notsame(this);
GotoIf(WordNotEqual(left, right), &if_notsame);
{
// {left} and {right} reference the exact same value, yet we need special
// treatment for HeapNumber, as NaN is not equal to NaN.
GenerateEqual_Same(left, &if_equal, &if_notequal, var_type_feedback);
}
BIND(&if_notsame);
Label if_left_smi(this), if_left_not_smi(this);
Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi);
BIND(&if_left_smi);
{
Label if_right_smi(this), if_right_not_smi(this);
Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi);
BIND(&if_right_smi);
{
// We have already checked for {left} and {right} being the same value,
// so when we get here they must be different Smis.
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kSignedSmall);
Goto(&if_notequal);
}
BIND(&if_right_not_smi);
Node* right_map = LoadMap(right);
Label if_right_heapnumber(this), if_right_boolean(this),
if_right_bigint(this, Label::kDeferred),
if_right_receiver(this, Label::kDeferred);
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
// {left} is Smi and {right} is not HeapNumber or Smi.
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny));
}
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
Node* right_type = LoadMapInstanceType(right_map);
GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber);
GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint);
Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver,
&if_notequal);
BIND(&if_right_heapnumber);
{
var_left_float = SmiToFloat64(left);
var_right_float = LoadHeapNumberValue(right);
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
Goto(&do_float_comparison);
}
BIND(&if_right_boolean);
{
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
Goto(&loop);
}
BIND(&if_right_bigint);
{
result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber,
NoContextConstant(), right, left));
Goto(&end);
}
BIND(&if_right_receiver);
{
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
var_right.Bind(CallStub(callable, context, right));
Goto(&loop);
}
}
BIND(&if_left_not_smi);
{
GotoIf(TaggedIsSmi(right), &use_symmetry);
Label if_left_symbol(this), if_left_number(this),
if_left_string(this, Label::kDeferred),
if_left_bigint(this, Label::kDeferred), if_left_oddball(this),
if_left_receiver(this);
Node* left_map = LoadMap(left);
Node* right_map = LoadMap(right);
Node* left_type = LoadMapInstanceType(left_map);
Node* right_type = LoadMapInstanceType(right_map);
GotoIf(IsStringInstanceType(left_type), &if_left_string);
GotoIf(IsSymbolInstanceType(left_type), &if_left_symbol);
GotoIf(IsHeapNumberInstanceType(left_type), &if_left_number);
GotoIf(IsOddballInstanceType(left_type), &if_left_oddball);
Branch(IsBigIntInstanceType(left_type), &if_left_bigint,
&if_left_receiver);
BIND(&if_left_string);
{
GotoIfNot(IsStringInstanceType(right_type), &use_symmetry);
result.Bind(CallBuiltin(Builtins::kStringEqual, context, left, right));
CombineFeedback(var_type_feedback,
SmiOr(CollectFeedbackForString(left_type),
CollectFeedbackForString(right_type)));
Goto(&end);
}
BIND(&if_left_number);
{
Label if_right_not_number(this);
GotoIf(Word32NotEqual(left_type, right_type), &if_right_not_number);
var_left_float = LoadHeapNumberValue(left);
var_right_float = LoadHeapNumberValue(right);
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
Goto(&do_float_comparison);
BIND(&if_right_not_number);
{
Label if_right_boolean(this);
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber);
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
GotoIf(IsBigIntInstanceType(right_type), &use_symmetry);
Branch(IsJSReceiverInstanceType(right_type), &use_symmetry,
&if_notequal);
BIND(&if_right_boolean);
{
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
Goto(&loop);
}
}
}
BIND(&if_left_bigint);
{
Label if_right_heapnumber(this), if_right_bigint(this),
if_right_string(this), if_right_boolean(this);
GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber);
GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint);
GotoIf(IsStringInstanceType(right_type), &if_right_string);
GotoIf(IsBooleanMap(right_map), &if_right_boolean);
Branch(IsJSReceiverInstanceType(right_type), &use_symmetry,
&if_notequal);
BIND(&if_right_heapnumber);
{
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber,
NoContextConstant(), left, right));
Goto(&end);
}
BIND(&if_right_bigint);
{
CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt);
result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt,
NoContextConstant(), left, right));
Goto(&end);
}
BIND(&if_right_string);
{
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
result.Bind(CallRuntime(Runtime::kBigIntEqualToString,
NoContextConstant(), left, right));
Goto(&end);
}
BIND(&if_right_boolean);
{
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset));
Goto(&loop);
}
}
BIND(&if_left_oddball);
{
Label if_left_boolean(this), if_left_not_boolean(this);
Branch(IsBooleanMap(left_map), &if_left_boolean, &if_left_not_boolean);
BIND(&if_left_not_boolean);
{
// {left} is either Null or Undefined. Check if {right} is
// undetectable (which includes Null and Undefined).
Label if_right_undetectable(this), if_right_not_undetectable(this);
Branch(IsUndetectableMap(right_map), &if_right_undetectable,
&if_right_not_undetectable);
BIND(&if_right_undetectable);
{
if (var_type_feedback != nullptr) {
// If {right} is undetectable, it must be either also
// Null or Undefined, or a Receiver (aka document.all).
var_type_feedback->Bind(SmiConstant(
CompareOperationFeedback::kReceiverOrNullOrUndefined));
}
Goto(&if_equal);
}
BIND(&if_right_not_undetectable);
{
if (var_type_feedback != nullptr) {
// Track whether {right} is Null, Undefined or Receiver.
var_type_feedback->Bind(SmiConstant(
CompareOperationFeedback::kReceiverOrNullOrUndefined));
GotoIf(IsJSReceiverInstanceType(right_type), &if_notequal);
GotoIfNot(IsBooleanMap(right_map), &if_notequal);
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
Goto(&if_notequal);
}
}
BIND(&if_left_boolean);
{
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
// If {right} is a Boolean too, it must be a different Boolean.
GotoIf(WordEqual(right_map, left_map), &if_notequal);
// Otherwise, convert {left} to number and try again.
var_left.Bind(LoadObjectField(left, Oddball::kToNumberOffset));
Goto(&loop);
}
}
BIND(&if_left_symbol);
{
Label if_right_receiver(this);
GotoIf(IsJSReceiverInstanceType(right_type), &if_right_receiver);
// {right} is not a JSReceiver and also not the same Symbol as {left},
// so the result is "not equal".
if (var_type_feedback != nullptr) {
Label if_right_symbol(this);
GotoIf(IsSymbolInstanceType(right_type), &if_right_symbol);
var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny));
Goto(&if_notequal);
BIND(&if_right_symbol);
{
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kSymbol);
Goto(&if_notequal);
}
} else {
Goto(&if_notequal);
}
BIND(&if_right_receiver);
{
// {left} is a Primitive and {right} is a JSReceiver, so swapping
// the order is not observable.
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
Goto(&use_symmetry);
}
}
BIND(&if_left_receiver);
{
CSA_ASSERT(this, IsJSReceiverInstanceType(left_type));
Label if_right_receiver(this), if_right_not_receiver(this);
Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver,
&if_right_not_receiver);
BIND(&if_right_receiver);
{
// {left} and {right} are different JSReceiver references.
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kReceiver);
Goto(&if_notequal);
}
BIND(&if_right_not_receiver);
{
// Check if {right} is undetectable, which means it must be Null
// or Undefined, since we already ruled out Receiver for {right}.
Label if_right_undetectable(this),
if_right_not_undetectable(this, Label::kDeferred);
Branch(IsUndetectableMap(right_map), &if_right_undetectable,
&if_right_not_undetectable);
BIND(&if_right_undetectable);
{
// When we get here, {right} must be either Null or Undefined.
CSA_ASSERT(this, IsNullOrUndefined(right));
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(SmiConstant(
CompareOperationFeedback::kReceiverOrNullOrUndefined));
}
Branch(IsUndetectableMap(left_map), &if_equal, &if_notequal);
}
BIND(&if_right_not_undetectable);
{
// {right} is a Primitive, and neither Null or Undefined;
// convert {left} to Primitive too.
if (var_type_feedback != nullptr) {
var_type_feedback->Bind(
SmiConstant(CompareOperationFeedback::kAny));
}
Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
var_left.Bind(CallStub(callable, context, left));
Goto(&loop);
}
}
}
}
BIND(&do_right_stringtonumber);
{
var_right.Bind(CallBuiltin(Builtins::kStringToNumber, context, right));
Goto(&loop);
}
BIND(&use_symmetry);
{
var_left.Bind(right);
var_right.Bind(left);
Goto(&loop);
}
}
BIND(&do_float_comparison);
{
Branch(Float64Equal(var_left_float.value(), var_right_float.value()),
&if_equal, &if_notequal);
}
BIND(&if_equal);
{
result.Bind(TrueConstant());
Goto(&end);
}
BIND(&if_notequal);
{
result.Bind(FalseConstant());
Goto(&end);
}
BIND(&end);
return result.value();
}
Node* CodeStubAssembler::StrictEqual(Node* lhs, Node* rhs,
Variable* var_type_feedback) {
// Pseudo-code for the algorithm below:
//
// if (lhs == rhs) {
// if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN;
// return true;
// }
// if (!lhs->IsSmi()) {
// if (lhs->IsHeapNumber()) {
// if (rhs->IsSmi()) {
// return Smi::ToInt(rhs) == HeapNumber::cast(lhs)->value();
// } else if (rhs->IsHeapNumber()) {
// return HeapNumber::cast(rhs)->value() ==
// HeapNumber::cast(lhs)->value();
// } else {
// return false;
// }
// } else {
// if (rhs->IsSmi()) {
// return false;
// } else {
// if (lhs->IsString()) {
// if (rhs->IsString()) {
// return %StringEqual(lhs, rhs);
// } else {
// return false;
// }
// } else if (lhs->IsBigInt()) {
// if (rhs->IsBigInt()) {
// return %BigIntEqualToBigInt(lhs, rhs);
// } else {
// return false;
// }
// } else {
// return false;
// }
// }
// }
// } else {
// if (rhs->IsSmi()) {
// return false;
// } else {
// if (rhs->IsHeapNumber()) {
// return Smi::ToInt(lhs) == HeapNumber::cast(rhs)->value();
// } else {
// return false;
// }
// }
// }
Label if_equal(this), if_notequal(this), if_not_equivalent_types(this),
end(this);
VARIABLE(result, MachineRepresentation::kTagged);
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone);
// Check if {lhs} and {rhs} refer to the same object.
Label if_same(this), if_notsame(this);
Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
BIND(&if_same);
{
// The {lhs} and {rhs} reference the exact same value, yet we need special
// treatment for HeapNumber, as NaN is not equal to NaN.
GenerateEqual_Same(lhs, &if_equal, &if_notequal, var_type_feedback);
}
BIND(&if_notsame);
{
// The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber,
// BigInt and String they can still be considered equal.
// Check if {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(this), if_lhsisnotsmi(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
BIND(&if_lhsisnotsmi);
{
// Load the map of {lhs}.
Node* lhs_map = LoadMap(lhs);
// Check if {lhs} is a HeapNumber.
Label if_lhsisnumber(this), if_lhsisnotnumber(this);
Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber);
BIND(&if_lhsisnumber);
{
// Check if {rhs} is a Smi or a HeapObject.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
// Convert {lhs} and {rhs} to floating point values.
Node* lhs_value = LoadHeapNumberValue(lhs);
Node* rhs_value = SmiToFloat64(rhs);
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
// Perform a floating point comparison of {lhs} and {rhs}.
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
}
BIND(&if_rhsisnotsmi);
{
// Load the map of {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is also a HeapNumber.
Label if_rhsisnumber(this), if_rhsisnotnumber(this);
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
BIND(&if_rhsisnumber);
{
// Convert {lhs} and {rhs} to floating point values.
Node* lhs_value = LoadHeapNumberValue(lhs);
Node* rhs_value = LoadHeapNumberValue(rhs);
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kNumber);
// Perform a floating point comparison of {lhs} and {rhs}.
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
}
BIND(&if_rhsisnotnumber);
Goto(&if_not_equivalent_types);
}
}
BIND(&if_lhsisnotnumber);
{
// Check if {rhs} is a Smi or a HeapObject.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
Goto(&if_not_equivalent_types);
BIND(&if_rhsisnotsmi);
{
// Load the instance type of {lhs}.
Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
// Check if {lhs} is a String.
Label if_lhsisstring(this, Label::kDeferred), if_lhsisnotstring(this);
Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
&if_lhsisnotstring);
BIND(&if_lhsisstring);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = LoadInstanceType(rhs);
// Check if {rhs} is also a String.
Label if_rhsisstring(this, Label::kDeferred),
if_rhsisnotstring(this);
Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
&if_rhsisnotstring);
BIND(&if_rhsisstring);
{
if (var_type_feedback != nullptr) {
TNode<Smi> lhs_feedback =
CollectFeedbackForString(lhs_instance_type);
TNode<Smi> rhs_feedback =
CollectFeedbackForString(rhs_instance_type);
var_type_feedback->Bind(SmiOr(lhs_feedback, rhs_feedback));
}
result.Bind(CallBuiltin(Builtins::kStringEqual,
NoContextConstant(), lhs, rhs));
Goto(&end);
}
BIND(&if_rhsisnotstring);
Goto(&if_not_equivalent_types);
}
BIND(&if_lhsisnotstring);
{
// Check if {lhs} is a BigInt.
Label if_lhsisbigint(this), if_lhsisnotbigint(this);
Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint,
&if_lhsisnotbigint);
BIND(&if_lhsisbigint);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = LoadInstanceType(rhs);
// Check if {rhs} is also a BigInt.
Label if_rhsisbigint(this, Label::kDeferred),
if_rhsisnotbigint(this);
Branch(IsBigIntInstanceType(rhs_instance_type), &if_rhsisbigint,
&if_rhsisnotbigint);
BIND(&if_rhsisbigint);
{
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kBigInt);
result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt,
NoContextConstant(), lhs, rhs));
Goto(&end);
}
BIND(&if_rhsisnotbigint);
Goto(&if_not_equivalent_types);
}
BIND(&if_lhsisnotbigint);
if (var_type_feedback != nullptr) {
// Load the instance type of {rhs}.
Node* rhs_map = LoadMap(rhs);
Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
Label if_lhsissymbol(this), if_lhsisreceiver(this),
if_lhsisoddball(this);
GotoIf(IsJSReceiverInstanceType(lhs_instance_type),
&if_lhsisreceiver);
GotoIf(IsBooleanMap(lhs_map), &if_not_equivalent_types);
GotoIf(IsOddballInstanceType(lhs_instance_type),
&if_lhsisoddball);
Branch(IsSymbolInstanceType(lhs_instance_type), &if_lhsissymbol,
&if_not_equivalent_types);
BIND(&if_lhsisreceiver);
{
GotoIf(IsBooleanMap(rhs_map), &if_not_equivalent_types);
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kReceiver);
GotoIf(IsJSReceiverInstanceType(rhs_instance_type),
&if_notequal);
OverwriteFeedback(
var_type_feedback,
CompareOperationFeedback::kReceiverOrNullOrUndefined);
GotoIf(IsOddballInstanceType(rhs_instance_type), &if_notequal);
Goto(&if_not_equivalent_types);
}
BIND(&if_lhsisoddball);
{
STATIC_ASSERT(LAST_PRIMITIVE_TYPE == ODDBALL_TYPE);
GotoIf(IsBooleanMap(rhs_map), &if_not_equivalent_types);
GotoIf(Int32LessThan(rhs_instance_type,
Int32Constant(ODDBALL_TYPE)),
&if_not_equivalent_types);
OverwriteFeedback(
var_type_feedback,
CompareOperationFeedback::kReceiverOrNullOrUndefined);
Goto(&if_notequal);
}
BIND(&if_lhsissymbol);
{
GotoIfNot(IsSymbolInstanceType(rhs_instance_type),
&if_not_equivalent_types);
OverwriteFeedback(var_type_feedback,
CompareOperationFeedback::kSymbol);
Goto(&if_notequal);
}
} else {
Goto(&if_notequal);
}
}
}
}
}
BIND(&if_lhsissmi);
{
// We already know that {lhs} and {rhs} are not reference equal, and {lhs}
// is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a
// HeapNumber with an equal floating point value.
// Check if {rhs} is a Smi or a HeapObject.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
CombineFeedback(var_type_feedback,
CompareOperationFeedback::kSignedSmall);
Goto(&if_notequal);
BIND(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// The {rhs} could be a HeapNumber with the same value as {lhs}.
Label if_rhsisnumber(this), if_rhsisnotnumber(this);
Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
BIND(&if_rhsisnumber);
{
// Convert {lhs} and {rhs} to floating point values.
Node* lhs_value = SmiToFloat64(lhs);
Node* rhs_value = LoadHeapNumberValue(rhs);
CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber);
// Perform a floating point comparison of {lhs} and {rhs}.
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
}
BIND(&if_rhsisnotnumber);
Goto(&if_not_equivalent_types);
}
}
}
BIND(&if_equal);
{
result.Bind(TrueConstant());
Goto(&end);
}
BIND(&if_not_equivalent_types);
{
OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny);
Goto(&if_notequal);
}
BIND(&if_notequal);
{
result.Bind(FalseConstant());
Goto(&end);
}
BIND(&end);
return result.value();
}
// ECMA#sec-samevalue
// This algorithm differs from the Strict Equality Comparison Algorithm in its
// treatment of signed zeroes and NaNs.
void CodeStubAssembler::BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true,
Label* if_false, SameValueMode mode) {
VARIABLE(var_lhs_value, MachineRepresentation::kFloat64);
VARIABLE(var_rhs_value, MachineRepresentation::kFloat64);
Label do_fcmp(this);
// Immediately jump to {if_true} if {lhs} == {rhs}, because - unlike
// StrictEqual - SameValue considers two NaNs to be equal.
GotoIf(WordEqual(lhs, rhs), if_true);
// Check if the {lhs} is a Smi.
Label if_lhsissmi(this), if_lhsisheapobject(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisheapobject);
BIND(&if_lhsissmi);
{
// Since {lhs} is a Smi, the comparison can only yield true
// iff the {rhs} is a HeapNumber with the same float64 value.
Branch(TaggedIsSmi(rhs), if_false, [&] {
GotoIfNot(IsHeapNumber(rhs), if_false);
var_lhs_value.Bind(SmiToFloat64(lhs));
var_rhs_value.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fcmp);
});
}
BIND(&if_lhsisheapobject);
{
// Check if the {rhs} is a Smi.
Branch(TaggedIsSmi(rhs),
[&] {
// Since {rhs} is a Smi, the comparison can only yield true
// iff the {lhs} is a HeapNumber with the same float64 value.
GotoIfNot(IsHeapNumber(lhs), if_false);
var_lhs_value.Bind(LoadHeapNumberValue(lhs));
var_rhs_value.Bind(SmiToFloat64(rhs));
Goto(&do_fcmp);
},
[&] {
// Now this can only yield true if either both {lhs} and {rhs} are
// HeapNumbers with the same value, or both are Strings with the
// same character sequence, or both are BigInts with the same
// value.
Label if_lhsisheapnumber(this), if_lhsisstring(this),
if_lhsisbigint(this);
Node* const lhs_map = LoadMap(lhs);
GotoIf(IsHeapNumberMap(lhs_map), &if_lhsisheapnumber);
if (mode != SameValueMode::kNumbersOnly) {
Node* const lhs_instance_type = LoadMapInstanceType(lhs_map);
GotoIf(IsStringInstanceType(lhs_instance_type), &if_lhsisstring);
GotoIf(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint);
}
Goto(if_false);
BIND(&if_lhsisheapnumber);
{
GotoIfNot(IsHeapNumber(rhs), if_false);
var_lhs_value.Bind(LoadHeapNumberValue(lhs));
var_rhs_value.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fcmp);
}
if (mode != SameValueMode::kNumbersOnly) {
BIND(&if_lhsisstring);
{
// Now we can only yield true if {rhs} is also a String
// with the same sequence of characters.
GotoIfNot(IsString(rhs), if_false);
Node* const result = CallBuiltin(
Builtins::kStringEqual, NoContextConstant(), lhs, rhs);
Branch(IsTrue(result), if_true, if_false);
}
BIND(&if_lhsisbigint);
{
GotoIfNot(IsBigInt(rhs), if_false);
Node* const result =
CallRuntime(Runtime::kBigIntEqualToBigInt,
NoContextConstant(), lhs, rhs);
Branch(IsTrue(result), if_true, if_false);
}
}
});
}
BIND(&do_fcmp);
{
TNode<Float64T> lhs_value = UncheckedCast<Float64T>(var_lhs_value.value());
TNode<Float64T> rhs_value = UncheckedCast<Float64T>(var_rhs_value.value());
BranchIfSameNumberValue(lhs_value, rhs_value, if_true, if_false);
}
}
void CodeStubAssembler::BranchIfSameNumberValue(TNode<Float64T> lhs_value,
TNode<Float64T> rhs_value,
Label* if_true,
Label* if_false) {
Label if_equal(this), if_notequal(this);
Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
BIND(&if_equal);
{
// We still need to handle the case when {lhs} and {rhs} are -0.0 and
// 0.0 (or vice versa). Compare the high word to
// distinguish between the two.
Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_value);
Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_value);
// If x is +0 and y is -0, return false.
// If x is -0 and y is +0, return false.
Branch(Word32Equal(lhs_hi_word, rhs_hi_word), if_true, if_false);
}
BIND(&if_notequal);
{
// Return true iff both {rhs} and {lhs} are NaN.
GotoIf(Float64Equal(lhs_value, lhs_value), if_false);
Branch(Float64Equal(rhs_value, rhs_value), if_false, if_true);
}
}
TNode<Oddball> CodeStubAssembler::HasProperty(SloppyTNode<Context> context,
SloppyTNode<Object> object,
SloppyTNode<Object> key,
HasPropertyLookupMode mode) {
Label call_runtime(this, Label::kDeferred), return_true(this),
return_false(this), end(this), if_proxy(this, Label::kDeferred);
CodeStubAssembler::LookupInHolder lookup_property_in_holder =
[this, &return_true](Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* unique_name,
Label* next_holder, Label* if_bailout) {
TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name,
&return_true, next_holder, if_bailout);
};
CodeStubAssembler::LookupInHolder lookup_element_in_holder =
[this, &return_true, &return_false](
Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* index, Label* next_holder,
Label* if_bailout) {
TryLookupElement(holder, holder_map, holder_instance_type, index,
&return_true, &return_false, next_holder, if_bailout);
};
TryPrototypeChainLookup(object, key, lookup_property_in_holder,
lookup_element_in_holder, &return_false,
&call_runtime, &if_proxy);
TVARIABLE(Oddball, result);
BIND(&if_proxy);
{
TNode<Name> name = CAST(CallBuiltin(Builtins::kToName, context, key));
switch (mode) {
case kHasProperty:
GotoIf(IsPrivateSymbol(name), &return_false);
result = CAST(
CallBuiltin(Builtins::kProxyHasProperty, context, object, name));
Goto(&end);
break;
case kForInHasProperty:
Goto(&call_runtime);
break;
}
}
BIND(&return_true);
{
result = TrueConstant();
Goto(&end);
}
BIND(&return_false);
{
result = FalseConstant();
Goto(&end);
}
BIND(&call_runtime);
{
Runtime::FunctionId fallback_runtime_function_id;
switch (mode) {
case kHasProperty:
fallback_runtime_function_id = Runtime::kHasProperty;
break;
case kForInHasProperty:
fallback_runtime_function_id = Runtime::kForInHasProperty;
break;
}
result =
CAST(CallRuntime(fallback_runtime_function_id, context, object, key));
Goto(&end);
}
BIND(&end);
CSA_ASSERT(this, IsBoolean(result.value()));
return result.value();
}
Node* CodeStubAssembler::Typeof(Node* value) {
VARIABLE(result_var, MachineRepresentation::kTagged);
Label return_number(this, Label::kDeferred), if_oddball(this),
return_function(this), return_undefined(this), return_object(this),
return_string(this), return_bigint(this), return_result(this);
GotoIf(TaggedIsSmi(value), &return_number);
Node* map = LoadMap(value);
GotoIf(IsHeapNumberMap(map), &return_number);
Node* instance_type = LoadMapInstanceType(map);
GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &if_oddball);
Node* callable_or_undetectable_mask = Word32And(
LoadMapBitField(map),
Int32Constant(Map::IsCallableBit::kMask | Map::IsUndetectableBit::kMask));
GotoIf(Word32Equal(callable_or_undetectable_mask,
Int32Constant(Map::IsCallableBit::kMask)),
&return_function);
GotoIfNot(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)),
&return_undefined);
GotoIf(IsJSReceiverInstanceType(instance_type), &return_object);
GotoIf(IsStringInstanceType(instance_type), &return_string);
GotoIf(IsBigIntInstanceType(instance_type), &return_bigint);
CSA_ASSERT(this, InstanceTypeEqual(instance_type, SYMBOL_TYPE));
result_var.Bind(HeapConstant(isolate()->factory()->symbol_string()));
Goto(&return_result);
BIND(&return_number);
{
result_var.Bind(HeapConstant(isolate()->factory()->number_string()));
Goto(&return_result);
}
BIND(&if_oddball);
{
Node* type = LoadObjectField(value, Oddball::kTypeOfOffset);
result_var.Bind(type);
Goto(&return_result);
}
BIND(&return_function);
{
result_var.Bind(HeapConstant(isolate()->factory()->function_string()));
Goto(&return_result);
}
BIND(&return_undefined);
{
result_var.Bind(HeapConstant(isolate()->factory()->undefined_string()));
Goto(&return_result);
}
BIND(&return_object);
{
result_var.Bind(HeapConstant(isolate()->factory()->object_string()));
Goto(&return_result);
}
BIND(&return_string);
{
result_var.Bind(HeapConstant(isolate()->factory()->string_string()));
Goto(&return_result);
}
BIND(&return_bigint);
{
result_var.Bind(HeapConstant(isolate()->factory()->bigint_string()));
Goto(&return_result);
}
BIND(&return_result);
return result_var.value();
}
TNode<Object> CodeStubAssembler::GetSuperConstructor(
SloppyTNode<Context> context, SloppyTNode<JSFunction> active_function) {
Label is_not_constructor(this, Label::kDeferred), out(this);
TVARIABLE(Object, result);
TNode<Map> map = LoadMap(active_function);
TNode<Object> prototype = LoadMapPrototype(map);
TNode<Map> prototype_map = LoadMap(CAST(prototype));
GotoIfNot(IsConstructorMap(prototype_map), &is_not_constructor);
result = prototype;
Goto(&out);
BIND(&is_not_constructor);
{
CallRuntime(Runtime::kThrowNotSuperConstructor, context, prototype,
active_function);
Unreachable();
}
BIND(&out);
return result.value();
}
TNode<JSReceiver> CodeStubAssembler::SpeciesConstructor(
SloppyTNode<Context> context, SloppyTNode<Object> object,
SloppyTNode<JSReceiver> default_constructor) {
Isolate* isolate = this->isolate();
TVARIABLE(JSReceiver, var_result, default_constructor);
// 2. Let C be ? Get(O, "constructor").
TNode<Object> constructor =
GetProperty(context, object, isolate->factory()->constructor_string());
// 3. If C is undefined, return defaultConstructor.
Label out(this);
GotoIf(IsUndefined(constructor), &out);
// 4. If Type(C) is not Object, throw a TypeError exception.
ThrowIfNotJSReceiver(context, constructor,
MessageTemplate::kConstructorNotReceiver);
// 5. Let S be ? Get(C, @@species).
TNode<Object> species =
GetProperty(context, constructor, isolate->factory()->species_symbol());
// 6. If S is either undefined or null, return defaultConstructor.
GotoIf(IsNullOrUndefined(species), &out);
// 7. If IsConstructor(S) is true, return S.
Label throw_error(this);
GotoIf(TaggedIsSmi(species), &throw_error);
GotoIfNot(IsConstructorMap(LoadMap(CAST(species))), &throw_error);
var_result = CAST(species);
Goto(&out);
// 8. Throw a TypeError exception.
BIND(&throw_error);
ThrowTypeError(context, MessageTemplate::kSpeciesNotConstructor);
BIND(&out);
return var_result.value();
}
Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable,
Node* context) {
VARIABLE(var_result, MachineRepresentation::kTagged);
Label if_notcallable(this, Label::kDeferred),
if_notreceiver(this, Label::kDeferred), if_otherhandler(this),
if_nohandler(this, Label::kDeferred), return_true(this),
return_false(this), return_result(this, &var_result);
// Ensure that the {callable} is actually a JSReceiver.
GotoIf(TaggedIsSmi(callable), &if_notreceiver);
GotoIfNot(IsJSReceiver(callable), &if_notreceiver);
// Load the @@hasInstance property from {callable}.
Node* inst_of_handler =
GetProperty(context, callable, HasInstanceSymbolConstant());
// Optimize for the likely case where {inst_of_handler} is the builtin
// Function.prototype[@@hasInstance] method, and emit a direct call in
// that case without any additional checking.
Node* native_context = LoadNativeContext(context);
Node* function_has_instance =
LoadContextElement(native_context, Context::FUNCTION_HAS_INSTANCE_INDEX);
GotoIfNot(WordEqual(inst_of_handler, function_has_instance),
&if_otherhandler);
{
// Call to Function.prototype[@@hasInstance] directly.
Callable builtin(BUILTIN_CODE(isolate(), FunctionPrototypeHasInstance),
CallTrampolineDescriptor{});
Node* result = CallJS(builtin, context, inst_of_handler, callable, object);
var_result.Bind(result);
Goto(&return_result);
}
BIND(&if_otherhandler);
{
// Check if there's actually an {inst_of_handler}.
GotoIf(IsNull(inst_of_handler), &if_nohandler);
GotoIf(IsUndefined(inst_of_handler), &if_nohandler);
// Call the {inst_of_handler} for {callable} and {object}.
Node* result = CallJS(
CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
context, inst_of_handler, callable, object);
// Convert the {result} to a Boolean.
BranchIfToBooleanIsTrue(result, &return_true, &return_false);
}
BIND(&if_nohandler);
{
// Ensure that the {callable} is actually Callable.
GotoIfNot(IsCallable(callable), &if_notcallable);
// Use the OrdinaryHasInstance algorithm.
Node* result =
CallBuiltin(Builtins::kOrdinaryHasInstance, context, callable, object);
var_result.Bind(result);
Goto(&return_result);
}
BIND(&if_notcallable);
{ ThrowTypeError(context, MessageTemplate::kNonCallableInInstanceOfCheck); }
BIND(&if_notreceiver);
{ ThrowTypeError(context, MessageTemplate::kNonObjectInInstanceOfCheck); }
BIND(&return_true);
var_result.Bind(TrueConstant());
Goto(&return_result);
BIND(&return_false);
var_result.Bind(FalseConstant());
Goto(&return_result);
BIND(&return_result);
return var_result.value();
}
TNode<Number> CodeStubAssembler::NumberInc(SloppyTNode<Number> value) {
TVARIABLE(Number, var_result);
TVARIABLE(Float64T, var_finc_value);
Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this);
Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
BIND(&if_issmi);
{
Label if_overflow(this);
TNode<Smi> smi_value = CAST(value);
TNode<Smi> one = SmiConstant(1);
var_result = TrySmiAdd(smi_value, one, &if_overflow);
Goto(&end);
BIND(&if_overflow);
{
var_finc_value = SmiToFloat64(smi_value);
Goto(&do_finc);
}
}
BIND(&if_isnotsmi);
{
TNode<HeapNumber> heap_number_value = CAST(value);
// Load the HeapNumber value.
var_finc_value = LoadHeapNumberValue(heap_number_value);
Goto(&do_finc);
}
BIND(&do_finc);
{
TNode<Float64T> finc_value = var_finc_value.value();
TNode<Float64T> one = Float64Constant(1.0);
TNode<Float64T> finc_result = Float64Add(finc_value, one);
var_result = AllocateHeapNumberWithValue(finc_result);
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<Number> CodeStubAssembler::NumberDec(SloppyTNode<Number> value) {
TVARIABLE(Number, var_result);
TVARIABLE(Float64T, var_fdec_value);
Label if_issmi(this), if_isnotsmi(this), do_fdec(this), end(this);
Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
BIND(&if_issmi);
{
TNode<Smi> smi_value = CAST(value);
TNode<Smi> one = SmiConstant(1);
Label if_overflow(this);
var_result = TrySmiSub(smi_value, one, &if_overflow);
Goto(&end);
BIND(&if_overflow);
{
var_fdec_value = SmiToFloat64(smi_value);
Goto(&do_fdec);
}
}
BIND(&if_isnotsmi);
{
TNode<HeapNumber> heap_number_value = CAST(value);
// Load the HeapNumber value.
var_fdec_value = LoadHeapNumberValue(heap_number_value);
Goto(&do_fdec);
}
BIND(&do_fdec);
{
TNode<Float64T> fdec_value = var_fdec_value.value();
TNode<Float64T> minus_one = Float64Constant(-1.0);
TNode<Float64T> fdec_result = Float64Add(fdec_value, minus_one);
var_result = AllocateHeapNumberWithValue(fdec_result);
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<Number> CodeStubAssembler::NumberAdd(SloppyTNode<Number> a,
SloppyTNode<Number> b) {
TVARIABLE(Number, var_result);
Label float_add(this, Label::kDeferred), end(this);
GotoIf(TaggedIsNotSmi(a), &float_add);
GotoIf(TaggedIsNotSmi(b), &float_add);
// Try fast Smi addition first.
var_result = TrySmiAdd(CAST(a), CAST(b), &float_add);
Goto(&end);
BIND(&float_add);
{
var_result = ChangeFloat64ToTagged(
Float64Add(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b)));
Goto(&end);
}
BIND(&end);
return var_result.value();
}
TNode<Number> CodeStubAssembler::NumberSub(SloppyTNode<Number> a,
SloppyTNode<Number> b) {
TVARIABLE(Number, var_result);
Label float_sub(this, Label::kDeferred), end(this);
GotoIf(TaggedIsNotSmi(a), &float_sub);
GotoIf(TaggedIsNotSmi(b), &float_sub);
// Try fast Smi subtraction first.
var_result = TrySmiSub(CAST(a), CAST(b), &float_sub);
Goto(&end);
BIND(&float_sub);
{
var_result = ChangeFloat64ToTagged(
Float64Sub(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b)));
Goto(&end);
}
BIND(&end);
return var_result.value();
}
void CodeStubAssembler::GotoIfNotNumber(Node* input, Label* is_not_number) {
Label is_number(this);
GotoIf(TaggedIsSmi(input), &is_number);
Branch(IsHeapNumber(input), &is_number, is_not_number);
BIND(&is_number);
}
void CodeStubAssembler::GotoIfNumber(Node* input, Label* is_number) {
GotoIf(TaggedIsSmi(input), is_number);
GotoIf(IsHeapNumber(input), is_number);
}
TNode<Number> CodeStubAssembler::BitwiseOp(Node* left32, Node* right32,
Operation bitwise_op) {
switch (bitwise_op) {
case Operation::kBitwiseAnd:
return ChangeInt32ToTagged(Signed(Word32And(left32, right32)));
case Operation::kBitwiseOr:
return ChangeInt32ToTagged(Signed(Word32Or(left32, right32)));
case Operation::kBitwiseXor:
return ChangeInt32ToTagged(Signed(Word32Xor(left32, right32)));
case Operation::kShiftLeft:
if (!Word32ShiftIsSafe()) {
right32 = Word32And(right32, Int32Constant(0x1F));
}
return ChangeInt32ToTagged(Signed(Word32Shl(left32, right32)));
case Operation::kShiftRight:
if (!Word32ShiftIsSafe()) {
right32 = Word32And(right32, Int32Constant(0x1F));
}
return ChangeInt32ToTagged(Signed(Word32Sar(left32, right32)));
case Operation::kShiftRightLogical:
if (!Word32ShiftIsSafe()) {
right32 = Word32And(right32, Int32Constant(0x1F));
}
return ChangeUint32ToTagged(Unsigned(Word32Shr(left32, right32)));
default:
break;
}
UNREACHABLE();
}
// ES #sec-createarrayiterator
TNode<JSArrayIterator> CodeStubAssembler::CreateArrayIterator(
TNode<Context> context, TNode<Object> object, IterationKind kind) {
TNode<Context> native_context = LoadNativeContext(context);
TNode<Map> iterator_map = CAST(LoadContextElement(
native_context, Context::INITIAL_ARRAY_ITERATOR_MAP_INDEX));
Node* iterator = Allocate(JSArrayIterator::kSize);
StoreMapNoWriteBarrier(iterator, iterator_map);
StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldNoWriteBarrier(
iterator, JSArrayIterator::kIteratedObjectOffset, object);
StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset,
SmiConstant(0));
StoreObjectFieldNoWriteBarrier(
iterator, JSArrayIterator::kKindOffset,
SmiConstant(Smi::FromInt(static_cast<int>(kind))));
return CAST(iterator);
}
Node* CodeStubAssembler::AllocateJSIteratorResult(Node* context, Node* value,
Node* done) {
CSA_ASSERT(this, IsBoolean(done));
Node* native_context = LoadNativeContext(context);
Node* map =
LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX);
Node* result = Allocate(JSIteratorResult::kSize);
StoreMapNoWriteBarrier(result, map);
StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, value);
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kDoneOffset, done);
return result;
}
Node* CodeStubAssembler::AllocateJSIteratorResultForEntry(Node* context,
Node* key,
Node* value) {
Node* native_context = LoadNativeContext(context);
Node* length = SmiConstant(2);
int const elements_size = FixedArray::SizeFor(2);
TNode<FixedArray> elements = UncheckedCast<FixedArray>(
Allocate(elements_size + JSArray::kSize + JSIteratorResult::kSize));
StoreObjectFieldRoot(elements, FixedArray::kMapOffset,
RootIndex::kFixedArrayMap);
StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length);
StoreFixedArrayElement(elements, 0, key);
StoreFixedArrayElement(elements, 1, value);
Node* array_map = LoadContextElement(
native_context, Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX);
TNode<HeapObject> array = InnerAllocate(elements, elements_size);
StoreMapNoWriteBarrier(array, array_map);
StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements);
StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
Node* iterator_map =
LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX);
TNode<HeapObject> result = InnerAllocate(array, JSArray::kSize);
StoreMapNoWriteBarrier(result, iterator_map);
StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, array);
StoreObjectFieldRoot(result, JSIteratorResult::kDoneOffset,
RootIndex::kFalseValue);
return result;
}
TNode<JSReceiver> CodeStubAssembler::ArraySpeciesCreate(TNode<Context> context,
TNode<Object> o,
TNode<Number> len) {
TNode<JSReceiver> constructor =
CAST(CallRuntime(Runtime::kArraySpeciesConstructor, context, o));
return Construct(context, constructor, len);
}
Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) {
CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE));
TNode<Uint32T> buffer_bit_field = LoadJSArrayBufferBitField(CAST(buffer));
return IsSetWord32<JSArrayBuffer::WasDetachedBit>(buffer_bit_field);
}
void CodeStubAssembler::ThrowIfArrayBufferIsDetached(
SloppyTNode<Context> context, TNode<JSArrayBuffer> array_buffer,
const char* method_name) {
Label if_detached(this, Label::kDeferred), if_not_detached(this);
Branch(IsDetachedBuffer(array_buffer), &if_detached, &if_not_detached);
BIND(&if_detached);
ThrowTypeError(context, MessageTemplate::kDetachedOperation, method_name);
BIND(&if_not_detached);
}
void CodeStubAssembler::ThrowIfArrayBufferViewBufferIsDetached(
SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
const char* method_name) {
TNode<JSArrayBuffer> buffer = LoadJSArrayBufferViewBuffer(array_buffer_view);
ThrowIfArrayBufferIsDetached(context, buffer, method_name);
}
TNode<Uint32T> CodeStubAssembler::LoadJSArrayBufferBitField(
TNode<JSArrayBuffer> array_buffer) {
return LoadObjectField<Uint32T>(array_buffer, JSArrayBuffer::kBitFieldOffset);
}
TNode<RawPtrT> CodeStubAssembler::LoadJSArrayBufferBackingStore(
TNode<JSArrayBuffer> array_buffer) {
return LoadObjectField<RawPtrT>(array_buffer,
JSArrayBuffer::kBackingStoreOffset);
}
TNode<JSArrayBuffer> CodeStubAssembler::LoadJSArrayBufferViewBuffer(
TNode<JSArrayBufferView> array_buffer_view) {
return LoadObjectField<JSArrayBuffer>(array_buffer_view,
JSArrayBufferView::kBufferOffset);
}
TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteLength(
TNode<JSArrayBufferView> array_buffer_view) {
return LoadObjectField<UintPtrT>(array_buffer_view,
JSArrayBufferView::kByteLengthOffset);
}
TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteOffset(
TNode<JSArrayBufferView> array_buffer_view) {
return LoadObjectField<UintPtrT>(array_buffer_view,
JSArrayBufferView::kByteOffsetOffset);
}
TNode<UintPtrT> CodeStubAssembler::LoadJSTypedArrayLength(
TNode<JSTypedArray> typed_array) {
return LoadObjectField<UintPtrT>(typed_array, JSTypedArray::kLengthOffset);
}
CodeStubArguments::CodeStubArguments(
CodeStubAssembler* assembler, Node* argc, Node* fp,
CodeStubAssembler::ParameterMode param_mode, ReceiverMode receiver_mode)
: assembler_(assembler),
argc_mode_(param_mode),
receiver_mode_(receiver_mode),
argc_(argc),
base_(),
fp_(fp != nullptr ? fp : assembler_->LoadFramePointer()) {
Node* offset = assembler_->ElementOffsetFromIndex(
argc_, SYSTEM_POINTER_ELEMENTS, param_mode,
(StandardFrameConstants::kFixedSlotCountAboveFp - 1) *
kSystemPointerSize);
base_ =
assembler_->UncheckedCast<RawPtrT>(assembler_->IntPtrAdd(fp_, offset));
}
TNode<Object> CodeStubArguments::GetReceiver() const {
DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver);
return assembler_->UncheckedCast<Object>(assembler_->LoadFullTagged(
base_, assembler_->IntPtrConstant(kSystemPointerSize)));
}
void CodeStubArguments::SetReceiver(TNode<Object> object) const {
DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver);
assembler_->StoreFullTaggedNoWriteBarrier(
base_, assembler_->IntPtrConstant(kSystemPointerSize), object);
}
TNode<WordT> CodeStubArguments::AtIndexPtr(
Node* index, CodeStubAssembler::ParameterMode mode) const {
typedef compiler::Node Node;
Node* negated_index = assembler_->IntPtrOrSmiSub(
assembler_->IntPtrOrSmiConstant(0, mode), index, mode);
Node* offset = assembler_->ElementOffsetFromIndex(
negated_index, SYSTEM_POINTER_ELEMENTS, mode, 0);
return assembler_->IntPtrAdd(assembler_->UncheckedCast<IntPtrT>(base_),
offset);
}
TNode<Object> CodeStubArguments::AtIndex(
Node* index, CodeStubAssembler::ParameterMode mode) const {
DCHECK_EQ(argc_mode_, mode);
CSA_ASSERT(assembler_,
assembler_->UintPtrOrSmiLessThan(index, GetLength(mode), mode));
return assembler_->UncheckedCast<Object>(
assembler_->LoadFullTagged(AtIndexPtr(index, mode)));
}
TNode<Object> CodeStubArguments::AtIndex(int index) const {
return AtIndex(assembler_->IntPtrConstant(index));
}
TNode<Object> CodeStubArguments::GetOptionalArgumentValue(
int index, TNode<Object> default_value) {
CodeStubAssembler::TVariable<Object> result(assembler_);
CodeStubAssembler::Label argument_missing(assembler_),
argument_done(assembler_, &result);
assembler_->GotoIf(assembler_->UintPtrOrSmiGreaterThanOrEqual(
assembler_->IntPtrOrSmiConstant(index, argc_mode_),
argc_, argc_mode_),
&argument_missing);
result = AtIndex(index);
assembler_->Goto(&argument_done);
assembler_->BIND(&argument_missing);
result = default_value;
assembler_->Goto(&argument_done);
assembler_->BIND(&argument_done);
return result.value();
}
TNode<Object> CodeStubArguments::GetOptionalArgumentValue(
TNode<IntPtrT> index, TNode<Object> default_value) {
CodeStubAssembler::TVariable<Object> result(assembler_);
CodeStubAssembler::Label argument_missing(assembler_),
argument_done(assembler_, &result);
assembler_->GotoIf(
assembler_->UintPtrOrSmiGreaterThanOrEqual(
assembler_->IntPtrToParameter(index, argc_mode_), argc_, argc_mode_),
&argument_missing);
result = AtIndex(index);
assembler_->Goto(&argument_done);
assembler_->BIND(&argument_missing);
result = default_value;
assembler_->Goto(&argument_done);
assembler_->BIND(&argument_done);
return result.value();
}
void CodeStubArguments::ForEach(
const CodeStubAssembler::VariableList& vars,
const CodeStubArguments::ForEachBodyFunction& body, Node* first, Node* last,
CodeStubAssembler::ParameterMode mode) {
assembler_->Comment("CodeStubArguments::ForEach");
if (first == nullptr) {
first = assembler_->IntPtrOrSmiConstant(0, mode);
}
if (last == nullptr) {
DCHECK_EQ(mode, argc_mode_);
last = argc_;
}
Node* start = assembler_->IntPtrSub(
assembler_->UncheckedCast<IntPtrT>(base_),
assembler_->ElementOffsetFromIndex(first, SYSTEM_POINTER_ELEMENTS, mode));
Node* end = assembler_->IntPtrSub(
assembler_->UncheckedCast<IntPtrT>(base_),
assembler_->ElementOffsetFromIndex(last, SYSTEM_POINTER_ELEMENTS, mode));
assembler_->BuildFastLoop(
vars, start, end,
[this, &body](Node* current) {
Node* arg = assembler_->Load(MachineType::AnyTagged(), current);
body(arg);
},
-kSystemPointerSize, CodeStubAssembler::INTPTR_PARAMETERS,
CodeStubAssembler::IndexAdvanceMode::kPost);
}
void CodeStubArguments::PopAndReturn(Node* value) {
Node* pop_count;
if (receiver_mode_ == ReceiverMode::kHasReceiver) {
pop_count = assembler_->IntPtrOrSmiAdd(
argc_, assembler_->IntPtrOrSmiConstant(1, argc_mode_), argc_mode_);
} else {
pop_count = argc_;
}
assembler_->PopAndReturn(assembler_->ParameterToIntPtr(pop_count, argc_mode_),
value);
}
Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) {
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
return Uint32LessThanOrEqual(elements_kind,
Int32Constant(LAST_FAST_ELEMENTS_KIND));
}
TNode<BoolT> CodeStubAssembler::IsDoubleElementsKind(
TNode<Int32T> elements_kind) {
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
STATIC_ASSERT((PACKED_DOUBLE_ELEMENTS & 1) == 0);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS + 1 == HOLEY_DOUBLE_ELEMENTS);
return Word32Equal(Word32Shr(elements_kind, Int32Constant(1)),
Int32Constant(PACKED_DOUBLE_ELEMENTS / 2));
}
Node* CodeStubAssembler::IsFastSmiOrTaggedElementsKind(Node* elements_kind) {
STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND);
return Uint32LessThanOrEqual(elements_kind,
Int32Constant(TERMINAL_FAST_ELEMENTS_KIND));
}
Node* CodeStubAssembler::IsFastSmiElementsKind(Node* elements_kind) {
return Uint32LessThanOrEqual(elements_kind,
Int32Constant(HOLEY_SMI_ELEMENTS));
}
Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) {
CSA_ASSERT(this, IsFastElementsKind(elements_kind));
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == (PACKED_SMI_ELEMENTS | 1));
STATIC_ASSERT(HOLEY_ELEMENTS == (PACKED_ELEMENTS | 1));
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == (PACKED_DOUBLE_ELEMENTS | 1));
return IsSetWord32(elements_kind, 1);
}
Node* CodeStubAssembler::IsElementsKindGreaterThan(
Node* target_kind, ElementsKind reference_kind) {
return Int32GreaterThan(target_kind, Int32Constant(reference_kind));
}
TNode<BoolT> CodeStubAssembler::IsElementsKindLessThanOrEqual(
TNode<Int32T> target_kind, ElementsKind reference_kind) {
return Int32LessThanOrEqual(target_kind, Int32Constant(reference_kind));
}
TNode<BoolT> CodeStubAssembler::IsElementsKindInRange(
TNode<Int32T> target_kind, ElementsKind lower_reference_kind,
ElementsKind higher_reference_kind) {
return Uint32LessThanOrEqual(
Int32Sub(target_kind, Int32Constant(lower_reference_kind)),
Int32Constant(higher_reference_kind - lower_reference_kind));
}
Node* CodeStubAssembler::IsDebugActive() {
Node* is_debug_active = Load(
MachineType::Uint8(),
ExternalConstant(ExternalReference::debug_is_active_address(isolate())));
return Word32NotEqual(is_debug_active, Int32Constant(0));
}
TNode<BoolT> CodeStubAssembler::IsRuntimeCallStatsEnabled() {
STATIC_ASSERT(sizeof(TracingFlags::runtime_stats) == kInt32Size);
TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load(
MachineType::Int32(),
ExternalConstant(ExternalReference::address_of_runtime_stats_flag())));
return Word32NotEqual(flag_value, Int32Constant(0));
}
Node* CodeStubAssembler::IsPromiseHookEnabled() {
Node* const promise_hook = Load(
MachineType::Pointer(),
ExternalConstant(ExternalReference::promise_hook_address(isolate())));
return WordNotEqual(promise_hook, IntPtrConstant(0));
}
Node* CodeStubAssembler::HasAsyncEventDelegate() {
Node* const async_event_delegate =
Load(MachineType::Pointer(),
ExternalConstant(
ExternalReference::async_event_delegate_address(isolate())));
return WordNotEqual(async_event_delegate, IntPtrConstant(0));
}
Node* CodeStubAssembler::IsPromiseHookEnabledOrHasAsyncEventDelegate() {
Node* const promise_hook_or_async_event_delegate =
Load(MachineType::Uint8(),
ExternalConstant(
ExternalReference::promise_hook_or_async_event_delegate_address(
isolate())));
return Word32NotEqual(promise_hook_or_async_event_delegate, Int32Constant(0));
}
Node* CodeStubAssembler::
IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate() {
Node* const promise_hook_or_debug_is_active_or_async_event_delegate = Load(
MachineType::Uint8(),
ExternalConstant(
ExternalReference::
promise_hook_or_debug_is_active_or_async_event_delegate_address(
isolate())));
return Word32NotEqual(promise_hook_or_debug_is_active_or_async_event_delegate,
Int32Constant(0));
}
TNode<Code> CodeStubAssembler::LoadBuiltin(TNode<Smi> builtin_id) {
CSA_ASSERT(this, SmiGreaterThanOrEqual(builtin_id, SmiConstant(0)));
CSA_ASSERT(this,
SmiLessThan(builtin_id, SmiConstant(Builtins::builtin_count)));
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
int index_shift = kSystemPointerSizeLog2 - kSmiShiftBits;
TNode<WordT> table_index =
index_shift >= 0 ? WordShl(BitcastTaggedToWord(builtin_id), index_shift)
: WordSar(BitcastTaggedToWord(builtin_id), -index_shift);
return CAST(
Load(MachineType::TaggedPointer(),
ExternalConstant(ExternalReference::builtins_address(isolate())),
table_index));
}
TNode<Code> CodeStubAssembler::GetSharedFunctionInfoCode(
SloppyTNode<SharedFunctionInfo> shared_info, Label* if_compile_lazy) {
TNode<Object> sfi_data =
LoadObjectField(shared_info, SharedFunctionInfo::kFunctionDataOffset);
TVARIABLE(Code, sfi_code);
Label done(this);
Label check_instance_type(this);
// IsSmi: Is builtin
GotoIf(TaggedIsNotSmi(sfi_data), &check_instance_type);
if (if_compile_lazy) {
GotoIf(SmiEqual(CAST(sfi_data), SmiConstant(Builtins::kCompileLazy)),
if_compile_lazy);
}
sfi_code = LoadBuiltin(CAST(sfi_data));
Goto(&done);
// Switch on data's instance type.
BIND(&check_instance_type);
TNode<Int32T> data_type = LoadInstanceType(CAST(sfi_data));
int32_t case_values[] = {BYTECODE_ARRAY_TYPE,
WASM_EXPORTED_FUNCTION_DATA_TYPE,
ASM_WASM_DATA_TYPE,
UNCOMPILED_DATA_WITHOUT_PREPARSE_DATA_TYPE,
UNCOMPILED_DATA_WITH_PREPARSE_DATA_TYPE,
FUNCTION_TEMPLATE_INFO_TYPE,
WASM_CAPI_FUNCTION_DATA_TYPE};
Label check_is_bytecode_array(this);
Label check_is_exported_function_data(this);
Label check_is_asm_wasm_data(this);
Label check_is_uncompiled_data_without_preparse_data(this);
Label check_is_uncompiled_data_with_preparse_data(this);
Label check_is_function_template_info(this);
Label check_is_interpreter_data(this);
Label check_is_wasm_capi_function_data(this);
Label* case_labels[] = {&check_is_bytecode_array,
&check_is_exported_function_data,
&check_is_asm_wasm_data,
&check_is_uncompiled_data_without_preparse_data,
&check_is_uncompiled_data_with_preparse_data,
&check_is_function_template_info,
&check_is_wasm_capi_function_data};
STATIC_ASSERT(arraysize(case_values) == arraysize(case_labels));
Switch(data_type, &check_is_interpreter_data, case_values, case_labels,
arraysize(case_labels));
// IsBytecodeArray: Interpret bytecode
BIND(&check_is_bytecode_array);
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InterpreterEntryTrampoline));
Goto(&done);
// IsWasmExportedFunctionData: Use the wrapper code
BIND(&check_is_exported_function_data);
sfi_code = CAST(LoadObjectField(
CAST(sfi_data), WasmExportedFunctionData::kWrapperCodeOffset));
Goto(&done);
// IsAsmWasmData: Instantiate using AsmWasmData
BIND(&check_is_asm_wasm_data);
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InstantiateAsmJs));
Goto(&done);
// IsUncompiledDataWithPreparseData | IsUncompiledDataWithoutPreparseData:
// Compile lazy
BIND(&check_is_uncompiled_data_with_preparse_data);
Goto(&check_is_uncompiled_data_without_preparse_data);
BIND(&check_is_uncompiled_data_without_preparse_data);
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), CompileLazy));
Goto(if_compile_lazy ? if_compile_lazy : &done);
// IsFunctionTemplateInfo: API call
BIND(&check_is_function_template_info);
sfi_code = HeapConstant(BUILTIN_CODE(isolate(), HandleApiCall));
Goto(&done);
// IsInterpreterData: Interpret bytecode
BIND(&check_is_interpreter_data);
// This is the default branch, so assert that we have the expected data type.
CSA_ASSERT(this,
Word32Equal(data_type, Int32Constant(INTERPRETER_DATA_TYPE)));
sfi_code = CAST(LoadObjectField(
CAST(sfi_data), InterpreterData::kInterpreterTrampolineOffset));
Goto(&done);
// IsWasmCapiFunctionData: Use the wrapper code.
BIND(&check_is_wasm_capi_function_data);
sfi_code = CAST(LoadObjectField(CAST(sfi_data),
WasmCapiFunctionData::kWrapperCodeOffset));
Goto(&done);
BIND(&done);
return sfi_code.value();
}
Node* CodeStubAssembler::AllocateFunctionWithMapAndContext(Node* map,
Node* shared_info,
Node* context) {
CSA_SLOW_ASSERT(this, IsMap(map));
Node* const code = GetSharedFunctionInfoCode(shared_info);
// TODO(ishell): All the callers of this function pass map loaded from
// Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX. So we can remove
// map parameter.
CSA_ASSERT(this, Word32BinaryNot(IsConstructorMap(map)));
CSA_ASSERT(this, Word32BinaryNot(IsFunctionWithPrototypeSlotMap(map)));
Node* const fun = Allocate(JSFunction::kSizeWithoutPrototype);
STATIC_ASSERT(JSFunction::kSizeWithoutPrototype == 7 * kTaggedSize);
StoreMapNoWriteBarrier(fun, map);
StoreObjectFieldRoot(fun, JSObject::kPropertiesOrHashOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(fun, JSObject::kElementsOffset,
RootIndex::kEmptyFixedArray);
StoreObjectFieldRoot(fun, JSFunction::kFeedbackCellOffset,
RootIndex::kManyClosuresCell);
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kSharedFunctionInfoOffset,
shared_info);
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kContextOffset, context);
StoreObjectFieldNoWriteBarrier(fun, JSFunction::kCodeOffset, code);
return fun;
}
Node* CodeStubAssembler::MarkerIsFrameType(Node* marker_or_function,
StackFrame::Type frame_type) {
return WordEqual(marker_or_function,
IntPtrConstant(StackFrame::TypeToMarker(frame_type)));
}
Node* CodeStubAssembler::MarkerIsNotFrameType(Node* marker_or_function,
StackFrame::Type frame_type) {
return WordNotEqual(marker_or_function,
IntPtrConstant(StackFrame::TypeToMarker(frame_type)));
}
void CodeStubAssembler::CheckPrototypeEnumCache(Node* receiver,
Node* receiver_map,
Label* if_fast,
Label* if_slow) {
VARIABLE(var_object, MachineRepresentation::kTagged, receiver);
VARIABLE(var_object_map, MachineRepresentation::kTagged, receiver_map);
Label loop(this, {&var_object, &var_object_map}), done_loop(this);
Goto(&loop);
BIND(&loop);
{
// Check that there are no elements on the current {object}.
Label if_no_elements(this);
Node* object = var_object.value();
Node* object_map = var_object_map.value();
// The following relies on the elements only aliasing with JSProxy::target,
// which is a Javascript value and hence cannot be confused with an elements
// backing store.
STATIC_ASSERT(static_cast<int>(JSObject::kElementsOffset) ==
static_cast<int>(JSProxy::kTargetOffset));
Node* object_elements = LoadObjectField(object, JSObject::kElementsOffset);
GotoIf(IsEmptyFixedArray(object_elements), &if_no_elements);
GotoIf(IsEmptySlowElementDictionary(object_elements), &if_no_elements);
// It might still be an empty JSArray.
GotoIfNot(IsJSArrayMap(object_map), if_slow);
Node* object_length = LoadJSArrayLength(object);
Branch(WordEqual(object_length, SmiConstant(0)), &if_no_elements, if_slow);
// Continue with the {object}s prototype.
BIND(&if_no_elements);
object = LoadMapPrototype(object_map);
GotoIf(IsNull(object), if_fast);
// For all {object}s but the {receiver}, check that the cache is empty.
var_object.Bind(object);
object_map = LoadMap(object);
var_object_map.Bind(object_map);
Node* object_enum_length = LoadMapEnumLength(object_map);
Branch(WordEqual(object_enum_length, IntPtrConstant(0)), &loop, if_slow);
}
}
Node* CodeStubAssembler::CheckEnumCache(Node* receiver, Label* if_empty,
Label* if_runtime) {
Label if_fast(this), if_cache(this), if_no_cache(this, Label::kDeferred);
Node* receiver_map = LoadMap(receiver);
// Check if the enum length field of the {receiver} is properly initialized,
// indicating that there is an enum cache.
Node* receiver_enum_length = LoadMapEnumLength(receiver_map);
Branch(WordEqual(receiver_enum_length,
IntPtrConstant(kInvalidEnumCacheSentinel)),
&if_no_cache, &if_cache);
BIND(&if_no_cache);
{
// Avoid runtime-call for empty dictionary receivers.
GotoIfNot(IsDictionaryMap(receiver_map), if_runtime);
TNode<NameDictionary> properties = CAST(LoadSlowProperties(receiver));
TNode<Smi> length = GetNumberOfElements(properties);
GotoIfNot(WordEqual(length, SmiConstant(0)), if_runtime);
// Check that there are no elements on the {receiver} and its prototype
// chain. Given that we do not create an EnumCache for dict-mode objects,
// directly jump to {if_empty} if there are no elements and no properties
// on the {receiver}.
CheckPrototypeEnumCache(receiver, receiver_map, if_empty, if_runtime);
}
// Check that there are no elements on the fast {receiver} and its
// prototype chain.
BIND(&if_cache);
CheckPrototypeEnumCache(receiver, receiver_map, &if_fast, if_runtime);
BIND(&if_fast);
return receiver_map;
}
TNode<Object> CodeStubAssembler::GetArgumentValue(
TorqueGeneratedBaseBuiltinsAssembler::Arguments args,
TNode<IntPtrT> index) {
return CodeStubArguments(this, args).GetOptionalArgumentValue(index);
}
TorqueGeneratedBaseBuiltinsAssembler::Arguments
CodeStubAssembler::GetFrameArguments(TNode<RawPtrT> frame,
TNode<IntPtrT> argc) {
return CodeStubArguments(this, argc, frame, INTPTR_PARAMETERS)
.GetTorqueArguments();
}
void CodeStubAssembler::Print(const char* s) {
std::string formatted(s);
formatted += "\n";
CallRuntime(Runtime::kGlobalPrint, NoContextConstant(),
StringConstant(formatted.c_str()));
}
void CodeStubAssembler::Print(const char* prefix, Node* tagged_value) {
if (prefix != nullptr) {
std::string formatted(prefix);
formatted += ": ";
Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked(
formatted.c_str(), AllocationType::kOld);
CallRuntime(Runtime::kGlobalPrint, NoContextConstant(),
HeapConstant(string));
}
CallRuntime(Runtime::kDebugPrint, NoContextConstant(), tagged_value);
}
void CodeStubAssembler::PerformStackCheck(TNode<Context> context) {
Label ok(this), stack_check_interrupt(this, Label::kDeferred);
// The instruction sequence below is carefully crafted to hit our pattern
// matcher for stack checks within instruction selection.
// See StackCheckMatcher::Matched and JSGenericLowering::LowerJSStackCheck.
TNode<UintPtrT> sp = UncheckedCast<UintPtrT>(LoadStackPointer());
TNode<UintPtrT> stack_limit = UncheckedCast<UintPtrT>(Load(
MachineType::Pointer(),
ExternalConstant(ExternalReference::address_of_stack_limit(isolate()))));
TNode<BoolT> sp_within_limit = UintPtrLessThan(stack_limit, sp);
Branch(sp_within_limit, &ok, &stack_check_interrupt);
BIND(&stack_check_interrupt);
CallRuntime(Runtime::kStackGuard, context);
Goto(&ok);
BIND(&ok);
}
void CodeStubAssembler::InitializeFunctionContext(Node* native_context,
Node* context, int slots) {
DCHECK_GE(slots, Context::MIN_CONTEXT_SLOTS);
StoreMapNoWriteBarrier(context, RootIndex::kFunctionContextMap);
StoreObjectFieldNoWriteBarrier(context, FixedArray::kLengthOffset,
SmiConstant(slots));
Node* const empty_scope_info =
LoadContextElement(native_context, Context::SCOPE_INFO_INDEX);
StoreContextElementNoWriteBarrier(context, Context::SCOPE_INFO_INDEX,
empty_scope_info);
StoreContextElementNoWriteBarrier(context, Context::PREVIOUS_INDEX,
UndefinedConstant());
StoreContextElementNoWriteBarrier(context, Context::EXTENSION_INDEX,
TheHoleConstant());
StoreContextElementNoWriteBarrier(context, Context::NATIVE_CONTEXT_INDEX,
native_context);
}
TNode<JSArray> CodeStubAssembler::ArrayCreate(TNode<Context> context,
TNode<Number> length) {
TVARIABLE(JSArray, array);
Label allocate_js_array(this);
Label done(this), next(this), runtime(this, Label::kDeferred);
TNode<Smi> limit = SmiConstant(JSArray::kInitialMaxFastElementArray);
CSA_ASSERT_BRANCH(this, [=](Label* ok, Label* not_ok) {
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length,
SmiConstant(0), ok, not_ok);
});
// This check also transitively covers the case where length is too big
// to be representable by a SMI and so is not usable with
// AllocateJSArray.
BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, length,
limit, &runtime, &next);
BIND(&runtime);
{
TNode<Context> native_context = LoadNativeContext(context);
TNode<JSFunction> array_function =
CAST(LoadContextElement(native_context, Context::ARRAY_FUNCTION_INDEX));
array = CAST(CallRuntime(Runtime::kNewArray, context, array_function,
length, array_function, UndefinedConstant()));
Goto(&done);
}
BIND(&next);
CSA_ASSERT(this, TaggedIsSmi(length));
TNode<Map> array_map = CAST(LoadContextElement(
context, Context::JS_ARRAY_PACKED_SMI_ELEMENTS_MAP_INDEX));
// TODO(delphick): Consider using
// AllocateUninitializedJSArrayWithElements to avoid initializing an
// array and then writing over it.
array =
AllocateJSArray(PACKED_SMI_ELEMENTS, array_map, length, SmiConstant(0),
nullptr, ParameterMode::SMI_PARAMETERS);
Goto(&done);
BIND(&done);
return array.value();
}
void CodeStubAssembler::SetPropertyLength(TNode<Context> context,
TNode<Object> array,
TNode<Number> length) {
Label fast(this), runtime(this), done(this);
// There's no need to set the length, if
// 1) the array is a fast JS array and
// 2) the new length is equal to the old length.
// as the set is not observable. Otherwise fall back to the run-time.
// 1) Check that the array has fast elements.
// TODO(delphick): Consider changing this since it does an an unnecessary
// check for SMIs.
// TODO(delphick): Also we could hoist this to after the array construction
// and copy the args into array in the same way as the Array constructor.
BranchIfFastJSArray(array, context, &fast, &runtime);
BIND(&fast);
{
TNode<JSArray> fast_array = CAST(array);
TNode<Smi> length_smi = CAST(length);
TNode<Smi> old_length = LoadFastJSArrayLength(fast_array);
CSA_ASSERT(this, TaggedIsPositiveSmi(old_length));
// 2) If the created array's length matches the required length, then
// there's nothing else to do. Otherwise use the runtime to set the
// property as that will insert holes into excess elements or shrink
// the backing store as appropriate.
Branch(SmiNotEqual(length_smi, old_length), &runtime, &done);
}
BIND(&runtime);
{
SetPropertyStrict(context, array, CodeStubAssembler::LengthStringConstant(),
length);
Goto(&done);
}
BIND(&done);
}
void CodeStubAssembler::GotoIfInitialPrototypePropertyModified(
TNode<Map> object_map, TNode<Map> initial_prototype_map, int descriptor,
RootIndex field_name_root_index, Label* if_modified) {
DescriptorIndexAndName index_name{descriptor, field_name_root_index};
GotoIfInitialPrototypePropertiesModified(
object_map, initial_prototype_map,
Vector<DescriptorIndexAndName>(&index_name, 1), if_modified);
}
void CodeStubAssembler::GotoIfInitialPrototypePropertiesModified(
TNode<Map> object_map, TNode<Map> initial_prototype_map,
Vector<DescriptorIndexAndName> properties, Label* if_modified) {
TNode<Map> prototype_map = LoadMap(LoadMapPrototype(object_map));
GotoIfNot(WordEqual(prototype_map, initial_prototype_map), if_modified);
// We need to make sure that relevant properties in the prototype have
// not been tampered with. We do this by checking that their slots
// in the prototype's descriptor array are still marked as const.
TNode<DescriptorArray> descriptors = LoadMapDescriptors(prototype_map);
TNode<Uint32T> combined_details;
for (int i = 0; i < properties.length(); i++) {
// Assert the descriptor index is in-bounds.
int descriptor = properties[i].descriptor_index;
CSA_ASSERT(this, Int32LessThan(Int32Constant(descriptor),
LoadNumberOfDescriptors(descriptors)));
// Assert that the name is correct. This essentially checks that
// the descriptor index corresponds to the insertion order in
// the bootstrapper.
CSA_ASSERT(this,
WordEqual(LoadKeyByDescriptorEntry(descriptors, descriptor),
LoadRoot(properties[i].name_root_index)));
TNode<Uint32T> details =
DescriptorArrayGetDetails(descriptors, Uint32Constant(descriptor));
if (i == 0) {
combined_details = details;
} else {
combined_details = Unsigned(Word32And(combined_details, details));
}
}
TNode<Uint32T> constness =
DecodeWord32<PropertyDetails::ConstnessField>(combined_details);
GotoIfNot(
Word32Equal(constness,
Int32Constant(static_cast<int>(PropertyConstness::kConst))),
if_modified);
}
TNode<String> CodeStubAssembler::TaggedToDirectString(TNode<Object> value,
Label* fail) {
ToDirectStringAssembler to_direct(state(), value);
to_direct.TryToDirect(fail);
to_direct.PointerToData(fail);
return CAST(value);
}
} // namespace internal
} // namespace v8