v8/test/cctest/compiler/test-representation-change.cc
mstarzinger 6e65e6db6c [turbofan] Remove usage of Unique<T> from graph.
The usage of Unique<T> throughout the TurboFan IR does not have any
advantage. There is no single point in time when they are initialized
and most use-sites looked through to the underlying Handle<T> anyways.
Also there already was a mixture of Handle<T> versus Unique<T> in the
graph and this unifies the situation to use Handle<T> everywhere.

R=bmeurer@chromium.org,titzer@chromium.org

Review URL: https://codereview.chromium.org/1314473007

Cr-Commit-Position: refs/heads/master@{#30458}
2015-08-31 08:25:05 +00:00

554 lines
17 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/representation-change.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
namespace v8 { // for friendiness.
namespace internal {
namespace compiler {
class RepresentationChangerTester : public HandleAndZoneScope,
public GraphAndBuilders {
public:
explicit RepresentationChangerTester(int num_parameters = 0)
: GraphAndBuilders(main_zone()),
javascript_(main_zone()),
jsgraph_(main_isolate(), main_graph_, &main_common_, &javascript_,
&main_machine_),
changer_(&jsgraph_, &main_simplified_, main_isolate()) {
Node* s = graph()->NewNode(common()->Start(num_parameters));
graph()->SetStart(s);
}
JSOperatorBuilder javascript_;
JSGraph jsgraph_;
RepresentationChanger changer_;
Isolate* isolate() { return main_isolate(); }
Graph* graph() { return main_graph_; }
CommonOperatorBuilder* common() { return &main_common_; }
JSGraph* jsgraph() { return &jsgraph_; }
RepresentationChanger* changer() { return &changer_; }
// TODO(titzer): use ValueChecker / ValueUtil
void CheckInt32Constant(Node* n, int32_t expected) {
Int32Matcher m(n);
CHECK(m.HasValue());
CHECK_EQ(expected, m.Value());
}
void CheckUint32Constant(Node* n, uint32_t expected) {
Uint32Matcher m(n);
CHECK(m.HasValue());
CHECK_EQ(static_cast<int>(expected), static_cast<int>(m.Value()));
}
void CheckFloat64Constant(Node* n, double expected) {
Float64Matcher m(n);
CHECK(m.HasValue());
CheckDoubleEq(expected, m.Value());
}
void CheckFloat32Constant(Node* n, float expected) {
CHECK_EQ(IrOpcode::kFloat32Constant, n->opcode());
float fval = OpParameter<float>(n->op());
CHECK_EQ(expected, fval);
}
void CheckHeapConstant(Node* n, HeapObject* expected) {
HeapObjectMatcher m(n);
CHECK(m.HasValue());
CHECK_EQ(expected, *m.Value());
}
void CheckNumberConstant(Node* n, double expected) {
NumberMatcher m(n);
CHECK_EQ(IrOpcode::kNumberConstant, n->opcode());
CHECK(m.HasValue());
CheckDoubleEq(expected, m.Value());
}
Node* Parameter(int index = 0) {
return graph()->NewNode(common()->Parameter(index), graph()->start());
}
void CheckTypeError(MachineTypeUnion from, MachineTypeUnion to) {
changer()->testing_type_errors_ = true;
changer()->type_error_ = false;
Node* n = Parameter(0);
Node* c = changer()->GetRepresentationFor(n, from, to);
CHECK(changer()->type_error_);
CHECK_EQ(n, c);
}
void CheckNop(MachineTypeUnion from, MachineTypeUnion to) {
Node* n = Parameter(0);
Node* c = changer()->GetRepresentationFor(n, from, to);
CHECK_EQ(n, c);
}
};
} // namespace compiler
} // namespace internal
} // namespace v8
static const MachineType all_reps[] = {kRepBit, kRepWord32, kRepWord64,
kRepFloat32, kRepFloat64, kRepTagged};
TEST(BoolToBit_constant) {
RepresentationChangerTester r;
Node* true_node = r.jsgraph()->TrueConstant();
Node* true_bit =
r.changer()->GetRepresentationFor(true_node, kRepTagged, kRepBit);
r.CheckInt32Constant(true_bit, 1);
Node* false_node = r.jsgraph()->FalseConstant();
Node* false_bit =
r.changer()->GetRepresentationFor(false_node, kRepTagged, kRepBit);
r.CheckInt32Constant(false_bit, 0);
}
TEST(BitToBool_constant) {
RepresentationChangerTester r;
for (int i = -5; i < 5; i++) {
Node* node = r.jsgraph()->Int32Constant(i);
Node* val = r.changer()->GetRepresentationFor(node, kRepBit, kRepTagged);
r.CheckHeapConstant(val, i == 0 ? r.isolate()->heap()->false_value()
: r.isolate()->heap()->true_value());
}
}
TEST(ToTagged_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepTagged);
r.CheckNumberConstant(c, *i);
}
}
}
TEST(ToFloat64_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat64);
CHECK_EQ(n, c);
}
}
{
FOR_FLOAT64_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepFloat64);
r.CheckFloat64Constant(c, *i);
}
}
}
static bool IsFloat32Int32(int32_t val) {
return val >= -(1 << 23) && val <= (1 << 23);
}
static bool IsFloat32Uint32(uint32_t val) { return val <= (1 << 23); }
TEST(ToFloat32_constant) {
RepresentationChangerTester r;
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32, kRepFloat32);
CHECK_EQ(n, c);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged, kRepFloat32);
r.CheckFloat32Constant(c, *i);
}
}
{
FOR_FLOAT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64, kRepFloat32);
r.CheckFloat32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
if (!IsFloat32Int32(*i)) continue;
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepFloat32);
r.CheckFloat32Constant(c, static_cast<float>(*i));
}
}
{
FOR_UINT32_INPUTS(i) {
if (!IsFloat32Uint32(*i)) continue;
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepFloat32);
r.CheckFloat32Constant(c, static_cast<float>(*i));
}
}
}
TEST(ToInt32_constant) {
RepresentationChangerTester r;
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
if (!IsFloat32Int32(*i)) continue;
Node* n = r.jsgraph()->Float32Constant(static_cast<float>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
{
FOR_INT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeInt32,
kRepWord32);
r.CheckInt32Constant(c, *i);
}
}
}
TEST(ToUint32_constant) {
RepresentationChangerTester r;
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Int32Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepWord32 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
if (!IsFloat32Uint32(*i)) continue;
Node* n = r.jsgraph()->Float32Constant(static_cast<float>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat32 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Float64Constant(*i);
Node* c = r.changer()->GetRepresentationFor(n, kRepFloat64 | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
{
FOR_UINT32_INPUTS(i) {
Node* n = r.jsgraph()->Constant(static_cast<double>(*i));
Node* c = r.changer()->GetRepresentationFor(n, kRepTagged | kTypeUint32,
kRepWord32);
r.CheckUint32Constant(c, *i);
}
}
}
static void CheckChange(IrOpcode::Value expected, MachineTypeUnion from,
MachineTypeUnion to) {
RepresentationChangerTester r;
Node* n = r.Parameter();
Node* c = r.changer()->GetRepresentationFor(n, from, to);
CHECK_NE(c, n);
CHECK_EQ(expected, c->opcode());
CHECK_EQ(n, c->InputAt(0));
}
static void CheckTwoChanges(IrOpcode::Value expected2,
IrOpcode::Value expected1, MachineTypeUnion from,
MachineTypeUnion to) {
RepresentationChangerTester r;
Node* n = r.Parameter();
Node* c1 = r.changer()->GetRepresentationFor(n, from, to);
CHECK_NE(c1, n);
CHECK_EQ(expected1, c1->opcode());
Node* c2 = c1->InputAt(0);
CHECK_NE(c2, n);
CHECK_EQ(expected2, c2->opcode());
CHECK_EQ(n, c2->InputAt(0));
}
TEST(SingleChanges) {
CheckChange(IrOpcode::kChangeBoolToBit, kRepTagged, kRepBit);
CheckChange(IrOpcode::kChangeBitToBool, kRepBit, kRepTagged);
CheckChange(IrOpcode::kChangeInt32ToTagged, kRepWord32 | kTypeInt32,
kRepTagged);
CheckChange(IrOpcode::kChangeUint32ToTagged, kRepWord32 | kTypeUint32,
kRepTagged);
CheckChange(IrOpcode::kChangeFloat64ToTagged, kRepFloat64, kRepTagged);
CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged | kTypeInt32,
kRepWord32);
CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged | kTypeUint32,
kRepWord32);
CheckChange(IrOpcode::kChangeTaggedToFloat64, kRepTagged, kRepFloat64);
// Int32,Uint32 <-> Float64 are actually machine conversions.
CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32 | kTypeInt32,
kRepFloat64);
CheckChange(IrOpcode::kChangeUint32ToFloat64, kRepWord32 | kTypeUint32,
kRepFloat64);
CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64 | kTypeInt32,
kRepWord32);
CheckChange(IrOpcode::kChangeFloat64ToUint32, kRepFloat64 | kTypeUint32,
kRepWord32);
CheckChange(IrOpcode::kTruncateFloat64ToFloat32, kRepFloat64, kRepFloat32);
// Int32,Uint32 <-> Float32 require two changes.
CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeInt32,
kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeUint32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32 | kTypeUint32,
kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToInt32, kRepFloat32 | kTypeInt32,
kRepWord32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToUint32, kRepFloat32 | kTypeUint32,
kRepWord32);
// Float32 <-> Tagged require two changes.
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToTagged, kRepFloat32, kRepTagged);
CheckTwoChanges(IrOpcode::kChangeTaggedToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepTagged, kRepFloat32);
}
TEST(SignednessInWord32) {
RepresentationChangerTester r;
// TODO(titzer): assume that uses of a word32 without a sign mean kTypeInt32.
CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged,
kRepWord32 | kTypeInt32);
CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged,
kRepWord32 | kTypeUint32);
CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32, kRepFloat64);
CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64, kRepWord32);
CheckTwoChanges(IrOpcode::kChangeInt32ToFloat64,
IrOpcode::kTruncateFloat64ToFloat32, kRepWord32, kRepFloat32);
CheckTwoChanges(IrOpcode::kChangeFloat32ToFloat64,
IrOpcode::kChangeFloat64ToInt32, kRepFloat32, kRepWord32);
}
TEST(Nops) {
RepresentationChangerTester r;
// X -> X is always a nop for any single representation X.
for (size_t i = 0; i < arraysize(all_reps); i++) {
r.CheckNop(all_reps[i], all_reps[i]);
}
// 32-bit floats.
r.CheckNop(kRepFloat32, kRepFloat32);
r.CheckNop(kRepFloat32 | kTypeNumber, kRepFloat32);
r.CheckNop(kRepFloat32, kRepFloat32 | kTypeNumber);
// 32-bit words can be used as smaller word sizes and vice versa, because
// loads from memory implicitly sign or zero extend the value to the
// full machine word size, and stores implicitly truncate.
r.CheckNop(kRepWord32, kRepWord8);
r.CheckNop(kRepWord32, kRepWord16);
r.CheckNop(kRepWord32, kRepWord32);
r.CheckNop(kRepWord8, kRepWord32);
r.CheckNop(kRepWord16, kRepWord32);
// kRepBit (result of comparison) is implicitly a wordish thing.
r.CheckNop(kRepBit, kRepWord8);
r.CheckNop(kRepBit | kTypeBool, kRepWord8);
r.CheckNop(kRepBit, kRepWord16);
r.CheckNop(kRepBit | kTypeBool, kRepWord16);
r.CheckNop(kRepBit, kRepWord32);
r.CheckNop(kRepBit | kTypeBool, kRepWord32);
r.CheckNop(kRepBit, kRepWord64);
r.CheckNop(kRepBit | kTypeBool, kRepWord64);
}
TEST(TypeErrors) {
RepresentationChangerTester r;
// Wordish cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepWord8, kRepBit);
r.CheckTypeError(kRepWord8, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord16, kRepBit);
r.CheckTypeError(kRepWord16, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord32, kRepBit);
r.CheckTypeError(kRepWord32, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord64, kRepBit);
r.CheckTypeError(kRepWord64, kRepBit | kTypeBool);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat64, kRepBit);
r.CheckTypeError(kRepFloat64, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat64);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat64);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat32, kRepBit);
r.CheckTypeError(kRepFloat32, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat32);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat32);
// Word64 is internal and shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepWord64, kRepTagged);
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepTagged, kRepWord64);
r.CheckTypeError(kRepTagged | kTypeBool, kRepWord64);
// Word64 / Word32 shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepWord32);
r.CheckTypeError(kRepWord32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeInt32);
r.CheckTypeError(kRepWord32 | kTypeInt32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeUint32);
r.CheckTypeError(kRepWord32 | kTypeUint32, kRepWord64);
for (size_t i = 0; i < arraysize(all_reps); i++) {
for (size_t j = 0; j < arraysize(all_reps); j++) {
if (i == j) continue;
// Only a single from representation is allowed.
r.CheckTypeError(all_reps[i] | all_reps[j], kRepTagged);
}
}
}