v8/src/string-stream.cc
Santiago Aboy Solanes 8b11e91f21 [cleanup] Removing break and return after UNREACHABLE()
Everything after UNREACHABLE is dead code, so it makes sense to remove them.

Bug: v8:9183
Change-Id: If76468a73b926d74717cc2348fd5b36d30f680c1
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1605727
Reviewed-by: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Yang Guo <yangguo@chromium.org>
Commit-Queue: Santiago Aboy Solanes <solanes@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61411}
2019-05-10 13:42:57 +00:00

471 lines
14 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/string-stream.h"
#include <memory>
#include "src/handles-inl.h"
#include "src/log.h"
#include "src/objects-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/prototype.h"
#include "src/vector.h"
namespace v8 {
namespace internal {
static const int kMentionedObjectCacheMaxSize = 256;
char* HeapStringAllocator::allocate(unsigned bytes) {
space_ = NewArray<char>(bytes);
return space_;
}
char* FixedStringAllocator::allocate(unsigned bytes) {
CHECK_LE(bytes, length_);
return buffer_;
}
char* FixedStringAllocator::grow(unsigned* old) {
*old = length_;
return buffer_;
}
bool StringStream::Put(char c) {
if (full()) return false;
DCHECK(length_ < capacity_);
// Since the trailing '\0' is not accounted for in length_ fullness is
// indicated by a difference of 1 between length_ and capacity_. Thus when
// reaching a difference of 2 we need to grow the buffer.
if (length_ == capacity_ - 2) {
unsigned new_capacity = capacity_;
char* new_buffer = allocator_->grow(&new_capacity);
if (new_capacity > capacity_) {
capacity_ = new_capacity;
buffer_ = new_buffer;
} else {
// Reached the end of the available buffer.
DCHECK_GE(capacity_, 5);
length_ = capacity_ - 1; // Indicate fullness of the stream.
buffer_[length_ - 4] = '.';
buffer_[length_ - 3] = '.';
buffer_[length_ - 2] = '.';
buffer_[length_ - 1] = '\n';
buffer_[length_] = '\0';
return false;
}
}
buffer_[length_] = c;
buffer_[length_ + 1] = '\0';
length_++;
return true;
}
// A control character is one that configures a format element. For
// instance, in %.5s, .5 are control characters.
static bool IsControlChar(char c) {
switch (c) {
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9': case '.': case '-':
return true;
default:
return false;
}
}
void StringStream::Add(Vector<const char> format, Vector<FmtElm> elms) {
// If we already ran out of space then return immediately.
if (full()) return;
int offset = 0;
int elm = 0;
while (offset < format.length()) {
if (format[offset] != '%' || elm == elms.length()) {
Put(format[offset]);
offset++;
continue;
}
// Read this formatting directive into a temporary buffer
EmbeddedVector<char, 24> temp;
int format_length = 0;
// Skip over the whole control character sequence until the
// format element type
temp[format_length++] = format[offset++];
while (offset < format.length() && IsControlChar(format[offset]))
temp[format_length++] = format[offset++];
if (offset >= format.length())
return;
char type = format[offset];
temp[format_length++] = type;
temp[format_length] = '\0';
offset++;
FmtElm current = elms[elm++];
switch (type) {
case 's': {
DCHECK_EQ(FmtElm::C_STR, current.type_);
const char* value = current.data_.u_c_str_;
Add(value);
break;
}
case 'w': {
DCHECK_EQ(FmtElm::LC_STR, current.type_);
Vector<const uc16> value = *current.data_.u_lc_str_;
for (int i = 0; i < value.length(); i++)
Put(static_cast<char>(value[i]));
break;
}
case 'o': {
DCHECK_EQ(FmtElm::OBJ, current.type_);
Object obj(current.data_.u_obj_);
PrintObject(obj);
break;
}
case 'k': {
DCHECK_EQ(FmtElm::INT, current.type_);
int value = current.data_.u_int_;
if (0x20 <= value && value <= 0x7F) {
Put(value);
} else if (value <= 0xFF) {
Add("\\x%02x", value);
} else {
Add("\\u%04x", value);
}
break;
}
case 'i': case 'd': case 'u': case 'x': case 'c': case 'X': {
int value = current.data_.u_int_;
EmbeddedVector<char, 24> formatted;
int length = SNPrintF(formatted, temp.begin(), value);
Add(Vector<const char>(formatted.begin(), length));
break;
}
case 'f': case 'g': case 'G': case 'e': case 'E': {
double value = current.data_.u_double_;
int inf = std::isinf(value);
if (inf == -1) {
Add("-inf");
} else if (inf == 1) {
Add("inf");
} else if (std::isnan(value)) {
Add("nan");
} else {
EmbeddedVector<char, 28> formatted;
SNPrintF(formatted, temp.begin(), value);
Add(formatted.begin());
}
break;
}
case 'p': {
void* value = current.data_.u_pointer_;
EmbeddedVector<char, 20> formatted;
SNPrintF(formatted, temp.begin(), value);
Add(formatted.begin());
break;
}
default:
UNREACHABLE();
}
}
// Verify that the buffer is 0-terminated
DCHECK_EQ(buffer_[length_], '\0');
}
void StringStream::PrintObject(Object o) {
o->ShortPrint(this);
if (o->IsString()) {
if (String::cast(o)->length() <= String::kMaxShortPrintLength) {
return;
}
} else if (o->IsNumber() || o->IsOddball()) {
return;
}
if (o->IsHeapObject() && object_print_mode_ == kPrintObjectVerbose) {
// TODO(delphick): Consider whether we can get the isolate without using
// TLS.
Isolate* isolate = Isolate::Current();
DebugObjectCache* debug_object_cache =
isolate->string_stream_debug_object_cache();
for (size_t i = 0; i < debug_object_cache->size(); i++) {
if (*(*debug_object_cache)[i] == o) {
Add("#%d#", static_cast<int>(i));
return;
}
}
if (debug_object_cache->size() < kMentionedObjectCacheMaxSize) {
Add("#%d#", static_cast<int>(debug_object_cache->size()));
debug_object_cache->push_back(handle(HeapObject::cast(o), isolate));
} else {
Add("@%p", o);
}
}
}
std::unique_ptr<char[]> StringStream::ToCString() const {
char* str = NewArray<char>(length_ + 1);
MemCopy(str, buffer_, length_);
str[length_] = '\0';
return std::unique_ptr<char[]>(str);
}
void StringStream::Log(Isolate* isolate) {
LOG(isolate, StringEvent("StackDump", buffer_));
}
void StringStream::OutputToFile(FILE* out) {
// Dump the output to stdout, but make sure to break it up into
// manageable chunks to avoid losing parts of the output in the OS
// printing code. This is a problem on Windows in particular; see
// the VPrint() function implementations in platform-win32.cc.
unsigned position = 0;
for (unsigned next; (next = position + 2048) < length_; position = next) {
char save = buffer_[next];
buffer_[next] = '\0';
internal::PrintF(out, "%s", &buffer_[position]);
buffer_[next] = save;
}
internal::PrintF(out, "%s", &buffer_[position]);
}
Handle<String> StringStream::ToString(Isolate* isolate) {
return isolate->factory()->NewStringFromUtf8(
Vector<const char>(buffer_, length_)).ToHandleChecked();
}
void StringStream::ClearMentionedObjectCache(Isolate* isolate) {
isolate->set_string_stream_current_security_token(Object());
if (isolate->string_stream_debug_object_cache() == nullptr) {
isolate->set_string_stream_debug_object_cache(new DebugObjectCache());
}
isolate->string_stream_debug_object_cache()->clear();
}
#ifdef DEBUG
bool StringStream::IsMentionedObjectCacheClear(Isolate* isolate) {
return object_print_mode_ == kPrintObjectConcise ||
isolate->string_stream_debug_object_cache()->size() == 0;
}
#endif
bool StringStream::Put(String str) { return Put(str, 0, str->length()); }
bool StringStream::Put(String str, int start, int end) {
StringCharacterStream stream(str, start);
for (int i = start; i < end && stream.HasMore(); i++) {
uint16_t c = stream.GetNext();
if (c >= 127 || c < 32) {
c = '?';
}
if (!Put(static_cast<char>(c))) {
return false; // Output was truncated.
}
}
return true;
}
void StringStream::PrintName(Object name) {
if (name->IsString()) {
String str = String::cast(name);
if (str->length() > 0) {
Put(str);
} else {
Add("/* anonymous */");
}
} else {
Add("%o", name);
}
}
void StringStream::PrintUsingMap(JSObject js_object) {
Map map = js_object->map();
int real_size = map->NumberOfOwnDescriptors();
DescriptorArray descs = map->instance_descriptors();
for (int i = 0; i < real_size; i++) {
PropertyDetails details = descs->GetDetails(i);
if (details.location() == kField) {
DCHECK_EQ(kData, details.kind());
Object key = descs->GetKey(i);
if (key->IsString() || key->IsNumber()) {
int len = 3;
if (key->IsString()) {
len = String::cast(key)->length();
}
for (; len < 18; len++)
Put(' ');
if (key->IsString()) {
Put(String::cast(key));
} else {
key->ShortPrint();
}
Add(": ");
FieldIndex index = FieldIndex::ForDescriptor(map, i);
if (js_object->IsUnboxedDoubleField(index)) {
double value = js_object->RawFastDoublePropertyAt(index);
Add("<unboxed double> %.16g\n", FmtElm(value));
} else {
Object value = js_object->RawFastPropertyAt(index);
Add("%o\n", value);
}
}
}
}
}
void StringStream::PrintFixedArray(FixedArray array, unsigned int limit) {
ReadOnlyRoots roots = array->GetReadOnlyRoots();
for (unsigned int i = 0; i < 10 && i < limit; i++) {
Object element = array->get(i);
if (element->IsTheHole(roots)) continue;
for (int len = 1; len < 18; len++) {
Put(' ');
}
Add("%d: %o\n", i, array->get(i));
}
if (limit >= 10) {
Add(" ...\n");
}
}
void StringStream::PrintByteArray(ByteArray byte_array) {
unsigned int limit = byte_array->length();
for (unsigned int i = 0; i < 10 && i < limit; i++) {
byte b = byte_array->get(i);
Add(" %d: %3d 0x%02x", i, b, b);
if (b >= ' ' && b <= '~') {
Add(" '%c'", b);
} else if (b == '\n') {
Add(" '\n'");
} else if (b == '\r') {
Add(" '\r'");
} else if (b >= 1 && b <= 26) {
Add(" ^%c", b + 'A' - 1);
}
Add("\n");
}
if (limit >= 10) {
Add(" ...\n");
}
}
void StringStream::PrintMentionedObjectCache(Isolate* isolate) {
if (object_print_mode_ == kPrintObjectConcise) return;
DebugObjectCache* debug_object_cache =
isolate->string_stream_debug_object_cache();
Add("==== Key ============================================\n\n");
for (size_t i = 0; i < debug_object_cache->size(); i++) {
HeapObject printee = *(*debug_object_cache)[i];
Add(" #%d# %p: ", static_cast<int>(i),
reinterpret_cast<void*>(printee->ptr()));
printee->ShortPrint(this);
Add("\n");
if (printee->IsJSObject()) {
if (printee->IsJSValue()) {
Add(" value(): %o\n", JSValue::cast(printee)->value());
}
PrintUsingMap(JSObject::cast(printee));
if (printee->IsJSArray()) {
JSArray array = JSArray::cast(printee);
if (array->HasObjectElements()) {
unsigned int limit = FixedArray::cast(array->elements())->length();
unsigned int length =
static_cast<uint32_t>(JSArray::cast(array)->length()->Number());
if (length < limit) limit = length;
PrintFixedArray(FixedArray::cast(array->elements()), limit);
}
}
} else if (printee->IsByteArray()) {
PrintByteArray(ByteArray::cast(printee));
} else if (printee->IsFixedArray()) {
unsigned int limit = FixedArray::cast(printee)->length();
PrintFixedArray(FixedArray::cast(printee), limit);
}
}
}
void StringStream::PrintSecurityTokenIfChanged(JSFunction fun) {
Object token = fun->native_context()->security_token();
Isolate* isolate = fun->GetIsolate();
if (token != isolate->string_stream_current_security_token()) {
Add("Security context: %o\n", token);
isolate->set_string_stream_current_security_token(token);
}
}
void StringStream::PrintFunction(JSFunction fun, Object receiver, Code* code) {
PrintPrototype(fun, receiver);
*code = fun->code();
}
void StringStream::PrintPrototype(JSFunction fun, Object receiver) {
Object name = fun->shared()->Name();
bool print_name = false;
Isolate* isolate = fun->GetIsolate();
if (receiver->IsNullOrUndefined(isolate) || receiver->IsTheHole(isolate) ||
receiver->IsJSProxy()) {
print_name = true;
} else if (!isolate->context().is_null()) {
if (!receiver->IsJSObject()) {
receiver = receiver->GetPrototypeChainRootMap(isolate)->prototype();
}
for (PrototypeIterator iter(isolate, JSObject::cast(receiver),
kStartAtReceiver);
!iter.IsAtEnd(); iter.Advance()) {
if (iter.GetCurrent()->IsJSProxy()) break;
Object key = iter.GetCurrent<JSObject>()->SlowReverseLookup(fun);
if (!key->IsUndefined(isolate)) {
if (!name->IsString() ||
!key->IsString() ||
!String::cast(name)->Equals(String::cast(key))) {
print_name = true;
}
if (name->IsString() && String::cast(name)->length() == 0) {
print_name = false;
}
name = key;
break;
}
}
}
PrintName(name);
// Also known as - if the name in the function doesn't match the name under
// which it was looked up.
if (print_name) {
Add("(aka ");
PrintName(fun->shared()->Name());
Put(')');
}
}
char* HeapStringAllocator::grow(unsigned* bytes) {
unsigned new_bytes = *bytes * 2;
// Check for overflow.
if (new_bytes <= *bytes) {
return space_;
}
char* new_space = NewArray<char>(new_bytes);
if (new_space == nullptr) {
return space_;
}
MemCopy(new_space, space_, *bytes);
*bytes = new_bytes;
DeleteArray(space_);
space_ = new_space;
return new_space;
}
} // namespace internal
} // namespace v8