v8/src/disasm-arm.cc
kasper.lund 7276f14ca7 Changed all text files to have native svn:eol-style.
Added a few samples and support for building them. The samples include a simple shell that can be used to benchmark and test V8.

Changed V8::GetVersion to return the version as a string.

Added source for lazily loaded scripts to snapshots and made serialization non-destructive.

Improved ARM support by fixing the write barrier code to use aligned loads and stores and by removing premature locals optimization that relied on broken support for callee-saved registers (removed).

Refactored the code for marking live objects during garbage collection and the code for allocating objects in paged spaces. Introduced an abstraction for the map word of a heap-allocated object and changed the memory allocator to allocate executable memory only for spaces that may contain code objects.

Moved StringBuilder to utils.h and ScopedLock to platform.h, where they can be used by debugging and logging modules. Added thread-safe message queues for dealing with debugger events.

Fixed the source code reported by toString for certain builtin empty functions and made sure that the prototype property of a function is enumerable.

Improved performance of converting values to condition flags in generated code.

Merged disassembler-{arch} files.


git-svn-id: http://v8.googlecode.com/svn/trunk@8 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-07-30 08:49:36 +00:00

956 lines
25 KiB
C++

// Copyright 2007-2008 Google Inc. All Rights Reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assert.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#ifndef WIN32
#include <stdint.h>
#endif
#include "v8.h"
#include "disasm.h"
#include "macro-assembler.h"
#include "platform.h"
namespace assembler { namespace arm {
namespace v8i = v8::internal;
//------------------------------------------------------------------------------
// Decoder decodes and disassembles instructions into an output buffer.
// It uses the converter to convert register names and call destinations into
// more informative description.
class Decoder {
public:
Decoder(const disasm::NameConverter& converter,
char* out_buffer, const int out_buffer_size)
: converter_(converter),
out_buffer_(out_buffer),
out_buffer_size_(out_buffer_size),
out_buffer_pos_(0) {
ASSERT(out_buffer_size_ > 0);
out_buffer_[out_buffer_pos_] = '\0';
}
~Decoder() {}
// Writes one disassembled instruction into 'buffer' (0-terminated).
// Returns the length of the disassembled machine instruction in bytes.
int InstructionDecode(byte* instruction);
private:
const disasm::NameConverter& converter_;
char* out_buffer_;
const int out_buffer_size_;
int out_buffer_pos_;
void PrintChar(const char ch);
void Print(const char* str);
void PrintRegister(int reg);
void PrintCondition(Instr* instr);
void PrintShiftRm(Instr* instr);
void PrintShiftImm(Instr* instr);
int FormatOption(Instr* instr, const char* option);
void Format(Instr* instr, const char* format);
void Unknown(Instr* instr);
void DecodeType0(Instr* instr);
void DecodeType1(Instr* instr);
void DecodeType2(Instr* instr);
void DecodeType3(Instr* instr);
void DecodeType4(Instr* instr);
void DecodeType5(Instr* instr);
void DecodeType6(Instr* instr);
void DecodeType7(Instr* instr);
};
// Append the ch to the output buffer.
void Decoder::PrintChar(const char ch) {
ASSERT(out_buffer_pos_ < out_buffer_size_);
out_buffer_[out_buffer_pos_++] = ch;
}
// Append the str to the output buffer.
void Decoder::Print(const char* str) {
char cur = *str++;
while (cur != 0 && (out_buffer_pos_ < (out_buffer_size_-1))) {
PrintChar(cur);
cur = *str++;
}
out_buffer_[out_buffer_pos_] = 0;
}
static const char* cond_names[16] = {
"eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
"hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
};
// Print the condition guarding the instruction.
void Decoder::PrintCondition(Instr* instr) {
Print(cond_names[instr->ConditionField()]);
}
// Print the register name according to the active name converter.
void Decoder::PrintRegister(int reg) {
Print(converter_.NameOfCPURegister(reg));
}
static const char* shift_names[4] = {
"lsl", "lsr", "asr", "ror"
};
// Print the register shift operands for the instruction. Generally used for
// data processing instructions.
void Decoder::PrintShiftRm(Instr* instr) {
Shift shift = instr->ShiftField();
int shift_amount = instr->ShiftAmountField();
int rm = instr->RmField();
PrintRegister(rm);
if ((instr->RegShiftField() == 0) && (shift == LSL) && (shift_amount == 0)) {
// Special case for using rm only.
return;
}
if (instr->RegShiftField() == 0) {
// by immediate
if ((shift == ROR) && (shift_amount == 0)) {
Print(", RRX");
return;
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
shift_amount = 32;
}
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
", %s #%d",
shift_names[shift], shift_amount);
} else {
// by register
int rs = instr->RsField();
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
", %s ", shift_names[shift]);
PrintRegister(rs);
}
}
// Print the immediate operand for the instruction. Generally used for data
// processing instructions.
void Decoder::PrintShiftImm(Instr* instr) {
int rotate = instr->RotateField() * 2;
int immed8 = instr->Immed8Field();
int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"#%d", imm);
}
// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.) FormatOption returns the number of
// characters that were consumed from the formatting string.
int Decoder::FormatOption(Instr* instr, const char* format) {
switch (format[0]) {
case 'a': { // 'a: accumulate multiplies
if (instr->Bit(21) == 0) {
Print("ul");
} else {
Print("la");
}
return 1;
break;
}
case 'b': { // 'b: byte loads or stores
if (instr->HasB()) {
Print("b");
}
return 1;
break;
}
case 'c': { // 'cond: conditional execution
ASSERT((format[1] == 'o') && (format[2] == 'n') && (format[3] =='d'));
PrintCondition(instr);
return 4;
break;
}
case 'h': { // 'h: halfword operation for extra loads and stores
if (instr->HasH()) {
Print("h");
} else {
Print("b");
}
return 1;
break;
}
case 'i': { // 'imm: immediate value for data processing instructions
ASSERT((format[1] == 'm') && (format[2] == 'm'));
PrintShiftImm(instr);
return 3;
break;
}
case 'l': { // 'l: branch and link
if (instr->HasLink()) {
Print("l");
}
return 1;
break;
}
case 'm': { // 'msg: for simulator break instructions
if (format[1] == 'e') {
ASSERT((format[2] == 'm') && (format[3] == 'o') && (format[4] == 'p'));
if (instr->HasL()) {
Print("ldr");
} else {
Print("str");
}
return 5;
} else {
ASSERT(format[1] == 's' && format[2] == 'g');
byte* str =
reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%s", converter_.NameInCode(str));
return 3;
}
break;
}
case 'o': {
ASSERT(format[1] == 'f' && format[2] == 'f');
if (format[3] == '1') {
// 'off12: 12-bit offset for load and store instructions
ASSERT(format[4] == '2');
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%d", instr->Offset12Field());
return 5;
} else {
// 'off8: 8-bit offset for extra load and store instructions
ASSERT(format[3] == '8');
int offs8 = (instr->ImmedHField() << 4) | instr->ImmedLField();
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%d", offs8);
return 4;
}
break;
}
case 'p': { // 'pu: P and U bits for load and store isntructions
ASSERT(format[1] == 'u');
switch (instr->PUField()) {
case 0: {
Print("da");
break;
}
case 1: {
Print("ia");
break;
}
case 2: {
Print("db");
break;
}
case 3: {
Print("ib");
break;
}
default: {
UNREACHABLE();
break;
}
}
return 2;
break;
}
case 'r': {
if (format[1] == 'n') { // 'rn: Rn register
int reg = instr->RnField();
PrintRegister(reg);
return 2;
} else if (format[1] == 'd') { // 'rd: Rd register
int reg = instr->RdField();
PrintRegister(reg);
return 2;
} else if (format[1] == 's') { // 'rs: Rs register
int reg = instr->RsField();
PrintRegister(reg);
return 2;
} else if (format[1] == 'm') { // 'rm: Rm register
int reg = instr->RmField();
PrintRegister(reg);
return 2;
} else if (format[1] == 'l') {
// 'rlist: register list for load and store multiple instructions
ASSERT(format[2] == 'i' && format[3] == 's' && format[4] == 't');
int rlist = instr->RlistField();
int reg = 0;
Print("{");
while (rlist != 0) {
if ((rlist & 1) != 0) {
PrintRegister(reg);
if ((rlist >> 1) != 0) {
Print(", ");
}
}
reg++;
rlist >>= 1;
}
Print("}");
return 5;
} else {
UNREACHABLE();
}
UNREACHABLE();
return -1;
break;
}
case 's': {
if (format[1] == 'h') { // 'shift_rm: register shift operands
ASSERT(format[2] == 'i' && format[3] == 'f' && format[4] == 't'
&& format[5] == '_' && format[6] == 'r' && format[7] == 'm');
PrintShiftRm(instr);
return 8;
} else if (format[1] == 'w') {
ASSERT(format[2] == 'i');
SoftwareInterruptCodes swi = instr->SwiField();
switch (swi) {
case call_rt_r5:
Print("call_rt_r5");
break;
case call_rt_r2:
Print("call_rt_r2");
break;
case break_point:
Print("break_point");
break;
default:
out_buffer_pos_ += v8i::OS::SNPrintF(
out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%d",
swi);
break;
}
return 3;
} else if (format[1] == 'i') { // 'sign: signed extra loads and stores
ASSERT(format[2] == 'g' && format[3] == 'n');
if (instr->HasSign()) {
Print("s");
}
return 4;
break;
} else { // 's: S field of data processing instructions
if (instr->HasS()) {
Print("s");
}
return 1;
}
break;
}
case 't': { // 'target: target of branch instructions
ASSERT(format[1] == 'a' && format[2] == 'r' && format[3] == 'g'
&& format[4] == 'e' && format[5] == 't');
int off = (instr->SImmed24Field() << 2) + 8;
out_buffer_pos_ += v8i::OS::SNPrintF(
out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%+d -> %s",
off,
converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
return 6;
break;
}
case 'u': { // 'u: signed or unsigned multiplies
if (instr->Bit(22) == 0) {
Print("u");
} else {
Print("s");
}
return 1;
break;
}
case 'w': { // 'w: W field of load and store instructions
if (instr->HasW()) {
Print("!");
}
return 1;
break;
}
default: {
UNREACHABLE();
break;
}
}
UNREACHABLE();
return -1;
}
// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void Decoder::Format(Instr* instr, const char* format) {
char cur = *format++;
while ((cur != 0) && (out_buffer_pos_ < (out_buffer_size_ - 1))) {
if (cur == '\'') { // Single quote is used as the formatting escape.
format += FormatOption(instr, format);
} else {
out_buffer_[out_buffer_pos_++] = cur;
}
cur = *format++;
}
ASSERT(out_buffer_pos_ < out_buffer_size_);
out_buffer_[out_buffer_pos_] = '\0';
}
// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void Decoder::Unknown(Instr* instr) {
Format(instr, "unknown");
}
void Decoder::DecodeType0(Instr* instr) {
if (instr->IsSpecialType0()) {
// multiply instruction or extra loads and stores
if (instr->Bits(7, 4) == 9) {
if (instr->Bit(24) == 0) {
// multiply instructions
if (instr->Bit(23) == 0) {
if (instr->Bit(21) == 0) {
Format(instr, "mul'cond's 'rd, 'rm, 'rs");
} else {
Format(instr, "mla'cond's 'rd, 'rm, 'rs, 'rn");
}
} else {
Format(instr, "'um'al'cond's 'rn, 'rd, 'rs, 'rm");
}
} else {
Unknown(instr); // not used by V8
}
} else {
// extra load/store instructions
switch (instr->PUField()) {
case 0: {
if (instr->Bit(22) == 0) {
Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
} else {
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
}
break;
}
case 1: {
if (instr->Bit(22) == 0) {
Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
} else {
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
}
break;
}
case 2: {
if (instr->Bit(22) == 0) {
Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
} else {
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
}
break;
}
case 3: {
if (instr->Bit(22) == 0) {
Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
} else {
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
}
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
return;
}
} else {
switch (instr->OpcodeField()) {
case AND: {
Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
break;
}
case EOR: {
Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
break;
}
case SUB: {
Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
break;
}
case RSB: {
Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
break;
}
case ADD: {
Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
break;
}
case ADC: {
Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
break;
}
case SBC: {
Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
break;
}
case RSC: {
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
break;
}
case TST: {
if (instr->HasS()) {
Format(instr, "tst'cond 'rn, 'shift_rm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case TEQ: {
if (instr->HasS()) {
Format(instr, "teq'cond 'rn, 'shift_rm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case CMP: {
if (instr->HasS()) {
Format(instr, "cmp'cond 'rn, 'shift_rm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case CMN: {
if (instr->HasS()) {
Format(instr, "cmn'cond 'rn, 'shift_rm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case ORR: {
Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
break;
}
case MOV: {
Format(instr, "mov'cond's 'rd, 'shift_rm");
break;
}
case BIC: {
Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
break;
}
case MVN: {
Format(instr, "mvn'cond's 'rd, 'shift_rm");
break;
}
default: {
// The Opcode field is a 4-bit field.
UNREACHABLE();
break;
}
}
}
}
void Decoder::DecodeType1(Instr* instr) {
switch (instr->OpcodeField()) {
case AND: {
Format(instr, "and'cond's 'rd, 'rn, 'imm");
break;
}
case EOR: {
Format(instr, "eor'cond's 'rd, 'rn, 'imm");
break;
}
case SUB: {
Format(instr, "sub'cond's 'rd, 'rn, 'imm");
break;
}
case RSB: {
Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
break;
}
case ADD: {
Format(instr, "add'cond's 'rd, 'rn, 'imm");
break;
}
case ADC: {
Format(instr, "adc'cond's 'rd, 'rn, 'imm");
break;
}
case SBC: {
Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
break;
}
case RSC: {
Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
break;
}
case TST: {
if (instr->HasS()) {
Format(instr, "tst'cond 'rn, 'imm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case TEQ: {
if (instr->HasS()) {
Format(instr, "teq'cond 'rn, 'imm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case CMP: {
if (instr->HasS()) {
Format(instr, "cmp'cond 'rn, 'imm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case CMN: {
if (instr->HasS()) {
Format(instr, "cmn'cond 'rn, 'imm");
} else {
Unknown(instr); // not used by V8
return;
}
break;
}
case ORR: {
Format(instr, "orr'cond's 'rd, 'rn, 'imm");
break;
}
case MOV: {
Format(instr, "mov'cond's 'rd, 'imm");
break;
}
case BIC: {
Format(instr, "bic'cond's 'rd, 'rn, 'imm");
break;
}
case MVN: {
Format(instr, "mvn'cond's 'rd, 'imm");
break;
}
default: {
// The Opcode field is a 4-bit field.
UNREACHABLE();
break;
}
}
}
void Decoder::DecodeType2(Instr* instr) {
switch (instr->PUField()) {
case 0: {
if (instr->HasW()) {
Unknown(instr); // not used in V8
return;
}
Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
break;
}
case 1: {
if (instr->HasW()) {
Unknown(instr); // not used in V8
return;
}
Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
break;
}
case 2: {
Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
break;
}
case 3: {
Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
}
void Decoder::DecodeType3(Instr* instr) {
switch (instr->PUField()) {
case 0: {
ASSERT(!instr->HasW());
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
break;
}
case 1: {
ASSERT(!instr->HasW());
Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
break;
}
case 2: {
Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
break;
}
case 3: {
Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
}
void Decoder::DecodeType4(Instr* instr) {
ASSERT(instr->Bit(22) == 0); // Privileged mode currently not supported.
if (instr->HasL()) {
Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
} else {
Format(instr, "stm'cond'pu 'rn'w, 'rlist");
}
}
void Decoder::DecodeType5(Instr* instr) {
Format(instr, "b'l'cond 'target");
}
void Decoder::DecodeType6(Instr* instr) {
// Coprocessor instructions currently not supported.
Unknown(instr);
}
void Decoder::DecodeType7(Instr* instr) {
if (instr->Bit(24) == 1) {
Format(instr, "swi'cond 'swi");
} else {
// Coprocessor instructions currently not supported.
Unknown(instr);
}
}
// Disassemble the instruction at *instr_ptr into the output buffer.
int Decoder::InstructionDecode(byte* instr_ptr) {
Instr* instr = Instr::At(instr_ptr);
// Print raw instruction bytes.
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
out_buffer_size_ - out_buffer_pos_,
"%08x ",
instr->InstructionBits());
if (instr->ConditionField() == special_condition) {
Format(instr, "break 'msg");
return Instr::kInstrSize;
}
switch (instr->TypeField()) {
case 0: {
DecodeType0(instr);
break;
}
case 1: {
DecodeType1(instr);
break;
}
case 2: {
DecodeType2(instr);
break;
}
case 3: {
DecodeType3(instr);
break;
}
case 4: {
DecodeType4(instr);
break;
}
case 5: {
DecodeType5(instr);
break;
}
case 6: {
DecodeType6(instr);
break;
}
case 7: {
DecodeType7(instr);
break;
}
default: {
// The type field is 3-bits in the ARM encoding.
UNREACHABLE();
break;
}
}
return Instr::kInstrSize;
}
} } // namespace assembler::arm
//------------------------------------------------------------------------------
namespace disasm {
static const char* reg_names[16] = {
"r0", "r1", "r2" , "r3" , "r4" , "r5" , "r6" , "r7" ,
"r8", "r9", "sl", "fp", "ip", "sp", "lr", "pc",
};
const char* NameConverter::NameOfAddress(byte* addr) const {
static char tmp_buffer[32];
#ifdef WIN32
_snprintf(tmp_buffer, sizeof tmp_buffer, "%p", addr);
#else
snprintf(tmp_buffer, sizeof tmp_buffer, "%p", addr);
#endif
return tmp_buffer;
}
const char* NameConverter::NameOfConstant(byte* addr) const {
return NameOfAddress(addr);
}
const char* NameConverter::NameOfCPURegister(int reg) const {
const char* result;
if ((0 <= reg) && (reg < 16)) {
result = reg_names[reg];
} else {
result = "noreg";
}
return result;
}
const char* NameConverter::NameOfXMMRegister(int reg) const {
UNREACHABLE(); // ARM does not have any XMM registers
return "noxmmreg";
}
const char* NameConverter::NameInCode(byte* addr) const {
// The default name converter is called for unknown code. So we will not try
// to access any memory.
return "";
}
//------------------------------------------------------------------------------
static NameConverter defaultConverter;
Disassembler::Disassembler() : converter_(defaultConverter) {}
Disassembler::Disassembler(const NameConverter& converter)
: converter_(converter) {}
Disassembler::~Disassembler() {}
int Disassembler::InstructionDecode(char* buffer, const int buffer_size,
byte* instruction) {
assembler::arm::Decoder d(converter_, buffer, buffer_size);
return d.InstructionDecode(instruction);
}
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
int instruction_bits = *(reinterpret_cast<int*>(instruction));
if ((instruction_bits & 0xfff00000) == 0x03000000) {
return instruction_bits & 0x0000ffff;
} else {
return -1;
}
}
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
Disassembler d;
for (byte* pc = begin; pc < end;) {
char buffer[128];
buffer[0] = '\0';
byte* prev_pc = pc;
pc += d.InstructionDecode(buffer, sizeof buffer, pc);
fprintf(f, "%p %08x %s\n",
prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
}
}
} // namespace disasm