v8/test/unittests/compiler/backend/instruction-selector-unittest.cc
Jakob Gruber f884e2faab [compiler] Pass the max frame size to CodeGenerator
The maximal unoptimized frame size is calculated during instruction
selection and will be needed during code generation (it will be
applied as an offset to the stack check). Pass the information along
to the code generator through PipelineData.

Bug: v8:9534
Change-Id: Ia72cd70d57c3de2db9fe43d91b9378d8e2ab8a0a
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1762302
Commit-Queue: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Georg Neis <neis@chromium.org>
Cr-Commit-Position: refs/heads/master@{#63451}
2019-08-29 13:45:28 +00:00

844 lines
32 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/backend/instruction-selector-unittest.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/tick-counter.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/flags/flags.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {}
InstructionSelectorTest::~InstructionSelectorTest() = default;
InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
InstructionSelectorTest::StreamBuilderMode mode,
InstructionSelector::SourcePositionMode source_position_mode) {
Schedule* schedule = ExportForTest();
if (FLAG_trace_turbo) {
StdoutStream{} << "=== Schedule before instruction selection ==="
<< std::endl
<< *schedule;
}
size_t const node_count = graph()->NodeCount();
EXPECT_NE(0u, node_count);
Linkage linkage(call_descriptor());
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(test_->zone(), schedule);
InstructionSequence sequence(test_->isolate(), test_->zone(),
instruction_blocks);
SourcePositionTable source_position_table(graph());
TickCounter tick_counter;
size_t max_unoptimized_frame_height = 0;
InstructionSelector selector(
test_->zone(), node_count, &linkage, &sequence, schedule,
&source_position_table, nullptr,
InstructionSelector::kEnableSwitchJumpTable, &tick_counter,
&max_unoptimized_frame_height, source_position_mode, features,
InstructionSelector::kDisableScheduling,
InstructionSelector::kEnableRootsRelativeAddressing,
PoisoningMitigationLevel::kPoisonAll);
selector.SelectInstructions();
if (FLAG_trace_turbo) {
StdoutStream{} << "=== Code sequence after instruction selection ==="
<< std::endl
<< sequence;
}
Stream s;
s.virtual_registers_ = selector.GetVirtualRegistersForTesting();
// Map virtual registers.
for (Instruction* const instr : sequence) {
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
int vreg = ConstantOperand::cast(output)->virtual_register();
s.constants_.insert(std::make_pair(vreg, sequence.GetConstant(vreg)));
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
auto imm = ImmediateOperand::cast(input);
if (imm->type() == ImmediateOperand::INDEXED) {
int index = imm->indexed_value();
s.immediates_.insert(
std::make_pair(index, sequence.GetImmediate(imm)));
}
}
}
s.instructions_.push_back(instr);
}
for (auto i : s.virtual_registers_) {
int const virtual_register = i.second;
if (sequence.IsFP(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsFP(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetDeoptimizationEntryCount(); i++) {
s.deoptimization_entries_.push_back(
sequence.GetDeoptimizationEntry(i).descriptor());
}
return s;
}
int InstructionSelectorTest::Stream::ToVreg(const Node* node) const {
VirtualRegisters::const_iterator i = virtual_registers_.find(node->id());
CHECK(i != virtual_registers_.end());
return i->second;
}
bool InstructionSelectorTest::Stream::IsFixed(const InstructionOperand* operand,
Register reg) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
if (!unallocated->HasFixedRegisterPolicy()) return false;
return unallocated->fixed_register_index() == reg.code();
}
bool InstructionSelectorTest::Stream::IsSameAsFirst(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->HasSameAsInputPolicy();
}
bool InstructionSelectorTest::Stream::IsUsedAtStart(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->IsUsedAtStart();
}
const FrameStateFunctionInfo*
InstructionSelectorTest::StreamBuilder::GetFrameStateFunctionInfo(
int parameter_count, int local_count) {
return common()->CreateFrameStateFunctionInfo(
FrameStateType::kInterpretedFunction, parameter_count, local_count,
Handle<SharedFunctionInfo>());
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, MachineType::Float32());
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, MachineType::Int32());
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToWord32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Float64());
m.Return(m.TruncateFloat64ToWord32(m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param));
}
TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged());
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param));
}
// -----------------------------------------------------------------------------
// FinishRegion.
TARGET_TEST_F(InstructionSelectorTest, FinishRegion) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged());
Node* param = m.Parameter(0);
Node* finish =
m.AddNode(m.common()->FinishRegion(), param, m.graph()->start());
m.Return(finish);
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_TRUE(s[0]->Output()->IsUnallocated());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output()));
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(1)));
EXPECT_TRUE(s.IsReference(finish));
}
// -----------------------------------------------------------------------------
// Phi.
using InstructionSelectorPhiTest =
InstructionSelectorTestWithParam<MachineType>;
TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
RawMachineLabel a, b, c;
m.Branch(m.Int32Constant(0), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0));
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1));
}
TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
RawMachineLabel a, b, c;
m.Branch(m.Int32Constant(1), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi), s.IsReference(param0));
EXPECT_EQ(s.IsReference(phi), s.IsReference(param1));
}
INSTANTIATE_TEST_SUITE_P(
InstructionSelectorTest, InstructionSelectorPhiTest,
::testing::Values(MachineType::Float64(), MachineType::Int8(),
MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(),
MachineType::Uint32(), MachineType::Int64(),
MachineType::Uint64(), MachineType::Pointer(),
MachineType::AnyTagged()));
// -----------------------------------------------------------------------------
// ValueEffect.
TARGET_TEST_F(InstructionSelectorTest, ValueEffect) {
StreamBuilder m1(this, MachineType::Int32(), MachineType::Pointer());
Node* p1 = m1.Parameter(0);
m1.Return(m1.Load(MachineType::Int32(), p1, m1.Int32Constant(0)));
Stream s1 = m1.Build(kAllInstructions);
StreamBuilder m2(this, MachineType::Int32(), MachineType::Pointer());
Node* p2 = m2.Parameter(0);
m2.Return(m2.AddNode(
m2.machine()->Load(MachineType::Int32()), p2, m2.Int32Constant(0),
m2.AddNode(m2.common()->BeginRegion(RegionObservability::kObservable),
m2.graph()->start())));
Stream s2 = m2.Build(kAllInstructions);
EXPECT_LE(3U, s1.size());
ASSERT_EQ(s1.size(), s2.size());
TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) {
const Instruction* i1 = s1[i];
const Instruction* i2 = s2[i];
EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode());
EXPECT_EQ(i1->InputCount(), i2->InputCount());
EXPECT_EQ(i1->OutputCount(), i2->OutputCount());
}
}
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> empty_types(zone());
auto call_descriptor = Linkage::GetJSCallDescriptor(
zone(), false, 1,
CallDescriptor::kNeedsFrameState | CallDescriptor::kCanUseRoots);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(1));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense()));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense()));
Node* context_sentinel = m.Int32Constant(0);
Node* state_node = m.AddNode(
m.common()->FrameState(bailout_id, OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 0)),
parameters, locals, stack, context_sentinel, function_node,
m.UndefinedConstant());
// Build the call.
Node* nodes[] = {function_node, receiver, m.UndefinedConstant(),
m.Int32Constant(1), context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
ZoneVector<MachineType> tagged_type(1, MachineType::AnyTagged(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.5));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&tagged_type, SparseInputMask::Dense()),
m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context_sentinel, function_node,
m.UndefinedConstant());
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Poison index
6 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1; // Context.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(5))); // This should be a context.
// We inserted 0 here.
EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(6)));
EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(7))->IsUndefined(isolate()));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(8)));
// Context.
EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(9)));
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeoptRecursiveFrameState) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id_before(42);
BailoutId bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
Node* context2 = m.Int32Constant(46);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> int32x2_type(2, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(63));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(64));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(65));
Node* frame_state_parent = m.AddNode(
m.common()->FrameState(bailout_id_parent,
OutputFrameStateCombine::Ignore(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context, function_node, m.UndefinedConstant());
Node* parameters2 = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals2 = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.25));
Node* stack2 = m.AddNode(
m.common()->TypedStateValues(&int32x2_type, SparseInputMask::Dense()),
m.Int32Constant(44), m.Int32Constant(45));
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters2, locals2, stack2, context2, function_node,
frame_state_parent);
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context2, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Poison index.
1 + // Frame state deopt id
6 + // One input for each value in frame state + context.
5 + // One input for each value in the parent frame state + context.
1 + // Function.
1; // Context.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
FrameStateDescriptor* desc_before_outer = desc_before->outer_state();
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before_outer->parameters_count());
EXPECT_EQ(1u, desc_before_outer->locals_count());
EXPECT_EQ(1u, desc_before_outer->stack_count());
// Values from parent environment.
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(4)));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(5)));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(6)));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(7)));
// Values from the nested frame.
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(2u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(9)));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(10)));
EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(11)));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(12)));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(13)));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(14)));
// Context.
EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(15)));
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
// Helper to make calls to private InstructionSelector shuffle functions.
class InstructionSelectorShuffleTest : public ::testing::Test {
public:
using Shuffle = std::array<uint8_t, kSimd128Size>;
struct TestShuffle {
Shuffle non_canonical;
Shuffle canonical;
bool needs_swap;
bool is_swizzle;
};
// Call testing members in InstructionSelector.
static void CanonicalizeShuffle(bool inputs_equal, Shuffle* shuffle,
bool* needs_swap, bool* is_swizzle) {
InstructionSelector::CanonicalizeShuffleForTesting(
inputs_equal, &(*shuffle)[0], needs_swap, is_swizzle);
}
static bool TryMatchIdentity(const Shuffle& shuffle) {
return InstructionSelector::TryMatchIdentityForTesting(&shuffle[0]);
}
template <int LANES>
static bool TryMatchDup(const Shuffle& shuffle, int* index) {
return InstructionSelector::TryMatchDupForTesting<LANES>(&shuffle[0],
index);
}
static bool TryMatch32x4Shuffle(const Shuffle& shuffle,
uint8_t* shuffle32x4) {
return InstructionSelector::TryMatch32x4ShuffleForTesting(&shuffle[0],
shuffle32x4);
}
static bool TryMatch16x8Shuffle(const Shuffle& shuffle,
uint8_t* shuffle16x8) {
return InstructionSelector::TryMatch16x8ShuffleForTesting(&shuffle[0],
shuffle16x8);
}
static bool TryMatchConcat(const Shuffle& shuffle, uint8_t* offset) {
return InstructionSelector::TryMatchConcatForTesting(&shuffle[0], offset);
}
static bool TryMatchBlend(const Shuffle& shuffle) {
return InstructionSelector::TryMatchBlendForTesting(&shuffle[0]);
}
};
bool operator==(const InstructionSelectorShuffleTest::Shuffle& a,
const InstructionSelectorShuffleTest::Shuffle& b) {
for (int i = 0; i < kSimd128Size; ++i) {
if (a[i] != b[i]) return false;
}
return true;
}
TEST_F(InstructionSelectorShuffleTest, CanonicalizeShuffle) {
const bool kInputsEqual = true;
const bool kNeedsSwap = true;
const bool kIsSwizzle = true;
bool needs_swap;
bool is_swizzle;
// Test canonicalization driven by input shuffle.
TestShuffle test_shuffles[] = {
// Identity is canonical.
{{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Non-canonical identity requires a swap.
{{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
kNeedsSwap,
kIsSwizzle},
// General shuffle, canonical is unchanged.
{{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
!kNeedsSwap,
!kIsSwizzle},
// Non-canonical shuffle requires a swap.
{{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
kNeedsSwap,
!kIsSwizzle},
};
for (size_t i = 0; i < arraysize(test_shuffles); ++i) {
Shuffle shuffle = test_shuffles[i].non_canonical;
CanonicalizeShuffle(!kInputsEqual, &shuffle, &needs_swap, &is_swizzle);
EXPECT_EQ(shuffle, test_shuffles[i].canonical);
EXPECT_EQ(needs_swap, test_shuffles[i].needs_swap);
EXPECT_EQ(is_swizzle, test_shuffles[i].is_swizzle);
}
// Test canonicalization when inputs are equal (explicit swizzle).
TestShuffle test_swizzles[] = {
// Identity is canonical.
{{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Non-canonical identity requires a swap.
{{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Canonicalized to swizzle.
{{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}},
!kNeedsSwap,
kIsSwizzle},
// Canonicalized to swizzle.
{{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}},
{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}},
!kNeedsSwap,
kIsSwizzle},
};
for (size_t i = 0; i < arraysize(test_swizzles); ++i) {
Shuffle shuffle = test_swizzles[i].non_canonical;
CanonicalizeShuffle(kInputsEqual, &shuffle, &needs_swap, &is_swizzle);
EXPECT_EQ(shuffle, test_swizzles[i].canonical);
EXPECT_EQ(needs_swap, test_swizzles[i].needs_swap);
EXPECT_EQ(is_swizzle, test_swizzles[i].is_swizzle);
}
}
TEST_F(InstructionSelectorShuffleTest, TryMatchIdentity) {
// Match shuffle that returns first source operand.
EXPECT_TRUE(TryMatchIdentity(
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}));
// The non-canonicalized identity shuffle doesn't match.
EXPECT_FALSE(TryMatchIdentity(
{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}));
// Even one lane out of place is not an identity shuffle.
EXPECT_FALSE(TryMatchIdentity(
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31}}));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchDup) {
int index;
// All lanes from the same 32 bit source lane.
EXPECT_TRUE(TryMatchDup<4>({{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}},
&index));
EXPECT_EQ(1, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<8>(
{{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index));
EXPECT_FALSE(TryMatchDup<16>(
{{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index));
// All lanes from the same 16 bit source lane.
EXPECT_TRUE(TryMatchDup<8>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
EXPECT_EQ(8, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<4>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
EXPECT_FALSE(TryMatchDup<16>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
// All lanes from the same 8 bit source lane.
EXPECT_TRUE(TryMatchDup<16>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
EXPECT_EQ(7, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<4>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
EXPECT_FALSE(TryMatchDup<8>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchConcat) {
uint8_t offset;
// Ascending indices, jump at end to same input (concatenating swizzle).
EXPECT_TRUE(TryMatchConcat(
{{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2}}, &offset));
EXPECT_EQ(3, offset);
// Ascending indices, jump at end to other input (concatenating shuffle).
EXPECT_TRUE(TryMatchConcat(
{{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}}, &offset));
EXPECT_EQ(4, offset);
// Shuffles that should not match:
// Ascending indices, but jump isn't at end/beginning.
EXPECT_FALSE(TryMatchConcat(
{{3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6}}, &offset));
// Ascending indices, but multiple jumps.
EXPECT_FALSE(TryMatchConcat(
{{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}}, &offset));
}
TEST_F(InstructionSelectorShuffleTest, TryMatch32x4Shuffle) {
uint8_t shuffle32x4[4];
// Match if each group of 4 bytes is from the same 32 bit lane.
EXPECT_TRUE(TryMatch32x4Shuffle(
{{12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
EXPECT_EQ(3, shuffle32x4[0]);
EXPECT_EQ(2, shuffle32x4[1]);
EXPECT_EQ(1, shuffle32x4[2]);
EXPECT_EQ(4, shuffle32x4[3]);
// Bytes must be in order in the 32 bit lane.
EXPECT_FALSE(TryMatch32x4Shuffle(
{{12, 13, 14, 14, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
// Each group must start with the first byte in the 32 bit lane.
EXPECT_FALSE(TryMatch32x4Shuffle(
{{13, 14, 15, 12, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
}
TEST_F(InstructionSelectorShuffleTest, TryMatch16x8Shuffle) {
uint8_t shuffle16x8[8];
// Match if each group of 2 bytes is from the same 16 bit lane.
EXPECT_TRUE(TryMatch16x8Shuffle(
{{12, 13, 30, 31, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
EXPECT_EQ(6, shuffle16x8[0]);
EXPECT_EQ(15, shuffle16x8[1]);
EXPECT_EQ(4, shuffle16x8[2]);
EXPECT_EQ(13, shuffle16x8[3]);
EXPECT_EQ(2, shuffle16x8[4]);
EXPECT_EQ(11, shuffle16x8[5]);
EXPECT_EQ(8, shuffle16x8[6]);
EXPECT_EQ(1, shuffle16x8[7]);
// Bytes must be in order in the 16 bit lane.
EXPECT_FALSE(TryMatch16x8Shuffle(
{{12, 13, 30, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
// Each group must start with the first byte in the 16 bit lane.
EXPECT_FALSE(TryMatch16x8Shuffle(
{{12, 13, 31, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchBlend) {
// Match if each byte remains in place.
EXPECT_TRUE(TryMatchBlend(
{{0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}}));
// Identity is a blend.
EXPECT_TRUE(
TryMatchBlend({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}));
// Even one lane out of place is not a blend.
EXPECT_FALSE(TryMatchBlend(
{{1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}}));
}
} // namespace compiler
} // namespace internal
} // namespace v8