822be9b238
This patch normalizes the casing of hexadecimal digits in escape sequences of the form `\xNN` and integer literals of the form `0xNNNN`. Previously, the V8 code base used an inconsistent mixture of uppercase and lowercase. Google’s C++ style guide uses uppercase in its examples: https://google.github.io/styleguide/cppguide.html#Non-ASCII_Characters Moreover, uppercase letters more clearly stand out from the lowercase `x` (or `u`) characters at the start, as well as lowercase letters elsewhere in strings. BUG=v8:7109 TBR=marja@chromium.org,titzer@chromium.org,mtrofin@chromium.org,mstarzinger@chromium.org,rossberg@chromium.org,yangguo@chromium.org,mlippautz@chromium.org NOPRESUBMIT=true Cq-Include-Trybots: master.tryserver.blink:linux_trusty_blink_rel;master.tryserver.chromium.linux:linux_chromium_rel_ng Change-Id: I790e21c25d96ad5d95c8229724eb45d2aa9e22d6 Reviewed-on: https://chromium-review.googlesource.com/804294 Commit-Queue: Mathias Bynens <mathias@chromium.org> Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> Cr-Commit-Position: refs/heads/master@{#49810}
262 lines
9.4 KiB
C++
262 lines
9.4 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_ARM64_TEST_UTILS_ARM64_H_
|
|
#define V8_ARM64_TEST_UTILS_ARM64_H_
|
|
|
|
#include "src/v8.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
#include "src/arm64/macro-assembler-arm64.h"
|
|
#include "src/arm64/utils-arm64.h"
|
|
#include "src/macro-assembler.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Structure representing Q registers in a RegisterDump.
|
|
struct vec128_t {
|
|
uint64_t l;
|
|
uint64_t h;
|
|
};
|
|
|
|
// RegisterDump: Object allowing integer, floating point and flags registers
|
|
// to be saved to itself for future reference.
|
|
class RegisterDump {
|
|
public:
|
|
RegisterDump() : completed_(false) {}
|
|
|
|
// The Dump method generates code to store a snapshot of the register values.
|
|
// It needs to be able to use the stack temporarily, and requires that the
|
|
// current stack pointer is csp, and is properly aligned.
|
|
//
|
|
// The dumping code is generated though the given MacroAssembler. No registers
|
|
// are corrupted in the process, but the stack is used briefly. The flags will
|
|
// be corrupted during this call.
|
|
void Dump(MacroAssembler* assm);
|
|
|
|
// Register accessors.
|
|
inline int32_t wreg(unsigned code) const {
|
|
if (code == kSPRegInternalCode) {
|
|
return wspreg();
|
|
}
|
|
CHECK(RegAliasesMatch(code));
|
|
return dump_.w_[code];
|
|
}
|
|
|
|
inline int64_t xreg(unsigned code) const {
|
|
if (code == kSPRegInternalCode) {
|
|
return spreg();
|
|
}
|
|
CHECK(RegAliasesMatch(code));
|
|
return dump_.x_[code];
|
|
}
|
|
|
|
// VRegister accessors.
|
|
inline uint32_t sreg_bits(unsigned code) const {
|
|
CHECK(FPRegAliasesMatch(code));
|
|
return dump_.s_[code];
|
|
}
|
|
|
|
inline float sreg(unsigned code) const {
|
|
return bit_cast<float>(sreg_bits(code));
|
|
}
|
|
|
|
inline uint64_t dreg_bits(unsigned code) const {
|
|
CHECK(FPRegAliasesMatch(code));
|
|
return dump_.d_[code];
|
|
}
|
|
|
|
inline double dreg(unsigned code) const {
|
|
return bit_cast<double>(dreg_bits(code));
|
|
}
|
|
|
|
inline vec128_t qreg(unsigned code) const { return dump_.q_[code]; }
|
|
|
|
// Stack pointer accessors.
|
|
inline int64_t spreg() const {
|
|
CHECK(SPRegAliasesMatch());
|
|
return dump_.sp_;
|
|
}
|
|
|
|
inline int32_t wspreg() const {
|
|
CHECK(SPRegAliasesMatch());
|
|
return static_cast<int32_t>(dump_.wsp_);
|
|
}
|
|
|
|
// Flags accessors.
|
|
inline uint32_t flags_nzcv() const {
|
|
CHECK(IsComplete());
|
|
CHECK_EQ(dump_.flags_ & ~Flags_mask, 0);
|
|
return dump_.flags_ & Flags_mask;
|
|
}
|
|
|
|
inline bool IsComplete() const {
|
|
return completed_;
|
|
}
|
|
|
|
private:
|
|
// Indicate whether the dump operation has been completed.
|
|
bool completed_;
|
|
|
|
// Check that the lower 32 bits of x<code> exactly match the 32 bits of
|
|
// w<code>. A failure of this test most likely represents a failure in the
|
|
// ::Dump method, or a failure in the simulator.
|
|
bool RegAliasesMatch(unsigned code) const {
|
|
CHECK(IsComplete());
|
|
CHECK_LT(code, kNumberOfRegisters);
|
|
return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]);
|
|
}
|
|
|
|
// As RegAliasesMatch, but for the stack pointer.
|
|
bool SPRegAliasesMatch() const {
|
|
CHECK(IsComplete());
|
|
return ((dump_.sp_ & kWRegMask) == dump_.wsp_);
|
|
}
|
|
|
|
// As RegAliasesMatch, but for floating-point registers.
|
|
bool FPRegAliasesMatch(unsigned code) const {
|
|
CHECK(IsComplete());
|
|
CHECK_LT(code, kNumberOfVRegisters);
|
|
return (dump_.d_[code] & kSRegMask) == dump_.s_[code];
|
|
}
|
|
|
|
// Store all the dumped elements in a simple struct so the implementation can
|
|
// use offsetof to quickly find the correct field.
|
|
struct dump_t {
|
|
// Core registers.
|
|
uint64_t x_[kNumberOfRegisters];
|
|
uint32_t w_[kNumberOfRegisters];
|
|
|
|
// Floating-point registers, as raw bits.
|
|
uint64_t d_[kNumberOfVRegisters];
|
|
uint32_t s_[kNumberOfVRegisters];
|
|
|
|
// Vector registers.
|
|
vec128_t q_[kNumberOfVRegisters];
|
|
|
|
// The stack pointer.
|
|
uint64_t sp_;
|
|
uint64_t wsp_;
|
|
|
|
// NZCV flags, stored in bits 28 to 31.
|
|
// bit[31] : Negative
|
|
// bit[30] : Zero
|
|
// bit[29] : Carry
|
|
// bit[28] : oVerflow
|
|
uint64_t flags_;
|
|
} dump_;
|
|
|
|
static dump_t for_sizeof();
|
|
static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
|
|
static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
|
|
static_assert(sizeof(for_sizeof().q_[0]) == kQRegSize,
|
|
"Array elements must be size of Q register.");
|
|
static_assert(sizeof(for_sizeof().d_[0]) == kDRegSize,
|
|
"Array elements must be size of D register.");
|
|
static_assert(sizeof(for_sizeof().s_[0]) == kSRegSize,
|
|
"Array elements must be size of S register.");
|
|
static_assert(sizeof(for_sizeof().x_[0]) == kXRegSize,
|
|
"Array elements must be size of X register.");
|
|
static_assert(sizeof(for_sizeof().w_[0]) == kWRegSize,
|
|
"Array elements must be size of W register.");
|
|
};
|
|
|
|
// Some of these methods don't use the RegisterDump argument, but they have to
|
|
// accept them so that they can overload those that take register arguments.
|
|
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result);
|
|
bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result);
|
|
|
|
bool EqualFP32(float expected, const RegisterDump*, float result);
|
|
bool EqualFP64(double expected, const RegisterDump*, double result);
|
|
|
|
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg);
|
|
bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg);
|
|
|
|
bool EqualFP32(float expected, const RegisterDump* core,
|
|
const VRegister& fpreg);
|
|
bool EqualFP64(double expected, const RegisterDump* core,
|
|
const VRegister& fpreg);
|
|
|
|
bool Equal64(const Register& reg0, const RegisterDump* core,
|
|
const Register& reg1);
|
|
bool Equal128(uint64_t expected_h, uint64_t expected_l,
|
|
const RegisterDump* core, const VRegister& reg);
|
|
|
|
bool EqualNzcv(uint32_t expected, uint32_t result);
|
|
|
|
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b);
|
|
|
|
// Create an array of type {RegType}, size {Size}, filled with {NoReg}.
|
|
template <typename RegType, size_t Size>
|
|
std::array<RegType, Size> CreateRegisterArray() {
|
|
return base::make_array<Size>([](size_t) { return RegType::no_reg(); });
|
|
}
|
|
|
|
// Populate the w, x and r arrays with registers from the 'allowed' mask. The
|
|
// r array will be populated with <reg_size>-sized registers,
|
|
//
|
|
// This allows for tests which use large, parameterized blocks of registers
|
|
// (such as the push and pop tests), but where certain registers must be
|
|
// avoided as they are used for other purposes.
|
|
//
|
|
// Any of w, x, or r can be nullptr if they are not required.
|
|
//
|
|
// The return value is a RegList indicating which registers were allocated.
|
|
RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
|
|
int reg_size, int reg_count, RegList allowed);
|
|
|
|
// As PopulateRegisterArray, but for floating-point registers.
|
|
RegList PopulateVRegisterArray(VRegister* s, VRegister* d, VRegister* v,
|
|
int reg_size, int reg_count, RegList allowed);
|
|
|
|
// Ovewrite the contents of the specified registers. This enables tests to
|
|
// check that register contents are written in cases where it's likely that the
|
|
// correct outcome could already be stored in the register.
|
|
//
|
|
// This always overwrites X-sized registers. If tests are operating on W
|
|
// registers, a subsequent write into an aliased W register should clear the
|
|
// top word anyway, so clobbering the full X registers should make tests more
|
|
// rigorous.
|
|
void Clobber(MacroAssembler* masm, RegList reg_list,
|
|
uint64_t const value = 0xFEDCBA9876543210UL);
|
|
|
|
// As Clobber, but for FP registers.
|
|
void ClobberFP(MacroAssembler* masm, RegList reg_list,
|
|
double const value = kFP64SignallingNaN);
|
|
|
|
// As Clobber, but for a CPURegList with either FP or integer registers. When
|
|
// using this method, the clobber value is always the default for the basic
|
|
// Clobber or ClobberFP functions.
|
|
void Clobber(MacroAssembler* masm, CPURegList reg_list);
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_ARM64_TEST_UTILS_ARM64_H_
|