v8/test/unittests/wasm/ast-decoder-unittest.cc
titzer 835c5e6beb [wasm] Rework encoding of local declarations.
Local declarations were previously encoded as an optional set of
4 uint16 values as part of the function declaration. This CL
implements the current design of moving these declarations to
a list of pairs of (type, count) that is part of the body.

R=bradnelson@chromium.org,binji@chromium.org
BUG=

Review URL: https://codereview.chromium.org/1763433002

Cr-Commit-Position: refs/heads/master@{#34564}
2016-03-07 21:05:15 +00:00

2298 lines
74 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/v8.h"
#include "test/cctest/wasm/test-signatures.h"
#include "src/objects.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-module.h"
namespace v8 {
namespace internal {
namespace wasm {
static const byte kCodeGetLocal0[] = {kExprGetLocal, 0};
static const byte kCodeGetLocal1[] = {kExprGetLocal, 1};
static const byte kCodeSetLocal0[] = {kExprSetLocal, 0, kExprI8Const, 0};
static const LocalType kLocalTypes[] = {kAstI32, kAstI64, kAstF32, kAstF64};
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
static const WasmOpcode kInt32BinopOpcodes[] = {
kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU,
kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor,
kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS,
kExprI32LeS, kExprI32LtU, kExprI32LeU};
#define WASM_BRV_IF_ZERO(depth, val) \
kExprBrIf, static_cast<byte>(depth), val, WASM_ZERO
#define EXPECT_VERIFIES(env, x) Verify(kSuccess, env, x, x + arraysize(x))
#define EXPECT_FAILURE(env, x) Verify(kError, env, x, x + arraysize(x))
#define EXPECT_VERIFIES_INLINE(env, ...) \
do { \
static byte code[] = {__VA_ARGS__}; \
Verify(kSuccess, env, code, code + arraysize(code)); \
} while (false)
#define EXPECT_FAILURE_INLINE(env, ...) \
do { \
static byte code[] = {__VA_ARGS__}; \
Verify(kError, env, code, code + arraysize(code)); \
} while (false)
#define VERIFY(...) \
do { \
static const byte code[] = {__VA_ARGS__}; \
Verify(kSuccess, sigs.v_i(), code, code + sizeof(code)); \
} while (false)
class AstDecoderTest : public TestWithZone {
public:
typedef std::pair<uint32_t, LocalType> LocalsDecl;
AstDecoderTest() : module(nullptr) {}
TestSignatures sigs;
ModuleEnv* module;
LocalDeclEncoder local_decls;
void AddLocals(LocalType type, uint32_t count) {
local_decls.AddLocals(count, type);
}
// Preprends local variable declarations and renders nice error messages for
// verification failures.
void Verify(ErrorCode expected, FunctionSig* sig, const byte* start,
const byte* end) {
local_decls.Prepend(&start, &end);
// Verify the code.
TreeResult result = VerifyWasmCode(module, sig, start, end);
if (result.error_code != expected) {
ptrdiff_t pc = result.error_pc - result.start;
ptrdiff_t pt = result.error_pt - result.start;
std::ostringstream str;
if (expected == kSuccess) {
str << "Verification failed: " << result.error_code << " pc = +" << pc;
if (result.error_pt) str << ", pt = +" << pt;
str << ", msg = " << result.error_msg.get();
} else {
str << "Verification expected: " << expected << ", but got "
<< result.error_code;
if (result.error_code != kSuccess) {
str << " pc = +" << pc;
if (result.error_pt) str << ", pt = +" << pt;
}
}
FATAL(str.str().c_str());
}
delete[] start; // local_decls.Prepend() allocated a new buffer.
}
void TestBinop(WasmOpcode opcode, FunctionSig* success) {
// op(local[0], local[1])
byte code[] = {static_cast<byte>(opcode), kExprGetLocal, 0, kExprGetLocal,
1};
EXPECT_VERIFIES(success, code);
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
for (size_t k = 0; k < arraysize(kLocalTypes); k++) {
LocalType types[] = {kLocalTypes[i], kLocalTypes[j], kLocalTypes[k]};
if (types[0] != success->GetReturn(0) ||
types[1] != success->GetParam(0) ||
types[2] != success->GetParam(1)) {
// Test signature mismatch.
FunctionSig sig(1, 2, types);
EXPECT_FAILURE(&sig, code);
}
}
}
}
}
void TestUnop(WasmOpcode opcode, FunctionSig* success) {
TestUnop(opcode, success->GetReturn(), success->GetParam(0));
}
void TestUnop(WasmOpcode opcode, LocalType ret_type, LocalType param_type) {
// Return(op(local[0]))
byte code[] = {static_cast<byte>(opcode), kExprGetLocal, 0};
{
LocalType types[] = {ret_type, param_type};
FunctionSig sig(1, 1, types);
EXPECT_VERIFIES(&sig, code);
}
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalType types[] = {kLocalTypes[i], kLocalTypes[j]};
if (types[0] != ret_type || types[1] != param_type) {
// Test signature mismatch.
FunctionSig sig(1, 1, types);
EXPECT_FAILURE(&sig, code);
}
}
}
}
};
TEST_F(AstDecoderTest, Int8Const) {
byte code[] = {kExprI8Const, 0};
for (int i = -128; i < 128; i++) {
code[1] = static_cast<byte>(i);
EXPECT_VERIFIES(sigs.i_i(), code);
}
}
TEST_F(AstDecoderTest, EmptyFunction) {
byte code[] = {0};
Verify(kSuccess, sigs.v_v(), code, code);
Verify(kError, sigs.i_i(), code, code);
}
TEST_F(AstDecoderTest, IncompleteIf1) {
byte code[] = {kExprIf};
EXPECT_FAILURE(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, IncompleteIf2) {
byte code[] = {kExprIf, kExprI8Const, 0};
EXPECT_FAILURE(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Int8Const_fallthru) {
byte code[] = {kExprI8Const, 0, kExprI8Const, 1};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Int32Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
// TODO(binji): expand test for other sized int32s; 1 through 5 bytes.
byte code[] = {WASM_I32V(i)};
EXPECT_VERIFIES(sigs.i_i(), code);
}
}
TEST_F(AstDecoderTest, Int8Const_fallthru2) {
byte code[] = {WASM_I8(0), WASM_I32V_4(0x1122334)};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Int64Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
byte code[] = {WASM_I64V((static_cast<int64_t>(i) << 32) | i)};
EXPECT_VERIFIES(sigs.l_l(), code);
}
}
TEST_F(AstDecoderTest, Float32Const) {
byte code[] = {kExprF32Const, 0, 0, 0, 0};
float* ptr = reinterpret_cast<float*>(code + 1);
for (int i = 0; i < 30; i++) {
*ptr = i * -7.75f;
EXPECT_VERIFIES(sigs.f_ff(), code);
}
}
TEST_F(AstDecoderTest, Float64Const) {
byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0};
double* ptr = reinterpret_cast<double*>(code + 1);
for (int i = 0; i < 30; i++) {
*ptr = i * 33.45;
EXPECT_VERIFIES(sigs.d_dd(), code);
}
}
TEST_F(AstDecoderTest, Int32Const_off_end) {
byte code[] = {kExprI32Const, 0xaa, 0xbb, 0xcc, 0x44};
for (int size = 1; size <= 4; size++) {
Verify(kError, sigs.i_i(), code, code + size);
}
}
TEST_F(AstDecoderTest, GetLocal0_param) {
EXPECT_VERIFIES(sigs.i_i(), kCodeGetLocal0);
}
TEST_F(AstDecoderTest, GetLocal0_local) {
AddLocals(kAstI32, 1);
EXPECT_VERIFIES(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(AstDecoderTest, GetLocal0_param_n) {
FunctionSig* array[] = {sigs.i_i(), sigs.i_ii(), sigs.i_iii()};
for (size_t i = 0; i < arraysize(array); i++) {
EXPECT_VERIFIES(array[i], kCodeGetLocal0);
}
}
TEST_F(AstDecoderTest, GetLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kAstI32, 1);
for (byte j = 0; j < i; j++) {
byte code[] = {kExprGetLocal, j};
EXPECT_VERIFIES(sigs.i_v(), code);
}
}
}
TEST_F(AstDecoderTest, GetLocal0_fail_no_params) {
EXPECT_FAILURE(sigs.i_v(), kCodeGetLocal0);
}
TEST_F(AstDecoderTest, GetLocal1_fail_no_locals) {
EXPECT_FAILURE(sigs.i_i(), kCodeGetLocal1);
}
TEST_F(AstDecoderTest, GetLocal_off_end) {
static const byte code[] = {kExprGetLocal};
EXPECT_FAILURE(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, GetLocal_varint) {
const int kMaxLocals = 8000000;
AddLocals(kAstI32, kMaxLocals);
for (int index = 0; index < kMaxLocals; index = index * 11 + 5) {
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_1(index));
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_2(index));
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_3(index));
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(index));
}
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_5(kMaxLocals - 1));
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals - 1));
EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals));
EXPECT_FAILURE_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals + 1));
EXPECT_FAILURE_INLINE(sigs.i_v(), kExprGetLocal, U32V_4(kMaxLocals));
EXPECT_FAILURE_INLINE(sigs.i_v(), kExprGetLocal, U32V_4(kMaxLocals + 1));
}
TEST_F(AstDecoderTest, Binops_off_end) {
byte code1[] = {0}; // [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code1[0] = kInt32BinopOpcodes[i];
EXPECT_FAILURE(sigs.i_i(), code1);
}
byte code3[] = {0, kExprGetLocal, 0}; // [opcode] [expr]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code3[0] = kInt32BinopOpcodes[i];
EXPECT_FAILURE(sigs.i_i(), code3);
}
byte code4[] = {0, kExprGetLocal, 0, 0}; // [opcode] [expr] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code4[0] = kInt32BinopOpcodes[i];
code4[3] = kInt32BinopOpcodes[i];
EXPECT_FAILURE(sigs.i_i(), code4);
}
}
//===================================================================
//== Statements
//===================================================================
TEST_F(AstDecoderTest, Nop) {
static const byte code[] = {kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, SetLocal0_param) {
static const byte code[] = {kExprSetLocal, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, SetLocal0_local) {
byte code[] = {kExprSetLocal, 0, kExprI8Const, 0};
AddLocals(kAstI32, 1);
EXPECT_VERIFIES(sigs.i_v(), code);
}
TEST_F(AstDecoderTest, SetLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kAstI32, 1);
for (byte j = 0; j < i; j++) {
byte code[] = {kExprSetLocal, j, kExprI8Const, i};
EXPECT_VERIFIES(sigs.v_v(), code);
}
}
}
TEST_F(AstDecoderTest, Block0) {
static const byte code[] = {kExprBlock, 0};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Block0_fallthru1) {
static const byte code[] = {kExprBlock, 0, kExprBlock, 0};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Block1) {
static const byte code[] = {kExprBlock, 1, kExprSetLocal, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Block0_fallthru2) {
static const byte code[] = {kExprBlock, 0, kExprSetLocal, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Block2) {
static const byte code[] = {kExprBlock, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprSetLocal, 0, kExprI8Const, 0}; // --
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, Block2_fallthru) {
static const byte code[] = {kExprBlock, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprI8Const, 11}; // --
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, BlockN) {
byte block[] = {kExprBlock, 2};
for (size_t i = 0; i < 10; i++) {
size_t total = sizeof(block) + sizeof(kCodeSetLocal0) * i;
byte* code = reinterpret_cast<byte*>(malloc(total));
memcpy(code, block, sizeof(block));
code[1] = static_cast<byte>(i);
for (size_t j = 0; j < i; j++) {
memcpy(code + sizeof(block) + j * sizeof(kCodeSetLocal0), kCodeSetLocal0,
sizeof(kCodeSetLocal0));
}
Verify(kSuccess, sigs.v_i(), code, code + total);
free(code);
}
}
TEST_F(AstDecoderTest, BlockN_off_end) {
for (byte i = 2; i < 10; i++) {
byte code[] = {kExprBlock, i, kExprNop};
EXPECT_FAILURE(sigs.v_v(), code);
}
}
TEST_F(AstDecoderTest, Block1_break) {
static const byte code[] = {kExprBlock, 1, kExprBr, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Block2_break) {
static const byte code[] = {kExprBlock, 2, kExprNop, kExprBr, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Block1_continue) {
static const byte code[] = {kExprBlock, 1, kExprBr, 1, kExprNop};
EXPECT_FAILURE(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Block2_continue) {
static const byte code[] = {kExprBlock, 2, kExprNop, kExprBr, 1, kExprNop};
EXPECT_FAILURE(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, ExprBlock0) {
static const byte code[] = {kExprBlock, 0};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, ExprBlock1a) {
static const byte code[] = {kExprBlock, 1, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, ExprBlock1b) {
static const byte code[] = {kExprBlock, 1, kExprI8Const, 0};
EXPECT_FAILURE(sigs.f_ff(), code);
}
TEST_F(AstDecoderTest, ExprBlock1c) {
static const byte code[] = {kExprBlock, 1, kExprF32Const, 0, 0, 0, 0};
EXPECT_VERIFIES(sigs.f_ff(), code);
}
TEST_F(AstDecoderTest, IfEmpty) {
static const byte code[] = {kExprIf, kExprGetLocal, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfSet) {
static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprSetLocal,
0, kExprI8Const, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfBlock1) {
static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprBlock,
1, kExprSetLocal, 0, kExprI8Const,
0, kExprNop};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfBlock2) {
static const byte code[] = {kExprIf, kExprGetLocal, 0, kExprBlock,
2, kExprSetLocal, 0, kExprI8Const,
0, kExprSetLocal, 0, kExprI8Const,
0};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfElseEmpty) {
static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprNop,
kExprNop};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfElseSet) {
static const byte code[] = {kExprIfElse,
kExprGetLocal,
0, // --
kExprSetLocal,
0,
kExprI8Const,
0, // --
kExprSetLocal,
0,
kExprI8Const,
1}; // --
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, IfElseUnreachable) {
static const byte code[] = {kExprIfElse, kExprI8Const, 0,
kExprUnreachable, kExprGetLocal, 0};
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType types[] = {kAstI32, kLocalTypes[i]};
FunctionSig sig(1, 1, types);
if (kLocalTypes[i] == kAstI32) {
EXPECT_VERIFIES(&sig, code);
} else {
EXPECT_FAILURE(&sig, code);
}
}
}
TEST_F(AstDecoderTest, Loop0) {
static const byte code[] = {kExprLoop, 0};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Loop1) {
static const byte code[] = {kExprLoop, 1, kExprSetLocal, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, Loop2) {
static const byte code[] = {kExprLoop, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprSetLocal, 0, kExprI8Const, 0}; // --
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, Loop1_continue) {
static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Loop1_break) {
static const byte code[] = {kExprLoop, 1, kExprBr, 1, kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, Loop2_continue) {
static const byte code[] = {kExprLoop, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprBr, 0, kExprNop}; // --
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, Loop2_break) {
static const byte code[] = {kExprLoop, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprBr, 1, kExprNop}; // --
EXPECT_VERIFIES(sigs.v_i(), code);
}
TEST_F(AstDecoderTest, ExprLoop0) {
static const byte code[] = {kExprLoop, 0};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, ExprLoop1a) {
static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, ExprLoop1b) {
static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, ExprLoop2_unreachable) {
static const byte code[] = {kExprLoop, 2, kExprBr, 0,
kExprI8Const, 0, kExprNop};
EXPECT_VERIFIES(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, ReturnVoid1) {
static const byte code[] = {kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
EXPECT_FAILURE(sigs.i_f(), code);
}
TEST_F(AstDecoderTest, ReturnVoid2) {
static const byte code[] = {kExprBlock, 1, kExprBr, 0, kExprNop};
EXPECT_VERIFIES(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
EXPECT_FAILURE(sigs.i_f(), code);
}
TEST_F(AstDecoderTest, ReturnVoid3) {
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI8Const, 0);
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI32Const, 0, 0, 0, 0);
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI64Const, 0, 0, 0, 0, 0, 0, 0, 0);
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprF32Const, 0, 0, 0, 0);
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0);
EXPECT_VERIFIES_INLINE(sigs.v_i(), kExprGetLocal, 0);
}
TEST_F(AstDecoderTest, Unreachable1) {
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprUnreachable);
EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprUnreachable, kExprUnreachable);
EXPECT_VERIFIES_INLINE(sigs.v_v(),
WASM_BLOCK(2, WASM_UNREACHABLE, WASM_ZERO));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(2, WASM_BR(0), WASM_ZERO));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(2, WASM_UNREACHABLE, WASM_ZERO));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(2, WASM_BR(0), WASM_ZERO));
}
TEST_F(AstDecoderTest, Codeiness) {
VERIFY(kExprLoop, 2, // --
kExprSetLocal, 0, kExprI8Const, 0, // --
kExprBr, 0, kExprNop); // --
}
TEST_F(AstDecoderTest, ExprIf1) {
VERIFY(kExprIf, kExprGetLocal, 0, kExprI8Const, 0, kExprI8Const, 1);
VERIFY(kExprIf, kExprGetLocal, 0, kExprGetLocal, 0, kExprGetLocal, 0);
VERIFY(kExprIf, kExprGetLocal, 0, kExprI32Add, kExprGetLocal, 0,
kExprGetLocal, 0, kExprI8Const, 1);
}
TEST_F(AstDecoderTest, ExprIf_off_end) {
static const byte kCode[] = {kExprIf, kExprGetLocal, 0, kExprGetLocal,
0, kExprGetLocal, 0};
for (size_t len = 1; len < arraysize(kCode); len++) {
Verify(kError, sigs.i_i(), kCode, kCode + len);
}
}
TEST_F(AstDecoderTest, ExprIf_type) {
{
// float|double ? 1 : 2
static const byte kCode[] = {kExprIfElse, kExprGetLocal, 0, kExprI8Const,
1, kExprI8Const, 2};
EXPECT_FAILURE(sigs.i_f(), kCode);
EXPECT_FAILURE(sigs.i_d(), kCode);
}
{
// 1 ? float|double : 2
static const byte kCode[] = {kExprIfElse, kExprI8Const, 1, kExprGetLocal,
0, kExprI8Const, 2};
EXPECT_FAILURE(sigs.i_f(), kCode);
EXPECT_FAILURE(sigs.i_d(), kCode);
}
{
// stmt ? 0 : 1
static const byte kCode[] = {kExprIfElse, kExprNop, kExprI8Const,
0, kExprI8Const, 1};
EXPECT_FAILURE(sigs.i_i(), kCode);
}
{
// 0 ? stmt : 1
static const byte kCode[] = {kExprIfElse, kExprI8Const, 0,
kExprNop, kExprI8Const, 1};
EXPECT_FAILURE(sigs.i_i(), kCode);
}
{
// 0 ? 1 : stmt
static const byte kCode[] = {kExprIfElse, kExprI8Const, 0, kExprI8Const, 1,
0, kExprBlock};
EXPECT_FAILURE(sigs.i_i(), kCode);
}
}
TEST_F(AstDecoderTest, Int64Local_param) {
EXPECT_VERIFIES(sigs.l_l(), kCodeGetLocal0);
}
TEST_F(AstDecoderTest, Int64Locals) {
for (byte i = 1; i < 8; i++) {
AddLocals(kAstI64, 1);
for (byte j = 0; j < i; j++) {
byte code[] = {kExprGetLocal, j};
EXPECT_VERIFIES(sigs.l_v(), code);
}
}
}
TEST_F(AstDecoderTest, Int32Binops) {
TestBinop(kExprI32Add, sigs.i_ii());
TestBinop(kExprI32Sub, sigs.i_ii());
TestBinop(kExprI32Mul, sigs.i_ii());
TestBinop(kExprI32DivS, sigs.i_ii());
TestBinop(kExprI32DivU, sigs.i_ii());
TestBinop(kExprI32RemS, sigs.i_ii());
TestBinop(kExprI32RemU, sigs.i_ii());
TestBinop(kExprI32And, sigs.i_ii());
TestBinop(kExprI32Ior, sigs.i_ii());
TestBinop(kExprI32Xor, sigs.i_ii());
TestBinop(kExprI32Shl, sigs.i_ii());
TestBinop(kExprI32ShrU, sigs.i_ii());
TestBinop(kExprI32ShrS, sigs.i_ii());
TestBinop(kExprI32Eq, sigs.i_ii());
TestBinop(kExprI32LtS, sigs.i_ii());
TestBinop(kExprI32LeS, sigs.i_ii());
TestBinop(kExprI32LtU, sigs.i_ii());
TestBinop(kExprI32LeU, sigs.i_ii());
}
TEST_F(AstDecoderTest, DoubleBinops) {
TestBinop(kExprF64Add, sigs.d_dd());
TestBinop(kExprF64Sub, sigs.d_dd());
TestBinop(kExprF64Mul, sigs.d_dd());
TestBinop(kExprF64Div, sigs.d_dd());
TestBinop(kExprF64Eq, sigs.i_dd());
TestBinop(kExprF64Lt, sigs.i_dd());
TestBinop(kExprF64Le, sigs.i_dd());
}
TEST_F(AstDecoderTest, FloatBinops) {
TestBinop(kExprF32Add, sigs.f_ff());
TestBinop(kExprF32Sub, sigs.f_ff());
TestBinop(kExprF32Mul, sigs.f_ff());
TestBinop(kExprF32Div, sigs.f_ff());
TestBinop(kExprF32Eq, sigs.i_ff());
TestBinop(kExprF32Lt, sigs.i_ff());
TestBinop(kExprF32Le, sigs.i_ff());
}
TEST_F(AstDecoderTest, TypeConversions) {
TestUnop(kExprI32SConvertF32, kAstI32, kAstF32);
TestUnop(kExprI32SConvertF64, kAstI32, kAstF64);
TestUnop(kExprI32UConvertF32, kAstI32, kAstF32);
TestUnop(kExprI32UConvertF64, kAstI32, kAstF64);
TestUnop(kExprF64SConvertI32, kAstF64, kAstI32);
TestUnop(kExprF64UConvertI32, kAstF64, kAstI32);
TestUnop(kExprF64ConvertF32, kAstF64, kAstF32);
TestUnop(kExprF32SConvertI32, kAstF32, kAstI32);
TestUnop(kExprF32UConvertI32, kAstF32, kAstI32);
TestUnop(kExprF32ConvertF64, kAstF32, kAstF64);
}
TEST_F(AstDecoderTest, MacrosStmt) {
VERIFY(WASM_SET_LOCAL(0, WASM_I32V_3(87348)));
VERIFY(WASM_STORE_MEM(MachineType::Int32(), WASM_I8(24), WASM_I8(40)));
VERIFY(WASM_IF(WASM_GET_LOCAL(0), WASM_NOP));
VERIFY(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP));
VERIFY(WASM_NOP);
VERIFY(WASM_BLOCK(1, WASM_NOP));
VERIFY(WASM_LOOP(1, WASM_NOP));
VERIFY(WASM_LOOP(1, WASM_BREAK(0)));
VERIFY(WASM_LOOP(1, WASM_CONTINUE(0)));
}
TEST_F(AstDecoderTest, MacrosBreak) {
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BREAK(0)));
EXPECT_VERIFIES_INLINE(sigs.i_i(), WASM_LOOP(1, WASM_BREAKV(0, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.l_l(),
WASM_LOOP(1, WASM_BREAKV(0, WASM_I64V_1(0))));
EXPECT_VERIFIES_INLINE(sigs.f_ff(),
WASM_LOOP(1, WASM_BREAKV(0, WASM_F32(0.0))));
EXPECT_VERIFIES_INLINE(sigs.d_dd(),
WASM_LOOP(1, WASM_BREAKV(0, WASM_F64(0.0))));
}
TEST_F(AstDecoderTest, MacrosContinue) {
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_CONTINUE(0)));
}
TEST_F(AstDecoderTest, MacrosVariadic) {
VERIFY(WASM_BLOCK(2, WASM_NOP, WASM_NOP));
VERIFY(WASM_BLOCK(3, WASM_NOP, WASM_NOP, WASM_NOP));
VERIFY(WASM_LOOP(2, WASM_NOP, WASM_NOP));
VERIFY(WASM_LOOP(3, WASM_NOP, WASM_NOP, WASM_NOP));
}
TEST_F(AstDecoderTest, MacrosNestedBlocks) {
VERIFY(WASM_BLOCK(2, WASM_NOP, WASM_BLOCK(2, WASM_NOP, WASM_NOP)));
VERIFY(WASM_BLOCK(3, WASM_NOP, // --
WASM_BLOCK(2, WASM_NOP, WASM_NOP), // --
WASM_BLOCK(2, WASM_NOP, WASM_NOP))); // --
VERIFY(WASM_BLOCK(1, WASM_BLOCK(1, WASM_BLOCK(2, WASM_NOP, WASM_NOP))));
}
TEST_F(AstDecoderTest, MultipleReturn) {
static LocalType kIntTypes5[] = {kAstI32, kAstI32, kAstI32, kAstI32, kAstI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
EXPECT_VERIFIES_INLINE(&sig_ii_v, WASM_RETURN(WASM_ZERO, WASM_ONE));
EXPECT_FAILURE_INLINE(&sig_ii_v, WASM_RETURN(WASM_ZERO));
FunctionSig sig_iii_v(3, 0, kIntTypes5);
EXPECT_VERIFIES_INLINE(&sig_iii_v,
WASM_RETURN(WASM_ZERO, WASM_ONE, WASM_I8(44)));
EXPECT_FAILURE_INLINE(&sig_iii_v, WASM_RETURN(WASM_ZERO, WASM_ONE));
}
TEST_F(AstDecoderTest, MultipleReturn_fallthru) {
static LocalType kIntTypes5[] = {kAstI32, kAstI32, kAstI32, kAstI32, kAstI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
EXPECT_VERIFIES_INLINE(&sig_ii_v, WASM_ZERO, WASM_ONE);
EXPECT_FAILURE_INLINE(&sig_ii_v, WASM_ZERO);
FunctionSig sig_iii_v(3, 0, kIntTypes5);
EXPECT_VERIFIES_INLINE(&sig_iii_v, WASM_ZERO, WASM_ONE, WASM_I8(44));
EXPECT_FAILURE_INLINE(&sig_iii_v, WASM_ZERO, WASM_ONE);
}
TEST_F(AstDecoderTest, MacrosInt32) {
VERIFY(WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_I8(12)));
VERIFY(WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(13)));
VERIFY(WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_I8(14)));
VERIFY(WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(15)));
VERIFY(WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I8(16)));
VERIFY(WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_I8(17)));
VERIFY(WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_I8(18)));
VERIFY(WASM_I32_AND(WASM_GET_LOCAL(0), WASM_I8(19)));
VERIFY(WASM_I32_IOR(WASM_GET_LOCAL(0), WASM_I8(20)));
VERIFY(WASM_I32_XOR(WASM_GET_LOCAL(0), WASM_I8(21)));
VERIFY(WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_I8(22)));
VERIFY(WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_I8(23)));
VERIFY(WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_I8(24)));
VERIFY(WASM_I32_ROR(WASM_GET_LOCAL(0), WASM_I8(24)));
VERIFY(WASM_I32_ROL(WASM_GET_LOCAL(0), WASM_I8(24)));
VERIFY(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(25)));
VERIFY(WASM_I32_NE(WASM_GET_LOCAL(0), WASM_I8(25)));
VERIFY(WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I8(26)));
VERIFY(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I8(27)));
VERIFY(WASM_I32_LTU(WASM_GET_LOCAL(0), WASM_I8(28)));
VERIFY(WASM_I32_LEU(WASM_GET_LOCAL(0), WASM_I8(29)));
VERIFY(WASM_I32_GTS(WASM_GET_LOCAL(0), WASM_I8(26)));
VERIFY(WASM_I32_GES(WASM_GET_LOCAL(0), WASM_I8(27)));
VERIFY(WASM_I32_GTU(WASM_GET_LOCAL(0), WASM_I8(28)));
VERIFY(WASM_I32_GEU(WASM_GET_LOCAL(0), WASM_I8(29)));
}
TEST_F(AstDecoderTest, MacrosInt64) {
#define VERIFY_L_LL(...) EXPECT_VERIFIES_INLINE(sigs.l_ll(), __VA_ARGS__)
#define VERIFY_I_LL(...) EXPECT_VERIFIES_INLINE(sigs.i_ll(), __VA_ARGS__)
VERIFY_L_LL(WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64V_1(12)));
VERIFY_L_LL(WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_I64V_1(13)));
VERIFY_L_LL(WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_I64V_1(14)));
VERIFY_L_LL(WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(15)));
VERIFY_L_LL(WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(16)));
VERIFY_L_LL(WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_I64V_1(17)));
VERIFY_L_LL(WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_I64V_1(18)));
VERIFY_L_LL(WASM_I64_AND(WASM_GET_LOCAL(0), WASM_I64V_1(19)));
VERIFY_L_LL(WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
VERIFY_L_LL(WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64V_1(21)));
VERIFY_L_LL(WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(22)));
VERIFY_L_LL(WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(23)));
VERIFY_L_LL(WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
VERIFY_L_LL(WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
VERIFY_L_LL(WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
VERIFY_I_LL(WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_I64V_1(26)));
VERIFY_I_LL(WASM_I64_LES(WASM_GET_LOCAL(0), WASM_I64V_1(27)));
VERIFY_I_LL(WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_I64V_1(28)));
VERIFY_I_LL(WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_I64V_1(29)));
VERIFY_I_LL(WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_I64V_1(26)));
VERIFY_I_LL(WASM_I64_GES(WASM_GET_LOCAL(0), WASM_I64V_1(27)));
VERIFY_I_LL(WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_I64V_1(28)));
VERIFY_I_LL(WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_I64V_1(29)));
VERIFY_I_LL(WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_I64V_1(25)));
VERIFY_I_LL(WASM_I64_NE(WASM_GET_LOCAL(0), WASM_I64V_1(25)));
}
TEST_F(AstDecoderTest, AllSimpleExpressions) {
// Test all simple expressions which are described by a signature.
#define DECODE_TEST(name, opcode, sig) \
{ \
FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \
if (sig->parameter_count() == 1) { \
TestUnop(kExpr##name, sig); \
} else { \
TestBinop(kExpr##name, sig); \
} \
}
FOREACH_SIMPLE_OPCODE(DECODE_TEST);
#undef DECODE_TEST
}
TEST_F(AstDecoderTest, MemorySize) {
byte code[] = {kExprMemorySize};
EXPECT_VERIFIES(sigs.i_i(), code);
EXPECT_FAILURE(sigs.f_ff(), code);
}
TEST_F(AstDecoderTest, GrowMemory) {
byte code[] = {kExprGrowMemory, kExprGetLocal, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
EXPECT_FAILURE(sigs.i_d(), code);
}
TEST_F(AstDecoderTest, LoadMemOffset) {
for (int offset = 0; offset < 128; offset += 7) {
byte code[] = {kExprI32LoadMem, WasmOpcodes::LoadStoreAccessOf(true),
static_cast<byte>(offset), kExprI8Const, 0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
}
TEST_F(AstDecoderTest, StoreMemOffset) {
for (int offset = 0; offset < 128; offset += 7) {
byte code[] = {kExprI32StoreMem,
WasmOpcodes::LoadStoreAccessOf(true),
static_cast<byte>(offset),
kExprI8Const,
0,
kExprI8Const,
0};
EXPECT_VERIFIES(sigs.i_i(), code);
}
}
TEST_F(AstDecoderTest, LoadMemOffset_varint) {
byte code1[] = {kExprI32LoadMem, WasmOpcodes::LoadStoreAccessOf(true), 0,
kExprI8Const, 0};
byte code2[] = {kExprI32LoadMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x80,
1,
kExprI8Const,
0};
byte code3[] = {kExprI32LoadMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x81,
0x82,
5,
kExprI8Const,
0};
byte code4[] = {kExprI32LoadMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x83,
0x84,
0x85,
7,
kExprI8Const,
0};
EXPECT_VERIFIES(sigs.i_i(), code1);
EXPECT_VERIFIES(sigs.i_i(), code2);
EXPECT_VERIFIES(sigs.i_i(), code3);
EXPECT_VERIFIES(sigs.i_i(), code4);
}
TEST_F(AstDecoderTest, StoreMemOffset_varint) {
byte code1[] = {kExprI32StoreMem,
WasmOpcodes::LoadStoreAccessOf(true),
0,
kExprI8Const,
0,
kExprI8Const,
0};
byte code2[] = {kExprI32StoreMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x80,
1,
kExprI8Const,
0,
kExprI8Const,
0};
byte code3[] = {kExprI32StoreMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x81,
0x82,
5,
kExprI8Const,
0,
kExprI8Const,
0};
byte code4[] = {kExprI32StoreMem,
WasmOpcodes::LoadStoreAccessOf(true),
0x83,
0x84,
0x85,
7,
kExprI8Const,
0,
kExprI8Const,
0};
EXPECT_VERIFIES(sigs.i_i(), code1);
EXPECT_VERIFIES(sigs.i_i(), code2);
EXPECT_VERIFIES(sigs.i_i(), code3);
EXPECT_VERIFIES(sigs.i_i(), code4);
}
TEST_F(AstDecoderTest, AllLoadMemCombinations) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType local_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(mem_type, false)),
WasmOpcodes::LoadStoreAccessOf(false), kExprI8Const, 0};
FunctionSig sig(1, 0, &local_type);
if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) {
EXPECT_VERIFIES(&sig, code);
} else {
EXPECT_FAILURE(&sig, code);
}
}
}
}
TEST_F(AstDecoderTest, AllStoreMemCombinations) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType local_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(mem_type, true)),
WasmOpcodes::LoadStoreAccessOf(false),
kExprI8Const,
0,
kExprGetLocal,
0};
FunctionSig sig(0, 1, &local_type);
if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) {
EXPECT_VERIFIES(&sig, code);
} else {
EXPECT_FAILURE(&sig, code);
}
}
}
}
namespace {
// A helper for tests that require a module environment for functions and
// globals.
class TestModuleEnv : public ModuleEnv {
public:
TestModuleEnv() {
instance = nullptr;
module = &mod;
linker = nullptr;
}
byte AddGlobal(MachineType mem_type) {
mod.globals.push_back({0, mem_type, 0, false});
CHECK(mod.globals.size() <= 127);
return static_cast<byte>(mod.globals.size() - 1);
}
byte AddSignature(FunctionSig* sig) {
mod.signatures.push_back(sig);
CHECK(mod.signatures.size() <= 127);
return static_cast<byte>(mod.signatures.size() - 1);
}
byte AddFunction(FunctionSig* sig) {
mod.functions.push_back({sig, 0, 0, 0, 0, 0, 0, 0, false, false});
CHECK(mod.functions.size() <= 127);
return static_cast<byte>(mod.functions.size() - 1);
}
byte AddImport(FunctionSig* sig) {
mod.import_table.push_back({sig, 0, 0});
CHECK(mod.import_table.size() <= 127);
return static_cast<byte>(mod.import_table.size() - 1);
}
private:
WasmModule mod;
};
} // namespace
TEST_F(AstDecoderTest, SimpleCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_v());
module_env.AddFunction(sigs.i_i());
module_env.AddFunction(sigs.i_ii());
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(0));
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I8(27)));
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(2, WASM_I8(37), WASM_I8(77)));
}
TEST_F(AstDecoderTest, CallsWithTooFewArguments) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_i());
module_env.AddFunction(sigs.i_ii());
module_env.AddFunction(sigs.f_ff());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION0(0));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_ZERO));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(2, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, CallsWithSpilloverArgs) {
static LocalType a_i_ff[] = {kAstI32, kAstF32, kAstF32};
FunctionSig sig_i_ff(1, 2, a_i_ff);
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(&sig_i_ff);
EXPECT_VERIFIES_INLINE(sigs.i_i(),
WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1)));
EXPECT_VERIFIES_INLINE(sigs.i_ff(),
WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1)));
EXPECT_FAILURE_INLINE(sigs.f_ff(),
WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1)));
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1), WASM_F32(0.2)));
EXPECT_VERIFIES_INLINE(
sigs.f_ff(),
WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1), WASM_F32(11)));
}
TEST_F(AstDecoderTest, CallsWithMismatchedSigs2) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_i());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(17)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F32(17.1)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F64(17.1)));
}
TEST_F(AstDecoderTest, CallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_f());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I8(17)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(27)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F64(37.2)));
module_env.AddFunction(sigs.i_d());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I8(16)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I64V_1(16)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_F32(17.6)));
}
TEST_F(AstDecoderTest, SimpleIndirectCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddSignature(sigs.i_v());
byte f1 = module_env.AddSignature(sigs.i_i());
byte f2 = module_env.AddSignature(sigs.i_ii());
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_ZERO));
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I8(22)));
EXPECT_VERIFIES_INLINE(
sig, WASM_CALL_INDIRECT(f2, WASM_ZERO, WASM_I8(32), WASM_I8(72)));
}
TEST_F(AstDecoderTest, IndirectCallsOutOfBounds) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO));
module_env.AddSignature(sigs.i_v());
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(1, WASM_ZERO, WASM_I8(22)));
module_env.AddSignature(sigs.i_i());
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT(1, WASM_ZERO, WASM_I8(27)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(2, WASM_ZERO, WASM_I8(27)));
}
TEST_F(AstDecoderTest, IndirectCallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddFunction(sigs.i_f());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_I8(17)));
EXPECT_FAILURE_INLINE(sig,
WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_I64V_1(27)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_F64(37.2)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_I8(17)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_I64V_1(27)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_F64(37.2)));
byte f1 = module_env.AddFunction(sigs.i_d());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I8(16)));
EXPECT_FAILURE_INLINE(sig,
WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I64V_1(16)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_F32(17.6)));
}
TEST_F(AstDecoderTest, SimpleImportCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddImport(sigs.i_v());
byte f1 = module_env.AddImport(sigs.i_i());
byte f2 = module_env.AddImport(sigs.i_ii());
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT0(f0));
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I8(22)));
EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT(f2, WASM_I8(32), WASM_I8(72)));
}
TEST_F(AstDecoderTest, ImportCallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddImport(sigs.i_f());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT0(f0));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_I8(17)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_I64V_1(27)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_F64(37.2)));
byte f1 = module_env.AddImport(sigs.i_d());
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT0(f1));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I8(16)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I64V_1(16)));
EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_F32(17.6)));
}
TEST_F(AstDecoderTest, Int32Globals) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(MachineType::Int8());
module_env.AddGlobal(MachineType::Uint8());
module_env.AddGlobal(MachineType::Int16());
module_env.AddGlobal(MachineType::Uint16());
module_env.AddGlobal(MachineType::Int32());
module_env.AddGlobal(MachineType::Uint32());
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(1));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(2));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(3));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(4));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(5));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(2, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(3, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(4, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(5, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, Int32Globals_fail) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(MachineType::Int64());
module_env.AddGlobal(MachineType::Uint64());
module_env.AddGlobal(MachineType::Float32());
module_env.AddGlobal(MachineType::Float64());
EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(0));
EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(1));
EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(2));
EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(3));
EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(2, WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(3, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, Int64Globals) {
FunctionSig* sig = sigs.l_l();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(MachineType::Int64());
module_env.AddGlobal(MachineType::Uint64());
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0));
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(1));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, Float32Globals) {
FunctionSig* sig = sigs.f_ff();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(MachineType::Float32());
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, Float64Globals) {
FunctionSig* sig = sigs.d_dd();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(MachineType::Float64());
EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0));
EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
}
TEST_F(AstDecoderTest, AllLoadGlobalCombinations) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType local_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
FunctionSig sig(1, 0, &local_type);
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(mem_type);
if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) {
EXPECT_VERIFIES_INLINE(&sig, WASM_LOAD_GLOBAL(0));
} else {
EXPECT_FAILURE_INLINE(&sig, WASM_LOAD_GLOBAL(0));
}
}
}
}
TEST_F(AstDecoderTest, AllStoreGlobalCombinations) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType local_type = kLocalTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
FunctionSig sig(0, 1, &local_type);
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(mem_type);
if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) {
EXPECT_VERIFIES_INLINE(&sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
} else {
EXPECT_FAILURE_INLINE(&sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0)));
}
}
}
}
TEST_F(AstDecoderTest, BreakNesting1) {
for (int i = 0; i < 5; i++) {
// (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p)
byte code[] = {WASM_BLOCK(
2, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(i, WASM_ZERO)),
WASM_SET_LOCAL(0, WASM_I8(1))),
WASM_GET_LOCAL(0))};
if (i < 3) {
EXPECT_VERIFIES(sigs.i_i(), code);
} else {
EXPECT_FAILURE(sigs.i_i(), code);
}
}
}
TEST_F(AstDecoderTest, BreakNesting2) {
AddLocals(kAstI32, 1);
for (int i = 0; i < 5; i++) {
// (block[2] (loop[2] (if 0 break[N]) (set p 1)) (return p)) (11)
byte code[] = {WASM_BLOCK(1, WASM_LOOP(2, WASM_IF(WASM_ZERO, WASM_BREAK(i)),
WASM_SET_LOCAL(0, WASM_I8(1)))),
WASM_I8(11)};
if (i < 2) {
EXPECT_VERIFIES(sigs.v_v(), code);
} else {
EXPECT_FAILURE(sigs.v_v(), code);
}
}
}
TEST_F(AstDecoderTest, BreakNesting3) {
for (int i = 0; i < 5; i++) {
// (block[1] (loop[1] (block[1] (if 0 break[N])
byte code[] = {WASM_BLOCK(
1, WASM_LOOP(1, WASM_BLOCK(1, WASM_IF(WASM_ZERO, WASM_BREAK(i)))))};
if (i < 3) {
EXPECT_VERIFIES(sigs.v_v(), code);
} else {
EXPECT_FAILURE(sigs.v_v(), code);
}
}
}
TEST_F(AstDecoderTest, BreaksWithMultipleTypes) {
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_I8(7)), WASM_F32(7.7)));
EXPECT_FAILURE_INLINE(sigs.i_i(),
WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_I8(7)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7))));
EXPECT_FAILURE_INLINE(sigs.i_i(),
WASM_BLOCK(3, WASM_BRV_IF_ZERO(0, WASM_I8(8)),
WASM_BRV_IF_ZERO(0, WASM_I8(0)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7))));
EXPECT_FAILURE_INLINE(sigs.i_i(),
WASM_BLOCK(3, WASM_BRV_IF_ZERO(0, WASM_I8(9)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)),
WASM_BRV_IF_ZERO(0, WASM_I8(11))));
}
TEST_F(AstDecoderTest, BreakNesting_6_levels) {
for (int mask = 0; mask < 64; mask++) {
for (int i = 0; i < 14; i++) {
byte code[] = {
kExprBlock, 1, // --
kExprBlock, 1, // --
kExprBlock, 1, // --
kExprBlock, 1, // --
kExprBlock, 1, // --
kExprBlock, 1, // --
kExprBr, static_cast<byte>(i),
kExprNop // --
};
int depth = 6;
for (int l = 0; l < 6; l++) {
if (mask & (1 << l)) {
code[l * 2] = kExprLoop;
depth++;
}
}
if (i < depth) {
EXPECT_VERIFIES(sigs.v_v(), code);
} else {
EXPECT_FAILURE(sigs.v_v(), code);
}
}
}
}
TEST_F(AstDecoderTest, ExprBreak_TypeCheck) {
FunctionSig* sigarray[] = {sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()};
for (size_t i = 0; i < arraysize(sigarray); i++) {
FunctionSig* sig = sigarray[i];
// unify X and X => OK
EXPECT_VERIFIES_INLINE(
sig, WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0)));
}
// unify i32 and f32 => fail
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)), WASM_F32(1.2)));
// unify f64 and f64 => OK
EXPECT_VERIFIES_INLINE(
sigs.d_dd(),
WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_F64(1.2)));
}
TEST_F(AstDecoderTest, ExprBreak_TypeCheckAll) {
byte code1[] = {WASM_BLOCK(2,
WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(1))};
byte code2[] = {
WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(1))};
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalType storage[] = {kLocalTypes[i], kLocalTypes[i], kLocalTypes[j]};
FunctionSig sig(1, 2, storage);
if (i == j) {
EXPECT_VERIFIES(&sig, code1);
EXPECT_VERIFIES(&sig, code2);
} else {
EXPECT_FAILURE(&sig, code1);
EXPECT_FAILURE(&sig, code2);
}
}
}
}
TEST_F(AstDecoderTest, ExprBr_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType type = kLocalTypes[i];
LocalType storage[] = {kAstI32, kAstI32, type};
FunctionSig sig(1, 2, storage);
byte code1[] = {
WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(which))),
WASM_GET_LOCAL(which ^ 1))};
byte code2[] = {
WASM_LOOP(2, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_GET_LOCAL(which))),
WASM_GET_LOCAL(which ^ 1))};
if (type == kAstI32) {
EXPECT_VERIFIES(&sig, code1);
EXPECT_VERIFIES(&sig, code2);
} else {
EXPECT_FAILURE(&sig, code1);
EXPECT_FAILURE(&sig, code2);
}
}
}
}
TEST_F(AstDecoderTest, ExprBrIf_cond_type) {
byte code[] = {
WASM_BLOCK(1, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))};
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalType types[] = {kLocalTypes[i], kLocalTypes[j]};
FunctionSig sig(0, 2, types);
if (types[1] == kAstI32) {
EXPECT_VERIFIES(&sig, code);
} else {
EXPECT_FAILURE(&sig, code);
}
}
}
}
TEST_F(AstDecoderTest, ExprBrIf_val_type) {
byte code[] = {
WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
WASM_GET_LOCAL(0))};
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
for (size_t j = 0; j < arraysize(kLocalTypes); j++) {
LocalType types[] = {kLocalTypes[i], kLocalTypes[i], kLocalTypes[j],
kAstI32};
FunctionSig sig(1, 3, types);
if (i == j) {
EXPECT_VERIFIES(&sig, code);
} else {
EXPECT_FAILURE(&sig, code);
}
}
}
}
TEST_F(AstDecoderTest, ExprBrIf_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType type = kLocalTypes[i];
LocalType storage[] = {kAstI32, kAstI32, type};
FunctionSig sig(1, 2, storage);
byte code1[] = {WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(which)),
WASM_GET_LOCAL(which ^ 1))};
byte code2[] = {WASM_LOOP(2, WASM_BRV_IF_ZERO(1, WASM_GET_LOCAL(which)),
WASM_GET_LOCAL(which ^ 1))};
if (type == kAstI32) {
EXPECT_VERIFIES(&sig, code1);
EXPECT_VERIFIES(&sig, code2);
} else {
EXPECT_FAILURE(&sig, code1);
EXPECT_FAILURE(&sig, code2);
}
}
}
}
TEST_F(AstDecoderTest, BrTable0) {
static byte code[] = {kExprBrTable, 0, 0};
EXPECT_FAILURE(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, BrTable0b) {
static byte code[] = {kExprBrTable, 0, 0, kExprI32Const, 11};
EXPECT_FAILURE(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, BrTable0c) {
static byte code[] = {kExprBrTable, 0, 1, 0, 0, kExprI32Const, 11};
EXPECT_FAILURE(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
}
TEST_F(AstDecoderTest, BrTable1a) {
static byte code[] = {
WASM_BLOCK(1, WASM_BR_TABLE(WASM_I8(67), 0, BR_TARGET(0)))};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, BrTable1b) {
static byte code[] = {
WASM_BLOCK(1, WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))};
EXPECT_VERIFIES(sigs.v_v(), code);
EXPECT_FAILURE(sigs.i_i(), code);
EXPECT_FAILURE(sigs.f_ff(), code);
EXPECT_FAILURE(sigs.d_dd(), code);
}
TEST_F(AstDecoderTest, BrTable2a) {
static byte code[] = {
WASM_BLOCK(1, WASM_BR_TABLE(WASM_I8(67), 1, BR_TARGET(0), BR_TARGET(0)))};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, BrTable2b) {
static byte code[] = {WASM_BLOCK(
1, WASM_BLOCK(
1, WASM_BR_TABLE(WASM_I8(67), 1, BR_TARGET(0), BR_TARGET(1))))};
EXPECT_VERIFIES(sigs.v_v(), code);
}
TEST_F(AstDecoderTest, BrTable_off_end) {
static byte code[] = {
WASM_BLOCK(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0)))};
for (size_t len = 1; len < sizeof(code); len++) {
Verify(kError, sigs.i_i(), code, code + len);
}
}
TEST_F(AstDecoderTest, BrTable_invalid_br1) {
for (int depth = 0; depth < 4; depth++) {
byte code[] = {
WASM_BLOCK(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))};
if (depth == 0) {
EXPECT_VERIFIES(sigs.v_i(), code);
} else {
EXPECT_FAILURE(sigs.v_i(), code);
}
}
}
TEST_F(AstDecoderTest, BrTable_invalid_br2) {
for (int depth = 0; depth < 4; depth++) {
byte code[] = {
WASM_LOOP(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))};
if (depth <= 1) {
EXPECT_VERIFIES(sigs.v_i(), code);
} else {
EXPECT_FAILURE(sigs.v_i(), code);
}
}
}
TEST_F(AstDecoderTest, ExprBreakNesting1) {
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BRV(0, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BR(0)));
EXPECT_VERIFIES_INLINE(sigs.v_v(),
WASM_BLOCK(1, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BR_IF(0, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BRV(0, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR(0)));
EXPECT_VERIFIES_INLINE(sigs.v_v(),
WASM_LOOP(1, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR_IF(0, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BRV(1, WASM_ZERO)));
EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR(1)));
}
TEST_F(AstDecoderTest, Select) {
EXPECT_VERIFIES_INLINE(
sigs.i_i(), WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_ZERO));
EXPECT_VERIFIES_INLINE(sigs.f_ff(),
WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO));
EXPECT_VERIFIES_INLINE(sigs.d_dd(),
WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO));
EXPECT_VERIFIES_INLINE(
sigs.l_l(), WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO));
}
TEST_F(AstDecoderTest, Select_fail1) {
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_F32(0.0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_GET_LOCAL(0), WASM_F32(0.0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_F32(0.0)));
}
TEST_F(AstDecoderTest, Select_fail2) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType type = kLocalTypes[i];
if (type == kAstI32) continue;
LocalType types[] = {type, kAstI32, type};
FunctionSig sig(1, 2, types);
EXPECT_VERIFIES_INLINE(
&sig,
WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
&sig,
WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
&sig,
WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
&sig,
WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
}
}
TEST_F(AstDecoderTest, Select_TypeCheck) {
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_GET_LOCAL(0), WASM_F64(0.25), WASM_GET_LOCAL(0)));
EXPECT_FAILURE_INLINE(
sigs.i_i(),
WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_I64V_1(0)));
}
class WasmOpcodeLengthTest : public TestWithZone {
public:
WasmOpcodeLengthTest() : TestWithZone() {}
};
#define EXPECT_LENGTH(expected, opcode) \
{ \
static const byte code[] = {opcode, 0, 0, 0, 0, 0, 0, 0, 0}; \
EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code))); \
}
TEST_F(WasmOpcodeLengthTest, Statements) {
EXPECT_LENGTH(1, kExprNop);
EXPECT_LENGTH(2, kExprBlock);
EXPECT_LENGTH(2, kExprLoop);
EXPECT_LENGTH(1, kExprIf);
EXPECT_LENGTH(1, kExprIfElse);
EXPECT_LENGTH(1, kExprSelect);
EXPECT_LENGTH(2, kExprBr);
EXPECT_LENGTH(2, kExprBrIf);
}
TEST_F(WasmOpcodeLengthTest, MiscExpressions) {
EXPECT_LENGTH(2, kExprI8Const);
EXPECT_LENGTH(5, kExprI32Const);
EXPECT_LENGTH(5, kExprF32Const);
EXPECT_LENGTH(9, kExprI64Const);
EXPECT_LENGTH(9, kExprF64Const);
EXPECT_LENGTH(2, kExprGetLocal);
EXPECT_LENGTH(2, kExprSetLocal);
EXPECT_LENGTH(2, kExprLoadGlobal);
EXPECT_LENGTH(2, kExprStoreGlobal);
EXPECT_LENGTH(2, kExprCallFunction);
EXPECT_LENGTH(2, kExprCallImport);
EXPECT_LENGTH(2, kExprCallIndirect);
EXPECT_LENGTH(1, kExprIf);
EXPECT_LENGTH(1, kExprIfElse);
EXPECT_LENGTH(2, kExprBlock);
EXPECT_LENGTH(2, kExprLoop);
EXPECT_LENGTH(2, kExprBr);
EXPECT_LENGTH(2, kExprBrIf);
}
TEST_F(WasmOpcodeLengthTest, VariableLength) {
byte size2[] = {kExprLoadGlobal, 1};
byte size3[] = {kExprLoadGlobal, 1 | 0x80, 2};
byte size4[] = {kExprLoadGlobal, 1 | 0x80, 2 | 0x80, 3};
byte size5[] = {kExprLoadGlobal, 1 | 0x80, 2 | 0x80, 3 | 0x80, 4};
byte size6[] = {kExprLoadGlobal, 1 | 0x80, 2 | 0x80, 3 | 0x80, 4 | 0x80, 5};
EXPECT_EQ(2, OpcodeLength(size2, size2 + sizeof(size2)));
EXPECT_EQ(3, OpcodeLength(size3, size3 + sizeof(size3)));
EXPECT_EQ(4, OpcodeLength(size4, size4 + sizeof(size4)));
EXPECT_EQ(5, OpcodeLength(size5, size5 + sizeof(size5)));
EXPECT_EQ(6, OpcodeLength(size6, size6 + sizeof(size6)));
}
TEST_F(WasmOpcodeLengthTest, LoadsAndStores) {
EXPECT_LENGTH(2, kExprI32LoadMem8S);
EXPECT_LENGTH(2, kExprI32LoadMem8U);
EXPECT_LENGTH(2, kExprI32LoadMem16S);
EXPECT_LENGTH(2, kExprI32LoadMem16U);
EXPECT_LENGTH(2, kExprI32LoadMem);
EXPECT_LENGTH(2, kExprI64LoadMem8S);
EXPECT_LENGTH(2, kExprI64LoadMem8U);
EXPECT_LENGTH(2, kExprI64LoadMem16S);
EXPECT_LENGTH(2, kExprI64LoadMem16U);
EXPECT_LENGTH(2, kExprI64LoadMem32S);
EXPECT_LENGTH(2, kExprI64LoadMem32U);
EXPECT_LENGTH(2, kExprI64LoadMem);
EXPECT_LENGTH(2, kExprF32LoadMem);
EXPECT_LENGTH(2, kExprF64LoadMem);
EXPECT_LENGTH(2, kExprI32StoreMem8);
EXPECT_LENGTH(2, kExprI32StoreMem16);
EXPECT_LENGTH(2, kExprI32StoreMem);
EXPECT_LENGTH(2, kExprI64StoreMem8);
EXPECT_LENGTH(2, kExprI64StoreMem16);
EXPECT_LENGTH(2, kExprI64StoreMem32);
EXPECT_LENGTH(2, kExprI64StoreMem);
EXPECT_LENGTH(2, kExprF32StoreMem);
EXPECT_LENGTH(2, kExprF64StoreMem);
}
TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) {
EXPECT_LENGTH(1, kExprMemorySize);
EXPECT_LENGTH(1, kExprGrowMemory);
}
TEST_F(WasmOpcodeLengthTest, SimpleExpressions) {
EXPECT_LENGTH(1, kExprI32Add);
EXPECT_LENGTH(1, kExprI32Sub);
EXPECT_LENGTH(1, kExprI32Mul);
EXPECT_LENGTH(1, kExprI32DivS);
EXPECT_LENGTH(1, kExprI32DivU);
EXPECT_LENGTH(1, kExprI32RemS);
EXPECT_LENGTH(1, kExprI32RemU);
EXPECT_LENGTH(1, kExprI32And);
EXPECT_LENGTH(1, kExprI32Ior);
EXPECT_LENGTH(1, kExprI32Xor);
EXPECT_LENGTH(1, kExprI32Shl);
EXPECT_LENGTH(1, kExprI32ShrU);
EXPECT_LENGTH(1, kExprI32ShrS);
EXPECT_LENGTH(1, kExprI32Eq);
EXPECT_LENGTH(1, kExprI32Ne);
EXPECT_LENGTH(1, kExprI32LtS);
EXPECT_LENGTH(1, kExprI32LeS);
EXPECT_LENGTH(1, kExprI32LtU);
EXPECT_LENGTH(1, kExprI32LeU);
EXPECT_LENGTH(1, kExprI32GtS);
EXPECT_LENGTH(1, kExprI32GeS);
EXPECT_LENGTH(1, kExprI32GtU);
EXPECT_LENGTH(1, kExprI32GeU);
EXPECT_LENGTH(1, kExprI32Clz);
EXPECT_LENGTH(1, kExprI32Ctz);
EXPECT_LENGTH(1, kExprI32Popcnt);
EXPECT_LENGTH(1, kExprI32Eqz);
EXPECT_LENGTH(1, kExprI64Add);
EXPECT_LENGTH(1, kExprI64Sub);
EXPECT_LENGTH(1, kExprI64Mul);
EXPECT_LENGTH(1, kExprI64DivS);
EXPECT_LENGTH(1, kExprI64DivU);
EXPECT_LENGTH(1, kExprI64RemS);
EXPECT_LENGTH(1, kExprI64RemU);
EXPECT_LENGTH(1, kExprI64And);
EXPECT_LENGTH(1, kExprI64Ior);
EXPECT_LENGTH(1, kExprI64Xor);
EXPECT_LENGTH(1, kExprI64Shl);
EXPECT_LENGTH(1, kExprI64ShrU);
EXPECT_LENGTH(1, kExprI64ShrS);
EXPECT_LENGTH(1, kExprI64Eq);
EXPECT_LENGTH(1, kExprI64Ne);
EXPECT_LENGTH(1, kExprI64LtS);
EXPECT_LENGTH(1, kExprI64LeS);
EXPECT_LENGTH(1, kExprI64LtU);
EXPECT_LENGTH(1, kExprI64LeU);
EXPECT_LENGTH(1, kExprI64GtS);
EXPECT_LENGTH(1, kExprI64GeS);
EXPECT_LENGTH(1, kExprI64GtU);
EXPECT_LENGTH(1, kExprI64GeU);
EXPECT_LENGTH(1, kExprI64Clz);
EXPECT_LENGTH(1, kExprI64Ctz);
EXPECT_LENGTH(1, kExprI64Popcnt);
EXPECT_LENGTH(1, kExprF32Add);
EXPECT_LENGTH(1, kExprF32Sub);
EXPECT_LENGTH(1, kExprF32Mul);
EXPECT_LENGTH(1, kExprF32Div);
EXPECT_LENGTH(1, kExprF32Min);
EXPECT_LENGTH(1, kExprF32Max);
EXPECT_LENGTH(1, kExprF32Abs);
EXPECT_LENGTH(1, kExprF32Neg);
EXPECT_LENGTH(1, kExprF32CopySign);
EXPECT_LENGTH(1, kExprF32Ceil);
EXPECT_LENGTH(1, kExprF32Floor);
EXPECT_LENGTH(1, kExprF32Trunc);
EXPECT_LENGTH(1, kExprF32NearestInt);
EXPECT_LENGTH(1, kExprF32Sqrt);
EXPECT_LENGTH(1, kExprF32Eq);
EXPECT_LENGTH(1, kExprF32Ne);
EXPECT_LENGTH(1, kExprF32Lt);
EXPECT_LENGTH(1, kExprF32Le);
EXPECT_LENGTH(1, kExprF32Gt);
EXPECT_LENGTH(1, kExprF32Ge);
EXPECT_LENGTH(1, kExprF64Add);
EXPECT_LENGTH(1, kExprF64Sub);
EXPECT_LENGTH(1, kExprF64Mul);
EXPECT_LENGTH(1, kExprF64Div);
EXPECT_LENGTH(1, kExprF64Min);
EXPECT_LENGTH(1, kExprF64Max);
EXPECT_LENGTH(1, kExprF64Abs);
EXPECT_LENGTH(1, kExprF64Neg);
EXPECT_LENGTH(1, kExprF64CopySign);
EXPECT_LENGTH(1, kExprF64Ceil);
EXPECT_LENGTH(1, kExprF64Floor);
EXPECT_LENGTH(1, kExprF64Trunc);
EXPECT_LENGTH(1, kExprF64NearestInt);
EXPECT_LENGTH(1, kExprF64Sqrt);
EXPECT_LENGTH(1, kExprF64Eq);
EXPECT_LENGTH(1, kExprF64Ne);
EXPECT_LENGTH(1, kExprF64Lt);
EXPECT_LENGTH(1, kExprF64Le);
EXPECT_LENGTH(1, kExprF64Gt);
EXPECT_LENGTH(1, kExprF64Ge);
EXPECT_LENGTH(1, kExprI32SConvertF32);
EXPECT_LENGTH(1, kExprI32SConvertF64);
EXPECT_LENGTH(1, kExprI32UConvertF32);
EXPECT_LENGTH(1, kExprI32UConvertF64);
EXPECT_LENGTH(1, kExprI32ConvertI64);
EXPECT_LENGTH(1, kExprI64SConvertF32);
EXPECT_LENGTH(1, kExprI64SConvertF64);
EXPECT_LENGTH(1, kExprI64UConvertF32);
EXPECT_LENGTH(1, kExprI64UConvertF64);
EXPECT_LENGTH(1, kExprI64SConvertI32);
EXPECT_LENGTH(1, kExprI64UConvertI32);
EXPECT_LENGTH(1, kExprF32SConvertI32);
EXPECT_LENGTH(1, kExprF32UConvertI32);
EXPECT_LENGTH(1, kExprF32SConvertI64);
EXPECT_LENGTH(1, kExprF32UConvertI64);
EXPECT_LENGTH(1, kExprF32ConvertF64);
EXPECT_LENGTH(1, kExprF32ReinterpretI32);
EXPECT_LENGTH(1, kExprF64SConvertI32);
EXPECT_LENGTH(1, kExprF64UConvertI32);
EXPECT_LENGTH(1, kExprF64SConvertI64);
EXPECT_LENGTH(1, kExprF64UConvertI64);
EXPECT_LENGTH(1, kExprF64ConvertF32);
EXPECT_LENGTH(1, kExprF64ReinterpretI64);
EXPECT_LENGTH(1, kExprI32ReinterpretF32);
EXPECT_LENGTH(1, kExprI64ReinterpretF64);
}
class WasmOpcodeArityTest : public TestWithZone {
public:
WasmOpcodeArityTest() : TestWithZone() {}
TestModuleEnv module;
TestSignatures sigs;
};
#define EXPECT_ARITY(expected, ...) \
{ \
static const byte code[] = {__VA_ARGS__}; \
EXPECT_EQ(expected, OpcodeArity(&module, sig, code, code + sizeof(code))); \
}
TEST_F(WasmOpcodeArityTest, Control) {
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(0, kExprNop);
EXPECT_ARITY(0, kExprBlock, 0);
EXPECT_ARITY(1, kExprBlock, 1);
EXPECT_ARITY(2, kExprBlock, 2);
EXPECT_ARITY(5, kExprBlock, 5);
EXPECT_ARITY(10, kExprBlock, 10);
EXPECT_ARITY(0, kExprLoop, 0);
EXPECT_ARITY(1, kExprLoop, 1);
EXPECT_ARITY(2, kExprLoop, 2);
EXPECT_ARITY(7, kExprLoop, 7);
EXPECT_ARITY(11, kExprLoop, 11);
EXPECT_ARITY(2, kExprIf);
EXPECT_ARITY(3, kExprIfElse);
EXPECT_ARITY(3, kExprSelect);
EXPECT_ARITY(1, kExprBr);
EXPECT_ARITY(2, kExprBrIf);
{
sig = sigs.v_v();
EXPECT_ARITY(0, kExprReturn);
sig = sigs.i_i();
EXPECT_ARITY(1, kExprReturn);
}
}
TEST_F(WasmOpcodeArityTest, Misc) {
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(0, kExprI8Const);
EXPECT_ARITY(0, kExprI32Const);
EXPECT_ARITY(0, kExprF32Const);
EXPECT_ARITY(0, kExprI64Const);
EXPECT_ARITY(0, kExprF64Const);
EXPECT_ARITY(0, kExprGetLocal);
EXPECT_ARITY(1, kExprSetLocal);
EXPECT_ARITY(0, kExprLoadGlobal);
EXPECT_ARITY(1, kExprStoreGlobal);
}
TEST_F(WasmOpcodeArityTest, Calls) {
module.AddFunction(sigs.i_ii());
module.AddFunction(sigs.i_i());
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_d());
module.AddImport(sigs.f_ff());
module.AddImport(sigs.i_d());
{
FunctionSig* sig = sigs.i_ii();
EXPECT_ARITY(2, kExprCallFunction, 0);
EXPECT_ARITY(2, kExprCallImport, 0);
EXPECT_ARITY(3, kExprCallIndirect, 0);
EXPECT_ARITY(1, kExprBr);
EXPECT_ARITY(2, kExprBrIf);
}
{
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(1, kExprCallFunction, 1);
EXPECT_ARITY(1, kExprCallImport, 1);
EXPECT_ARITY(2, kExprCallIndirect, 1);
EXPECT_ARITY(1, kExprBr);
EXPECT_ARITY(2, kExprBrIf);
}
}
TEST_F(WasmOpcodeArityTest, LoadsAndStores) {
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(1, kExprI32LoadMem8S);
EXPECT_ARITY(1, kExprI32LoadMem8U);
EXPECT_ARITY(1, kExprI32LoadMem16S);
EXPECT_ARITY(1, kExprI32LoadMem16U);
EXPECT_ARITY(1, kExprI32LoadMem);
EXPECT_ARITY(1, kExprI64LoadMem8S);
EXPECT_ARITY(1, kExprI64LoadMem8U);
EXPECT_ARITY(1, kExprI64LoadMem16S);
EXPECT_ARITY(1, kExprI64LoadMem16U);
EXPECT_ARITY(1, kExprI64LoadMem32S);
EXPECT_ARITY(1, kExprI64LoadMem32U);
EXPECT_ARITY(1, kExprI64LoadMem);
EXPECT_ARITY(1, kExprF32LoadMem);
EXPECT_ARITY(1, kExprF64LoadMem);
EXPECT_ARITY(2, kExprI32StoreMem8);
EXPECT_ARITY(2, kExprI32StoreMem16);
EXPECT_ARITY(2, kExprI32StoreMem);
EXPECT_ARITY(2, kExprI64StoreMem8);
EXPECT_ARITY(2, kExprI64StoreMem16);
EXPECT_ARITY(2, kExprI64StoreMem32);
EXPECT_ARITY(2, kExprI64StoreMem);
EXPECT_ARITY(2, kExprF32StoreMem);
EXPECT_ARITY(2, kExprF64StoreMem);
}
TEST_F(WasmOpcodeArityTest, MiscMemExpressions) {
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(0, kExprMemorySize);
EXPECT_ARITY(1, kExprGrowMemory);
}
TEST_F(WasmOpcodeArityTest, SimpleExpressions) {
FunctionSig* sig = sigs.v_v();
EXPECT_ARITY(2, kExprI32Add);
EXPECT_ARITY(2, kExprI32Sub);
EXPECT_ARITY(2, kExprI32Mul);
EXPECT_ARITY(2, kExprI32DivS);
EXPECT_ARITY(2, kExprI32DivU);
EXPECT_ARITY(2, kExprI32RemS);
EXPECT_ARITY(2, kExprI32RemU);
EXPECT_ARITY(2, kExprI32And);
EXPECT_ARITY(2, kExprI32Ior);
EXPECT_ARITY(2, kExprI32Xor);
EXPECT_ARITY(2, kExprI32Shl);
EXPECT_ARITY(2, kExprI32ShrU);
EXPECT_ARITY(2, kExprI32ShrS);
EXPECT_ARITY(2, kExprI32Eq);
EXPECT_ARITY(2, kExprI32Ne);
EXPECT_ARITY(2, kExprI32LtS);
EXPECT_ARITY(2, kExprI32LeS);
EXPECT_ARITY(2, kExprI32LtU);
EXPECT_ARITY(2, kExprI32LeU);
EXPECT_ARITY(2, kExprI32GtS);
EXPECT_ARITY(2, kExprI32GeS);
EXPECT_ARITY(2, kExprI32GtU);
EXPECT_ARITY(2, kExprI32GeU);
EXPECT_ARITY(1, kExprI32Clz);
EXPECT_ARITY(1, kExprI32Ctz);
EXPECT_ARITY(1, kExprI32Popcnt);
EXPECT_ARITY(1, kExprI32Eqz);
EXPECT_ARITY(2, kExprI64Add);
EXPECT_ARITY(2, kExprI64Sub);
EXPECT_ARITY(2, kExprI64Mul);
EXPECT_ARITY(2, kExprI64DivS);
EXPECT_ARITY(2, kExprI64DivU);
EXPECT_ARITY(2, kExprI64RemS);
EXPECT_ARITY(2, kExprI64RemU);
EXPECT_ARITY(2, kExprI64And);
EXPECT_ARITY(2, kExprI64Ior);
EXPECT_ARITY(2, kExprI64Xor);
EXPECT_ARITY(2, kExprI64Shl);
EXPECT_ARITY(2, kExprI64ShrU);
EXPECT_ARITY(2, kExprI64ShrS);
EXPECT_ARITY(2, kExprI64Eq);
EXPECT_ARITY(2, kExprI64Ne);
EXPECT_ARITY(2, kExprI64LtS);
EXPECT_ARITY(2, kExprI64LeS);
EXPECT_ARITY(2, kExprI64LtU);
EXPECT_ARITY(2, kExprI64LeU);
EXPECT_ARITY(2, kExprI64GtS);
EXPECT_ARITY(2, kExprI64GeS);
EXPECT_ARITY(2, kExprI64GtU);
EXPECT_ARITY(2, kExprI64GeU);
EXPECT_ARITY(1, kExprI64Clz);
EXPECT_ARITY(1, kExprI64Ctz);
EXPECT_ARITY(1, kExprI64Popcnt);
EXPECT_ARITY(2, kExprF32Add);
EXPECT_ARITY(2, kExprF32Sub);
EXPECT_ARITY(2, kExprF32Mul);
EXPECT_ARITY(2, kExprF32Div);
EXPECT_ARITY(2, kExprF32Min);
EXPECT_ARITY(2, kExprF32Max);
EXPECT_ARITY(1, kExprF32Abs);
EXPECT_ARITY(1, kExprF32Neg);
EXPECT_ARITY(2, kExprF32CopySign);
EXPECT_ARITY(1, kExprF32Ceil);
EXPECT_ARITY(1, kExprF32Floor);
EXPECT_ARITY(1, kExprF32Trunc);
EXPECT_ARITY(1, kExprF32NearestInt);
EXPECT_ARITY(1, kExprF32Sqrt);
EXPECT_ARITY(2, kExprF32Eq);
EXPECT_ARITY(2, kExprF32Ne);
EXPECT_ARITY(2, kExprF32Lt);
EXPECT_ARITY(2, kExprF32Le);
EXPECT_ARITY(2, kExprF32Gt);
EXPECT_ARITY(2, kExprF32Ge);
EXPECT_ARITY(2, kExprF64Add);
EXPECT_ARITY(2, kExprF64Sub);
EXPECT_ARITY(2, kExprF64Mul);
EXPECT_ARITY(2, kExprF64Div);
EXPECT_ARITY(2, kExprF64Min);
EXPECT_ARITY(2, kExprF64Max);
EXPECT_ARITY(1, kExprF64Abs);
EXPECT_ARITY(1, kExprF64Neg);
EXPECT_ARITY(2, kExprF64CopySign);
EXPECT_ARITY(1, kExprF64Ceil);
EXPECT_ARITY(1, kExprF64Floor);
EXPECT_ARITY(1, kExprF64Trunc);
EXPECT_ARITY(1, kExprF64NearestInt);
EXPECT_ARITY(1, kExprF64Sqrt);
EXPECT_ARITY(2, kExprF64Eq);
EXPECT_ARITY(2, kExprF64Ne);
EXPECT_ARITY(2, kExprF64Lt);
EXPECT_ARITY(2, kExprF64Le);
EXPECT_ARITY(2, kExprF64Gt);
EXPECT_ARITY(2, kExprF64Ge);
EXPECT_ARITY(1, kExprI32SConvertF32);
EXPECT_ARITY(1, kExprI32SConvertF64);
EXPECT_ARITY(1, kExprI32UConvertF32);
EXPECT_ARITY(1, kExprI32UConvertF64);
EXPECT_ARITY(1, kExprI32ConvertI64);
EXPECT_ARITY(1, kExprI64SConvertF32);
EXPECT_ARITY(1, kExprI64SConvertF64);
EXPECT_ARITY(1, kExprI64UConvertF32);
EXPECT_ARITY(1, kExprI64UConvertF64);
EXPECT_ARITY(1, kExprI64SConvertI32);
EXPECT_ARITY(1, kExprI64UConvertI32);
EXPECT_ARITY(1, kExprF32SConvertI32);
EXPECT_ARITY(1, kExprF32UConvertI32);
EXPECT_ARITY(1, kExprF32SConvertI64);
EXPECT_ARITY(1, kExprF32UConvertI64);
EXPECT_ARITY(1, kExprF32ConvertF64);
EXPECT_ARITY(1, kExprF32ReinterpretI32);
EXPECT_ARITY(1, kExprF64SConvertI32);
EXPECT_ARITY(1, kExprF64UConvertI32);
EXPECT_ARITY(1, kExprF64SConvertI64);
EXPECT_ARITY(1, kExprF64UConvertI64);
EXPECT_ARITY(1, kExprF64ConvertF32);
EXPECT_ARITY(1, kExprF64ReinterpretI64);
EXPECT_ARITY(1, kExprI32ReinterpretF32);
EXPECT_ARITY(1, kExprI64ReinterpretF64);
}
typedef std::vector<LocalType>* LocalTypeMap;
class LocalDeclDecoderTest : public TestWithZone {
public:
size_t ExpectRun(LocalTypeMap map, size_t pos, LocalType expected,
size_t count) {
for (size_t i = 0; i < count; i++) {
EXPECT_EQ(expected, map->at(pos++));
}
return pos;
}
};
TEST_F(LocalDeclDecoderTest, NoLocals) {
static const byte data[] = {0};
LocalTypeMap map = DecodeLocalDeclsForTesting(data, data + sizeof(data));
EXPECT_EQ(0, map->size());
if (map) delete map;
}
TEST_F(LocalDeclDecoderTest, OneLocal) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType type = kLocalTypes[i];
const byte data[] = {
1, 1, static_cast<byte>(WasmOpcodes::LocalTypeCodeFor(type))};
LocalTypeMap map = DecodeLocalDeclsForTesting(data, data + sizeof(data));
EXPECT_EQ(1, map->size());
EXPECT_EQ(type, map->at(0));
if (map) delete map;
}
}
TEST_F(LocalDeclDecoderTest, FiveLocals) {
for (size_t i = 0; i < arraysize(kLocalTypes); i++) {
LocalType type = kLocalTypes[i];
const byte data[] = {
1, 5, static_cast<byte>(WasmOpcodes::LocalTypeCodeFor(type))};
LocalTypeMap map = DecodeLocalDeclsForTesting(data, data + sizeof(data));
EXPECT_EQ(5, map->size());
ExpectRun(map, 0, type, 5);
if (map) delete map;
}
}
TEST_F(LocalDeclDecoderTest, MixedLocals) {
for (byte a = 0; a < 3; a++) {
for (byte b = 0; b < 3; b++) {
for (byte c = 0; c < 3; c++) {
for (byte d = 0; d < 3; d++) {
const byte data[] = {4, a, kLocalI32, b, kLocalI64,
c, kLocalF32, d, kLocalF64};
LocalTypeMap map =
DecodeLocalDeclsForTesting(data, data + sizeof(data));
EXPECT_EQ(a + b + c + d, map->size());
size_t pos = 0;
pos = ExpectRun(map, pos, kAstI32, a);
pos = ExpectRun(map, pos, kAstI64, b);
pos = ExpectRun(map, pos, kAstF32, c);
pos = ExpectRun(map, pos, kAstF64, d);
if (map) delete map;
}
}
}
}
}
TEST_F(LocalDeclDecoderTest, UseEncoder) {
const byte* data = nullptr;
const byte* end = nullptr;
LocalDeclEncoder local_decls;
local_decls.AddLocals(5, kAstF32);
local_decls.AddLocals(1337, kAstI32);
local_decls.AddLocals(212, kAstI64);
local_decls.Prepend(&data, &end);
LocalTypeMap map = DecodeLocalDeclsForTesting(data, end);
size_t pos = 0;
pos = ExpectRun(map, pos, kAstF32, 5);
pos = ExpectRun(map, pos, kAstI32, 1337);
pos = ExpectRun(map, pos, kAstI64, 212);
if (map) delete map;
delete[] data;
}
} // namespace wasm
} // namespace internal
} // namespace v8