v8/include/v8.h

6599 lines
200 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/** \mainpage V8 API Reference Guide
*
* V8 is Google's open source JavaScript engine.
*
* This set of documents provides reference material generated from the
* V8 header file, include/v8.h.
*
* For other documentation see http://code.google.com/apis/v8/
*/
#ifndef V8_H_
#define V8_H_
#include "v8stdint.h"
// We reserve the V8_* prefix for macros defined in V8 public API and
// assume there are no name conflicts with the embedder's code.
#ifdef V8_OS_WIN
// Setup for Windows DLL export/import. When building the V8 DLL the
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
// static library or building a program which uses the V8 static library neither
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
build configuration to ensure that at most one of these is set
#endif
#ifdef BUILDING_V8_SHARED
# define V8_EXPORT __declspec(dllexport)
#elif USING_V8_SHARED
# define V8_EXPORT __declspec(dllimport)
#else
# define V8_EXPORT
#endif // BUILDING_V8_SHARED
#else // V8_OS_WIN
// Setup for Linux shared library export.
#if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
# ifdef BUILDING_V8_SHARED
# define V8_EXPORT __attribute__ ((visibility("default")))
# else
# define V8_EXPORT
# endif
#else
# define V8_EXPORT
#endif
#endif // V8_OS_WIN
/**
* The v8 JavaScript engine.
*/
namespace v8 {
class AccessorSignature;
class Array;
class Boolean;
class BooleanObject;
class Context;
class CpuProfiler;
class Data;
class Date;
class DeclaredAccessorDescriptor;
class External;
class Function;
class FunctionTemplate;
class HeapProfiler;
class ImplementationUtilities;
class Int32;
class Integer;
class Isolate;
class Number;
class NumberObject;
class Object;
class ObjectOperationDescriptor;
class ObjectTemplate;
class Platform;
class Primitive;
class RawOperationDescriptor;
class Script;
class Signature;
class StackFrame;
class StackTrace;
class String;
class StringObject;
class Symbol;
class SymbolObject;
class Private;
class Uint32;
class Utils;
class Value;
template <class T> class Handle;
template <class T> class Local;
template <class T> class Eternal;
template<class T> class NonCopyablePersistentTraits;
template<class T> class PersistentBase;
template<class T,
class M = NonCopyablePersistentTraits<T> > class Persistent;
template<class T> class UniquePersistent;
template<class K, class V, class T> class PersistentValueMap;
template<class V, class T> class PersistentValueVector;
template<class T, class P> class WeakCallbackObject;
class FunctionTemplate;
class ObjectTemplate;
class Data;
template<typename T> class FunctionCallbackInfo;
template<typename T> class PropertyCallbackInfo;
class StackTrace;
class StackFrame;
class Isolate;
class DeclaredAccessorDescriptor;
class ObjectOperationDescriptor;
class RawOperationDescriptor;
class CallHandlerHelper;
class EscapableHandleScope;
template<typename T> class ReturnValue;
namespace internal {
class Arguments;
class Heap;
class HeapObject;
class Isolate;
class Object;
template<typename T> class CustomArguments;
class PropertyCallbackArguments;
class FunctionCallbackArguments;
class GlobalHandles;
}
/**
* General purpose unique identifier.
*/
class UniqueId {
public:
explicit UniqueId(intptr_t data)
: data_(data) {}
bool operator==(const UniqueId& other) const {
return data_ == other.data_;
}
bool operator!=(const UniqueId& other) const {
return data_ != other.data_;
}
bool operator<(const UniqueId& other) const {
return data_ < other.data_;
}
private:
intptr_t data_;
};
// --- Handles ---
#define TYPE_CHECK(T, S) \
while (false) { \
*(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
}
/**
* An object reference managed by the v8 garbage collector.
*
* All objects returned from v8 have to be tracked by the garbage
* collector so that it knows that the objects are still alive. Also,
* because the garbage collector may move objects, it is unsafe to
* point directly to an object. Instead, all objects are stored in
* handles which are known by the garbage collector and updated
* whenever an object moves. Handles should always be passed by value
* (except in cases like out-parameters) and they should never be
* allocated on the heap.
*
* There are two types of handles: local and persistent handles.
* Local handles are light-weight and transient and typically used in
* local operations. They are managed by HandleScopes. Persistent
* handles can be used when storing objects across several independent
* operations and have to be explicitly deallocated when they're no
* longer used.
*
* It is safe to extract the object stored in the handle by
* dereferencing the handle (for instance, to extract the Object* from
* a Handle<Object>); the value will still be governed by a handle
* behind the scenes and the same rules apply to these values as to
* their handles.
*/
template <class T> class Handle {
public:
/**
* Creates an empty handle.
*/
V8_INLINE Handle() : val_(0) {}
/**
* Creates a handle for the contents of the specified handle. This
* constructor allows you to pass handles as arguments by value and
* to assign between handles. However, if you try to assign between
* incompatible handles, for instance from a Handle<String> to a
* Handle<Number> it will cause a compile-time error. Assigning
* between compatible handles, for instance assigning a
* Handle<String> to a variable declared as Handle<Value>, is legal
* because String is a subclass of Value.
*/
template <class S> V8_INLINE Handle(Handle<S> that)
: val_(reinterpret_cast<T*>(*that)) {
/**
* This check fails when trying to convert between incompatible
* handles. For example, converting from a Handle<String> to a
* Handle<Number>.
*/
TYPE_CHECK(T, S);
}
/**
* Returns true if the handle is empty.
*/
V8_INLINE bool IsEmpty() const { return val_ == 0; }
/**
* Sets the handle to be empty. IsEmpty() will then return true.
*/
V8_INLINE void Clear() { val_ = 0; }
V8_INLINE T* operator->() const { return val_; }
V8_INLINE T* operator*() const { return val_; }
/**
* Checks whether two handles are the same.
* Returns true if both are empty, or if the objects
* to which they refer are identical.
* The handles' references are not checked.
*/
template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
template <class S> V8_INLINE bool operator==(
const PersistentBase<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
/**
* Checks whether two handles are different.
* Returns true if only one of the handles is empty, or if
* the objects to which they refer are different.
* The handles' references are not checked.
*/
template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
return !operator==(that);
}
template <class S> V8_INLINE bool operator!=(
const Persistent<S>& that) const {
return !operator==(that);
}
template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) {
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (that.IsEmpty()) return Handle<T>();
#endif
return Handle<T>(T::Cast(*that));
}
template <class S> V8_INLINE Handle<S> As() {
return Handle<S>::Cast(*this);
}
V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) {
return New(isolate, that.val_);
}
V8_INLINE static Handle<T> New(Isolate* isolate,
const PersistentBase<T>& that) {
return New(isolate, that.val_);
}
private:
friend class Utils;
template<class F, class M> friend class Persistent;
template<class F> friend class PersistentBase;
template<class F> friend class Handle;
template<class F> friend class Local;
template<class F> friend class FunctionCallbackInfo;
template<class F> friend class PropertyCallbackInfo;
template<class F> friend class internal::CustomArguments;
friend Handle<Primitive> Undefined(Isolate* isolate);
friend Handle<Primitive> Null(Isolate* isolate);
friend Handle<Boolean> True(Isolate* isolate);
friend Handle<Boolean> False(Isolate* isolate);
friend class Context;
friend class HandleScope;
friend class Object;
friend class Private;
/**
* Creates a new handle for the specified value.
*/
V8_INLINE explicit Handle(T* val) : val_(val) {}
V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
T* val_;
};
/**
* A light-weight stack-allocated object handle. All operations
* that return objects from within v8 return them in local handles. They
* are created within HandleScopes, and all local handles allocated within a
* handle scope are destroyed when the handle scope is destroyed. Hence it
* is not necessary to explicitly deallocate local handles.
*/
template <class T> class Local : public Handle<T> {
public:
V8_INLINE Local();
template <class S> V8_INLINE Local(Local<S> that)
: Handle<T>(reinterpret_cast<T*>(*that)) {
/**
* This check fails when trying to convert between incompatible
* handles. For example, converting from a Handle<String> to a
* Handle<Number>.
*/
TYPE_CHECK(T, S);
}
template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (that.IsEmpty()) return Local<T>();
#endif
return Local<T>(T::Cast(*that));
}
template <class S> V8_INLINE Local(Handle<S> that)
: Handle<T>(reinterpret_cast<T*>(*that)) {
TYPE_CHECK(T, S);
}
template <class S> V8_INLINE Local<S> As() {
return Local<S>::Cast(*this);
}
/**
* Create a local handle for the content of another handle.
* The referee is kept alive by the local handle even when
* the original handle is destroyed/disposed.
*/
V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that);
V8_INLINE static Local<T> New(Isolate* isolate,
const PersistentBase<T>& that);
private:
friend class Utils;
template<class F> friend class Eternal;
template<class F> friend class PersistentBase;
template<class F, class M> friend class Persistent;
template<class F> friend class Handle;
template<class F> friend class Local;
template<class F> friend class FunctionCallbackInfo;
template<class F> friend class PropertyCallbackInfo;
friend class String;
friend class Object;
friend class Context;
template<class F> friend class internal::CustomArguments;
friend class HandleScope;
friend class EscapableHandleScope;
template<class F1, class F2, class F3> friend class PersistentValueMap;
template<class F1, class F2> friend class PersistentValueVector;
template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { }
V8_INLINE static Local<T> New(Isolate* isolate, T* that);
};
// Eternal handles are set-once handles that live for the life of the isolate.
template <class T> class Eternal {
public:
V8_INLINE Eternal() : index_(kInitialValue) { }
template<class S>
V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
Set(isolate, handle);
}
// Can only be safely called if already set.
V8_INLINE Local<T> Get(Isolate* isolate);
V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
private:
static const int kInitialValue = -1;
int index_;
};
template<class T, class P>
class WeakCallbackData {
public:
typedef void (*Callback)(const WeakCallbackData<T, P>& data);
V8_INLINE Isolate* GetIsolate() const { return isolate_; }
V8_INLINE Local<T> GetValue() const { return handle_; }
V8_INLINE P* GetParameter() const { return parameter_; }
private:
friend class internal::GlobalHandles;
WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter)
: isolate_(isolate), handle_(handle), parameter_(parameter) { }
Isolate* isolate_;
Local<T> handle_;
P* parameter_;
};
/**
* An object reference that is independent of any handle scope. Where
* a Local handle only lives as long as the HandleScope in which it was
* allocated, a PersistentBase handle remains valid until it is explicitly
* disposed.
*
* A persistent handle contains a reference to a storage cell within
* the v8 engine which holds an object value and which is updated by
* the garbage collector whenever the object is moved. A new storage
* cell can be created using the constructor or PersistentBase::Reset and
* existing handles can be disposed using PersistentBase::Reset.
*
*/
template <class T> class PersistentBase {
public:
/**
* If non-empty, destroy the underlying storage cell
* IsEmpty() will return true after this call.
*/
V8_INLINE void Reset();
/**
* If non-empty, destroy the underlying storage cell
* and create a new one with the contents of other if other is non empty
*/
template <class S>
V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
/**
* If non-empty, destroy the underlying storage cell
* and create a new one with the contents of other if other is non empty
*/
template <class S>
V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
V8_INLINE bool IsEmpty() const { return val_ == 0; }
template <class S>
V8_INLINE bool operator==(const PersistentBase<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
if (a == 0) return b == 0;
if (b == 0) return false;
return *a == *b;
}
template <class S>
V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
return !operator==(that);
}
template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
return !operator==(that);
}
/**
* Install a finalization callback on this object.
* NOTE: There is no guarantee as to *when* or even *if* the callback is
* invoked. The invocation is performed solely on a best effort basis.
* As always, GC-based finalization should *not* be relied upon for any
* critical form of resource management!
*/
template<typename P>
V8_INLINE void SetWeak(
P* parameter,
typename WeakCallbackData<T, P>::Callback callback);
template<typename S, typename P>
V8_INLINE void SetWeak(
P* parameter,
typename WeakCallbackData<S, P>::Callback callback);
template<typename P>
V8_INLINE P* ClearWeak();
// TODO(dcarney): remove this.
V8_INLINE void ClearWeak() { ClearWeak<void>(); }
/**
* Marks the reference to this object independent. Garbage collector is free
* to ignore any object groups containing this object. Weak callback for an
* independent handle should not assume that it will be preceded by a global
* GC prologue callback or followed by a global GC epilogue callback.
*/
V8_INLINE void MarkIndependent();
/**
* Marks the reference to this object partially dependent. Partially dependent
* handles only depend on other partially dependent handles and these
* dependencies are provided through object groups. It provides a way to build
* smaller object groups for young objects that represent only a subset of all
* external dependencies. This mark is automatically cleared after each
* garbage collection.
*/
V8_INLINE void MarkPartiallyDependent();
V8_INLINE bool IsIndependent() const;
/** Checks if the handle holds the only reference to an object. */
V8_INLINE bool IsNearDeath() const;
/** Returns true if the handle's reference is weak. */
V8_INLINE bool IsWeak() const;
/**
* Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
* description in v8-profiler.h for details.
*/
V8_INLINE void SetWrapperClassId(uint16_t class_id);
/**
* Returns the class ID previously assigned to this handle or 0 if no class ID
* was previously assigned.
*/
V8_INLINE uint16_t WrapperClassId() const;
private:
friend class Isolate;
friend class Utils;
template<class F> friend class Handle;
template<class F> friend class Local;
template<class F1, class F2> friend class Persistent;
template<class F> friend class UniquePersistent;
template<class F> friend class PersistentBase;
template<class F> friend class ReturnValue;
template<class F1, class F2, class F3> friend class PersistentValueMap;
template<class F1, class F2> friend class PersistentValueVector;
friend class Object;
explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
PersistentBase(PersistentBase& other); // NOLINT
void operator=(PersistentBase&);
V8_INLINE static T* New(Isolate* isolate, T* that);
T* val_;
};
/**
* Default traits for Persistent. This class does not allow
* use of the copy constructor or assignment operator.
* At present kResetInDestructor is not set, but that will change in a future
* version.
*/
template<class T>
class NonCopyablePersistentTraits {
public:
typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
static const bool kResetInDestructor = false;
template<class S, class M>
V8_INLINE static void Copy(const Persistent<S, M>& source,
NonCopyablePersistent* dest) {
Uncompilable<Object>();
}
// TODO(dcarney): come up with a good compile error here.
template<class O> V8_INLINE static void Uncompilable() {
TYPE_CHECK(O, Primitive);
}
};
/**
* Helper class traits to allow copying and assignment of Persistent.
* This will clone the contents of storage cell, but not any of the flags, etc.
*/
template<class T>
struct CopyablePersistentTraits {
typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
static const bool kResetInDestructor = true;
template<class S, class M>
static V8_INLINE void Copy(const Persistent<S, M>& source,
CopyablePersistent* dest) {
// do nothing, just allow copy
}
};
/**
* A PersistentBase which allows copy and assignment.
*
* Copy, assignment and destructor bevavior is controlled by the traits
* class M.
*
* Note: Persistent class hierarchy is subject to future changes.
*/
template <class T, class M> class Persistent : public PersistentBase<T> {
public:
/**
* A Persistent with no storage cell.
*/
V8_INLINE Persistent() : PersistentBase<T>(0) { }
/**
* Construct a Persistent from a Handle.
* When the Handle is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* Construct a Persistent from a Persistent.
* When the Persistent is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S, class M2>
V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* The copy constructors and assignment operator create a Persistent
* exactly as the Persistent constructor, but the Copy function from the
* traits class is called, allowing the setting of flags based on the
* copied Persistent.
*/
V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
Copy(that);
}
template <class S, class M2>
V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
Copy(that);
}
V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
Copy(that);
return *this;
}
template <class S, class M2>
V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
Copy(that);
return *this;
}
/**
* The destructor will dispose the Persistent based on the
* kResetInDestructor flags in the traits class. Since not calling dispose
* can result in a memory leak, it is recommended to always set this flag.
*/
V8_INLINE ~Persistent() {
if (M::kResetInDestructor) this->Reset();
}
// TODO(dcarney): this is pretty useless, fix or remove
template <class S>
V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
#ifdef V8_ENABLE_CHECKS
// If we're going to perform the type check then we have to check
// that the handle isn't empty before doing the checked cast.
if (!that.IsEmpty()) T::Cast(*that);
#endif
return reinterpret_cast<Persistent<T>&>(that);
}
// TODO(dcarney): this is pretty useless, fix or remove
template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
return Persistent<S>::Cast(*this);
}
// This will be removed.
V8_INLINE T* ClearAndLeak();
private:
friend class Isolate;
friend class Utils;
template<class F> friend class Handle;
template<class F> friend class Local;
template<class F1, class F2> friend class Persistent;
template<class F> friend class ReturnValue;
template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
V8_INLINE T* operator*() const { return this->val_; }
template<class S, class M2>
V8_INLINE void Copy(const Persistent<S, M2>& that);
};
/**
* A PersistentBase which has move semantics.
*
* Note: Persistent class hierarchy is subject to future changes.
*/
template<class T>
class UniquePersistent : public PersistentBase<T> {
struct RValue {
V8_INLINE explicit RValue(UniquePersistent* obj) : object(obj) {}
UniquePersistent* object;
};
public:
/**
* A UniquePersistent with no storage cell.
*/
V8_INLINE UniquePersistent() : PersistentBase<T>(0) { }
/**
* Construct a UniquePersistent from a Handle.
* When the Handle is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S>
V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
TYPE_CHECK(T, S);
}
/**
* Construct a UniquePersistent from a PersistentBase.
* When the Persistent is non-empty, a new storage cell is created
* pointing to the same object, and no flags are set.
*/
template <class S>
V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that)
: PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
TYPE_CHECK(T, S);
}
/**
* Move constructor.
*/
V8_INLINE UniquePersistent(RValue rvalue)
: PersistentBase<T>(rvalue.object->val_) {
rvalue.object->val_ = 0;
}
V8_INLINE ~UniquePersistent() { this->Reset(); }
/**
* Move via assignment.
*/
template<class S>
V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) {
TYPE_CHECK(T, S);
this->Reset();
this->val_ = rhs.val_;
rhs.val_ = 0;
return *this;
}
/**
* Cast operator for moves.
*/
V8_INLINE operator RValue() { return RValue(this); }
/**
* Pass allows returning uniques from functions, etc.
*/
UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
private:
UniquePersistent(UniquePersistent&);
void operator=(UniquePersistent&);
};
/**
* A stack-allocated class that governs a number of local handles.
* After a handle scope has been created, all local handles will be
* allocated within that handle scope until either the handle scope is
* deleted or another handle scope is created. If there is already a
* handle scope and a new one is created, all allocations will take
* place in the new handle scope until it is deleted. After that,
* new handles will again be allocated in the original handle scope.
*
* After the handle scope of a local handle has been deleted the
* garbage collector will no longer track the object stored in the
* handle and may deallocate it. The behavior of accessing a handle
* for which the handle scope has been deleted is undefined.
*/
class V8_EXPORT HandleScope {
public:
HandleScope(Isolate* isolate);
~HandleScope();
/**
* Counts the number of allocated handles.
*/
static int NumberOfHandles(Isolate* isolate);
V8_INLINE Isolate* GetIsolate() const {
return reinterpret_cast<Isolate*>(isolate_);
}
protected:
V8_INLINE HandleScope() {}
void Initialize(Isolate* isolate);
static internal::Object** CreateHandle(internal::Isolate* isolate,
internal::Object* value);
private:
// Uses heap_object to obtain the current Isolate.
static internal::Object** CreateHandle(internal::HeapObject* heap_object,
internal::Object* value);
// Make it hard to create heap-allocated or illegal handle scopes by
// disallowing certain operations.
HandleScope(const HandleScope&);
void operator=(const HandleScope&);
void* operator new(size_t size);
void operator delete(void*, size_t);
internal::Isolate* isolate_;
internal::Object** prev_next_;
internal::Object** prev_limit_;
// Local::New uses CreateHandle with an Isolate* parameter.
template<class F> friend class Local;
// Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
// a HeapObject* in their shortcuts.
friend class Object;
friend class Context;
};
/**
* A HandleScope which first allocates a handle in the current scope
* which will be later filled with the escape value.
*/
class V8_EXPORT EscapableHandleScope : public HandleScope {
public:
EscapableHandleScope(Isolate* isolate);
V8_INLINE ~EscapableHandleScope() {}
/**
* Pushes the value into the previous scope and returns a handle to it.
* Cannot be called twice.
*/
template <class T>
V8_INLINE Local<T> Escape(Local<T> value) {
internal::Object** slot =
Escape(reinterpret_cast<internal::Object**>(*value));
return Local<T>(reinterpret_cast<T*>(slot));
}
private:
internal::Object** Escape(internal::Object** escape_value);
// Make it hard to create heap-allocated or illegal handle scopes by
// disallowing certain operations.
EscapableHandleScope(const EscapableHandleScope&);
void operator=(const EscapableHandleScope&);
void* operator new(size_t size);
void operator delete(void*, size_t);
internal::Object** escape_slot_;
};
/**
* A simple Maybe type, representing an object which may or may not have a
* value.
*/
template<class T>
struct Maybe {
Maybe() : has_value(false) {}
explicit Maybe(T t) : has_value(true), value(t) {}
Maybe(bool has, T t) : has_value(has), value(t) {}
bool has_value;
T value;
};
// --- Special objects ---
/**
* The superclass of values and API object templates.
*/
class V8_EXPORT Data {
private:
Data();
};
/**
* The origin, within a file, of a script.
*/
class ScriptOrigin {
public:
V8_INLINE ScriptOrigin(
Handle<Value> resource_name,
Handle<Integer> resource_line_offset = Handle<Integer>(),
Handle<Integer> resource_column_offset = Handle<Integer>(),
Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>())
: resource_name_(resource_name),
resource_line_offset_(resource_line_offset),
resource_column_offset_(resource_column_offset),
resource_is_shared_cross_origin_(resource_is_shared_cross_origin) { }
V8_INLINE Handle<Value> ResourceName() const;
V8_INLINE Handle<Integer> ResourceLineOffset() const;
V8_INLINE Handle<Integer> ResourceColumnOffset() const;
V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const;
private:
Handle<Value> resource_name_;
Handle<Integer> resource_line_offset_;
Handle<Integer> resource_column_offset_;
Handle<Boolean> resource_is_shared_cross_origin_;
};
/**
* A compiled JavaScript script, not yet tied to a Context.
*/
class V8_EXPORT UnboundScript {
public:
/**
* Binds the script to the currently entered context.
*/
Local<Script> BindToCurrentContext();
int GetId();
Handle<Value> GetScriptName();
/**
* Returns zero based line number of the code_pos location in the script.
* -1 will be returned if no information available.
*/
int GetLineNumber(int code_pos);
static const int kNoScriptId = 0;
};
/**
* A compiled JavaScript script, tied to a Context which was active when the
* script was compiled.
*/
class V8_EXPORT Script {
public:
/**
* A shorthand for ScriptCompiler::Compile().
*/
static Local<Script> Compile(Handle<String> source,
ScriptOrigin* origin = NULL);
// To be decprecated, use the Compile above.
static Local<Script> Compile(Handle<String> source,
Handle<String> file_name);
/**
* Runs the script returning the resulting value. It will be run in the
* context in which it was created (ScriptCompiler::CompileBound or
* UnboundScript::BindToGlobalContext()).
*/
Local<Value> Run();
/**
* Returns the corresponding context-unbound script.
*/
Local<UnboundScript> GetUnboundScript();
// To be deprecated; use GetUnboundScript()->GetId();
int GetId() {
return GetUnboundScript()->GetId();
}
// Use GetUnboundScript()->GetId();
V8_DEPRECATED("Use GetUnboundScript()->GetId()",
Handle<Value> GetScriptName()) {
return GetUnboundScript()->GetScriptName();
}
/**
* Returns zero based line number of the code_pos location in the script.
* -1 will be returned if no information available.
*/
V8_DEPRECATED("Use GetUnboundScript()->GetLineNumber()",
int GetLineNumber(int code_pos)) {
return GetUnboundScript()->GetLineNumber(code_pos);
}
};
/**
* For compiling scripts.
*/
class V8_EXPORT ScriptCompiler {
public:
/**
* Compilation data that the embedder can cache and pass back to speed up
* future compilations. The data is produced if the CompilerOptions passed to
* the compilation functions in ScriptCompiler contains produce_data_to_cache
* = true. The data to cache can then can be retrieved from
* UnboundScript.
*/
struct V8_EXPORT CachedData {
enum BufferPolicy {
BufferNotOwned,
BufferOwned
};
CachedData() : data(NULL), length(0), buffer_policy(BufferNotOwned) {}
// If buffer_policy is BufferNotOwned, the caller keeps the ownership of
// data and guarantees that it stays alive until the CachedData object is
// destroyed. If the policy is BufferOwned, the given data will be deleted
// (with delete[]) when the CachedData object is destroyed.
CachedData(const uint8_t* data, int length,
BufferPolicy buffer_policy = BufferNotOwned);
~CachedData();
// TODO(marja): Async compilation; add constructors which take a callback
// which will be called when V8 no longer needs the data.
const uint8_t* data;
int length;
BufferPolicy buffer_policy;
private:
// Prevent copying. Not implemented.
CachedData(const CachedData&);
CachedData& operator=(const CachedData&);
};
/**
* Source code which can be then compiled to a UnboundScript or
* BoundScript.
*/
class Source {
public:
// Source takes ownership of CachedData.
V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
CachedData* cached_data = NULL);
V8_INLINE Source(Local<String> source_string,
CachedData* cached_data = NULL);
V8_INLINE ~Source();
// Ownership of the CachedData or its buffers is *not* transferred to the
// caller. The CachedData object is alive as long as the Source object is
// alive.
V8_INLINE const CachedData* GetCachedData() const;
private:
friend class ScriptCompiler;
// Prevent copying. Not implemented.
Source(const Source&);
Source& operator=(const Source&);
Local<String> source_string;
// Origin information
Handle<Value> resource_name;
Handle<Integer> resource_line_offset;
Handle<Integer> resource_column_offset;
Handle<Boolean> resource_is_shared_cross_origin;
// Cached data from previous compilation (if any), or generated during
// compilation (if the generate_cached_data flag is passed to
// ScriptCompiler).
CachedData* cached_data;
};
enum CompileOptions {
kNoCompileOptions,
kProduceDataToCache = 1 << 0
};
/**
* Compiles the specified script (context-independent).
*
* \param source Script source code.
* \return Compiled script object (context independent; for running it must be
* bound to a context).
*/
static Local<UnboundScript> CompileUnbound(
Isolate* isolate, Source* source,
CompileOptions options = kNoCompileOptions);
/**
* Compiles the specified script (bound to current context).
*
* \param source Script source code.
* \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
* using pre_data speeds compilation if it's done multiple times.
* Owned by caller, no references are kept when this function returns.
* \return Compiled script object, bound to the context that was active
* when this function was called. When run it will always use this
* context.
*/
static Local<Script> Compile(
Isolate* isolate, Source* source,
CompileOptions options = kNoCompileOptions);
};
/**
* An error message.
*/
class V8_EXPORT Message {
public:
Local<String> Get() const;
Local<String> GetSourceLine() const;
/**
* Returns the resource name for the script from where the function causing
* the error originates.
*/
Handle<Value> GetScriptResourceName() const;
/**
* Returns the resource data for the script from where the function causing
* the error originates.
*/
Handle<Value> GetScriptData() const;
/**
* Exception stack trace. By default stack traces are not captured for
* uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
* to change this option.
*/
Handle<StackTrace> GetStackTrace() const;
/**
* Returns the number, 1-based, of the line where the error occurred.
*/
int GetLineNumber() const;
/**
* Returns the index within the script of the first character where
* the error occurred.
*/
int GetStartPosition() const;
/**
* Returns the index within the script of the last character where
* the error occurred.
*/
int GetEndPosition() const;
/**
* Returns the index within the line of the first character where
* the error occurred.
*/
int GetStartColumn() const;
/**
* Returns the index within the line of the last character where
* the error occurred.
*/
int GetEndColumn() const;
/**
* Passes on the value set by the embedder when it fed the script from which
* this Message was generated to V8.
*/
bool IsSharedCrossOrigin() const;
// TODO(1245381): Print to a string instead of on a FILE.
static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
static const int kNoLineNumberInfo = 0;
static const int kNoColumnInfo = 0;
static const int kNoScriptIdInfo = 0;
};
/**
* Representation of a JavaScript stack trace. The information collected is a
* snapshot of the execution stack and the information remains valid after
* execution continues.
*/
class V8_EXPORT StackTrace {
public:
/**
* Flags that determine what information is placed captured for each
* StackFrame when grabbing the current stack trace.
*/
enum StackTraceOptions {
kLineNumber = 1,
kColumnOffset = 1 << 1 | kLineNumber,
kScriptName = 1 << 2,
kFunctionName = 1 << 3,
kIsEval = 1 << 4,
kIsConstructor = 1 << 5,
kScriptNameOrSourceURL = 1 << 6,
kScriptId = 1 << 7,
kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
};
/**
* Returns a StackFrame at a particular index.
*/
Local<StackFrame> GetFrame(uint32_t index) const;
/**
* Returns the number of StackFrames.
*/
int GetFrameCount() const;
/**
* Returns StackTrace as a v8::Array that contains StackFrame objects.
*/
Local<Array> AsArray();
/**
* Grab a snapshot of the current JavaScript execution stack.
*
* \param frame_limit The maximum number of stack frames we want to capture.
* \param options Enumerates the set of things we will capture for each
* StackFrame.
*/
static Local<StackTrace> CurrentStackTrace(
Isolate* isolate,
int frame_limit,
StackTraceOptions options = kOverview);
};
/**
* A single JavaScript stack frame.
*/
class V8_EXPORT StackFrame {
public:
/**
* Returns the number, 1-based, of the line for the associate function call.
* This method will return Message::kNoLineNumberInfo if it is unable to
* retrieve the line number, or if kLineNumber was not passed as an option
* when capturing the StackTrace.
*/
int GetLineNumber() const;
/**
* Returns the 1-based column offset on the line for the associated function
* call.
* This method will return Message::kNoColumnInfo if it is unable to retrieve
* the column number, or if kColumnOffset was not passed as an option when
* capturing the StackTrace.
*/
int GetColumn() const;
/**
* Returns the id of the script for the function for this StackFrame.
* This method will return Message::kNoScriptIdInfo if it is unable to
* retrieve the script id, or if kScriptId was not passed as an option when
* capturing the StackTrace.
*/
int GetScriptId() const;
/**
* Returns the name of the resource that contains the script for the
* function for this StackFrame.
*/
Local<String> GetScriptName() const;
/**
* Returns the name of the resource that contains the script for the
* function for this StackFrame or sourceURL value if the script name
* is undefined and its source ends with //# sourceURL=... string or
* deprecated //@ sourceURL=... string.
*/
Local<String> GetScriptNameOrSourceURL() const;
/**
* Returns the name of the function associated with this stack frame.
*/
Local<String> GetFunctionName() const;
/**
* Returns whether or not the associated function is compiled via a call to
* eval().
*/
bool IsEval() const;
/**
* Returns whether or not the associated function is called as a
* constructor via "new".
*/
bool IsConstructor() const;
};
/**
* A JSON Parser.
*/
class V8_EXPORT JSON {
public:
/**
* Tries to parse the string |json_string| and returns it as value if
* successful.
*
* \param json_string The string to parse.
* \return The corresponding value if successfully parsed.
*/
static Local<Value> Parse(Local<String> json_string);
};
// --- Value ---
/**
* The superclass of all JavaScript values and objects.
*/
class V8_EXPORT Value : public Data {
public:
/**
* Returns true if this value is the undefined value. See ECMA-262
* 4.3.10.
*/
V8_INLINE bool IsUndefined() const;
/**
* Returns true if this value is the null value. See ECMA-262
* 4.3.11.
*/
V8_INLINE bool IsNull() const;
/**
* Returns true if this value is true.
*/
bool IsTrue() const;
/**
* Returns true if this value is false.
*/
bool IsFalse() const;
/**
* Returns true if this value is an instance of the String type.
* See ECMA-262 8.4.
*/
V8_INLINE bool IsString() const;
/**
* Returns true if this value is a symbol.
* This is an experimental feature.
*/
bool IsSymbol() const;
/**
* Returns true if this value is a function.
*/
bool IsFunction() const;
/**
* Returns true if this value is an array.
*/
bool IsArray() const;
/**
* Returns true if this value is an object.
*/
bool IsObject() const;
/**
* Returns true if this value is boolean.
*/
bool IsBoolean() const;
/**
* Returns true if this value is a number.
*/
bool IsNumber() const;
/**
* Returns true if this value is external.
*/
bool IsExternal() const;
/**
* Returns true if this value is a 32-bit signed integer.
*/
bool IsInt32() const;
/**
* Returns true if this value is a 32-bit unsigned integer.
*/
bool IsUint32() const;
/**
* Returns true if this value is a Date.
*/
bool IsDate() const;
/**
* Returns true if this value is a Boolean object.
*/
bool IsBooleanObject() const;
/**
* Returns true if this value is a Number object.
*/
bool IsNumberObject() const;
/**
* Returns true if this value is a String object.
*/
bool IsStringObject() const;
/**
* Returns true if this value is a Symbol object.
* This is an experimental feature.
*/
bool IsSymbolObject() const;
/**
* Returns true if this value is a NativeError.
*/
bool IsNativeError() const;
/**
* Returns true if this value is a RegExp.
*/
bool IsRegExp() const;
/**
* Returns true if this value is a Promise.
* This is an experimental feature.
*/
bool IsPromise() const;
/**
* Returns true if this value is an ArrayBuffer.
* This is an experimental feature.
*/
bool IsArrayBuffer() const;
/**
* Returns true if this value is an ArrayBufferView.
* This is an experimental feature.
*/
bool IsArrayBufferView() const;
/**
* Returns true if this value is one of TypedArrays.
* This is an experimental feature.
*/
bool IsTypedArray() const;
/**
* Returns true if this value is an Uint8Array.
* This is an experimental feature.
*/
bool IsUint8Array() const;
/**
* Returns true if this value is an Uint8ClampedArray.
* This is an experimental feature.
*/
bool IsUint8ClampedArray() const;
/**
* Returns true if this value is an Int8Array.
* This is an experimental feature.
*/
bool IsInt8Array() const;
/**
* Returns true if this value is an Uint16Array.
* This is an experimental feature.
*/
bool IsUint16Array() const;
/**
* Returns true if this value is an Int16Array.
* This is an experimental feature.
*/
bool IsInt16Array() const;
/**
* Returns true if this value is an Uint32Array.
* This is an experimental feature.
*/
bool IsUint32Array() const;
/**
* Returns true if this value is an Int32Array.
* This is an experimental feature.
*/
bool IsInt32Array() const;
/**
* Returns true if this value is a Float32Array.
* This is an experimental feature.
*/
bool IsFloat32Array() const;
/**
* Returns true if this value is a Float64Array.
* This is an experimental feature.
*/
bool IsFloat64Array() const;
/**
* Returns true if this value is a DataView.
* This is an experimental feature.
*/
bool IsDataView() const;
Local<Boolean> ToBoolean() const;
Local<Number> ToNumber() const;
Local<String> ToString() const;
Local<String> ToDetailString() const;
Local<Object> ToObject() const;
Local<Integer> ToInteger() const;
Local<Uint32> ToUint32() const;
Local<Int32> ToInt32() const;
/**
* Attempts to convert a string to an array index.
* Returns an empty handle if the conversion fails.
*/
Local<Uint32> ToArrayIndex() const;
bool BooleanValue() const;
double NumberValue() const;
int64_t IntegerValue() const;
uint32_t Uint32Value() const;
int32_t Int32Value() const;
/** JS == */
bool Equals(Handle<Value> that) const;
bool StrictEquals(Handle<Value> that) const;
bool SameValue(Handle<Value> that) const;
template <class T> V8_INLINE static Value* Cast(T* value);
private:
V8_INLINE bool QuickIsUndefined() const;
V8_INLINE bool QuickIsNull() const;
V8_INLINE bool QuickIsString() const;
bool FullIsUndefined() const;
bool FullIsNull() const;
bool FullIsString() const;
};
/**
* The superclass of primitive values. See ECMA-262 4.3.2.
*/
class V8_EXPORT Primitive : public Value { };
/**
* A primitive boolean value (ECMA-262, 4.3.14). Either the true
* or false value.
*/
class V8_EXPORT Boolean : public Primitive {
public:
bool Value() const;
V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value);
};
/**
* A JavaScript string value (ECMA-262, 4.3.17).
*/
class V8_EXPORT String : public Primitive {
public:
enum Encoding {
UNKNOWN_ENCODING = 0x1,
TWO_BYTE_ENCODING = 0x0,
ASCII_ENCODING = 0x4,
ONE_BYTE_ENCODING = 0x4
};
/**
* Returns the number of characters in this string.
*/
int Length() const;
/**
* Returns the number of bytes in the UTF-8 encoded
* representation of this string.
*/
int Utf8Length() const;
/**
* Returns whether this string is known to contain only one byte data.
* Does not read the string.
* False negatives are possible.
*/
bool IsOneByte() const;
/**
* Returns whether this string contain only one byte data.
* Will read the entire string in some cases.
*/
bool ContainsOnlyOneByte() const;
/**
* Write the contents of the string to an external buffer.
* If no arguments are given, expects the buffer to be large
* enough to hold the entire string and NULL terminator. Copies
* the contents of the string and the NULL terminator into the
* buffer.
*
* WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
* before the end of the buffer.
*
* Copies up to length characters into the output buffer.
* Only null-terminates if there is enough space in the buffer.
*
* \param buffer The buffer into which the string will be copied.
* \param start The starting position within the string at which
* copying begins.
* \param length The number of characters to copy from the string. For
* WriteUtf8 the number of bytes in the buffer.
* \param nchars_ref The number of characters written, can be NULL.
* \param options Various options that might affect performance of this or
* subsequent operations.
* \return The number of characters copied to the buffer excluding the null
* terminator. For WriteUtf8: The number of bytes copied to the buffer
* including the null terminator (if written).
*/
enum WriteOptions {
NO_OPTIONS = 0,
HINT_MANY_WRITES_EXPECTED = 1,
NO_NULL_TERMINATION = 2,
PRESERVE_ASCII_NULL = 4,
// Used by WriteUtf8 to replace orphan surrogate code units with the
// unicode replacement character. Needs to be set to guarantee valid UTF-8
// output.
REPLACE_INVALID_UTF8 = 8
};
// 16-bit character codes.
int Write(uint16_t* buffer,
int start = 0,
int length = -1,
int options = NO_OPTIONS) const;
// One byte characters.
int WriteOneByte(uint8_t* buffer,
int start = 0,
int length = -1,
int options = NO_OPTIONS) const;
// UTF-8 encoded characters.
int WriteUtf8(char* buffer,
int length = -1,
int* nchars_ref = NULL,
int options = NO_OPTIONS) const;
/**
* A zero length string.
*/
V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
/**
* Returns true if the string is external
*/
bool IsExternal() const;
/**
* Returns true if the string is both external and ASCII
*/
bool IsExternalAscii() const;
class V8_EXPORT ExternalStringResourceBase { // NOLINT
public:
virtual ~ExternalStringResourceBase() {}
protected:
ExternalStringResourceBase() {}
/**
* Internally V8 will call this Dispose method when the external string
* resource is no longer needed. The default implementation will use the
* delete operator. This method can be overridden in subclasses to
* control how allocated external string resources are disposed.
*/
virtual void Dispose() { delete this; }
private:
// Disallow copying and assigning.
ExternalStringResourceBase(const ExternalStringResourceBase&);
void operator=(const ExternalStringResourceBase&);
friend class v8::internal::Heap;
};
/**
* An ExternalStringResource is a wrapper around a two-byte string
* buffer that resides outside V8's heap. Implement an
* ExternalStringResource to manage the life cycle of the underlying
* buffer. Note that the string data must be immutable.
*/
class V8_EXPORT ExternalStringResource
: public ExternalStringResourceBase {
public:
/**
* Override the destructor to manage the life cycle of the underlying
* buffer.
*/
virtual ~ExternalStringResource() {}
/**
* The string data from the underlying buffer.
*/
virtual const uint16_t* data() const = 0;
/**
* The length of the string. That is, the number of two-byte characters.
*/
virtual size_t length() const = 0;
protected:
ExternalStringResource() {}
};
/**
* An ExternalAsciiStringResource is a wrapper around an ASCII
* string buffer that resides outside V8's heap. Implement an
* ExternalAsciiStringResource to manage the life cycle of the
* underlying buffer. Note that the string data must be immutable
* and that the data must be strict (7-bit) ASCII, not Latin-1 or
* UTF-8, which would require special treatment internally in the
* engine and, in the case of UTF-8, do not allow efficient indexing.
* Use String::New or convert to 16 bit data for non-ASCII.
*/
class V8_EXPORT ExternalAsciiStringResource
: public ExternalStringResourceBase {
public:
/**
* Override the destructor to manage the life cycle of the underlying
* buffer.
*/
virtual ~ExternalAsciiStringResource() {}
/** The string data from the underlying buffer.*/
virtual const char* data() const = 0;
/** The number of ASCII characters in the string.*/
virtual size_t length() const = 0;
protected:
ExternalAsciiStringResource() {}
};
typedef ExternalAsciiStringResource ExternalOneByteStringResource;
/**
* If the string is an external string, return the ExternalStringResourceBase
* regardless of the encoding, otherwise return NULL. The encoding of the
* string is returned in encoding_out.
*/
V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
Encoding* encoding_out) const;
/**
* Get the ExternalStringResource for an external string. Returns
* NULL if IsExternal() doesn't return true.
*/
V8_INLINE ExternalStringResource* GetExternalStringResource() const;
/**
* Get the ExternalAsciiStringResource for an external ASCII string.
* Returns NULL if IsExternalAscii() doesn't return true.
*/
const ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
V8_INLINE static String* Cast(v8::Value* obj);
enum NewStringType {
kNormalString, kInternalizedString, kUndetectableString
};
/** Allocates a new string from UTF-8 data.*/
static Local<String> NewFromUtf8(Isolate* isolate,
const char* data,
NewStringType type = kNormalString,
int length = -1);
/** Allocates a new string from Latin-1 data.*/
static Local<String> NewFromOneByte(
Isolate* isolate,
const uint8_t* data,
NewStringType type = kNormalString,
int length = -1);
/** Allocates a new string from UTF-16 data.*/
static Local<String> NewFromTwoByte(
Isolate* isolate,
const uint16_t* data,
NewStringType type = kNormalString,
int length = -1);
/**
* Creates a new string by concatenating the left and the right strings
* passed in as parameters.
*/
static Local<String> Concat(Handle<String> left, Handle<String> right);
/**
* Creates a new external string using the data defined in the given
* resource. When the external string is no longer live on V8's heap the
* resource will be disposed by calling its Dispose method. The caller of
* this function should not otherwise delete or modify the resource. Neither
* should the underlying buffer be deallocated or modified except through the
* destructor of the external string resource.
*/
static Local<String> NewExternal(Isolate* isolate,
ExternalStringResource* resource);
/**
* Associate an external string resource with this string by transforming it
* in place so that existing references to this string in the JavaScript heap
* will use the external string resource. The external string resource's
* character contents need to be equivalent to this string.
* Returns true if the string has been changed to be an external string.
* The string is not modified if the operation fails. See NewExternal for
* information on the lifetime of the resource.
*/
bool MakeExternal(ExternalStringResource* resource);
/**
* Creates a new external string using the ASCII data defined in the given
* resource. When the external string is no longer live on V8's heap the
* resource will be disposed by calling its Dispose method. The caller of
* this function should not otherwise delete or modify the resource. Neither
* should the underlying buffer be deallocated or modified except through the
* destructor of the external string resource.
*/
static Local<String> NewExternal(Isolate* isolate,
ExternalAsciiStringResource* resource);
/**
* Associate an external string resource with this string by transforming it
* in place so that existing references to this string in the JavaScript heap
* will use the external string resource. The external string resource's
* character contents need to be equivalent to this string.
* Returns true if the string has been changed to be an external string.
* The string is not modified if the operation fails. See NewExternal for
* information on the lifetime of the resource.
*/
bool MakeExternal(ExternalAsciiStringResource* resource);
/**
* Returns true if this string can be made external.
*/
bool CanMakeExternal();
/**
* Converts an object to a UTF-8-encoded character array. Useful if
* you want to print the object. If conversion to a string fails
* (e.g. due to an exception in the toString() method of the object)
* then the length() method returns 0 and the * operator returns
* NULL.
*/
class V8_EXPORT Utf8Value {
public:
explicit Utf8Value(Handle<v8::Value> obj);
~Utf8Value();
char* operator*() { return str_; }
const char* operator*() const { return str_; }
int length() const { return length_; }
private:
char* str_;
int length_;
// Disallow copying and assigning.
Utf8Value(const Utf8Value&);
void operator=(const Utf8Value&);
};
/**
* Converts an object to a two-byte string.
* If conversion to a string fails (eg. due to an exception in the toString()
* method of the object) then the length() method returns 0 and the * operator
* returns NULL.
*/
class V8_EXPORT Value {
public:
explicit Value(Handle<v8::Value> obj);
~Value();
uint16_t* operator*() { return str_; }
const uint16_t* operator*() const { return str_; }
int length() const { return length_; }
private:
uint16_t* str_;
int length_;
// Disallow copying and assigning.
Value(const Value&);
void operator=(const Value&);
};
private:
void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
Encoding encoding) const;
void VerifyExternalStringResource(ExternalStringResource* val) const;
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript symbol (ECMA-262 edition 6)
*
* This is an experimental feature. Use at your own risk.
*/
class V8_EXPORT Symbol : public Primitive {
public:
// Returns the print name string of the symbol, or undefined if none.
Local<Value> Name() const;
// Create a symbol. If name is not empty, it will be used as the description.
static Local<Symbol> New(
Isolate *isolate, Local<String> name = Local<String>());
// Access global symbol registry.
// Note that symbols created this way are never collected, so
// they should only be used for statically fixed properties.
// Also, there is only one global name space for the names used as keys.
// To minimize the potential for clashes, use qualified names as keys.
static Local<Symbol> For(Isolate *isolate, Local<String> name);
// Retrieve a global symbol. Similar to |For|, but using a separate
// registry that is not accessible by (and cannot clash with) JavaScript code.
static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
V8_INLINE static Symbol* Cast(v8::Value* obj);
private:
Symbol();
static void CheckCast(v8::Value* obj);
};
/**
* A private symbol
*
* This is an experimental feature. Use at your own risk.
*/
class V8_EXPORT Private : public Data {
public:
// Returns the print name string of the private symbol, or undefined if none.
Local<Value> Name() const;
// Create a private symbol. If name is not empty, it will be the description.
static Local<Private> New(
Isolate *isolate, Local<String> name = Local<String>());
// Retrieve a global private symbol. If a symbol with this name has not
// been retrieved in the same isolate before, it is created.
// Note that private symbols created this way are never collected, so
// they should only be used for statically fixed properties.
// Also, there is only one global name space for the names used as keys.
// To minimize the potential for clashes, use qualified names as keys,
// e.g., "Class#property".
static Local<Private> ForApi(Isolate *isolate, Local<String> name);
private:
Private();
};
/**
* A JavaScript number value (ECMA-262, 4.3.20)
*/
class V8_EXPORT Number : public Primitive {
public:
double Value() const;
static Local<Number> New(Isolate* isolate, double value);
V8_INLINE static Number* Cast(v8::Value* obj);
private:
Number();
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value representing a signed integer.
*/
class V8_EXPORT Integer : public Number {
public:
static Local<Integer> New(Isolate* isolate, int32_t value);
static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
int64_t Value() const;
V8_INLINE static Integer* Cast(v8::Value* obj);
private:
Integer();
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value representing a 32-bit signed integer.
*/
class V8_EXPORT Int32 : public Integer {
public:
int32_t Value() const;
private:
Int32();
};
/**
* A JavaScript value representing a 32-bit unsigned integer.
*/
class V8_EXPORT Uint32 : public Integer {
public:
uint32_t Value() const;
private:
Uint32();
};
enum PropertyAttribute {
None = 0,
ReadOnly = 1 << 0,
DontEnum = 1 << 1,
DontDelete = 1 << 2
};
enum ExternalArrayType {
kExternalInt8Array = 1,
kExternalUint8Array,
kExternalInt16Array,
kExternalUint16Array,
kExternalInt32Array,
kExternalUint32Array,
kExternalFloat32Array,
kExternalFloat64Array,
kExternalUint8ClampedArray,
// Legacy constant names
kExternalByteArray = kExternalInt8Array,
kExternalUnsignedByteArray = kExternalUint8Array,
kExternalShortArray = kExternalInt16Array,
kExternalUnsignedShortArray = kExternalUint16Array,
kExternalIntArray = kExternalInt32Array,
kExternalUnsignedIntArray = kExternalUint32Array,
kExternalFloatArray = kExternalFloat32Array,
kExternalDoubleArray = kExternalFloat64Array,
kExternalPixelArray = kExternalUint8ClampedArray
};
/**
* Accessor[Getter|Setter] are used as callback functions when
* setting|getting a particular property. See Object and ObjectTemplate's
* method SetAccessor.
*/
typedef void (*AccessorGetterCallback)(
Local<String> property,
const PropertyCallbackInfo<Value>& info);
typedef void (*AccessorSetterCallback)(
Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info);
/**
* Access control specifications.
*
* Some accessors should be accessible across contexts. These
* accessors have an explicit access control parameter which specifies
* the kind of cross-context access that should be allowed.
*
* Additionally, for security, accessors can prohibit overwriting by
* accessors defined in JavaScript. For objects that have such
* accessors either locally or in their prototype chain it is not
* possible to overwrite the accessor by using __defineGetter__ or
* __defineSetter__ from JavaScript code.
*/
enum AccessControl {
DEFAULT = 0,
ALL_CAN_READ = 1,
ALL_CAN_WRITE = 1 << 1,
PROHIBITS_OVERWRITING = 1 << 2
};
/**
* A JavaScript object (ECMA-262, 4.3.3)
*/
class V8_EXPORT Object : public Value {
public:
bool Set(Handle<Value> key,
Handle<Value> value,
PropertyAttribute attribs = None);
bool Set(uint32_t index, Handle<Value> value);
// Sets a local property on this object bypassing interceptors and
// overriding accessors or read-only properties.
//
// Note that if the object has an interceptor the property will be set
// locally, but since the interceptor takes precedence the local property
// will only be returned if the interceptor doesn't return a value.
//
// Note also that this only works for named properties.
bool ForceSet(Handle<Value> key,
Handle<Value> value,
PropertyAttribute attribs = None);
Local<Value> Get(Handle<Value> key);
Local<Value> Get(uint32_t index);
/**
* Gets the property attributes of a property which can be None or
* any combination of ReadOnly, DontEnum and DontDelete. Returns
* None when the property doesn't exist.
*/
PropertyAttribute GetPropertyAttributes(Handle<Value> key);
bool Has(Handle<Value> key);
bool Delete(Handle<Value> key);
// Delete a property on this object bypassing interceptors and
// ignoring dont-delete attributes.
bool ForceDelete(Handle<Value> key);
bool Has(uint32_t index);
bool Delete(uint32_t index);
bool SetAccessor(Handle<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter = 0,
Handle<Value> data = Handle<Value>(),
AccessControl settings = DEFAULT,
PropertyAttribute attribute = None);
// This function is not yet stable and should not be used at this time.
bool SetDeclaredAccessor(Local<String> name,
Local<DeclaredAccessorDescriptor> descriptor,
PropertyAttribute attribute = None,
AccessControl settings = DEFAULT);
void SetAccessorProperty(Local<String> name,
Local<Function> getter,
Handle<Function> setter = Handle<Function>(),
PropertyAttribute attribute = None,
AccessControl settings = DEFAULT);
/**
* Functionality for private properties.
* This is an experimental feature, use at your own risk.
* Note: Private properties are inherited. Do not rely on this, since it may
* change.
*/
bool HasPrivate(Handle<Private> key);
bool SetPrivate(Handle<Private> key, Handle<Value> value);
bool DeletePrivate(Handle<Private> key);
Local<Value> GetPrivate(Handle<Private> key);
/**
* Returns an array containing the names of the enumerable properties
* of this object, including properties from prototype objects. The
* array returned by this method contains the same values as would
* be enumerated by a for-in statement over this object.
*/
Local<Array> GetPropertyNames();
/**
* This function has the same functionality as GetPropertyNames but
* the returned array doesn't contain the names of properties from
* prototype objects.
*/
Local<Array> GetOwnPropertyNames();
/**
* Get the prototype object. This does not skip objects marked to
* be skipped by __proto__ and it does not consult the security
* handler.
*/
Local<Value> GetPrototype();
/**
* Set the prototype object. This does not skip objects marked to
* be skipped by __proto__ and it does not consult the security
* handler.
*/
bool SetPrototype(Handle<Value> prototype);
/**
* Finds an instance of the given function template in the prototype
* chain.
*/
Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
/**
* Call builtin Object.prototype.toString on this object.
* This is different from Value::ToString() that may call
* user-defined toString function. This one does not.
*/
Local<String> ObjectProtoToString();
/**
* Returns the function invoked as a constructor for this object.
* May be the null value.
*/
Local<Value> GetConstructor();
/**
* Returns the name of the function invoked as a constructor for this object.
*/
Local<String> GetConstructorName();
/** Gets the number of internal fields for this Object. */
int InternalFieldCount();
/** Same as above, but works for Persistents */
V8_INLINE static int InternalFieldCount(
const PersistentBase<Object>& object) {
return object.val_->InternalFieldCount();
}
/** Gets the value from an internal field. */
V8_INLINE Local<Value> GetInternalField(int index);
/** Sets the value in an internal field. */
void SetInternalField(int index, Handle<Value> value);
/**
* Gets a 2-byte-aligned native pointer from an internal field. This field
* must have been set by SetAlignedPointerInInternalField, everything else
* leads to undefined behavior.
*/
V8_INLINE void* GetAlignedPointerFromInternalField(int index);
/** Same as above, but works for Persistents */
V8_INLINE static void* GetAlignedPointerFromInternalField(
const PersistentBase<Object>& object, int index) {
return object.val_->GetAlignedPointerFromInternalField(index);
}
/**
* Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
* a field, GetAlignedPointerFromInternalField must be used, everything else
* leads to undefined behavior.
*/
void SetAlignedPointerInInternalField(int index, void* value);
// Testers for local properties.
bool HasOwnProperty(Handle<String> key);
bool HasRealNamedProperty(Handle<String> key);
bool HasRealIndexedProperty(uint32_t index);
bool HasRealNamedCallbackProperty(Handle<String> key);
/**
* If result.IsEmpty() no real property was located in the prototype chain.
* This means interceptors in the prototype chain are not called.
*/
Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
/**
* If result.IsEmpty() no real property was located on the object or
* in the prototype chain.
* This means interceptors in the prototype chain are not called.
*/
Local<Value> GetRealNamedProperty(Handle<String> key);
/** Tests for a named lookup interceptor.*/
bool HasNamedLookupInterceptor();
/** Tests for an index lookup interceptor.*/
bool HasIndexedLookupInterceptor();
/**
* Turns on access check on the object if the object is an instance of
* a template that has access check callbacks. If an object has no
* access check info, the object cannot be accessed by anyone.
*/
void TurnOnAccessCheck();
/**
* Returns the identity hash for this object. The current implementation
* uses a hidden property on the object to store the identity hash.
*
* The return value will never be 0. Also, it is not guaranteed to be
* unique.
*/
int GetIdentityHash();
/**
* Access hidden properties on JavaScript objects. These properties are
* hidden from the executing JavaScript and only accessible through the V8
* C++ API. Hidden properties introduced by V8 internally (for example the
* identity hash) are prefixed with "v8::".
*/
bool SetHiddenValue(Handle<String> key, Handle<Value> value);
Local<Value> GetHiddenValue(Handle<String> key);
bool DeleteHiddenValue(Handle<String> key);
/**
* Returns true if this is an instance of an api function (one
* created from a function created from a function template) and has
* been modified since it was created. Note that this method is
* conservative and may return true for objects that haven't actually
* been modified.
*/
bool IsDirty();
/**
* Clone this object with a fast but shallow copy. Values will point
* to the same values as the original object.
*/
Local<Object> Clone();
/**
* Returns the context in which the object was created.
*/
Local<Context> CreationContext();
/**
* Set the backing store of the indexed properties to be managed by the
* embedding layer. Access to the indexed properties will follow the rules
* spelled out in CanvasPixelArray.
* Note: The embedding program still owns the data and needs to ensure that
* the backing store is preserved while V8 has a reference.
*/
void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
bool HasIndexedPropertiesInPixelData();
uint8_t* GetIndexedPropertiesPixelData();
int GetIndexedPropertiesPixelDataLength();
/**
* Set the backing store of the indexed properties to be managed by the
* embedding layer. Access to the indexed properties will follow the rules
* spelled out for the CanvasArray subtypes in the WebGL specification.
* Note: The embedding program still owns the data and needs to ensure that
* the backing store is preserved while V8 has a reference.
*/
void SetIndexedPropertiesToExternalArrayData(void* data,
ExternalArrayType array_type,
int number_of_elements);
bool HasIndexedPropertiesInExternalArrayData();
void* GetIndexedPropertiesExternalArrayData();
ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
int GetIndexedPropertiesExternalArrayDataLength();
/**
* Checks whether a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
* When an Object is callable this method returns true.
*/
bool IsCallable();
/**
* Call an Object as a function if a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
*/
Local<Value> CallAsFunction(Handle<Value> recv,
int argc,
Handle<Value> argv[]);
/**
* Call an Object as a constructor if a callback is set by the
* ObjectTemplate::SetCallAsFunctionHandler method.
* Note: This method behaves like the Function::NewInstance method.
*/
Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
static Local<Object> New(Isolate* isolate);
V8_INLINE static Object* Cast(Value* obj);
private:
Object();
static void CheckCast(Value* obj);
Local<Value> SlowGetInternalField(int index);
void* SlowGetAlignedPointerFromInternalField(int index);
};
/**
* An instance of the built-in array constructor (ECMA-262, 15.4.2).
*/
class V8_EXPORT Array : public Object {
public:
uint32_t Length() const;
/**
* Clones an element at index |index|. Returns an empty
* handle if cloning fails (for any reason).
*/
Local<Object> CloneElementAt(uint32_t index);
/**
* Creates a JavaScript array with the given length. If the length
* is negative the returned array will have length 0.
*/
static Local<Array> New(Isolate* isolate, int length = 0);
V8_INLINE static Array* Cast(Value* obj);
private:
Array();
static void CheckCast(Value* obj);
};
template<typename T>
class ReturnValue {
public:
template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
: value_(that.value_) {
TYPE_CHECK(T, S);
}
// Handle setters
template <typename S> V8_INLINE void Set(const Persistent<S>& handle);
template <typename S> V8_INLINE void Set(const Handle<S> handle);
// Fast primitive setters
V8_INLINE void Set(bool value);
V8_INLINE void Set(double i);
V8_INLINE void Set(int32_t i);
V8_INLINE void Set(uint32_t i);
// Fast JS primitive setters
V8_INLINE void SetNull();
V8_INLINE void SetUndefined();
V8_INLINE void SetEmptyString();
// Convenience getter for Isolate
V8_INLINE Isolate* GetIsolate();
private:
template<class F> friend class ReturnValue;
template<class F> friend class FunctionCallbackInfo;
template<class F> friend class PropertyCallbackInfo;
template<class F, class G, class H> friend class PersistentValueMap;
V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
V8_INLINE internal::Object* GetDefaultValue();
V8_INLINE explicit ReturnValue(internal::Object** slot);
internal::Object** value_;
};
/**
* The argument information given to function call callbacks. This
* class provides access to information about the context of the call,
* including the receiver, the number and values of arguments, and
* the holder of the function.
*/
template<typename T>
class FunctionCallbackInfo {
public:
V8_INLINE int Length() const;
V8_INLINE Local<Value> operator[](int i) const;
V8_INLINE Local<Function> Callee() const;
V8_INLINE Local<Object> This() const;
V8_INLINE Local<Object> Holder() const;
V8_INLINE bool IsConstructCall() const;
V8_INLINE Local<Value> Data() const;
V8_INLINE Isolate* GetIsolate() const;
V8_INLINE ReturnValue<T> GetReturnValue() const;
// This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 7;
protected:
friend class internal::FunctionCallbackArguments;
friend class internal::CustomArguments<FunctionCallbackInfo>;
static const int kHolderIndex = 0;
static const int kIsolateIndex = 1;
static const int kReturnValueDefaultValueIndex = 2;
static const int kReturnValueIndex = 3;
static const int kDataIndex = 4;
static const int kCalleeIndex = 5;
static const int kContextSaveIndex = 6;
V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
internal::Object** values,
int length,
bool is_construct_call);
internal::Object** implicit_args_;
internal::Object** values_;
int length_;
bool is_construct_call_;
};
/**
* The information passed to a property callback about the context
* of the property access.
*/
template<typename T>
class PropertyCallbackInfo {
public:
V8_INLINE Isolate* GetIsolate() const;
V8_INLINE Local<Value> Data() const;
V8_INLINE Local<Value> This() const;
V8_INLINE Local<Object> Holder() const;
V8_INLINE ReturnValue<T> GetReturnValue() const;
// This shouldn't be public, but the arm compiler needs it.
static const int kArgsLength = 6;
protected:
friend class MacroAssembler;
friend class internal::PropertyCallbackArguments;
friend class internal::CustomArguments<PropertyCallbackInfo>;
static const int kHolderIndex = 0;
static const int kIsolateIndex = 1;
static const int kReturnValueDefaultValueIndex = 2;
static const int kReturnValueIndex = 3;
static const int kDataIndex = 4;
static const int kThisIndex = 5;
V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
internal::Object** args_;
};
typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
/**
* A JavaScript function object (ECMA-262, 15.3).
*/
class V8_EXPORT Function : public Object {
public:
/**
* Create a function in the current execution context
* for a given FunctionCallback.
*/
static Local<Function> New(Isolate* isolate,
FunctionCallback callback,
Local<Value> data = Local<Value>(),
int length = 0);
Local<Object> NewInstance() const;
Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]);
void SetName(Handle<String> name);
Handle<Value> GetName() const;
/**
* Name inferred from variable or property assignment of this function.
* Used to facilitate debugging and profiling of JavaScript code written
* in an OO style, where many functions are anonymous but are assigned
* to object properties.
*/
Handle<Value> GetInferredName() const;
/**
* User-defined name assigned to the "displayName" property of this function.
* Used to facilitate debugging and profiling of JavaScript code.
*/
Handle<Value> GetDisplayName() const;
/**
* Returns zero based line number of function body and
* kLineOffsetNotFound if no information available.
*/
int GetScriptLineNumber() const;
/**
* Returns zero based column number of function body and
* kLineOffsetNotFound if no information available.
*/
int GetScriptColumnNumber() const;
/**
* Tells whether this function is builtin.
*/
bool IsBuiltin() const;
/**
* Returns scriptId.
*/
int ScriptId() const;
/**
* Returns the original function if this function is bound, else returns
* v8::Undefined.
*/
Local<Value> GetBoundFunction() const;
ScriptOrigin GetScriptOrigin() const;
V8_INLINE static Function* Cast(Value* obj);
static const int kLineOffsetNotFound;
private:
Function();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in Promise constructor (ES6 draft).
* This API is experimental. Only works with --harmony flag.
*/
class V8_EXPORT Promise : public Object {
public:
class V8_EXPORT Resolver : public Object {
public:
/**
* Create a new resolver, along with an associated promise in pending state.
*/
static Local<Resolver> New(Isolate* isolate);
/**
* Extract the associated promise.
*/
Local<Promise> GetPromise();
/**
* Resolve/reject the associated promise with a given value.
* Ignored if the promise is no longer pending.
*/
void Resolve(Handle<Value> value);
void Reject(Handle<Value> value);
V8_INLINE static Resolver* Cast(Value* obj);
private:
Resolver();
static void CheckCast(Value* obj);
};
/**
* Register a resolution/rejection handler with a promise.
* The handler is given the respective resolution/rejection value as
* an argument. If the promise is already resolved/rejected, the handler is
* invoked at the end of turn.
*/
Local<Promise> Chain(Handle<Function> handler);
Local<Promise> Catch(Handle<Function> handler);
V8_INLINE static Promise* Cast(Value* obj);
private:
Promise();
static void CheckCast(Value* obj);
};
#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
#endif
/**
* An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
* This API is experimental and may change significantly.
*/
class V8_EXPORT ArrayBuffer : public Object {
public:
/**
* Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
* The allocator is a global V8 setting. It should be set with
* V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer.
*
* This API is experimental and may change significantly.
*/
class V8_EXPORT Allocator { // NOLINT
public:
virtual ~Allocator() {}
/**
* Allocate |length| bytes. Return NULL if allocation is not successful.
* Memory should be initialized to zeroes.
*/
virtual void* Allocate(size_t length) = 0;
/**
* Allocate |length| bytes. Return NULL if allocation is not successful.
* Memory does not have to be initialized.
*/
virtual void* AllocateUninitialized(size_t length) = 0;
/**
* Free the memory block of size |length|, pointed to by |data|.
* That memory is guaranteed to be previously allocated by |Allocate|.
*/
virtual void Free(void* data, size_t length) = 0;
};
/**
* The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
* returns an instance of this class, populated, with a pointer to data
* and byte length.
*
* The Data pointer of ArrayBuffer::Contents is always allocated with
* Allocator::Allocate that is set with V8::SetArrayBufferAllocator.
*
* This API is experimental and may change significantly.
*/
class V8_EXPORT Contents { // NOLINT
public:
Contents() : data_(NULL), byte_length_(0) {}
void* Data() const { return data_; }
size_t ByteLength() const { return byte_length_; }
private:
void* data_;
size_t byte_length_;
friend class ArrayBuffer;
};
/**
* Data length in bytes.
*/
size_t ByteLength() const;
/**
* Create a new ArrayBuffer. Allocate |byte_length| bytes.
* Allocated memory will be owned by a created ArrayBuffer and
* will be deallocated when it is garbage-collected,
* unless the object is externalized.
*/
static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
/**
* Create a new ArrayBuffer over an existing memory block.
* The created array buffer is immediately in externalized state.
* The memory block will not be reclaimed when a created ArrayBuffer
* is garbage-collected.
*/
static Local<ArrayBuffer> New(Isolate* isolate, void* data,
size_t byte_length);
/**
* Returns true if ArrayBuffer is extrenalized, that is, does not
* own its memory block.
*/
bool IsExternal() const;
/**
* Neuters this ArrayBuffer and all its views (typed arrays).
* Neutering sets the byte length of the buffer and all typed arrays to zero,
* preventing JavaScript from ever accessing underlying backing store.
* ArrayBuffer should have been externalized.
*/
void Neuter();
/**
* Make this ArrayBuffer external. The pointer to underlying memory block
* and byte length are returned as |Contents| structure. After ArrayBuffer
* had been etxrenalized, it does no longer owns the memory block. The caller
* should take steps to free memory when it is no longer needed.
*
* The memory block is guaranteed to be allocated with |Allocator::Allocate|
* that has been set with V8::SetArrayBufferAllocator.
*/
Contents Externalize();
V8_INLINE static ArrayBuffer* Cast(Value* obj);
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
private:
ArrayBuffer();
static void CheckCast(Value* obj);
};
#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
// The number of required internal fields can be defined by embedder.
#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
#endif
/**
* A base class for an instance of one of "views" over ArrayBuffer,
* including TypedArrays and DataView (ES6 draft 15.13).
*
* This API is experimental and may change significantly.
*/
class V8_EXPORT ArrayBufferView : public Object {
public:
/**
* Returns underlying ArrayBuffer.
*/
Local<ArrayBuffer> Buffer();
/**
* Byte offset in |Buffer|.
*/
size_t ByteOffset();
/**
* Size of a view in bytes.
*/
size_t ByteLength();
V8_INLINE static ArrayBufferView* Cast(Value* obj);
static const int kInternalFieldCount =
V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
private:
ArrayBufferView();
static void CheckCast(Value* obj);
};
/**
* A base class for an instance of TypedArray series of constructors
* (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT TypedArray : public ArrayBufferView {
public:
/**
* Number of elements in this typed array
* (e.g. for Int16Array, |ByteLength|/2).
*/
size_t Length();
V8_INLINE static TypedArray* Cast(Value* obj);
private:
TypedArray();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint8Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Uint8Array : public TypedArray {
public:
static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint8Array* Cast(Value* obj);
private:
Uint8Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Uint8ClampedArray : public TypedArray {
public:
static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
private:
Uint8ClampedArray();
static void CheckCast(Value* obj);
};
/**
* An instance of Int8Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Int8Array : public TypedArray {
public:
static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int8Array* Cast(Value* obj);
private:
Int8Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint16Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Uint16Array : public TypedArray {
public:
static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint16Array* Cast(Value* obj);
private:
Uint16Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Int16Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Int16Array : public TypedArray {
public:
static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int16Array* Cast(Value* obj);
private:
Int16Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Uint32Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Uint32Array : public TypedArray {
public:
static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Uint32Array* Cast(Value* obj);
private:
Uint32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Int32Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Int32Array : public TypedArray {
public:
static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Int32Array* Cast(Value* obj);
private:
Int32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Float32Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Float32Array : public TypedArray {
public:
static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Float32Array* Cast(Value* obj);
private:
Float32Array();
static void CheckCast(Value* obj);
};
/**
* An instance of Float64Array constructor (ES6 draft 15.13.6).
* This API is experimental and may change significantly.
*/
class V8_EXPORT Float64Array : public TypedArray {
public:
static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static Float64Array* Cast(Value* obj);
private:
Float64Array();
static void CheckCast(Value* obj);
};
/**
* An instance of DataView constructor (ES6 draft 15.13.7).
* This API is experimental and may change significantly.
*/
class V8_EXPORT DataView : public ArrayBufferView {
public:
static Local<DataView> New(Handle<ArrayBuffer> array_buffer,
size_t byte_offset, size_t length);
V8_INLINE static DataView* Cast(Value* obj);
private:
DataView();
static void CheckCast(Value* obj);
};
/**
* An instance of the built-in Date constructor (ECMA-262, 15.9).
*/
class V8_EXPORT Date : public Object {
public:
static Local<Value> New(Isolate* isolate, double time);
/**
* A specialization of Value::NumberValue that is more efficient
* because we know the structure of this object.
*/
double ValueOf() const;
V8_INLINE static Date* Cast(v8::Value* obj);
/**
* Notification that the embedder has changed the time zone,
* daylight savings time, or other date / time configuration
* parameters. V8 keeps a cache of various values used for
* date / time computation. This notification will reset
* those cached values for the current context so that date /
* time configuration changes would be reflected in the Date
* object.
*
* This API should not be called more than needed as it will
* negatively impact the performance of date operations.
*/
static void DateTimeConfigurationChangeNotification(Isolate* isolate);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A Number object (ECMA-262, 4.3.21).
*/
class V8_EXPORT NumberObject : public Object {
public:
static Local<Value> New(Isolate* isolate, double value);
double ValueOf() const;
V8_INLINE static NumberObject* Cast(v8::Value* obj);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A Boolean object (ECMA-262, 4.3.15).
*/
class V8_EXPORT BooleanObject : public Object {
public:
static Local<Value> New(bool value);
bool ValueOf() const;
V8_INLINE static BooleanObject* Cast(v8::Value* obj);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A String object (ECMA-262, 4.3.18).
*/
class V8_EXPORT StringObject : public Object {
public:
static Local<Value> New(Handle<String> value);
Local<String> ValueOf() const;
V8_INLINE static StringObject* Cast(v8::Value* obj);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A Symbol object (ECMA-262 edition 6).
*
* This is an experimental feature. Use at your own risk.
*/
class V8_EXPORT SymbolObject : public Object {
public:
static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
Local<Symbol> ValueOf() const;
V8_INLINE static SymbolObject* Cast(v8::Value* obj);
private:
static void CheckCast(v8::Value* obj);
};
/**
* An instance of the built-in RegExp constructor (ECMA-262, 15.10).
*/
class V8_EXPORT RegExp : public Object {
public:
/**
* Regular expression flag bits. They can be or'ed to enable a set
* of flags.
*/
enum Flags {
kNone = 0,
kGlobal = 1,
kIgnoreCase = 2,
kMultiline = 4
};
/**
* Creates a regular expression from the given pattern string and
* the flags bit field. May throw a JavaScript exception as
* described in ECMA-262, 15.10.4.1.
*
* For example,
* RegExp::New(v8::String::New("foo"),
* static_cast<RegExp::Flags>(kGlobal | kMultiline))
* is equivalent to evaluating "/foo/gm".
*/
static Local<RegExp> New(Handle<String> pattern, Flags flags);
/**
* Returns the value of the source property: a string representing
* the regular expression.
*/
Local<String> GetSource() const;
/**
* Returns the flags bit field.
*/
Flags GetFlags() const;
V8_INLINE static RegExp* Cast(v8::Value* obj);
private:
static void CheckCast(v8::Value* obj);
};
/**
* A JavaScript value that wraps a C++ void*. This type of value is mainly used
* to associate C++ data structures with JavaScript objects.
*/
class V8_EXPORT External : public Value {
public:
static Local<External> New(Isolate* isolate, void* value);
V8_INLINE static External* Cast(Value* obj);
void* Value() const;
private:
static void CheckCast(v8::Value* obj);
};
// --- Templates ---
/**
* The superclass of object and function templates.
*/
class V8_EXPORT Template : public Data {
public:
/** Adds a property to each instance created by this template.*/
void Set(Handle<String> name, Handle<Data> value,
PropertyAttribute attributes = None);
V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
void SetAccessorProperty(
Local<String> name,
Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
PropertyAttribute attribute = None,
AccessControl settings = DEFAULT);
/**
* Whenever the property with the given name is accessed on objects
* created from this Template the getter and setter callbacks
* are called instead of getting and setting the property directly
* on the JavaScript object.
*
* \param name The name of the property for which an accessor is added.
* \param getter The callback to invoke when getting the property.
* \param setter The callback to invoke when setting the property.
* \param data A piece of data that will be passed to the getter and setter
* callbacks whenever they are invoked.
* \param settings Access control settings for the accessor. This is a bit
* field consisting of one of more of
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
* The default is to not allow cross-context access.
* ALL_CAN_READ means that all cross-context reads are allowed.
* ALL_CAN_WRITE means that all cross-context writes are allowed.
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
* cross-context access.
* \param attribute The attributes of the property for which an accessor
* is added.
* \param signature The signature describes valid receivers for the accessor
* and is used to perform implicit instance checks against them. If the
* receiver is incompatible (i.e. is not an instance of the constructor as
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
* thrown and no callback is invoked.
*/
void SetNativeDataProperty(Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter = 0,
// TODO(dcarney): gcc can't handle Local below
Handle<Value> data = Handle<Value>(),
PropertyAttribute attribute = None,
Local<AccessorSignature> signature =
Local<AccessorSignature>(),
AccessControl settings = DEFAULT);
// This function is not yet stable and should not be used at this time.
bool SetDeclaredAccessor(Local<String> name,
Local<DeclaredAccessorDescriptor> descriptor,
PropertyAttribute attribute = None,
Local<AccessorSignature> signature =
Local<AccessorSignature>(),
AccessControl settings = DEFAULT);
private:
Template();
friend class ObjectTemplate;
friend class FunctionTemplate;
};
/**
* NamedProperty[Getter|Setter] are used as interceptors on object.
* See ObjectTemplate::SetNamedPropertyHandler.
*/
typedef void (*NamedPropertyGetterCallback)(
Local<String> property,
const PropertyCallbackInfo<Value>& info);
/**
* Returns the value if the setter intercepts the request.
* Otherwise, returns an empty handle.
*/
typedef void (*NamedPropertySetterCallback)(
Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<Value>& info);
/**
* Returns a non-empty handle if the interceptor intercepts the request.
* The result is an integer encoding property attributes (like v8::None,
* v8::DontEnum, etc.)
*/
typedef void (*NamedPropertyQueryCallback)(
Local<String> property,
const PropertyCallbackInfo<Integer>& info);
/**
* Returns a non-empty handle if the deleter intercepts the request.
* The return value is true if the property could be deleted and false
* otherwise.
*/
typedef void (*NamedPropertyDeleterCallback)(
Local<String> property,
const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the names of the properties the named
* property getter intercepts.
*/
typedef void (*NamedPropertyEnumeratorCallback)(
const PropertyCallbackInfo<Array>& info);
/**
* Returns the value of the property if the getter intercepts the
* request. Otherwise, returns an empty handle.
*/
typedef void (*IndexedPropertyGetterCallback)(
uint32_t index,
const PropertyCallbackInfo<Value>& info);
/**
* Returns the value if the setter intercepts the request.
* Otherwise, returns an empty handle.
*/
typedef void (*IndexedPropertySetterCallback)(
uint32_t index,
Local<Value> value,
const PropertyCallbackInfo<Value>& info);
/**
* Returns a non-empty handle if the interceptor intercepts the request.
* The result is an integer encoding property attributes.
*/
typedef void (*IndexedPropertyQueryCallback)(
uint32_t index,
const PropertyCallbackInfo<Integer>& info);
/**
* Returns a non-empty handle if the deleter intercepts the request.
* The return value is true if the property could be deleted and false
* otherwise.
*/
typedef void (*IndexedPropertyDeleterCallback)(
uint32_t index,
const PropertyCallbackInfo<Boolean>& info);
/**
* Returns an array containing the indices of the properties the
* indexed property getter intercepts.
*/
typedef void (*IndexedPropertyEnumeratorCallback)(
const PropertyCallbackInfo<Array>& info);
/**
* Access type specification.
*/
enum AccessType {
ACCESS_GET,
ACCESS_SET,
ACCESS_HAS,
ACCESS_DELETE,
ACCESS_KEYS
};
/**
* Returns true if cross-context access should be allowed to the named
* property with the given key on the host object.
*/
typedef bool (*NamedSecurityCallback)(Local<Object> host,
Local<Value> key,
AccessType type,
Local<Value> data);
/**
* Returns true if cross-context access should be allowed to the indexed
* property with the given index on the host object.
*/
typedef bool (*IndexedSecurityCallback)(Local<Object> host,
uint32_t index,
AccessType type,
Local<Value> data);
/**
* A FunctionTemplate is used to create functions at runtime. There
* can only be one function created from a FunctionTemplate in a
* context. The lifetime of the created function is equal to the
* lifetime of the context. So in case the embedder needs to create
* temporary functions that can be collected using Scripts is
* preferred.
*
* A FunctionTemplate can have properties, these properties are added to the
* function object when it is created.
*
* A FunctionTemplate has a corresponding instance template which is
* used to create object instances when the function is used as a
* constructor. Properties added to the instance template are added to
* each object instance.
*
* A FunctionTemplate can have a prototype template. The prototype template
* is used to create the prototype object of the function.
*
* The following example shows how to use a FunctionTemplate:
*
* \code
* v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
* t->Set("func_property", v8::Number::New(1));
*
* v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
* proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
* proto_t->Set("proto_const", v8::Number::New(2));
*
* v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
* instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
* instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
* instance_t->Set("instance_property", Number::New(3));
*
* v8::Local<v8::Function> function = t->GetFunction();
* v8::Local<v8::Object> instance = function->NewInstance();
* \endcode
*
* Let's use "function" as the JS variable name of the function object
* and "instance" for the instance object created above. The function
* and the instance will have the following properties:
*
* \code
* func_property in function == true;
* function.func_property == 1;
*
* function.prototype.proto_method() invokes 'InvokeCallback'
* function.prototype.proto_const == 2;
*
* instance instanceof function == true;
* instance.instance_accessor calls 'InstanceAccessorCallback'
* instance.instance_property == 3;
* \endcode
*
* A FunctionTemplate can inherit from another one by calling the
* FunctionTemplate::Inherit method. The following graph illustrates
* the semantics of inheritance:
*
* \code
* FunctionTemplate Parent -> Parent() . prototype -> { }
* ^ ^
* | Inherit(Parent) | .__proto__
* | |
* FunctionTemplate Child -> Child() . prototype -> { }
* \endcode
*
* A FunctionTemplate 'Child' inherits from 'Parent', the prototype
* object of the Child() function has __proto__ pointing to the
* Parent() function's prototype object. An instance of the Child
* function has all properties on Parent's instance templates.
*
* Let Parent be the FunctionTemplate initialized in the previous
* section and create a Child FunctionTemplate by:
*
* \code
* Local<FunctionTemplate> parent = t;
* Local<FunctionTemplate> child = FunctionTemplate::New();
* child->Inherit(parent);
*
* Local<Function> child_function = child->GetFunction();
* Local<Object> child_instance = child_function->NewInstance();
* \endcode
*
* The Child function and Child instance will have the following
* properties:
*
* \code
* child_func.prototype.__proto__ == function.prototype;
* child_instance.instance_accessor calls 'InstanceAccessorCallback'
* child_instance.instance_property == 3;
* \endcode
*/
class V8_EXPORT FunctionTemplate : public Template {
public:
/** Creates a function template.*/
static Local<FunctionTemplate> New(
Isolate* isolate,
FunctionCallback callback = 0,
Handle<Value> data = Handle<Value>(),
Handle<Signature> signature = Handle<Signature>(),
int length = 0);
/** Returns the unique function instance in the current execution context.*/
Local<Function> GetFunction();
/**
* Set the call-handler callback for a FunctionTemplate. This
* callback is called whenever the function created from this
* FunctionTemplate is called.
*/
void SetCallHandler(FunctionCallback callback,
Handle<Value> data = Handle<Value>());
/** Set the predefined length property for the FunctionTemplate. */
void SetLength(int length);
/** Get the InstanceTemplate. */
Local<ObjectTemplate> InstanceTemplate();
/** Causes the function template to inherit from a parent function template.*/
void Inherit(Handle<FunctionTemplate> parent);
/**
* A PrototypeTemplate is the template used to create the prototype object
* of the function created by this template.
*/
Local<ObjectTemplate> PrototypeTemplate();
/**
* Set the class name of the FunctionTemplate. This is used for
* printing objects created with the function created from the
* FunctionTemplate as its constructor.
*/
void SetClassName(Handle<String> name);
/**
* Determines whether the __proto__ accessor ignores instances of
* the function template. If instances of the function template are
* ignored, __proto__ skips all instances and instead returns the
* next object in the prototype chain.
*
* Call with a value of true to make the __proto__ accessor ignore
* instances of the function template. Call with a value of false
* to make the __proto__ accessor not ignore instances of the
* function template. By default, instances of a function template
* are not ignored.
*/
void SetHiddenPrototype(bool value);
/**
* Sets the ReadOnly flag in the attributes of the 'prototype' property
* of functions created from this FunctionTemplate to true.
*/
void ReadOnlyPrototype();
/**
* Removes the prototype property from functions created from this
* FunctionTemplate.
*/
void RemovePrototype();
/**
* Returns true if the given object is an instance of this function
* template.
*/
bool HasInstance(Handle<Value> object);
private:
FunctionTemplate();
friend class Context;
friend class ObjectTemplate;
};
/**
* An ObjectTemplate is used to create objects at runtime.
*
* Properties added to an ObjectTemplate are added to each object
* created from the ObjectTemplate.
*/
class V8_EXPORT ObjectTemplate : public Template {
public:
/** Creates an ObjectTemplate. */
static Local<ObjectTemplate> New(Isolate* isolate);
// Will be deprecated soon.
static Local<ObjectTemplate> New();
/** Creates a new instance of this template.*/
Local<Object> NewInstance();
/**
* Sets an accessor on the object template.
*
* Whenever the property with the given name is accessed on objects
* created from this ObjectTemplate the getter and setter callbacks
* are called instead of getting and setting the property directly
* on the JavaScript object.
*
* \param name The name of the property for which an accessor is added.
* \param getter The callback to invoke when getting the property.
* \param setter The callback to invoke when setting the property.
* \param data A piece of data that will be passed to the getter and setter
* callbacks whenever they are invoked.
* \param settings Access control settings for the accessor. This is a bit
* field consisting of one of more of
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
* The default is to not allow cross-context access.
* ALL_CAN_READ means that all cross-context reads are allowed.
* ALL_CAN_WRITE means that all cross-context writes are allowed.
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
* cross-context access.
* \param attribute The attributes of the property for which an accessor
* is added.
* \param signature The signature describes valid receivers for the accessor
* and is used to perform implicit instance checks against them. If the
* receiver is incompatible (i.e. is not an instance of the constructor as
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
* thrown and no callback is invoked.
*/
void SetAccessor(Handle<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter = 0,
Handle<Value> data = Handle<Value>(),
AccessControl settings = DEFAULT,
PropertyAttribute attribute = None,
Handle<AccessorSignature> signature =
Handle<AccessorSignature>());
/**
* Sets a named property handler on the object template.
*
* Whenever a named property is accessed on objects created from
* this object template, the provided callback is invoked instead of
* accessing the property directly on the JavaScript object.
*
* \param getter The callback to invoke when getting a property.
* \param setter The callback to invoke when setting a property.
* \param query The callback to invoke to check if a property is present,
* and if present, get its attributes.
* \param deleter The callback to invoke when deleting a property.
* \param enumerator The callback to invoke to enumerate all the named
* properties of an object.
* \param data A piece of data that will be passed to the callbacks
* whenever they are invoked.
*/
void SetNamedPropertyHandler(
NamedPropertyGetterCallback getter,
NamedPropertySetterCallback setter = 0,
NamedPropertyQueryCallback query = 0,
NamedPropertyDeleterCallback deleter = 0,
NamedPropertyEnumeratorCallback enumerator = 0,
Handle<Value> data = Handle<Value>());
/**
* Sets an indexed property handler on the object template.
*
* Whenever an indexed property is accessed on objects created from
* this object template, the provided callback is invoked instead of
* accessing the property directly on the JavaScript object.
*
* \param getter The callback to invoke when getting a property.
* \param setter The callback to invoke when setting a property.
* \param query The callback to invoke to check if an object has a property.
* \param deleter The callback to invoke when deleting a property.
* \param enumerator The callback to invoke to enumerate all the indexed
* properties of an object.
* \param data A piece of data that will be passed to the callbacks
* whenever they are invoked.
*/
void SetIndexedPropertyHandler(
IndexedPropertyGetterCallback getter,
IndexedPropertySetterCallback setter = 0,
IndexedPropertyQueryCallback query = 0,
IndexedPropertyDeleterCallback deleter = 0,
IndexedPropertyEnumeratorCallback enumerator = 0,
Handle<Value> data = Handle<Value>());
/**
* Sets the callback to be used when calling instances created from
* this template as a function. If no callback is set, instances
* behave like normal JavaScript objects that cannot be called as a
* function.
*/
void SetCallAsFunctionHandler(FunctionCallback callback,
Handle<Value> data = Handle<Value>());
/**
* Mark object instances of the template as undetectable.
*
* In many ways, undetectable objects behave as though they are not
* there. They behave like 'undefined' in conditionals and when
* printed. However, properties can be accessed and called as on
* normal objects.
*/
void MarkAsUndetectable();
/**
* Sets access check callbacks on the object template.
*
* When accessing properties on instances of this object template,
* the access check callback will be called to determine whether or
* not to allow cross-context access to the properties.
* The last parameter specifies whether access checks are turned
* on by default on instances. If access checks are off by default,
* they can be turned on on individual instances by calling
* Object::TurnOnAccessCheck().
*/
void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
IndexedSecurityCallback indexed_handler,
Handle<Value> data = Handle<Value>(),
bool turned_on_by_default = true);
/**
* Gets the number of internal fields for objects generated from
* this template.
*/
int InternalFieldCount();
/**
* Sets the number of internal fields for objects generated from
* this template.
*/
void SetInternalFieldCount(int value);
private:
ObjectTemplate();
static Local<ObjectTemplate> New(internal::Isolate* isolate,
Handle<FunctionTemplate> constructor);
friend class FunctionTemplate;
};
/**
* A Signature specifies which receivers and arguments are valid
* parameters to a function.
*/
class V8_EXPORT Signature : public Data {
public:
static Local<Signature> New(Isolate* isolate,
Handle<FunctionTemplate> receiver =
Handle<FunctionTemplate>(),
int argc = 0,
Handle<FunctionTemplate> argv[] = 0);
private:
Signature();
};
/**
* An AccessorSignature specifies which receivers are valid parameters
* to an accessor callback.
*/
class V8_EXPORT AccessorSignature : public Data {
public:
static Local<AccessorSignature> New(Isolate* isolate,
Handle<FunctionTemplate> receiver =
Handle<FunctionTemplate>());
private:
AccessorSignature();
};
class V8_EXPORT DeclaredAccessorDescriptor : public Data {
private:
DeclaredAccessorDescriptor();
};
class V8_EXPORT ObjectOperationDescriptor : public Data {
public:
// This function is not yet stable and should not be used at this time.
static Local<RawOperationDescriptor> NewInternalFieldDereference(
Isolate* isolate,
int internal_field);
private:
ObjectOperationDescriptor();
};
enum DeclaredAccessorDescriptorDataType {
kDescriptorBoolType,
kDescriptorInt8Type, kDescriptorUint8Type,
kDescriptorInt16Type, kDescriptorUint16Type,
kDescriptorInt32Type, kDescriptorUint32Type,
kDescriptorFloatType, kDescriptorDoubleType
};
class V8_EXPORT RawOperationDescriptor : public Data {
public:
Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
int16_t byte_offset);
Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
void* compare_value);
Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
Isolate* isolate,
DeclaredAccessorDescriptorDataType data_type,
uint8_t bool_offset = 0);
Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
uint8_t bitmask,
uint8_t compare_value);
Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
Isolate* isolate,
uint16_t bitmask,
uint16_t compare_value);
Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
Isolate* isolate,
uint32_t bitmask,
uint32_t compare_value);
private:
RawOperationDescriptor();
};
/**
* A utility for determining the type of objects based on the template
* they were constructed from.
*/
class V8_EXPORT TypeSwitch : public Data {
public:
static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
int match(Handle<Value> value);
private:
TypeSwitch();
};
// --- Extensions ---
class V8_EXPORT ExternalAsciiStringResourceImpl
: public String::ExternalAsciiStringResource {
public:
ExternalAsciiStringResourceImpl() : data_(0), length_(0) {}
ExternalAsciiStringResourceImpl(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const { return data_; }
size_t length() const { return length_; }
private:
const char* data_;
size_t length_;
};
/**
* Ignore
*/
class V8_EXPORT Extension { // NOLINT
public:
// Note that the strings passed into this constructor must live as long
// as the Extension itself.
Extension(const char* name,
const char* source = 0,
int dep_count = 0,
const char** deps = 0,
int source_length = -1);
virtual ~Extension() { }
virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate(
v8::Isolate* isolate, v8::Handle<v8::String> name) {
return v8::Handle<v8::FunctionTemplate>();
}
const char* name() const { return name_; }
size_t source_length() const { return source_length_; }
const String::ExternalAsciiStringResource* source() const {
return &source_; }
int dependency_count() { return dep_count_; }
const char** dependencies() { return deps_; }
void set_auto_enable(bool value) { auto_enable_ = value; }
bool auto_enable() { return auto_enable_; }
private:
const char* name_;
size_t source_length_; // expected to initialize before source_
ExternalAsciiStringResourceImpl source_;
int dep_count_;
const char** deps_;
bool auto_enable_;
// Disallow copying and assigning.
Extension(const Extension&);
void operator=(const Extension&);
};
void V8_EXPORT RegisterExtension(Extension* extension);
// --- Statics ---
V8_INLINE Handle<Primitive> Undefined(Isolate* isolate);
V8_INLINE Handle<Primitive> Null(Isolate* isolate);
V8_INLINE Handle<Boolean> True(Isolate* isolate);
V8_INLINE Handle<Boolean> False(Isolate* isolate);
/**
* A set of constraints that specifies the limits of the runtime's memory use.
* You must set the heap size before initializing the VM - the size cannot be
* adjusted after the VM is initialized.
*
* If you are using threads then you should hold the V8::Locker lock while
* setting the stack limit and you must set a non-default stack limit separately
* for each thread.
*/
class V8_EXPORT ResourceConstraints {
public:
ResourceConstraints();
/**
* Configures the constraints with reasonable default values based on the
* capabilities of the current device the VM is running on.
*
* \param physical_memory The total amount of physical memory on the current
* device, in bytes.
* \param virtual_memory_limit The amount of virtual memory on the current
* device, in bytes, or zero, if there is no limit.
* \param number_of_processors The number of CPUs available on the current
* device.
*/
void ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit,
uint32_t number_of_processors);
int max_new_space_size() const { return max_new_space_size_; }
void set_max_new_space_size(int value) { max_new_space_size_ = value; }
int max_old_space_size() const { return max_old_space_size_; }
void set_max_old_space_size(int value) { max_old_space_size_ = value; }
int max_executable_size() const { return max_executable_size_; }
void set_max_executable_size(int value) { max_executable_size_ = value; }
uint32_t* stack_limit() const { return stack_limit_; }
// Sets an address beyond which the VM's stack may not grow.
void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
int max_available_threads() const { return max_available_threads_; }
// Set the number of threads available to V8, assuming at least 1.
void set_max_available_threads(int value) {
max_available_threads_ = value;
}
int code_range_size() const { return code_range_size_; }
void set_code_range_size(int value) {
code_range_size_ = value;
}
private:
int max_new_space_size_;
int max_old_space_size_;
int max_executable_size_;
uint32_t* stack_limit_;
int max_available_threads_;
int code_range_size_;
};
/**
* Sets the given ResourceConstraints on the given Isolate.
*/
bool V8_EXPORT SetResourceConstraints(Isolate* isolate,
ResourceConstraints* constraints);
// --- Exceptions ---
typedef void (*FatalErrorCallback)(const char* location, const char* message);
typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
// --- Tracing ---
typedef void (*LogEventCallback)(const char* name, int event);
/**
* Create new error objects by calling the corresponding error object
* constructor with the message.
*/
class V8_EXPORT Exception {
public:
static Local<Value> RangeError(Handle<String> message);
static Local<Value> ReferenceError(Handle<String> message);
static Local<Value> SyntaxError(Handle<String> message);
static Local<Value> TypeError(Handle<String> message);
static Local<Value> Error(Handle<String> message);
};
// --- Counters Callbacks ---
typedef int* (*CounterLookupCallback)(const char* name);
typedef void* (*CreateHistogramCallback)(const char* name,
int min,
int max,
size_t buckets);
typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
// --- Memory Allocation Callback ---
enum ObjectSpace {
kObjectSpaceNewSpace = 1 << 0,
kObjectSpaceOldPointerSpace = 1 << 1,
kObjectSpaceOldDataSpace = 1 << 2,
kObjectSpaceCodeSpace = 1 << 3,
kObjectSpaceMapSpace = 1 << 4,
kObjectSpaceLoSpace = 1 << 5,
kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
kObjectSpaceLoSpace
};
enum AllocationAction {
kAllocationActionAllocate = 1 << 0,
kAllocationActionFree = 1 << 1,
kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
};
typedef void (*MemoryAllocationCallback)(ObjectSpace space,
AllocationAction action,
int size);
// --- Leave Script Callback ---
typedef void (*CallCompletedCallback)();
// --- Failed Access Check Callback ---
typedef void (*FailedAccessCheckCallback)(Local<Object> target,
AccessType type,
Local<Value> data);
// --- AllowCodeGenerationFromStrings callbacks ---
/**
* Callback to check if code generation from strings is allowed. See
* Context::AllowCodeGenerationFromStrings.
*/
typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
// --- Garbage Collection Callbacks ---
/**
* Applications can register callback functions which will be called
* before and after a garbage collection. Allocations are not
* allowed in the callback functions, you therefore cannot manipulate
* objects (set or delete properties for example) since it is possible
* such operations will result in the allocation of objects.
*/
enum GCType {
kGCTypeScavenge = 1 << 0,
kGCTypeMarkSweepCompact = 1 << 1,
kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
};
enum GCCallbackFlags {
kNoGCCallbackFlags = 0,
kGCCallbackFlagCompacted = 1 << 0,
kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
kGCCallbackFlagForced = 1 << 2
};
typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
typedef void (*InterruptCallback)(Isolate* isolate, void* data);
/**
* Collection of V8 heap information.
*
* Instances of this class can be passed to v8::V8::HeapStatistics to
* get heap statistics from V8.
*/
class V8_EXPORT HeapStatistics {
public:
HeapStatistics();
size_t total_heap_size() { return total_heap_size_; }
size_t total_heap_size_executable() { return total_heap_size_executable_; }
size_t total_physical_size() { return total_physical_size_; }
size_t used_heap_size() { return used_heap_size_; }
size_t heap_size_limit() { return heap_size_limit_; }
private:
size_t total_heap_size_;
size_t total_heap_size_executable_;
size_t total_physical_size_;
size_t used_heap_size_;
size_t heap_size_limit_;
friend class V8;
friend class Isolate;
};
class RetainedObjectInfo;
/**
* Isolate represents an isolated instance of the V8 engine. V8
* isolates have completely separate states. Objects from one isolate
* must not be used in other isolates. When V8 is initialized a
* default isolate is implicitly created and entered. The embedder
* can create additional isolates and use them in parallel in multiple
* threads. An isolate can be entered by at most one thread at any
* given time. The Locker/Unlocker API must be used to synchronize.
*/
class V8_EXPORT Isolate {
public:
/**
* Stack-allocated class which sets the isolate for all operations
* executed within a local scope.
*/
class V8_EXPORT Scope {
public:
explicit Scope(Isolate* isolate) : isolate_(isolate) {
isolate->Enter();
}
~Scope() { isolate_->Exit(); }
private:
Isolate* const isolate_;
// Prevent copying of Scope objects.
Scope(const Scope&);
Scope& operator=(const Scope&);
};
/**
* Assert that no Javascript code is invoked.
*/
class V8_EXPORT DisallowJavascriptExecutionScope {
public:
enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
~DisallowJavascriptExecutionScope();
private:
bool on_failure_;
void* internal_;
// Prevent copying of Scope objects.
DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
DisallowJavascriptExecutionScope& operator=(
const DisallowJavascriptExecutionScope&);
};
/**
* Introduce exception to DisallowJavascriptExecutionScope.
*/
class V8_EXPORT AllowJavascriptExecutionScope {
public:
explicit AllowJavascriptExecutionScope(Isolate* isolate);
~AllowJavascriptExecutionScope();
private:
void* internal_throws_;
void* internal_assert_;
// Prevent copying of Scope objects.
AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
AllowJavascriptExecutionScope& operator=(
const AllowJavascriptExecutionScope&);
};
/**
* Types of garbage collections that can be requested via
* RequestGarbageCollectionForTesting.
*/
enum GarbageCollectionType {
kFullGarbageCollection,
kMinorGarbageCollection
};
/**
* Creates a new isolate. Does not change the currently entered
* isolate.
*
* When an isolate is no longer used its resources should be freed
* by calling Dispose(). Using the delete operator is not allowed.
*/
static Isolate* New();
/**
* Returns the entered isolate for the current thread or NULL in
* case there is no current isolate.
*/
static Isolate* GetCurrent();
/**
* Methods below this point require holding a lock (using Locker) in
* a multi-threaded environment.
*/
/**
* Sets this isolate as the entered one for the current thread.
* Saves the previously entered one (if any), so that it can be
* restored when exiting. Re-entering an isolate is allowed.
*/
void Enter();
/**
* Exits this isolate by restoring the previously entered one in the
* current thread. The isolate may still stay the same, if it was
* entered more than once.
*
* Requires: this == Isolate::GetCurrent().
*/
void Exit();
/**
* Disposes the isolate. The isolate must not be entered by any
* thread to be disposable.
*/
void Dispose();
/**
* Associate embedder-specific data with the isolate. |slot| has to be
* between 0 and GetNumberOfDataSlots() - 1.
*/
V8_INLINE void SetData(uint32_t slot, void* data);
/**
* Retrieve embedder-specific data from the isolate.
* Returns NULL if SetData has never been called for the given |slot|.
*/
V8_INLINE void* GetData(uint32_t slot);
/**
* Returns the maximum number of available embedder data slots. Valid slots
* are in the range of 0 - GetNumberOfDataSlots() - 1.
*/
V8_INLINE static uint32_t GetNumberOfDataSlots();
/**
* Get statistics about the heap memory usage.
*/
void GetHeapStatistics(HeapStatistics* heap_statistics);
/**
* Adjusts the amount of registered external memory. Used to give V8 an
* indication of the amount of externally allocated memory that is kept alive
* by JavaScript objects. V8 uses this to decide when to perform global
* garbage collections. Registering externally allocated memory will trigger
* global garbage collections more often than it would otherwise in an attempt
* to garbage collect the JavaScript objects that keep the externally
* allocated memory alive.
*
* \param change_in_bytes the change in externally allocated memory that is
* kept alive by JavaScript objects.
* \returns the adjusted value.
*/
int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
/**
* Returns heap profiler for this isolate. Will return NULL until the isolate
* is initialized.
*/
HeapProfiler* GetHeapProfiler();
/**
* Returns CPU profiler for this isolate. Will return NULL unless the isolate
* is initialized. It is the embedder's responsibility to stop all CPU
* profiling activities if it has started any.
*/
CpuProfiler* GetCpuProfiler();
/** Returns true if this isolate has a current context. */
bool InContext();
/** Returns the context that is on the top of the stack. */
Local<Context> GetCurrentContext();
/**
* Returns the context of the calling JavaScript code. That is the
* context of the top-most JavaScript frame. If there are no
* JavaScript frames an empty handle is returned.
*/
Local<Context> GetCallingContext();
/** Returns the last entered context. */
Local<Context> GetEnteredContext();
/**
* Schedules an exception to be thrown when returning to JavaScript. When an
* exception has been scheduled it is illegal to invoke any JavaScript
* operation; the caller must return immediately and only after the exception
* has been handled does it become legal to invoke JavaScript operations.
*/
Local<Value> ThrowException(Local<Value> exception);
/**
* Allows the host application to group objects together. If one
* object in the group is alive, all objects in the group are alive.
* After each garbage collection, object groups are removed. It is
* intended to be used in the before-garbage-collection callback
* function, for instance to simulate DOM tree connections among JS
* wrapper objects. Object groups for all dependent handles need to
* be provided for kGCTypeMarkSweepCompact collections, for all other
* garbage collection types it is sufficient to provide object groups
* for partially dependent handles only.
*/
template<typename T> void SetObjectGroupId(const Persistent<T>& object,
UniqueId id);
/**
* Allows the host application to declare implicit references from an object
* group to an object. If the objects of the object group are alive, the child
* object is alive too. After each garbage collection, all implicit references
* are removed. It is intended to be used in the before-garbage-collection
* callback function.
*/
template<typename T> void SetReferenceFromGroup(UniqueId id,
const Persistent<T>& child);
/**
* Allows the host application to declare implicit references from an object
* to another object. If the parent object is alive, the child object is alive
* too. After each garbage collection, all implicit references are removed. It
* is intended to be used in the before-garbage-collection callback function.
*/
template<typename T, typename S>
void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
typedef void (*GCPrologueCallback)(Isolate* isolate,
GCType type,
GCCallbackFlags flags);
typedef void (*GCEpilogueCallback)(Isolate* isolate,
GCType type,
GCCallbackFlags flags);
/**
* Enables the host application to receive a notification before a
* garbage collection. Allocations are allowed in the callback function,
* but the callback is not re-entrant: if the allocation inside it will
* trigger the garbage collection, the callback won't be called again.
* It is possible to specify the GCType filter for your callback. But it is
* not possible to register the same callback function two times with
* different GCType filters.
*/
void AddGCPrologueCallback(
GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCPrologueCallback function.
*/
void RemoveGCPrologueCallback(GCPrologueCallback callback);
/**
* Enables the host application to receive a notification after a
* garbage collection. Allocations are allowed in the callback function,
* but the callback is not re-entrant: if the allocation inside it will
* trigger the garbage collection, the callback won't be called again.
* It is possible to specify the GCType filter for your callback. But it is
* not possible to register the same callback function two times with
* different GCType filters.
*/
void AddGCEpilogueCallback(
GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCEpilogueCallback function.
*/
void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
/**
* Request V8 to interrupt long running JavaScript code and invoke
* the given |callback| passing the given |data| to it. After |callback|
* returns control will be returned to the JavaScript code.
* At any given moment V8 can remember only a single callback for the very
* last interrupt request.
* Can be called from another thread without acquiring a |Locker|.
* Registered |callback| must not reenter interrupted Isolate.
*/
void RequestInterrupt(InterruptCallback callback, void* data);
/**
* Clear interrupt request created by |RequestInterrupt|.
* Can be called from another thread without acquiring a |Locker|.
*/
void ClearInterrupt();
/**
* Request garbage collection in this Isolate. It is only valid to call this
* function if --expose_gc was specified.
*
* This should only be used for testing purposes and not to enforce a garbage
* collection schedule. It has strong negative impact on the garbage
* collection performance. Use IdleNotification() or LowMemoryNotification()
* instead to influence the garbage collection schedule.
*/
void RequestGarbageCollectionForTesting(GarbageCollectionType type);
/**
* Set the callback to invoke for logging event.
*/
void SetEventLogger(LogEventCallback that);
/**
* Adds a callback to notify the host application when a script finished
* running. If a script re-enters the runtime during executing, the
* CallCompletedCallback is only invoked when the outer-most script
* execution ends. Executing scripts inside the callback do not trigger
* further callbacks.
*/
void AddCallCompletedCallback(CallCompletedCallback callback);
/**
* Removes callback that was installed by AddCallCompletedCallback.
*/
void RemoveCallCompletedCallback(CallCompletedCallback callback);
private:
template<class K, class V, class Traits> friend class PersistentValueMap;
Isolate();
Isolate(const Isolate&);
~Isolate();
Isolate& operator=(const Isolate&);
void* operator new(size_t size);
void operator delete(void*, size_t);
void SetObjectGroupId(internal::Object** object, UniqueId id);
void SetReferenceFromGroup(UniqueId id, internal::Object** object);
void SetReference(internal::Object** parent, internal::Object** child);
};
class V8_EXPORT StartupData {
public:
enum CompressionAlgorithm {
kUncompressed,
kBZip2
};
const char* data;
int compressed_size;
int raw_size;
};
/**
* A helper class for driving V8 startup data decompression. It is based on
* "CompressedStartupData" API functions from the V8 class. It isn't mandatory
* for an embedder to use this class, instead, API functions can be used
* directly.
*
* For an example of the class usage, see the "shell.cc" sample application.
*/
class V8_EXPORT StartupDataDecompressor { // NOLINT
public:
StartupDataDecompressor();
virtual ~StartupDataDecompressor();
int Decompress();
protected:
virtual int DecompressData(char* raw_data,
int* raw_data_size,
const char* compressed_data,
int compressed_data_size) = 0;
private:
char** raw_data;
};
/**
* EntropySource is used as a callback function when v8 needs a source
* of entropy.
*/
typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
/**
* ReturnAddressLocationResolver is used as a callback function when v8 is
* resolving the location of a return address on the stack. Profilers that
* change the return address on the stack can use this to resolve the stack
* location to whereever the profiler stashed the original return address.
*
* \param return_addr_location points to a location on stack where a machine
* return address resides.
* \returns either return_addr_location, or else a pointer to the profiler's
* copy of the original return address.
*
* \note the resolver function must not cause garbage collection.
*/
typedef uintptr_t (*ReturnAddressLocationResolver)(
uintptr_t return_addr_location);
/**
* FunctionEntryHook is the type of the profile entry hook called at entry to
* any generated function when function-level profiling is enabled.
*
* \param function the address of the function that's being entered.
* \param return_addr_location points to a location on stack where the machine
* return address resides. This can be used to identify the caller of
* \p function, and/or modified to divert execution when \p function exits.
*
* \note the entry hook must not cause garbage collection.
*/
typedef void (*FunctionEntryHook)(uintptr_t function,
uintptr_t return_addr_location);
/**
* A JIT code event is issued each time code is added, moved or removed.
*
* \note removal events are not currently issued.
*/
struct JitCodeEvent {
enum EventType {
CODE_ADDED,
CODE_MOVED,
CODE_REMOVED,
CODE_ADD_LINE_POS_INFO,
CODE_START_LINE_INFO_RECORDING,
CODE_END_LINE_INFO_RECORDING
};
// Definition of the code position type. The "POSITION" type means the place
// in the source code which are of interest when making stack traces to
// pin-point the source location of a stack frame as close as possible.
// The "STATEMENT_POSITION" means the place at the beginning of each
// statement, and is used to indicate possible break locations.
enum PositionType {
POSITION,
STATEMENT_POSITION
};
// Type of event.
EventType type;
// Start of the instructions.
void* code_start;
// Size of the instructions.
size_t code_len;
// Script info for CODE_ADDED event.
Handle<Script> script;
// User-defined data for *_LINE_INFO_* event. It's used to hold the source
// code line information which is returned from the
// CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
// CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
void* user_data;
struct name_t {
// Name of the object associated with the code, note that the string is not
// zero-terminated.
const char* str;
// Number of chars in str.
size_t len;
};
struct line_info_t {
// PC offset
size_t offset;
// Code postion
size_t pos;
// The position type.
PositionType position_type;
};
union {
// Only valid for CODE_ADDED.
struct name_t name;
// Only valid for CODE_ADD_LINE_POS_INFO
struct line_info_t line_info;
// New location of instructions. Only valid for CODE_MOVED.
void* new_code_start;
};
};
/**
* Option flags passed to the SetJitCodeEventHandler function.
*/
enum JitCodeEventOptions {
kJitCodeEventDefault = 0,
// Generate callbacks for already existent code.
kJitCodeEventEnumExisting = 1
};
/**
* Callback function passed to SetJitCodeEventHandler.
*
* \param event code add, move or removal event.
*/
typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
/**
* Interface for iterating through all external resources in the heap.
*/
class V8_EXPORT ExternalResourceVisitor { // NOLINT
public:
virtual ~ExternalResourceVisitor() {}
virtual void VisitExternalString(Handle<String> string) {}
};
/**
* Interface for iterating through all the persistent handles in the heap.
*/
class V8_EXPORT PersistentHandleVisitor { // NOLINT
public:
virtual ~PersistentHandleVisitor() {}
virtual void VisitPersistentHandle(Persistent<Value>* value,
uint16_t class_id) {}
};
/**
* Container class for static utility functions.
*/
class V8_EXPORT V8 {
public:
/** Set the callback to invoke in case of fatal errors. */
static void SetFatalErrorHandler(FatalErrorCallback that);
/**
* Set the callback to invoke to check if code generation from
* strings should be allowed.
*/
static void SetAllowCodeGenerationFromStringsCallback(
AllowCodeGenerationFromStringsCallback that);
/**
* Set allocator to use for ArrayBuffer memory.
* The allocator should be set only once. The allocator should be set
* before any code tha uses ArrayBuffers is executed.
* This allocator is used in all isolates.
*/
static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
/**
* Check if V8 is dead and therefore unusable. This is the case after
* fatal errors such as out-of-memory situations.
*/
static bool IsDead();
/**
* The following 4 functions are to be used when V8 is built with
* the 'compress_startup_data' flag enabled. In this case, the
* embedder must decompress startup data prior to initializing V8.
*
* This is how interaction with V8 should look like:
* int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
* v8::StartupData* compressed_data =
* new v8::StartupData[compressed_data_count];
* v8::V8::GetCompressedStartupData(compressed_data);
* ... decompress data (compressed_data can be updated in-place) ...
* v8::V8::SetDecompressedStartupData(compressed_data);
* ... now V8 can be initialized
* ... make sure the decompressed data stays valid until V8 shutdown
*
* A helper class StartupDataDecompressor is provided. It implements
* the protocol of the interaction described above, and can be used in
* most cases instead of calling these API functions directly.
*/
static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
static int GetCompressedStartupDataCount();
static void GetCompressedStartupData(StartupData* compressed_data);
static void SetDecompressedStartupData(StartupData* decompressed_data);
/**
* Adds a message listener.
*
* The same message listener can be added more than once and in that
* case it will be called more than once for each message.
*
* If data is specified, it will be passed to the callback when it is called.
* Otherwise, the exception object will be passed to the callback instead.
*/
static bool AddMessageListener(MessageCallback that,
Handle<Value> data = Handle<Value>());
/**
* Remove all message listeners from the specified callback function.
*/
static void RemoveMessageListeners(MessageCallback that);
/**
* Tells V8 to capture current stack trace when uncaught exception occurs
* and report it to the message listeners. The option is off by default.
*/
static void SetCaptureStackTraceForUncaughtExceptions(
bool capture,
int frame_limit = 10,
StackTrace::StackTraceOptions options = StackTrace::kOverview);
/**
* Sets V8 flags from a string.
*/
static void SetFlagsFromString(const char* str, int length);
/**
* Sets V8 flags from the command line.
*/
static void SetFlagsFromCommandLine(int* argc,
char** argv,
bool remove_flags);
/** Get the version string. */
static const char* GetVersion();
/**
* Enables the host application to provide a mechanism for recording
* statistics counters.
*/
static void SetCounterFunction(CounterLookupCallback);
/**
* Enables the host application to provide a mechanism for recording
* histograms. The CreateHistogram function returns a
* histogram which will later be passed to the AddHistogramSample
* function.
*/
static void SetCreateHistogramFunction(CreateHistogramCallback);
static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
/** Callback function for reporting failed access checks.*/
static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
/**
* Enables the host application to receive a notification before a
* garbage collection. Allocations are not allowed in the
* callback function, you therefore cannot manipulate objects (set
* or delete properties for example) since it is possible such
* operations will result in the allocation of objects. It is possible
* to specify the GCType filter for your callback. But it is not possible to
* register the same callback function two times with different
* GCType filters.
*/
static void AddGCPrologueCallback(
GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCPrologueCallback function.
*/
static void RemoveGCPrologueCallback(GCPrologueCallback callback);
/**
* Enables the host application to receive a notification after a
* garbage collection. Allocations are not allowed in the
* callback function, you therefore cannot manipulate objects (set
* or delete properties for example) since it is possible such
* operations will result in the allocation of objects. It is possible
* to specify the GCType filter for your callback. But it is not possible to
* register the same callback function two times with different
* GCType filters.
*/
static void AddGCEpilogueCallback(
GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
/**
* This function removes callback which was installed by
* AddGCEpilogueCallback function.
*/
static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
/**
* Enables the host application to provide a mechanism to be notified
* and perform custom logging when V8 Allocates Executable Memory.
*/
static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
ObjectSpace space,
AllocationAction action);
/**
* Removes callback that was installed by AddMemoryAllocationCallback.
*/
static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
/**
* Experimental: Runs the Microtask Work Queue until empty
*/
static void RunMicrotasks(Isolate* isolate);
/**
* Experimental: Enqueues the callback to the Microtask Work Queue
*/
static void EnqueueMicrotask(Isolate* isolate, Handle<Function> microtask);
/**
* Experimental: Controls whether the Microtask Work Queue is automatically
* run when the script call depth decrements to zero.
*/
static void SetAutorunMicrotasks(Isolate *source, bool autorun);
/**
* Initializes from snapshot if possible. Otherwise, attempts to
* initialize from scratch. This function is called implicitly if
* you use the API without calling it first.
*/
static bool Initialize();
/**
* Allows the host application to provide a callback which can be used
* as a source of entropy for random number generators.
*/
static void SetEntropySource(EntropySource source);
/**
* Allows the host application to provide a callback that allows v8 to
* cooperate with a profiler that rewrites return addresses on stack.
*/
static void SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver);
/**
* Allows the host application to provide the address of a function that's
* invoked on entry to every V8-generated function.
* Note that \p entry_hook is invoked at the very start of each
* generated function.
*
* \param isolate the isolate to operate on.
* \param entry_hook a function that will be invoked on entry to every
* V8-generated function.
* \returns true on success on supported platforms, false on failure.
* \note Setting an entry hook can only be done very early in an isolates
* lifetime, and once set, the entry hook cannot be revoked.
*/
static bool SetFunctionEntryHook(Isolate* isolate,
FunctionEntryHook entry_hook);
/**
* Allows the host application to provide the address of a function that is
* notified each time code is added, moved or removed.
*
* \param options options for the JIT code event handler.
* \param event_handler the JIT code event handler, which will be invoked
* each time code is added, moved or removed.
* \note \p event_handler won't get notified of existent code.
* \note since code removal notifications are not currently issued, the
* \p event_handler may get notifications of code that overlaps earlier
* code notifications. This happens when code areas are reused, and the
* earlier overlapping code areas should therefore be discarded.
* \note the events passed to \p event_handler and the strings they point to
* are not guaranteed to live past each call. The \p event_handler must
* copy strings and other parameters it needs to keep around.
* \note the set of events declared in JitCodeEvent::EventType is expected to
* grow over time, and the JitCodeEvent structure is expected to accrue
* new members. The \p event_handler function must ignore event codes
* it does not recognize to maintain future compatibility.
*/
static void SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler);
/**
* Forcefully terminate the current thread of JavaScript execution
* in the given isolate.
*
* This method can be used by any thread even if that thread has not
* acquired the V8 lock with a Locker object.
*
* \param isolate The isolate in which to terminate the current JS execution.
*/
static void TerminateExecution(Isolate* isolate);
/**
* Is V8 terminating JavaScript execution.
*
* Returns true if JavaScript execution is currently terminating
* because of a call to TerminateExecution. In that case there are
* still JavaScript frames on the stack and the termination
* exception is still active.
*
* \param isolate The isolate in which to check.
*/
static bool IsExecutionTerminating(Isolate* isolate = NULL);
/**
* Resume execution capability in the given isolate, whose execution
* was previously forcefully terminated using TerminateExecution().
*
* When execution is forcefully terminated using TerminateExecution(),
* the isolate can not resume execution until all JavaScript frames
* have propagated the uncatchable exception which is generated. This
* method allows the program embedding the engine to handle the
* termination event and resume execution capability, even if
* JavaScript frames remain on the stack.
*
* This method can be used by any thread even if that thread has not
* acquired the V8 lock with a Locker object.
*
* \param isolate The isolate in which to resume execution capability.
*/
static void CancelTerminateExecution(Isolate* isolate);
/**
* Releases any resources used by v8 and stops any utility threads
* that may be running. Note that disposing v8 is permanent, it
* cannot be reinitialized.
*
* It should generally not be necessary to dispose v8 before exiting
* a process, this should happen automatically. It is only necessary
* to use if the process needs the resources taken up by v8.
*/
static bool Dispose();
/**
* Iterates through all external resources referenced from current isolate
* heap. GC is not invoked prior to iterating, therefore there is no
* guarantee that visited objects are still alive.
*/
static void VisitExternalResources(ExternalResourceVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap
* that have class_ids.
*/
static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
/**
* Iterates through all the persistent handles in the current isolate's heap
* that have class_ids and are candidates to be marked as partially dependent
* handles. This will visit handles to young objects created since the last
* garbage collection but is free to visit an arbitrary superset of these
* objects.
*/
static void VisitHandlesForPartialDependence(
Isolate* isolate, PersistentHandleVisitor* visitor);
/**
* Optional notification that the embedder is idle.
* V8 uses the notification to reduce memory footprint.
* This call can be used repeatedly if the embedder remains idle.
* Returns true if the embedder should stop calling IdleNotification
* until real work has been done. This indicates that V8 has done
* as much cleanup as it will be able to do.
*
* The hint argument specifies the amount of work to be done in the function
* on scale from 1 to 1000. There is no guarantee that the actual work will
* match the hint.
*/
static bool IdleNotification(int hint = 1000);
/**
* Optional notification that the system is running low on memory.
* V8 uses these notifications to attempt to free memory.
*/
static void LowMemoryNotification();
/**
* Optional notification that a context has been disposed. V8 uses
* these notifications to guide the GC heuristic. Returns the number
* of context disposals - including this one - since the last time
* V8 had a chance to clean up.
*/
static int ContextDisposedNotification();
/**
* Initialize the ICU library bundled with V8. The embedder should only
* invoke this method when using the bundled ICU. Returns true on success.
*
* If V8 was compiled with the ICU data in an external file, the location
* of the data file has to be provided.
*/
static bool InitializeICU(const char* icu_data_file = NULL);
/**
* Sets the v8::Platform to use. This should be invoked before V8 is
* initialized.
*/
static void InitializePlatform(Platform* platform);
/**
* Clears all references to the v8::Platform. This should be invoked after
* V8 was disposed.
*/
static void ShutdownPlatform();
private:
V8();
static internal::Object** GlobalizeReference(internal::Isolate* isolate,
internal::Object** handle);
static internal::Object** CopyPersistent(internal::Object** handle);
static void DisposeGlobal(internal::Object** global_handle);
typedef WeakCallbackData<Value, void>::Callback WeakCallback;
static void MakeWeak(internal::Object** global_handle,
void* data,
WeakCallback weak_callback);
static void* ClearWeak(internal::Object** global_handle);
static void Eternalize(Isolate* isolate,
Value* handle,
int* index);
static Local<Value> GetEternal(Isolate* isolate, int index);
template <class T> friend class Handle;
template <class T> friend class Local;
template <class T> friend class Eternal;
template <class T> friend class PersistentBase;
template <class T, class M> friend class Persistent;
friend class Context;
};
/**
* An external exception handler.
*/
class V8_EXPORT TryCatch {
public:
/**
* Creates a new try/catch block and registers it with v8. Note that
* all TryCatch blocks should be stack allocated because the memory
* location itself is compared against JavaScript try/catch blocks.
*/
TryCatch();
/**
* Unregisters and deletes this try/catch block.
*/
~TryCatch();
/**
* Returns true if an exception has been caught by this try/catch block.
*/
bool HasCaught() const;
/**
* For certain types of exceptions, it makes no sense to continue execution.
*
* If CanContinue returns false, the correct action is to perform any C++
* cleanup needed and then return. If CanContinue returns false and
* HasTerminated returns true, it is possible to call
* CancelTerminateExecution in order to continue calling into the engine.
*/
bool CanContinue() const;
/**
* Returns true if an exception has been caught due to script execution
* being terminated.
*
* There is no JavaScript representation of an execution termination
* exception. Such exceptions are thrown when the TerminateExecution
* methods are called to terminate a long-running script.
*
* If such an exception has been thrown, HasTerminated will return true,
* indicating that it is possible to call CancelTerminateExecution in order
* to continue calling into the engine.
*/
bool HasTerminated() const;
/**
* Throws the exception caught by this TryCatch in a way that avoids
* it being caught again by this same TryCatch. As with ThrowException
* it is illegal to execute any JavaScript operations after calling
* ReThrow; the caller must return immediately to where the exception
* is caught.
*/
Handle<Value> ReThrow();
/**
* Returns the exception caught by this try/catch block. If no exception has
* been caught an empty handle is returned.
*
* The returned handle is valid until this TryCatch block has been destroyed.
*/
Local<Value> Exception() const;
/**
* Returns the .stack property of the thrown object. If no .stack
* property is present an empty handle is returned.
*/
Local<Value> StackTrace() const;
/**
* Returns the message associated with this exception. If there is
* no message associated an empty handle is returned.
*
* The returned handle is valid until this TryCatch block has been
* destroyed.
*/
Local<v8::Message> Message() const;
/**
* Clears any exceptions that may have been caught by this try/catch block.
* After this method has been called, HasCaught() will return false.
*
* It is not necessary to clear a try/catch block before using it again; if
* another exception is thrown the previously caught exception will just be
* overwritten. However, it is often a good idea since it makes it easier
* to determine which operation threw a given exception.
*/
void Reset();
/**
* Set verbosity of the external exception handler.
*
* By default, exceptions that are caught by an external exception
* handler are not reported. Call SetVerbose with true on an
* external exception handler to have exceptions caught by the
* handler reported as if they were not caught.
*/
void SetVerbose(bool value);
/**
* Set whether or not this TryCatch should capture a Message object
* which holds source information about where the exception
* occurred. True by default.
*/
void SetCaptureMessage(bool value);
private:
// Make it hard to create heap-allocated TryCatch blocks.
TryCatch(const TryCatch&);
void operator=(const TryCatch&);
void* operator new(size_t size);
void operator delete(void*, size_t);
v8::internal::Isolate* isolate_;
void* next_;
void* exception_;
void* message_obj_;
void* message_script_;
int message_start_pos_;
int message_end_pos_;
bool is_verbose_ : 1;
bool can_continue_ : 1;
bool capture_message_ : 1;
bool rethrow_ : 1;
bool has_terminated_ : 1;
friend class v8::internal::Isolate;
};
// --- Context ---
/**
* A container for extension names.
*/
class V8_EXPORT ExtensionConfiguration {
public:
ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count, const char* names[])
: name_count_(name_count), names_(names) { }
const char** begin() const { return &names_[0]; }
const char** end() const { return &names_[name_count_]; }
private:
const int name_count_;
const char** names_;
};
/**
* A sandboxed execution context with its own set of built-in objects
* and functions.
*/
class V8_EXPORT Context {
public:
/**
* Returns the global proxy object.
*
* Global proxy object is a thin wrapper whose prototype points to actual
* context's global object with the properties like Object, etc. This is done
* that way for security reasons (for more details see
* https://wiki.mozilla.org/Gecko:SplitWindow).
*
* Please note that changes to global proxy object prototype most probably
* would break VM---v8 expects only global object as a prototype of global
* proxy object.
*/
Local<Object> Global();
/**
* Detaches the global object from its context before
* the global object can be reused to create a new context.
*/
void DetachGlobal();
/**
* Creates a new context and returns a handle to the newly allocated
* context.
*
* \param isolate The isolate in which to create the context.
*
* \param extensions An optional extension configuration containing
* the extensions to be installed in the newly created context.
*
* \param global_template An optional object template from which the
* global object for the newly created context will be created.
*
* \param global_object An optional global object to be reused for
* the newly created context. This global object must have been
* created by a previous call to Context::New with the same global
* template. The state of the global object will be completely reset
* and only object identify will remain.
*/
static Local<Context> New(
Isolate* isolate,
ExtensionConfiguration* extensions = NULL,
Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
Handle<Value> global_object = Handle<Value>());
/**
* Sets the security token for the context. To access an object in
* another context, the security tokens must match.
*/
void SetSecurityToken(Handle<Value> token);
/** Restores the security token to the default value. */
void UseDefaultSecurityToken();
/** Returns the security token of this context.*/
Handle<Value> GetSecurityToken();
/**
* Enter this context. After entering a context, all code compiled
* and run is compiled and run in this context. If another context
* is already entered, this old context is saved so it can be
* restored when the new context is exited.
*/
void Enter();
/**
* Exit this context. Exiting the current context restores the
* context that was in place when entering the current context.
*/
void Exit();
/**
* Returns true if the context has experienced an out of memory situation.
* Since V8 always treats OOM as fatal error, this can no longer return true.
* Therefore this is now deprecated.
* */
V8_DEPRECATED("This can no longer happen. OOM is a fatal error.",
bool HasOutOfMemoryException()) { return false; }
/** Returns an isolate associated with a current context. */
v8::Isolate* GetIsolate();
/**
* Gets the embedder data with the given index, which must have been set by a
* previous call to SetEmbedderData with the same index. Note that index 0
* currently has a special meaning for Chrome's debugger.
*/
V8_INLINE Local<Value> GetEmbedderData(int index);
/**
* Sets the embedder data with the given index, growing the data as
* needed. Note that index 0 currently has a special meaning for Chrome's
* debugger.
*/
void SetEmbedderData(int index, Handle<Value> value);
/**
* Gets a 2-byte-aligned native pointer from the embedder data with the given
* index, which must have bees set by a previous call to
* SetAlignedPointerInEmbedderData with the same index. Note that index 0
* currently has a special meaning for Chrome's debugger.
*/
V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
/**
* Sets a 2-byte-aligned native pointer in the embedder data with the given
* index, growing the data as needed. Note that index 0 currently has a
* special meaning for Chrome's debugger.
*/
void SetAlignedPointerInEmbedderData(int index, void* value);
/**
* Control whether code generation from strings is allowed. Calling
* this method with false will disable 'eval' and the 'Function'
* constructor for code running in this context. If 'eval' or the
* 'Function' constructor are used an exception will be thrown.
*
* If code generation from strings is not allowed the
* V8::AllowCodeGenerationFromStrings callback will be invoked if
* set before blocking the call to 'eval' or the 'Function'
* constructor. If that callback returns true, the call will be
* allowed, otherwise an exception will be thrown. If no callback is
* set an exception will be thrown.
*/
void AllowCodeGenerationFromStrings(bool allow);
/**
* Returns true if code generation from strings is allowed for the context.
* For more details see AllowCodeGenerationFromStrings(bool) documentation.
*/
bool IsCodeGenerationFromStringsAllowed();
/**
* Sets the error description for the exception that is thrown when
* code generation from strings is not allowed and 'eval' or the 'Function'
* constructor are called.
*/
void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
/**
* Stack-allocated class which sets the execution context for all
* operations executed within a local scope.
*/
class Scope {
public:
explicit V8_INLINE Scope(Handle<Context> context) : context_(context) {
context_->Enter();
}
V8_INLINE ~Scope() { context_->Exit(); }
private:
Handle<Context> context_;
};
private:
friend class Value;
friend class Script;
friend class Object;
friend class Function;
Local<Value> SlowGetEmbedderData(int index);
void* SlowGetAlignedPointerFromEmbedderData(int index);
};
/**
* Multiple threads in V8 are allowed, but only one thread at a time is allowed
* to use any given V8 isolate, see the comments in the Isolate class. The
* definition of 'using a V8 isolate' includes accessing handles or holding onto
* object pointers obtained from V8 handles while in the particular V8 isolate.
* It is up to the user of V8 to ensure, perhaps with locking, that this
* constraint is not violated. In addition to any other synchronization
* mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
* used to signal thead switches to V8.
*
* v8::Locker is a scoped lock object. While it's active, i.e. between its
* construction and destruction, the current thread is allowed to use the locked
* isolate. V8 guarantees that an isolate can be locked by at most one thread at
* any time. In other words, the scope of a v8::Locker is a critical section.
*
* Sample usage:
* \code
* ...
* {
* v8::Locker locker(isolate);
* v8::Isolate::Scope isolate_scope(isolate);
* ...
* // Code using V8 and isolate goes here.
* ...
* } // Destructor called here
* \endcode
*
* If you wish to stop using V8 in a thread A you can do this either by
* destroying the v8::Locker object as above or by constructing a v8::Unlocker
* object:
*
* \code
* {
* isolate->Exit();
* v8::Unlocker unlocker(isolate);
* ...
* // Code not using V8 goes here while V8 can run in another thread.
* ...
* } // Destructor called here.
* isolate->Enter();
* \endcode
*
* The Unlocker object is intended for use in a long-running callback from V8,
* where you want to release the V8 lock for other threads to use.
*
* The v8::Locker is a recursive lock, i.e. you can lock more than once in a
* given thread. This can be useful if you have code that can be called either
* from code that holds the lock or from code that does not. The Unlocker is
* not recursive so you can not have several Unlockers on the stack at once, and
* you can not use an Unlocker in a thread that is not inside a Locker's scope.
*
* An unlocker will unlock several lockers if it has to and reinstate the
* correct depth of locking on its destruction, e.g.:
*
* \code
* // V8 not locked.
* {
* v8::Locker locker(isolate);
* Isolate::Scope isolate_scope(isolate);
* // V8 locked.
* {
* v8::Locker another_locker(isolate);
* // V8 still locked (2 levels).
* {
* isolate->Exit();
* v8::Unlocker unlocker(isolate);
* // V8 not locked.
* }
* isolate->Enter();
* // V8 locked again (2 levels).
* }
* // V8 still locked (1 level).
* }
* // V8 Now no longer locked.
* \endcode
*/
class V8_EXPORT Unlocker {
public:
/**
* Initialize Unlocker for a given Isolate.
*/
V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
~Unlocker();
private:
void Initialize(Isolate* isolate);
internal::Isolate* isolate_;
};
class V8_EXPORT Locker {
public:
/**
* Initialize Locker for a given Isolate.
*/
V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
~Locker();
/**
* Returns whether or not the locker for a given isolate, is locked by the
* current thread.
*/
static bool IsLocked(Isolate* isolate);
/**
* Returns whether v8::Locker is being used by this V8 instance.
*/
static bool IsActive();
private:
void Initialize(Isolate* isolate);
bool has_lock_;
bool top_level_;
internal::Isolate* isolate_;
static bool active_;
// Disallow copying and assigning.
Locker(const Locker&);
void operator=(const Locker&);
};
// --- Implementation ---
namespace internal {
const int kApiPointerSize = sizeof(void*); // NOLINT
const int kApiIntSize = sizeof(int); // NOLINT
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t ptr_size> struct SmiTagging;
template<int kSmiShiftSize>
V8_INLINE internal::Object* IntToSmi(int value) {
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
intptr_t tagged_value =
(static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
return reinterpret_cast<internal::Object*>(tagged_value);
}
// Smi constants for 32-bit systems.
template <> struct SmiTagging<4> {
static const int kSmiShiftSize = 0;
static const int kSmiValueSize = 31;
V8_INLINE static int SmiToInt(internal::Object* value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Throw away top 32 bits and shift down (requires >> to be sign extending).
return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return internal::IntToSmi<kSmiShiftSize>(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
}
};
// Smi constants for 64-bit systems.
template <> struct SmiTagging<8> {
static const int kSmiShiftSize = 31;
static const int kSmiValueSize = 32;
V8_INLINE static int SmiToInt(internal::Object* value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return internal::IntToSmi<kSmiShiftSize>(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value));
}
};
typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
static const int kStringResourceOffset = 3 * kApiPointerSize;
static const int kOddballKindOffset = 3 * kApiPointerSize;
static const int kForeignAddressOffset = kApiPointerSize;
static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
static const int kContextHeaderSize = 2 * kApiPointerSize;
static const int kContextEmbedderDataIndex = 74;
static const int kFullStringRepresentationMask = 0x07;
static const int kStringEncodingMask = 0x4;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalAsciiRepresentationTag = 0x06;
static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
static const int kIsolateRootsOffset = 5 * kApiPointerSize;
static const int kUndefinedValueRootIndex = 5;
static const int kNullValueRootIndex = 7;
static const int kTrueValueRootIndex = 8;
static const int kFalseValueRootIndex = 9;
static const int kEmptyStringRootIndex = 162;
static const int kNodeClassIdOffset = 1 * kApiPointerSize;
static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
static const int kNodeStateMask = 0xf;
static const int kNodeStateIsWeakValue = 2;
static const int kNodeStateIsPendingValue = 3;
static const int kNodeStateIsNearDeathValue = 4;
static const int kNodeIsIndependentShift = 4;
static const int kNodeIsPartiallyDependentShift = 5;
static const int kJSObjectType = 0xbb;
static const int kFirstNonstringType = 0x80;
static const int kOddballType = 0x83;
static const int kForeignType = 0x87;
static const int kUndefinedOddballKind = 5;
static const int kNullOddballKind = 3;
static const uint32_t kNumIsolateDataSlots = 4;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static bool HasHeapObjectTag(internal::Object* value) {
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
kHeapObjectTag);
}
V8_INLINE static int SmiValue(internal::Object* value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static internal::Object* IntToSmi(int value) {
return PlatformSmiTagging::IntToSmi(value);
}
V8_INLINE static bool IsValidSmi(intptr_t value) {
return PlatformSmiTagging::IsValidSmi(value);
}
V8_INLINE static int GetInstanceType(internal::Object* obj) {
typedef internal::Object O;
O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static int GetOddballKind(internal::Object* obj) {
typedef internal::Object O;
return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kFullStringRepresentationMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
bool value, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1 << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(internal::Object** obj,
uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate *isolate,
uint32_t slot,
void *data) {
uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(v8::Isolate* isolate, uint32_t slot) {
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiPointerSize;
return *reinterpret_cast<void**>(addr);
}
V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
int index) {
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
}
template <typename T> V8_INLINE static T ReadField(Object* ptr, int offset) {
uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
return *reinterpret_cast<T*>(addr);
}
template <typename T>
V8_INLINE static T ReadEmbedderData(Context* context, int index) {
typedef internal::Object O;
typedef internal::Internals I;
O* ctx = *reinterpret_cast<O**>(context);
int embedder_data_offset = I::kContextHeaderSize +
(internal::kApiPointerSize * I::kContextEmbedderDataIndex);
O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
int value_offset =
I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
return I::ReadField<T>(embedder_data, value_offset);
}
V8_INLINE static bool CanCastToHeapObject(void* o) { return false; }
V8_INLINE static bool CanCastToHeapObject(Context* o) { return true; }
V8_INLINE static bool CanCastToHeapObject(String* o) { return true; }
V8_INLINE static bool CanCastToHeapObject(Object* o) { return true; }
V8_INLINE static bool CanCastToHeapObject(Message* o) { return true; }
V8_INLINE static bool CanCastToHeapObject(StackTrace* o) { return true; }
V8_INLINE static bool CanCastToHeapObject(StackFrame* o) { return true; }
};
} // namespace internal
template <class T>
Local<T>::Local() : Handle<T>() { }
template <class T>
Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
return New(isolate, that.val_);
}
template <class T>
Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
return New(isolate, that.val_);
}
template <class T>
Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
if (that == NULL) return Handle<T>();
T* that_ptr = that;
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
reinterpret_cast<internal::Isolate*>(isolate), *p)));
}
template <class T>
Local<T> Local<T>::New(Isolate* isolate, T* that) {
if (that == NULL) return Local<T>();
T* that_ptr = that;
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
reinterpret_cast<internal::Isolate*>(isolate), *p)));
}
template<class T>
template<class S>
void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
TYPE_CHECK(T, S);
V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
}
template<class T>
Local<T> Eternal<T>::Get(Isolate* isolate) {
return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
}
template <class T>
T* PersistentBase<T>::New(Isolate* isolate, T* that) {
if (that == NULL) return NULL;
internal::Object** p = reinterpret_cast<internal::Object**>(that);
return reinterpret_cast<T*>(
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
p));
}
template <class T, class M>
template <class S, class M2>
void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
TYPE_CHECK(T, S);
this->Reset();
if (that.IsEmpty()) return;
internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
M::Copy(that, this);
}
template <class T>
bool PersistentBase<T>::IsIndependent() const {
typedef internal::Internals I;
if (this->IsEmpty()) return false;
return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
I::kNodeIsIndependentShift);
}
template <class T>
bool PersistentBase<T>::IsNearDeath() const {
typedef internal::Internals I;
if (this->IsEmpty()) return false;
uint8_t node_state =
I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
return node_state == I::kNodeStateIsNearDeathValue ||
node_state == I::kNodeStateIsPendingValue;
}
template <class T>
bool PersistentBase<T>::IsWeak() const {
typedef internal::Internals I;
if (this->IsEmpty()) return false;
return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
I::kNodeStateIsWeakValue;
}
template <class T>
void PersistentBase<T>::Reset() {
if (this->IsEmpty()) return;
V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
val_ = 0;
}
template <class T>
template <class S>
void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) {
TYPE_CHECK(T, S);
Reset();
if (other.IsEmpty()) return;
this->val_ = New(isolate, other.val_);
}
template <class T>
template <class S>
void PersistentBase<T>::Reset(Isolate* isolate,
const PersistentBase<S>& other) {
TYPE_CHECK(T, S);
Reset();
if (other.IsEmpty()) return;
this->val_ = New(isolate, other.val_);
}
template <class T>
template <typename S, typename P>
void PersistentBase<T>::SetWeak(
P* parameter,
typename WeakCallbackData<S, P>::Callback callback) {
TYPE_CHECK(S, T);
typedef typename WeakCallbackData<Value, void>::Callback Callback;
V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
parameter,
reinterpret_cast<Callback>(callback));
}
template <class T>
template <typename P>
void PersistentBase<T>::SetWeak(
P* parameter,
typename WeakCallbackData<T, P>::Callback callback) {
SetWeak<T, P>(parameter, callback);
}
template <class T>
template<typename P>
P* PersistentBase<T>::ClearWeak() {
return reinterpret_cast<P*>(
V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
}
template <class T>
void PersistentBase<T>::MarkIndependent() {
typedef internal::Internals I;
if (this->IsEmpty()) return;
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
true,
I::kNodeIsIndependentShift);
}
template <class T>
void PersistentBase<T>::MarkPartiallyDependent() {
typedef internal::Internals I;
if (this->IsEmpty()) return;
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
true,
I::kNodeIsPartiallyDependentShift);
}
template <class T, class M>
T* Persistent<T, M>::ClearAndLeak() {
T* old;
old = this->val_;
this->val_ = NULL;
return old;
}
template <class T>
void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
typedef internal::Internals I;
if (this->IsEmpty()) return;
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
*reinterpret_cast<uint16_t*>(addr) = class_id;
}
template <class T>
uint16_t PersistentBase<T>::WrapperClassId() const {
typedef internal::Internals I;
if (this->IsEmpty()) return 0;
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
return *reinterpret_cast<uint16_t*>(addr);
}
template<typename T>
ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
template<typename T>
template<typename S>
void ReturnValue<T>::Set(const Persistent<S>& handle) {
TYPE_CHECK(T, S);
if (V8_UNLIKELY(handle.IsEmpty())) {
*value_ = GetDefaultValue();
} else {
*value_ = *reinterpret_cast<internal::Object**>(*handle);
}
}
template<typename T>
template<typename S>
void ReturnValue<T>::Set(const Handle<S> handle) {
TYPE_CHECK(T, S);
if (V8_UNLIKELY(handle.IsEmpty())) {
*value_ = GetDefaultValue();
} else {
*value_ = *reinterpret_cast<internal::Object**>(*handle);
}
}
template<typename T>
void ReturnValue<T>::Set(double i) {
TYPE_CHECK(T, Number);
Set(Number::New(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(int32_t i) {
TYPE_CHECK(T, Integer);
typedef internal::Internals I;
if (V8_LIKELY(I::IsValidSmi(i))) {
*value_ = I::IntToSmi(i);
return;
}
Set(Integer::New(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(uint32_t i) {
TYPE_CHECK(T, Integer);
// Can't simply use INT32_MAX here for whatever reason.
bool fits_into_int32_t = (i & (1U << 31)) == 0;
if (V8_LIKELY(fits_into_int32_t)) {
Set(static_cast<int32_t>(i));
return;
}
Set(Integer::NewFromUnsigned(GetIsolate(), i));
}
template<typename T>
void ReturnValue<T>::Set(bool value) {
TYPE_CHECK(T, Boolean);
typedef internal::Internals I;
int root_index;
if (value) {
root_index = I::kTrueValueRootIndex;
} else {
root_index = I::kFalseValueRootIndex;
}
*value_ = *I::GetRoot(GetIsolate(), root_index);
}
template<typename T>
void ReturnValue<T>::SetNull() {
TYPE_CHECK(T, Primitive);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
}
template<typename T>
void ReturnValue<T>::SetUndefined() {
TYPE_CHECK(T, Primitive);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
}
template<typename T>
void ReturnValue<T>::SetEmptyString() {
TYPE_CHECK(T, String);
typedef internal::Internals I;
*value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
}
template<typename T>
Isolate* ReturnValue<T>::GetIsolate() {
// Isolate is always the pointer below the default value on the stack.
return *reinterpret_cast<Isolate**>(&value_[-2]);
}
template<typename T>
internal::Object* ReturnValue<T>::GetDefaultValue() {
// Default value is always the pointer below value_ on the stack.
return value_[-1];
}
template<typename T>
FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
internal::Object** values,
int length,
bool is_construct_call)
: implicit_args_(implicit_args),
values_(values),
length_(length),
is_construct_call_(is_construct_call) { }
template<typename T>
Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
return Local<Value>(reinterpret_cast<Value*>(values_ - i));
}
template<typename T>
Local<Function> FunctionCallbackInfo<T>::Callee() const {
return Local<Function>(reinterpret_cast<Function*>(
&implicit_args_[kCalleeIndex]));
}
template<typename T>
Local<Object> FunctionCallbackInfo<T>::This() const {
return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
}
template<typename T>
Local<Object> FunctionCallbackInfo<T>::Holder() const {
return Local<Object>(reinterpret_cast<Object*>(
&implicit_args_[kHolderIndex]));
}
template<typename T>
Local<Value> FunctionCallbackInfo<T>::Data() const {
return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
}
template<typename T>
Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
}
template<typename T>
ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
}
template<typename T>
bool FunctionCallbackInfo<T>::IsConstructCall() const {
return is_construct_call_;
}
template<typename T>
int FunctionCallbackInfo<T>::Length() const {
return length_;
}
Handle<Value> ScriptOrigin::ResourceName() const {
return resource_name_;
}
Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
return resource_line_offset_;
}
Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
return resource_column_offset_;
}
Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const {
return resource_is_shared_cross_origin_;
}
ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
CachedData* data)
: source_string(string),
resource_name(origin.ResourceName()),
resource_line_offset(origin.ResourceLineOffset()),
resource_column_offset(origin.ResourceColumnOffset()),
resource_is_shared_cross_origin(origin.ResourceIsSharedCrossOrigin()),
cached_data(data) {}
ScriptCompiler::Source::Source(Local<String> string,
CachedData* data)
: source_string(string), cached_data(data) {}
ScriptCompiler::Source::~Source() {
delete cached_data;
}
const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
const {
return cached_data;
}
Handle<Boolean> Boolean::New(Isolate* isolate, bool value) {
return value ? True(isolate) : False(isolate);
}
void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) {
Set(v8::String::NewFromUtf8(isolate, name), value);
}
Local<Value> Object::GetInternalField(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::HeapObject HO;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(this);
// Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
if (I::GetInstanceType(obj) == I::kJSObjectType) {
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
O* value = I::ReadField<O*>(obj, offset);
O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
return Local<Value>(reinterpret_cast<Value*>(result));
}
#endif
return SlowGetInternalField(index);
}
void* Object::GetAlignedPointerFromInternalField(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(this);
// Fast path: If the object is a plain JSObject, which is the common case, we
// know where to find the internal fields and can return the value directly.
if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
return I::ReadField<void*>(obj, offset);
}
#endif
return SlowGetAlignedPointerFromInternalField(index);
}
String* String::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<String*>(value);
}
Local<String> String::Empty(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
return Local<String>(reinterpret_cast<String*>(slot));
}
String::ExternalStringResource* String::GetExternalStringResource() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
String::ExternalStringResource* result;
if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
result = reinterpret_cast<String::ExternalStringResource*>(value);
} else {
result = NULL;
}
#ifdef V8_ENABLE_CHECKS
VerifyExternalStringResource(result);
#endif
return result;
}
String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
String::Encoding* encoding_out) const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
*encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
ExternalStringResourceBase* resource = NULL;
if (type == I::kExternalAsciiRepresentationTag ||
type == I::kExternalTwoByteRepresentationTag) {
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
resource = static_cast<ExternalStringResourceBase*>(value);
}
#ifdef V8_ENABLE_CHECKS
VerifyExternalStringResourceBase(resource, *encoding_out);
#endif
return resource;
}
bool Value::IsUndefined() const {
#ifdef V8_ENABLE_CHECKS
return FullIsUndefined();
#else
return QuickIsUndefined();
#endif
}
bool Value::QuickIsUndefined() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
if (!I::HasHeapObjectTag(obj)) return false;
if (I::GetInstanceType(obj) != I::kOddballType) return false;
return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
}
bool Value::IsNull() const {
#ifdef V8_ENABLE_CHECKS
return FullIsNull();
#else
return QuickIsNull();
#endif
}
bool Value::QuickIsNull() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
if (!I::HasHeapObjectTag(obj)) return false;
if (I::GetInstanceType(obj) != I::kOddballType) return false;
return (I::GetOddballKind(obj) == I::kNullOddballKind);
}
bool Value::IsString() const {
#ifdef V8_ENABLE_CHECKS
return FullIsString();
#else
return QuickIsString();
#endif
}
bool Value::QuickIsString() const {
typedef internal::Object O;
typedef internal::Internals I;
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
if (!I::HasHeapObjectTag(obj)) return false;
return (I::GetInstanceType(obj) < I::kFirstNonstringType);
}
template <class T> Value* Value::Cast(T* value) {
return static_cast<Value*>(value);
}
Symbol* Symbol::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Symbol*>(value);
}
Number* Number::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Number*>(value);
}
Integer* Integer::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Integer*>(value);
}
Date* Date::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Date*>(value);
}
StringObject* StringObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<StringObject*>(value);
}
SymbolObject* SymbolObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<SymbolObject*>(value);
}
NumberObject* NumberObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<NumberObject*>(value);
}
BooleanObject* BooleanObject::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<BooleanObject*>(value);
}
RegExp* RegExp::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<RegExp*>(value);
}
Object* Object::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Object*>(value);
}
Array* Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Array*>(value);
}
Promise* Promise::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Promise*>(value);
}
Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Promise::Resolver*>(value);
}
ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<ArrayBuffer*>(value);
}
ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<ArrayBufferView*>(value);
}
TypedArray* TypedArray::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<TypedArray*>(value);
}
Uint8Array* Uint8Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint8Array*>(value);
}
Int8Array* Int8Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int8Array*>(value);
}
Uint16Array* Uint16Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint16Array*>(value);
}
Int16Array* Int16Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int16Array*>(value);
}
Uint32Array* Uint32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint32Array*>(value);
}
Int32Array* Int32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Int32Array*>(value);
}
Float32Array* Float32Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Float32Array*>(value);
}
Float64Array* Float64Array::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Float64Array*>(value);
}
Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Uint8ClampedArray*>(value);
}
DataView* DataView::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<DataView*>(value);
}
Function* Function::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<Function*>(value);
}
External* External::Cast(v8::Value* value) {
#ifdef V8_ENABLE_CHECKS
CheckCast(value);
#endif
return static_cast<External*>(value);
}
template<typename T>
Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
}
template<typename T>
Local<Value> PropertyCallbackInfo<T>::Data() const {
return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
}
template<typename T>
Local<Value> PropertyCallbackInfo<T>::This() const {
return Local<Value>(reinterpret_cast<Value*>(&args_[kThisIndex]));
}
template<typename T>
Local<Object> PropertyCallbackInfo<T>::Holder() const {
return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
}
template<typename T>
ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
return ReturnValue<T>(&args_[kReturnValueIndex]);
}
Handle<Primitive> Undefined(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
}
Handle<Primitive> Null(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
}
Handle<Boolean> True(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
}
Handle<Boolean> False(Isolate* isolate) {
typedef internal::Object* S;
typedef internal::Internals I;
I::CheckInitialized(isolate);
S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
}
void Isolate::SetData(uint32_t slot, void* data) {
typedef internal::Internals I;
I::SetEmbedderData(this, slot, data);
}
void* Isolate::GetData(uint32_t slot) {
typedef internal::Internals I;
return I::GetEmbedderData(this, slot);
}
uint32_t Isolate::GetNumberOfDataSlots() {
typedef internal::Internals I;
return I::kNumIsolateDataSlots;
}
template<typename T>
void Isolate::SetObjectGroupId(const Persistent<T>& object,
UniqueId id) {
TYPE_CHECK(Value, T);
SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
}
template<typename T>
void Isolate::SetReferenceFromGroup(UniqueId id,
const Persistent<T>& object) {
TYPE_CHECK(Value, T);
SetReferenceFromGroup(id,
reinterpret_cast<v8::internal::Object**>(object.val_));
}
template<typename T, typename S>
void Isolate::SetReference(const Persistent<T>& parent,
const Persistent<S>& child) {
TYPE_CHECK(Object, T);
TYPE_CHECK(Value, S);
SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
reinterpret_cast<v8::internal::Object**>(child.val_));
}
Local<Value> Context::GetEmbedderData(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Object O;
typedef internal::HeapObject HO;
typedef internal::Internals I;
HO* context = *reinterpret_cast<HO**>(this);
O** result =
HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
return Local<Value>(reinterpret_cast<Value*>(result));
#else
return SlowGetEmbedderData(index);
#endif
}
void* Context::GetAlignedPointerFromEmbedderData(int index) {
#ifndef V8_ENABLE_CHECKS
typedef internal::Internals I;
return I::ReadEmbedderData<void*>(this, index);
#else
return SlowGetAlignedPointerFromEmbedderData(index);
#endif
}
/**
* \example shell.cc
* A simple shell that takes a list of expressions on the
* command-line and executes them.
*/
/**
* \example process.cc
*/
} // namespace v8
#undef TYPE_CHECK
#endif // V8_H_