0a7010458a
This shaves 416+ KB, just under 1% off the size of the debug d8 executable on Linux (mostly because the CheckHelper functions for assertions were getting separate copies for each compilation unit). The difference in release builds is negligible---a size reduction of 0.1%. Also, change namespace-level 'static const' variables to remove the static storage class as it's the default. R=danno@chromium.org BUG= TEST= Review URL: http://codereview.chromium.org/8680013 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10083 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
671 lines
21 KiB
C++
671 lines
21 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_CONVERSIONS_INL_H_
|
|
#define V8_CONVERSIONS_INL_H_
|
|
|
|
#include <limits.h> // Required for INT_MAX etc.
|
|
#include <math.h>
|
|
#include <float.h> // Required for DBL_MAX and on Win32 for finite()
|
|
#include <stdarg.h>
|
|
#include "globals.h" // Required for V8_INFINITY
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Extra POSIX/ANSI functions for Win32/MSVC.
|
|
|
|
#include "conversions.h"
|
|
#include "double.h"
|
|
#include "platform.h"
|
|
#include "scanner.h"
|
|
#include "strtod.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
inline double JunkStringValue() {
|
|
return BitCast<double, uint64_t>(kQuietNaNMask);
|
|
}
|
|
|
|
|
|
// The fast double-to-unsigned-int conversion routine does not guarantee
|
|
// rounding towards zero, or any reasonable value if the argument is larger
|
|
// than what fits in an unsigned 32-bit integer.
|
|
inline unsigned int FastD2UI(double x) {
|
|
// There is no unsigned version of lrint, so there is no fast path
|
|
// in this function as there is in FastD2I. Using lrint doesn't work
|
|
// for values of 2^31 and above.
|
|
|
|
// Convert "small enough" doubles to uint32_t by fixing the 32
|
|
// least significant non-fractional bits in the low 32 bits of the
|
|
// double, and reading them from there.
|
|
const double k2Pow52 = 4503599627370496.0;
|
|
bool negative = x < 0;
|
|
if (negative) {
|
|
x = -x;
|
|
}
|
|
if (x < k2Pow52) {
|
|
x += k2Pow52;
|
|
uint32_t result;
|
|
Address mantissa_ptr = reinterpret_cast<Address>(&x);
|
|
// Copy least significant 32 bits of mantissa.
|
|
memcpy(&result, mantissa_ptr, sizeof(result));
|
|
return negative ? ~result + 1 : result;
|
|
}
|
|
// Large number (outside uint32 range), Infinity or NaN.
|
|
return 0x80000000u; // Return integer indefinite.
|
|
}
|
|
|
|
|
|
inline double DoubleToInteger(double x) {
|
|
if (isnan(x)) return 0;
|
|
if (!isfinite(x) || x == 0) return x;
|
|
return (x >= 0) ? floor(x) : ceil(x);
|
|
}
|
|
|
|
|
|
int32_t DoubleToInt32(double x) {
|
|
int32_t i = FastD2I(x);
|
|
if (FastI2D(i) == x) return i;
|
|
Double d(x);
|
|
int exponent = d.Exponent();
|
|
if (exponent < 0) {
|
|
if (exponent <= -Double::kSignificandSize) return 0;
|
|
return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
|
|
} else {
|
|
if (exponent > 31) return 0;
|
|
return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
|
|
}
|
|
}
|
|
|
|
|
|
template <class Iterator, class EndMark>
|
|
bool SubStringEquals(Iterator* current,
|
|
EndMark end,
|
|
const char* substring) {
|
|
ASSERT(**current == *substring);
|
|
for (substring++; *substring != '\0'; substring++) {
|
|
++*current;
|
|
if (*current == end || **current != *substring) return false;
|
|
}
|
|
++*current;
|
|
return true;
|
|
}
|
|
|
|
|
|
// Returns true if a nonspace character has been found and false if the
|
|
// end was been reached before finding a nonspace character.
|
|
template <class Iterator, class EndMark>
|
|
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
|
|
Iterator* current,
|
|
EndMark end) {
|
|
while (*current != end) {
|
|
if (!unicode_cache->IsWhiteSpace(**current)) return true;
|
|
++*current;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
|
|
template <int radix_log_2, class Iterator, class EndMark>
|
|
double InternalStringToIntDouble(UnicodeCache* unicode_cache,
|
|
Iterator current,
|
|
EndMark end,
|
|
bool negative,
|
|
bool allow_trailing_junk) {
|
|
ASSERT(current != end);
|
|
|
|
// Skip leading 0s.
|
|
while (*current == '0') {
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
}
|
|
|
|
int64_t number = 0;
|
|
int exponent = 0;
|
|
const int radix = (1 << radix_log_2);
|
|
|
|
do {
|
|
int digit;
|
|
if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
|
|
digit = static_cast<char>(*current) - '0';
|
|
} else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
|
|
digit = static_cast<char>(*current) - 'a' + 10;
|
|
} else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
|
|
digit = static_cast<char>(*current) - 'A' + 10;
|
|
} else {
|
|
if (allow_trailing_junk ||
|
|
!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
break;
|
|
} else {
|
|
return JunkStringValue();
|
|
}
|
|
}
|
|
|
|
number = number * radix + digit;
|
|
int overflow = static_cast<int>(number >> 53);
|
|
if (overflow != 0) {
|
|
// Overflow occurred. Need to determine which direction to round the
|
|
// result.
|
|
int overflow_bits_count = 1;
|
|
while (overflow > 1) {
|
|
overflow_bits_count++;
|
|
overflow >>= 1;
|
|
}
|
|
|
|
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
|
|
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
|
|
number >>= overflow_bits_count;
|
|
exponent = overflow_bits_count;
|
|
|
|
bool zero_tail = true;
|
|
while (true) {
|
|
++current;
|
|
if (current == end || !isDigit(*current, radix)) break;
|
|
zero_tail = zero_tail && *current == '0';
|
|
exponent += radix_log_2;
|
|
}
|
|
|
|
if (!allow_trailing_junk &&
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
int middle_value = (1 << (overflow_bits_count - 1));
|
|
if (dropped_bits > middle_value) {
|
|
number++; // Rounding up.
|
|
} else if (dropped_bits == middle_value) {
|
|
// Rounding to even to consistency with decimals: half-way case rounds
|
|
// up if significant part is odd and down otherwise.
|
|
if ((number & 1) != 0 || !zero_tail) {
|
|
number++; // Rounding up.
|
|
}
|
|
}
|
|
|
|
// Rounding up may cause overflow.
|
|
if ((number & ((int64_t)1 << 53)) != 0) {
|
|
exponent++;
|
|
number >>= 1;
|
|
}
|
|
break;
|
|
}
|
|
++current;
|
|
} while (current != end);
|
|
|
|
ASSERT(number < ((int64_t)1 << 53));
|
|
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
|
|
|
|
if (exponent == 0) {
|
|
if (negative) {
|
|
if (number == 0) return -0.0;
|
|
number = -number;
|
|
}
|
|
return static_cast<double>(number);
|
|
}
|
|
|
|
ASSERT(number != 0);
|
|
// The double could be constructed faster from number (mantissa), exponent
|
|
// and sign. Assuming it's a rare case more simple code is used.
|
|
return static_cast<double>(negative ? -number : number) * pow(2.0, exponent);
|
|
}
|
|
|
|
|
|
template <class Iterator, class EndMark>
|
|
double InternalStringToInt(UnicodeCache* unicode_cache,
|
|
Iterator current,
|
|
EndMark end,
|
|
int radix) {
|
|
const bool allow_trailing_junk = true;
|
|
const double empty_string_val = JunkStringValue();
|
|
|
|
if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return empty_string_val;
|
|
}
|
|
|
|
bool negative = false;
|
|
bool leading_zero = false;
|
|
|
|
if (*current == '+') {
|
|
// Ignore leading sign; skip following spaces.
|
|
++current;
|
|
if (current == end) {
|
|
return JunkStringValue();
|
|
}
|
|
} else if (*current == '-') {
|
|
++current;
|
|
if (current == end) {
|
|
return JunkStringValue();
|
|
}
|
|
negative = true;
|
|
}
|
|
|
|
if (radix == 0) {
|
|
// Radix detection.
|
|
if (*current == '0') {
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
if (*current == 'x' || *current == 'X') {
|
|
radix = 16;
|
|
++current;
|
|
if (current == end) return JunkStringValue();
|
|
} else {
|
|
radix = 8;
|
|
leading_zero = true;
|
|
}
|
|
} else {
|
|
radix = 10;
|
|
}
|
|
} else if (radix == 16) {
|
|
if (*current == '0') {
|
|
// Allow "0x" prefix.
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
if (*current == 'x' || *current == 'X') {
|
|
++current;
|
|
if (current == end) return JunkStringValue();
|
|
} else {
|
|
leading_zero = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (radix < 2 || radix > 36) return JunkStringValue();
|
|
|
|
// Skip leading zeros.
|
|
while (*current == '0') {
|
|
leading_zero = true;
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
}
|
|
|
|
if (!leading_zero && !isDigit(*current, radix)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
if (IsPowerOf2(radix)) {
|
|
switch (radix) {
|
|
case 2:
|
|
return InternalStringToIntDouble<1>(
|
|
unicode_cache, current, end, negative, allow_trailing_junk);
|
|
case 4:
|
|
return InternalStringToIntDouble<2>(
|
|
unicode_cache, current, end, negative, allow_trailing_junk);
|
|
case 8:
|
|
return InternalStringToIntDouble<3>(
|
|
unicode_cache, current, end, negative, allow_trailing_junk);
|
|
|
|
case 16:
|
|
return InternalStringToIntDouble<4>(
|
|
unicode_cache, current, end, negative, allow_trailing_junk);
|
|
|
|
case 32:
|
|
return InternalStringToIntDouble<5>(
|
|
unicode_cache, current, end, negative, allow_trailing_junk);
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
if (radix == 10) {
|
|
// Parsing with strtod.
|
|
const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
|
|
// The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
|
|
// end.
|
|
const int kBufferSize = kMaxSignificantDigits + 2;
|
|
char buffer[kBufferSize];
|
|
int buffer_pos = 0;
|
|
while (*current >= '0' && *current <= '9') {
|
|
if (buffer_pos <= kMaxSignificantDigits) {
|
|
// If the number has more than kMaxSignificantDigits it will be parsed
|
|
// as infinity.
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
}
|
|
++current;
|
|
if (current == end) break;
|
|
}
|
|
|
|
if (!allow_trailing_junk &&
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos] = '\0';
|
|
Vector<const char> buffer_vector(buffer, buffer_pos);
|
|
return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
|
|
}
|
|
|
|
// The following code causes accumulating rounding error for numbers greater
|
|
// than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
|
|
// 16, or 32, then mathInt may be an implementation-dependent approximation to
|
|
// the mathematical integer value" (15.1.2.2).
|
|
|
|
int lim_0 = '0' + (radix < 10 ? radix : 10);
|
|
int lim_a = 'a' + (radix - 10);
|
|
int lim_A = 'A' + (radix - 10);
|
|
|
|
// NOTE: The code for computing the value may seem a bit complex at
|
|
// first glance. It is structured to use 32-bit multiply-and-add
|
|
// loops as long as possible to avoid loosing precision.
|
|
|
|
double v = 0.0;
|
|
bool done = false;
|
|
do {
|
|
// Parse the longest part of the string starting at index j
|
|
// possible while keeping the multiplier, and thus the part
|
|
// itself, within 32 bits.
|
|
unsigned int part = 0, multiplier = 1;
|
|
while (true) {
|
|
int d;
|
|
if (*current >= '0' && *current < lim_0) {
|
|
d = *current - '0';
|
|
} else if (*current >= 'a' && *current < lim_a) {
|
|
d = *current - 'a' + 10;
|
|
} else if (*current >= 'A' && *current < lim_A) {
|
|
d = *current - 'A' + 10;
|
|
} else {
|
|
done = true;
|
|
break;
|
|
}
|
|
|
|
// Update the value of the part as long as the multiplier fits
|
|
// in 32 bits. When we can't guarantee that the next iteration
|
|
// will not overflow the multiplier, we stop parsing the part
|
|
// by leaving the loop.
|
|
const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
|
|
uint32_t m = multiplier * radix;
|
|
if (m > kMaximumMultiplier) break;
|
|
part = part * radix + d;
|
|
multiplier = m;
|
|
ASSERT(multiplier > part);
|
|
|
|
++current;
|
|
if (current == end) {
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update the value and skip the part in the string.
|
|
v = v * multiplier + part;
|
|
} while (!done);
|
|
|
|
if (!allow_trailing_junk &&
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
return negative ? -v : v;
|
|
}
|
|
|
|
|
|
// Converts a string to a double value. Assumes the Iterator supports
|
|
// the following operations:
|
|
// 1. current == end (other ops are not allowed), current != end.
|
|
// 2. *current - gets the current character in the sequence.
|
|
// 3. ++current (advances the position).
|
|
template <class Iterator, class EndMark>
|
|
double InternalStringToDouble(UnicodeCache* unicode_cache,
|
|
Iterator current,
|
|
EndMark end,
|
|
int flags,
|
|
double empty_string_val) {
|
|
// To make sure that iterator dereferencing is valid the following
|
|
// convention is used:
|
|
// 1. Each '++current' statement is followed by check for equality to 'end'.
|
|
// 2. If AdvanceToNonspace returned false then current == end.
|
|
// 3. If 'current' becomes be equal to 'end' the function returns or goes to
|
|
// 'parsing_done'.
|
|
// 4. 'current' is not dereferenced after the 'parsing_done' label.
|
|
// 5. Code before 'parsing_done' may rely on 'current != end'.
|
|
if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return empty_string_val;
|
|
}
|
|
|
|
const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
|
|
|
|
// The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
|
|
const int kBufferSize = kMaxSignificantDigits + 10;
|
|
char buffer[kBufferSize]; // NOLINT: size is known at compile time.
|
|
int buffer_pos = 0;
|
|
|
|
// Exponent will be adjusted if insignificant digits of the integer part
|
|
// or insignificant leading zeros of the fractional part are dropped.
|
|
int exponent = 0;
|
|
int significant_digits = 0;
|
|
int insignificant_digits = 0;
|
|
bool nonzero_digit_dropped = false;
|
|
|
|
bool negative = false;
|
|
|
|
if (*current == '+') {
|
|
// Ignore leading sign.
|
|
++current;
|
|
if (current == end) return JunkStringValue();
|
|
} else if (*current == '-') {
|
|
++current;
|
|
if (current == end) return JunkStringValue();
|
|
negative = true;
|
|
}
|
|
|
|
static const char kInfinitySymbol[] = "Infinity";
|
|
if (*current == kInfinitySymbol[0]) {
|
|
if (!SubStringEquals(¤t, end, kInfinitySymbol)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
if (!allow_trailing_junk &&
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
ASSERT(buffer_pos == 0);
|
|
return negative ? -V8_INFINITY : V8_INFINITY;
|
|
}
|
|
|
|
bool leading_zero = false;
|
|
if (*current == '0') {
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
|
|
leading_zero = true;
|
|
|
|
// It could be hexadecimal value.
|
|
if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
|
|
++current;
|
|
if (current == end || !isDigit(*current, 16)) {
|
|
return JunkStringValue(); // "0x".
|
|
}
|
|
|
|
return InternalStringToIntDouble<4>(unicode_cache,
|
|
current,
|
|
end,
|
|
negative,
|
|
allow_trailing_junk);
|
|
}
|
|
|
|
// Ignore leading zeros in the integer part.
|
|
while (*current == '0') {
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
}
|
|
}
|
|
|
|
bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0;
|
|
|
|
// Copy significant digits of the integer part (if any) to the buffer.
|
|
while (*current >= '0' && *current <= '9') {
|
|
if (significant_digits < kMaxSignificantDigits) {
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
significant_digits++;
|
|
// Will later check if it's an octal in the buffer.
|
|
} else {
|
|
insignificant_digits++; // Move the digit into the exponential part.
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
}
|
|
octal = octal && *current < '8';
|
|
++current;
|
|
if (current == end) goto parsing_done;
|
|
}
|
|
|
|
if (significant_digits == 0) {
|
|
octal = false;
|
|
}
|
|
|
|
if (*current == '.') {
|
|
if (octal && !allow_trailing_junk) return JunkStringValue();
|
|
if (octal) goto parsing_done;
|
|
|
|
++current;
|
|
if (current == end) {
|
|
if (significant_digits == 0 && !leading_zero) {
|
|
return JunkStringValue();
|
|
} else {
|
|
goto parsing_done;
|
|
}
|
|
}
|
|
|
|
if (significant_digits == 0) {
|
|
// octal = false;
|
|
// Integer part consists of 0 or is absent. Significant digits start after
|
|
// leading zeros (if any).
|
|
while (*current == '0') {
|
|
++current;
|
|
if (current == end) return SignedZero(negative);
|
|
exponent--; // Move this 0 into the exponent.
|
|
}
|
|
}
|
|
|
|
// There is a fractional part. We don't emit a '.', but adjust the exponent
|
|
// instead.
|
|
while (*current >= '0' && *current <= '9') {
|
|
if (significant_digits < kMaxSignificantDigits) {
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
significant_digits++;
|
|
exponent--;
|
|
} else {
|
|
// Ignore insignificant digits in the fractional part.
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
}
|
|
++current;
|
|
if (current == end) goto parsing_done;
|
|
}
|
|
}
|
|
|
|
if (!leading_zero && exponent == 0 && significant_digits == 0) {
|
|
// If leading_zeros is true then the string contains zeros.
|
|
// If exponent < 0 then string was [+-]\.0*...
|
|
// If significant_digits != 0 the string is not equal to 0.
|
|
// Otherwise there are no digits in the string.
|
|
return JunkStringValue();
|
|
}
|
|
|
|
// Parse exponential part.
|
|
if (*current == 'e' || *current == 'E') {
|
|
if (octal) return JunkStringValue();
|
|
++current;
|
|
if (current == end) {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return JunkStringValue();
|
|
}
|
|
}
|
|
char sign = '+';
|
|
if (*current == '+' || *current == '-') {
|
|
sign = static_cast<char>(*current);
|
|
++current;
|
|
if (current == end) {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return JunkStringValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current == end || *current < '0' || *current > '9') {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return JunkStringValue();
|
|
}
|
|
}
|
|
|
|
const int max_exponent = INT_MAX / 2;
|
|
ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
|
|
int num = 0;
|
|
do {
|
|
// Check overflow.
|
|
int digit = *current - '0';
|
|
if (num >= max_exponent / 10
|
|
&& !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
|
|
num = max_exponent;
|
|
} else {
|
|
num = num * 10 + digit;
|
|
}
|
|
++current;
|
|
} while (current != end && *current >= '0' && *current <= '9');
|
|
|
|
exponent += (sign == '-' ? -num : num);
|
|
}
|
|
|
|
if (!allow_trailing_junk &&
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
return JunkStringValue();
|
|
}
|
|
|
|
parsing_done:
|
|
exponent += insignificant_digits;
|
|
|
|
if (octal) {
|
|
return InternalStringToIntDouble<3>(unicode_cache,
|
|
buffer,
|
|
buffer + buffer_pos,
|
|
negative,
|
|
allow_trailing_junk);
|
|
}
|
|
|
|
if (nonzero_digit_dropped) {
|
|
buffer[buffer_pos++] = '1';
|
|
exponent--;
|
|
}
|
|
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos] = '\0';
|
|
|
|
double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
|
|
return negative ? -converted : converted;
|
|
}
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_CONVERSIONS_INL_H_
|