v8/src/mips/assembler-mips-inl.h
erik.corry@gmail.com 8d96a0190c Fix deserializer to understand direct pointers from code to cell payloads.
The deoptimizer generates full-code-generator code and relies on it having
the same layout as last time.  This means that the code the full code
generator makes for the snapshot should be the same as the code it makes
later.  This change makes the full code generator create more consistent
code between mksnapshot time and run time.

This is a bug fix and a step towards making the snapshot code more robust.
Review URL: https://chromiumcodereview.appspot.com/10824084

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12233 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-07-31 09:25:23 +00:00

371 lines
12 KiB
C++

// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_MIPS_ASSEMBLER_MIPS_INL_H_
#include "mips/assembler-mips.h"
#include "cpu.h"
#include "debug.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Operand and MemOperand.
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
rm_ = no_reg;
imm32_ = immediate;
rmode_ = rmode;
}
Operand::Operand(const ExternalReference& f) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(f.address());
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}
Operand::Operand(Smi* value) {
rm_ = no_reg;
imm32_ = reinterpret_cast<intptr_t>(value);
rmode_ = RelocInfo::NONE;
}
Operand::Operand(Register rm) {
rm_ = rm;
}
bool Operand::is_reg() const {
return rm_.is_valid();
}
int FPURegister::ToAllocationIndex(FPURegister reg) {
ASSERT(reg.code() % 2 == 0);
ASSERT(reg.code() / 2 < kNumAllocatableRegisters);
ASSERT(reg.is_valid());
ASSERT(!reg.is(kDoubleRegZero));
ASSERT(!reg.is(kLithiumScratchDouble));
return (reg.code() / 2);
}
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::apply(intptr_t delta) {
if (IsCodeTarget(rmode_)) {
uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask;
uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask;
if (scope1 != scope2) {
Assembler::JumpLabelToJumpRegister(pc_);
}
}
if (IsInternalReference(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
byte* p = reinterpret_cast<byte*>(pc_);
int count = Assembler::RelocateInternalReference(p, delta);
CPU::FlushICache(p, count * sizeof(uint32_t));
}
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return Assembler::target_address_at(pc_);
}
Address RelocInfo::target_address_address() {
ASSERT(IsCodeTarget(rmode_) ||
rmode_ == RUNTIME_ENTRY ||
rmode_ == EMBEDDED_OBJECT ||
rmode_ == EXTERNAL_REFERENCE);
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
return reinterpret_cast<Address>(
pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
}
int RelocInfo::target_address_size() {
return Assembler::kSpecialTargetSize;
}
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Assembler::set_target_address_at(pc_, target);
if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<Object>(reinterpret_cast<Object**>(
Assembler::target_address_at(pc_)));
}
Object** RelocInfo::target_object_address() {
// Provide a "natural pointer" to the embedded object,
// which can be de-referenced during heap iteration.
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
reconstructed_obj_ptr_ =
reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
return &reconstructed_obj_ptr_;
}
void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
if (mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->incremental_marking()->RecordWrite(
host(), &Memory::Object_at(pc_), HeapObject::cast(target));
}
}
Address* RelocInfo::target_reference_address() {
ASSERT(rmode_ == EXTERNAL_REFERENCE);
reconstructed_adr_ptr_ = Assembler::target_address_at(pc_);
return &reconstructed_adr_ptr_;
}
Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = Memory::Address_at(pc_);
return Handle<JSGlobalPropertyCell>(
reinterpret_cast<JSGlobalPropertyCell**>(address));
}
JSGlobalPropertyCell* RelocInfo::target_cell() {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
return JSGlobalPropertyCell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
WriteBarrierMode mode) {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
Memory::Address_at(pc_) = address;
if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
// TODO(1550) We are passing NULL as a slot because cell can never be on
// evacuation candidate.
host()->GetHeap()->incremental_marking()->RecordWrite(
host(), NULL, cell);
}
}
Address RelocInfo::call_address() {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
// The pc_ offset of 0 assumes mips patched return sequence per
// debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
// debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
return Assembler::target_address_at(pc_);
}
void RelocInfo::set_call_address(Address target) {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
// The pc_ offset of 0 assumes mips patched return sequence per
// debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
// debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
Assembler::set_target_address_at(pc_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
Object* RelocInfo::call_object() {
return *call_object_address();
}
Object** RelocInfo::call_object_address() {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
}
void RelocInfo::set_call_object(Object* target) {
*call_object_address() = target;
}
bool RelocInfo::IsPatchedReturnSequence() {
Instr instr0 = Assembler::instr_at(pc_);
Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
(instr1 & kOpcodeMask) == ORI &&
((instr2 & kOpcodeMask) == JAL ||
((instr2 & kOpcodeMask) == SPECIAL &&
(instr2 & kFunctionFieldMask) == JALR)));
return patched_return;
}
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
Instr current_instr = Assembler::instr_at(pc_);
return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
}
void RelocInfo::Visit(ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
visitor->VisitGlobalPropertyCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
#ifdef ENABLE_DEBUGGER_SUPPORT
// TODO(isolates): Get a cached isolate below.
} else if (((RelocInfo::IsJSReturn(mode) &&
IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence())) &&
Isolate::Current()->debug()->has_break_points()) {
visitor->VisitDebugTarget(this);
#endif
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
StaticVisitor::VisitGlobalPropertyCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
#ifdef ENABLE_DEBUGGER_SUPPORT
} else if (heap->isolate()->debug()->has_break_points() &&
((RelocInfo::IsJSReturn(mode) &&
IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()))) {
StaticVisitor::VisitDebugTarget(heap, this);
#endif
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::CheckTrampolinePoolQuick() {
if (pc_offset() >= next_buffer_check_) {
CheckTrampolinePool();
}
}
void Assembler::emit(Instr x) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
CheckTrampolinePoolQuick();
}
} } // namespace v8::internal
#endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_