v8/test/cctest/wasm/test-run-wasm-64.cc
Yang Guo a6eeea35cb Move code generation related files to src/codegen
Bug: v8:9247

TBR=bmeurer@chromium.org,neis@chromium.org
NOPRESUBMIT=true

Change-Id: Ia1e49d1aac09c4ff9e05d58fab9d08dd71198878
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1621931
Reviewed-by: Yang Guo <yangguo@chromium.org>
Reviewed-by: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Commit-Queue: Yang Guo <yangguo@chromium.org>
Cr-Commit-Position: refs/heads/master@{#61682}
2019-05-21 10:33:39 +00:00

1629 lines
57 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/base/bits.h"
#include "src/base/overflowing-math.h"
#include "src/codegen/assembler-inl.h"
#include "src/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_64 {
WASM_EXEC_TEST(I64Const) {
WasmRunner<int64_t> r(execution_tier);
const int64_t kExpectedValue = 0x1122334455667788LL;
// return(kExpectedValue)
BUILD(r, WASM_I64V_9(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
WASM_EXEC_TEST(I64Const_many) {
int cntr = 0;
FOR_UINT32_INPUTS(i) {
WasmRunner<int64_t> r(execution_tier);
const int64_t kExpectedValue = (static_cast<uint64_t>(i) << 32) | cntr;
// return(kExpectedValue)
BUILD(r, WASM_I64V(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
cntr++;
}
}
WASM_EXEC_TEST(Return_I64) {
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_RETURN1(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
WASM_EXEC_TEST(I64Add) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(base::AddWithWraparound(i, j), r.Call(i, j));
}
}
}
// The i64 add and subtract regression tests need a 64-bit value with a non-zero
// upper half. This upper half was clobbering eax, leading to the function
// returning 1 rather than 0.
const int64_t kHasBit33On = 0x100000000;
WASM_EXEC_TEST(Regress5800_Add) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_I64_EQZ(WASM_I64_ADD(
WASM_I64V(0), WASM_I64V(kHasBit33On)))),
WASM_RETURN1(WASM_I32V(0))),
WASM_I32V(0));
CHECK_EQ(0, r.Call());
}
WASM_EXEC_TEST(I64Sub) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(base::SubWithWraparound(i, j), r.Call(i, j));
}
}
}
WASM_EXEC_TEST(Regress5800_Sub) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_BLOCK(WASM_BR_IF(0, WASM_I64_EQZ(WASM_I64_SUB(
WASM_I64V(0), WASM_I64V(kHasBit33On)))),
WASM_RETURN1(WASM_I32V(0))),
WASM_I32V(0));
CHECK_EQ(0, r.Call());
}
WASM_EXEC_TEST(I64AddUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(static_cast<int32_t>(base::AddWithWraparound(i, j)),
r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64SubUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(static_cast<int32_t>(base::SubWithWraparound(i, j)),
r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64MulUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(static_cast<int32_t>(base::MulWithWraparound(i, j)),
r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64ShlUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int32_t expected = static_cast<int32_t>(base::ShlWithWraparound(i, j));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64ShrUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
int32_t expected = static_cast<int32_t>((i) >> (j & 0x3F));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64SarUseOnlyLowWord) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(
WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int32_t expected = static_cast<int32_t>((i) >> (j & 0x3F));
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64DivS) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
if (j == 0) {
CHECK_TRAP64(r.Call(i, j));
} else if (j == -1 && i == std::numeric_limits<int64_t>::min()) {
CHECK_TRAP64(r.Call(i, j));
} else {
CHECK_EQ(i / j, r.Call(i, j));
}
}
}
}
WASM_EXEC_TEST(I64DivS_Trap) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(int64_t{0}, int64_t{100}));
CHECK_TRAP64(r.Call(int64_t{100}, int64_t{0}));
CHECK_TRAP64(r.Call(int64_t{-1001}, int64_t{0}));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), int64_t{-1}));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), int64_t{0}));
}
WASM_EXEC_TEST(I64DivS_Byzero_Const) {
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(denom)));
for (int64_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(I64DivU) {
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
if (j == 0) {
CHECK_TRAP64(r.Call(i, j));
} else {
CHECK_EQ(i / j, r.Call(i, j));
}
}
}
}
WASM_EXEC_TEST(I64DivU_Trap) {
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(uint64_t{0}, uint64_t{100}));
CHECK_TRAP64(r.Call(uint64_t{100}, uint64_t{0}));
CHECK_TRAP64(r.Call(uint64_t{1001}, uint64_t{0}));
CHECK_TRAP64(r.Call(std::numeric_limits<uint64_t>::max(), uint64_t{0}));
}
WASM_EXEC_TEST(I64DivU_Byzero_Const) {
for (uint64_t denom = 0xFFFFFFFFFFFFFFFE; denom < 8; denom++) {
WasmRunner<uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(denom)));
for (uint64_t val = 0xFFFFFFFFFFFFFFF0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(I64RemS) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
if (j == 0) {
CHECK_TRAP64(r.Call(i, j));
} else {
CHECK_EQ(i % j, r.Call(i, j));
}
}
}
}
WASM_EXEC_TEST(I64RemS_Trap) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(33, r.Call(int64_t{133}, int64_t{100}));
CHECK_EQ(0, r.Call(std::numeric_limits<int64_t>::min(), int64_t{-1}));
CHECK_TRAP64(r.Call(int64_t{100}, int64_t{0}));
CHECK_TRAP64(r.Call(int64_t{-1001}, int64_t{0}));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), int64_t{0}));
}
WASM_EXEC_TEST(I64RemU) {
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
if (j == 0) {
CHECK_TRAP64(r.Call(i, j));
} else {
CHECK_EQ(i % j, r.Call(i, j));
}
}
}
}
WASM_EXEC_TEST(I64RemU_Trap) {
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(uint64_t{217}, uint64_t{100}));
CHECK_TRAP64(r.Call(uint64_t{100}, uint64_t{0}));
CHECK_TRAP64(r.Call(uint64_t{1001}, uint64_t{0}));
CHECK_TRAP64(r.Call(std::numeric_limits<uint64_t>::max(), uint64_t{0}));
}
WASM_EXEC_TEST(I64And) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((i) & (j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64Ior) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((i) | (j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64Xor) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((i) ^ (j), r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64Shl) {
{
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
uint64_t expected = (i) << (j & 0x3F);
CHECK_EQ(expected, r.Call(i, j));
}
}
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i << 0, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i << 32, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i << 20, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i << 40, r.Call(i)); }
}
}
WASM_EXEC_TEST(I64ShrU) {
{
WasmRunner<uint64_t, uint64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
uint64_t expected = (i) >> (j & 0x3F);
CHECK_EQ(expected, r.Call(i, j));
}
}
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i >> 0, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i >> 32, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i >> 20, r.Call(i)); }
}
{
WasmRunner<uint64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(i >> 40, r.Call(i)); }
}
}
WASM_EXEC_TEST(I64ShrS) {
{
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int64_t expected = (i) >> (j & 0x3F);
CHECK_EQ(expected, r.Call(i, j));
}
}
}
{
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(i >> 0, r.Call(i)); }
}
{
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_INT64_INPUTS(i) { CHECK_EQ(i >> 32, r.Call(i)); }
}
{
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_INT64_INPUTS(i) { CHECK_EQ(i >> 20, r.Call(i)); }
}
{
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_INT64_INPUTS(i) { CHECK_EQ(i >> 40, r.Call(i)); }
}
}
WASM_EXEC_TEST(I64Eq) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i == j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64Ne) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_NE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i != j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64LtS) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i < j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64LeS) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_LES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i <= j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64LtU) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(i < j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64LeU) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(i <= j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64GtS) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i > j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64GeS) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_GES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i >= j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64GtU) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(i > j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I64GeU) {
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(i >= j ? 1 : 0, r.Call(i, j)); }
}
}
WASM_EXEC_TEST(I32ConvertI64) {
FOR_INT64_INPUTS(i) {
WasmRunner<int32_t> r(execution_tier);
BUILD(r, WASM_I32_CONVERT_I64(WASM_I64V(i)));
CHECK_EQ(static_cast<int32_t>(i), r.Call());
}
}
WASM_EXEC_TEST(I64SConvertI32) {
WasmRunner<int64_t, int32_t> r(execution_tier);
BUILD(r, WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(static_cast<int64_t>(i), r.Call(i)); }
}
WASM_EXEC_TEST(I64UConvertI32) {
WasmRunner<int64_t, uint32_t> r(execution_tier);
BUILD(r, WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(0)));
FOR_UINT32_INPUTS(i) { CHECK_EQ(static_cast<int64_t>(i), r.Call(i)); }
}
WASM_EXEC_TEST(I64Popcnt) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0xFFFFFFFFFFFFFFFF},
{0, 0x0000000000000000},
{2, 0x0000080000008000},
{26, 0x1123456782345678},
{38, 0xFFEDCBA09EDCBA09}};
WasmRunner<int64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(F32SConvertI64) {
WasmRunner<float, int64_t> r(execution_tier);
BUILD(r, WASM_F32_SCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_FLOAT_EQ(static_cast<float>(i), r.Call(i)); }
}
WASM_EXEC_TEST(F32UConvertI64) {
struct {
uint64_t input;
uint32_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3F800000},
{0xFFFFFFFF, 0x4F800000},
{0x1B09788B, 0x4DD84BC4},
{0x4C5FCE8, 0x4C98BF9D},
{0xCC0DE5BF, 0x4F4C0DE6},
{0x2, 0x40000000},
{0x3, 0x40400000},
{0x4, 0x40800000},
{0x5, 0x40A00000},
{0x8, 0x41000000},
{0x9, 0x41100000},
{0xFFFFFFFFFFFFFFFF, 0x5F800000},
{0xFFFFFFFFFFFFFFFE, 0x5F800000},
{0xFFFFFFFFFFFFFFFD, 0x5F800000},
{0x0, 0x0},
{0x100000000, 0x4F800000},
{0xFFFFFFFF00000000, 0x5F800000},
{0x1B09788B00000000, 0x5DD84BC4},
{0x4C5FCE800000000, 0x5C98BF9D},
{0xCC0DE5BF00000000, 0x5F4C0DE6},
{0x200000000, 0x50000000},
{0x300000000, 0x50400000},
{0x400000000, 0x50800000},
{0x500000000, 0x50A00000},
{0x800000000, 0x51000000},
{0x900000000, 0x51100000},
{0x273A798E187937A3, 0x5E1CE9E6},
{0xECE3AF835495A16B, 0x5F6CE3B0},
{0xB668ECC11223344, 0x5D3668ED},
{0x9E, 0x431E0000},
{0x43, 0x42860000},
{0xAF73, 0x472F7300},
{0x116B, 0x458B5800},
{0x658ECC, 0x4ACB1D98},
{0x2B3B4C, 0x4A2CED30},
{0x88776655, 0x4F087766},
{0x70000000, 0x4EE00000},
{0x7200000, 0x4CE40000},
{0x7FFFFFFF, 0x4F000000},
{0x56123761, 0x4EAC246F},
{0x7FFFFF00, 0x4EFFFFFE},
{0x761C4761EEEEEEEE, 0x5EEC388F},
{0x80000000EEEEEEEE, 0x5F000000},
{0x88888888DDDDDDDD, 0x5F088889},
{0xA0000000DDDDDDDD, 0x5F200000},
{0xDDDDDDDDAAAAAAAA, 0x5F5DDDDE},
{0xE0000000AAAAAAAA, 0x5F600000},
{0xEEEEEEEEEEEEEEEE, 0x5F6EEEEF},
{0xFFFFFFFDEEEEEEEE, 0x5F800000},
{0xF0000000DDDDDDDD, 0x5F700000},
{0x7FFFFFDDDDDDDD, 0x5B000000},
{0x3FFFFFAAAAAAAA, 0x5A7FFFFF},
{0x1FFFFFAAAAAAAA, 0x59FFFFFD},
{0xFFFFF, 0x497FFFF0},
{0x7FFFF, 0x48FFFFE0},
{0x3FFFF, 0x487FFFC0},
{0x1FFFF, 0x47FFFF80},
{0xFFFF, 0x477FFF00},
{0x7FFF, 0x46FFFE00},
{0x3FFF, 0x467FFC00},
{0x1FFF, 0x45FFF800},
{0xFFF, 0x457FF000},
{0x7FF, 0x44FFE000},
{0x3FF, 0x447FC000},
{0x1FF, 0x43FF8000},
{0x3FFFFFFFFFFF, 0x56800000},
{0x1FFFFFFFFFFF, 0x56000000},
{0xFFFFFFFFFFF, 0x55800000},
{0x7FFFFFFFFFF, 0x55000000},
{0x3FFFFFFFFFF, 0x54800000},
{0x1FFFFFFFFFF, 0x54000000},
{0x8000008000000000, 0x5F000000},
{0x8000008000000001, 0x5F000001},
{0x8000000000000400, 0x5F000000},
{0x8000000000000401, 0x5F000000}};
WasmRunner<float, uint64_t> r(execution_tier);
BUILD(r, WASM_F32_UCONVERT_I64(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<float>(values[i].expected), r.Call(values[i].input));
}
}
WASM_EXEC_TEST(F64SConvertI64) {
WasmRunner<double, int64_t> r(execution_tier);
BUILD(r, WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(i), r.Call(i)); }
}
WASM_EXEC_TEST(F64UConvertI64) {
struct {
uint64_t input;
uint64_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3FF0000000000000},
{0xFFFFFFFF, 0x41EFFFFFFFE00000},
{0x1B09788B, 0x41BB09788B000000},
{0x4C5FCE8, 0x419317F3A0000000},
{0xCC0DE5BF, 0x41E981BCB7E00000},
{0x2, 0x4000000000000000},
{0x3, 0x4008000000000000},
{0x4, 0x4010000000000000},
{0x5, 0x4014000000000000},
{0x8, 0x4020000000000000},
{0x9, 0x4022000000000000},
{0xFFFFFFFFFFFFFFFF, 0x43F0000000000000},
{0xFFFFFFFFFFFFFFFE, 0x43F0000000000000},
{0xFFFFFFFFFFFFFFFD, 0x43F0000000000000},
{0x100000000, 0x41F0000000000000},
{0xFFFFFFFF00000000, 0x43EFFFFFFFE00000},
{0x1B09788B00000000, 0x43BB09788B000000},
{0x4C5FCE800000000, 0x439317F3A0000000},
{0xCC0DE5BF00000000, 0x43E981BCB7E00000},
{0x200000000, 0x4200000000000000},
{0x300000000, 0x4208000000000000},
{0x400000000, 0x4210000000000000},
{0x500000000, 0x4214000000000000},
{0x800000000, 0x4220000000000000},
{0x900000000, 0x4222000000000000},
{0x273A798E187937A3, 0x43C39D3CC70C3C9C},
{0xECE3AF835495A16B, 0x43ED9C75F06A92B4},
{0xB668ECC11223344, 0x43A6CD1D98224467},
{0x9E, 0x4063C00000000000},
{0x43, 0x4050C00000000000},
{0xAF73, 0x40E5EE6000000000},
{0x116B, 0x40B16B0000000000},
{0x658ECC, 0x415963B300000000},
{0x2B3B4C, 0x41459DA600000000},
{0x88776655, 0x41E10EECCAA00000},
{0x70000000, 0x41DC000000000000},
{0x7200000, 0x419C800000000000},
{0x7FFFFFFF, 0x41DFFFFFFFC00000},
{0x56123761, 0x41D5848DD8400000},
{0x7FFFFF00, 0x41DFFFFFC0000000},
{0x761C4761EEEEEEEE, 0x43DD8711D87BBBBC},
{0x80000000EEEEEEEE, 0x43E00000001DDDDE},
{0x88888888DDDDDDDD, 0x43E11111111BBBBC},
{0xA0000000DDDDDDDD, 0x43E40000001BBBBC},
{0xDDDDDDDDAAAAAAAA, 0x43EBBBBBBBB55555},
{0xE0000000AAAAAAAA, 0x43EC000000155555},
{0xEEEEEEEEEEEEEEEE, 0x43EDDDDDDDDDDDDE},
{0xFFFFFFFDEEEEEEEE, 0x43EFFFFFFFBDDDDE},
{0xF0000000DDDDDDDD, 0x43EE0000001BBBBC},
{0x7FFFFFDDDDDDDD, 0x435FFFFFF7777777},
{0x3FFFFFAAAAAAAA, 0x434FFFFFD5555555},
{0x1FFFFFAAAAAAAA, 0x433FFFFFAAAAAAAA},
{0xFFFFF, 0x412FFFFE00000000},
{0x7FFFF, 0x411FFFFC00000000},
{0x3FFFF, 0x410FFFF800000000},
{0x1FFFF, 0x40FFFFF000000000},
{0xFFFF, 0x40EFFFE000000000},
{0x7FFF, 0x40DFFFC000000000},
{0x3FFF, 0x40CFFF8000000000},
{0x1FFF, 0x40BFFF0000000000},
{0xFFF, 0x40AFFE0000000000},
{0x7FF, 0x409FFC0000000000},
{0x3FF, 0x408FF80000000000},
{0x1FF, 0x407FF00000000000},
{0x3FFFFFFFFFFF, 0x42CFFFFFFFFFFF80},
{0x1FFFFFFFFFFF, 0x42BFFFFFFFFFFF00},
{0xFFFFFFFFFFF, 0x42AFFFFFFFFFFE00},
{0x7FFFFFFFFFF, 0x429FFFFFFFFFFC00},
{0x3FFFFFFFFFF, 0x428FFFFFFFFFF800},
{0x1FFFFFFFFFF, 0x427FFFFFFFFFF000},
{0x8000008000000000, 0x43E0000010000000},
{0x8000008000000001, 0x43E0000010000000},
{0x8000000000000400, 0x43E0000000000000},
{0x8000000000000401, 0x43E0000000000001}};
WasmRunner<double, uint64_t> r(execution_tier);
BUILD(r, WASM_F64_UCONVERT_I64(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<double>(values[i].expected), r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64SConvertF32) {
WasmRunner<int64_t, float> r(execution_tier);
BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (i < static_cast<float>(std::numeric_limits<int64_t>::max()) &&
i >= static_cast<float>(std::numeric_limits<int64_t>::min())) {
CHECK_EQ(static_cast<int64_t>(i), r.Call(i));
} else {
CHECK_TRAP64(r.Call(i));
}
}
}
WASM_EXEC_TEST(I64SConvertSatF32) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int64_t, float> r(execution_tier);
BUILD(r, WASM_I64_SCONVERT_SAT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
int64_t expected;
if (i < static_cast<float>(std::numeric_limits<int64_t>::max()) &&
i >= static_cast<float>(std::numeric_limits<int64_t>::min())) {
expected = static_cast<int64_t>(i);
} else if (std::isnan(i)) {
expected = static_cast<int64_t>(0);
} else if (i < 0.0) {
expected = std::numeric_limits<int64_t>::min();
} else {
expected = std::numeric_limits<int64_t>::max();
}
int64_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I64SConvertF64) {
WasmRunner<int64_t, double> r(execution_tier);
BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (i < static_cast<double>(std::numeric_limits<int64_t>::max()) &&
i >= static_cast<double>(std::numeric_limits<int64_t>::min())) {
CHECK_EQ(static_cast<int64_t>(i), r.Call(i));
} else {
CHECK_TRAP64(r.Call(i));
}
}
}
WASM_EXEC_TEST(I64SConvertSatF64) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int64_t, double> r(execution_tier);
BUILD(r, WASM_I64_SCONVERT_SAT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
int64_t expected;
if (i < static_cast<double>(std::numeric_limits<int64_t>::max()) &&
i >= static_cast<double>(std::numeric_limits<int64_t>::min())) {
expected = static_cast<int64_t>(i);
} else if (std::isnan(i)) {
expected = static_cast<int64_t>(0);
} else if (i < 0.0) {
expected = std::numeric_limits<int64_t>::min();
} else {
expected = std::numeric_limits<int64_t>::max();
}
int64_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I64UConvertF32) {
WasmRunner<uint64_t, float> r(execution_tier);
BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
i > -1) {
CHECK_EQ(static_cast<uint64_t>(i), r.Call(i));
} else {
CHECK_TRAP64(r.Call(i));
}
}
}
WASM_EXEC_TEST(I64UConvertSatF32) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int64_t, float> r(execution_tier);
BUILD(r, WASM_I64_UCONVERT_SAT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
uint64_t expected;
if (i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
i > -1) {
expected = static_cast<uint64_t>(i);
} else if (std::isnan(i)) {
expected = static_cast<uint64_t>(0);
} else if (i < 0.0) {
expected = std::numeric_limits<uint64_t>::min();
} else {
expected = std::numeric_limits<uint64_t>::max();
}
uint64_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(I64UConvertF64) {
WasmRunner<uint64_t, double> r(execution_tier);
BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
i > -1) {
CHECK_EQ(static_cast<uint64_t>(i), r.Call(i));
} else {
CHECK_TRAP64(r.Call(i));
}
}
}
WASM_EXEC_TEST(I64UConvertSatF64) {
EXPERIMENTAL_FLAG_SCOPE(sat_f2i_conversions);
WasmRunner<int64_t, double> r(execution_tier);
BUILD(r, WASM_I64_UCONVERT_SAT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
int64_t expected;
if (i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
i > -1) {
expected = static_cast<uint64_t>(i);
} else if (std::isnan(i)) {
expected = static_cast<uint64_t>(0);
} else if (i < 0.0) {
expected = std::numeric_limits<uint64_t>::min();
} else {
expected = std::numeric_limits<uint64_t>::max();
}
int64_t found = r.Call(i);
CHECK_EQ(expected, found);
}
}
WASM_EXEC_TEST(CallI64Parameter) {
ValueType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kWasmI64;
param_types[3] = kWasmI32;
param_types[4] = kWasmI32;
FunctionSig sig(1, 19, param_types);
for (int i = 0; i < 19; i++) {
if (i == 2 || i == 3) continue;
WasmRunner<int32_t> r(execution_tier);
// Build the target function.
WasmFunctionCompiler& t = r.NewFunction(&sig);
BUILD(t, WASM_GET_LOCAL(i));
// Build the calling function.
BUILD(
r,
WASM_I32_CONVERT_I64(WASM_CALL_FUNCTION(
t.function_index(), WASM_I64V_9(0xBCD12340000000B),
WASM_I64V_9(0xBCD12340000000C), WASM_I32V_1(0xD),
WASM_I32_CONVERT_I64(WASM_I64V_9(0xBCD12340000000E)),
WASM_I64V_9(0xBCD12340000000F), WASM_I64V_10(0xBCD1234000000010),
WASM_I64V_10(0xBCD1234000000011), WASM_I64V_10(0xBCD1234000000012),
WASM_I64V_10(0xBCD1234000000013), WASM_I64V_10(0xBCD1234000000014),
WASM_I64V_10(0xBCD1234000000015), WASM_I64V_10(0xBCD1234000000016),
WASM_I64V_10(0xBCD1234000000017), WASM_I64V_10(0xBCD1234000000018),
WASM_I64V_10(0xBCD1234000000019), WASM_I64V_10(0xBCD123400000001A),
WASM_I64V_10(0xBCD123400000001B), WASM_I64V_10(0xBCD123400000001C),
WASM_I64V_10(0xBCD123400000001D))));
CHECK_EQ(i + 0xB, r.Call());
}
}
WASM_EXEC_TEST(CallI64Return) {
ValueType return_types[3]; // TODO(rossberg): support more in the future
for (int i = 0; i < 3; i++) return_types[i] = kWasmI64;
return_types[1] = kWasmI32;
FunctionSig sig(2, 1, return_types);
WasmRunner<int64_t> r(execution_tier);
// Build the target function.
WasmFunctionCompiler& t = r.NewFunction(&sig);
BUILD(t, WASM_GET_LOCAL(0), WASM_I32V(7));
// Build the first calling function.
BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_I64V(0xBCD12340000000B)),
WASM_DROP);
CHECK_EQ(0xBCD12340000000B, r.Call());
}
void TestI64Binop(ExecutionTier execution_tier, WasmOpcode opcode,
int64_t expected, int64_t a, int64_t b) {
{
WasmRunner<int64_t> r(execution_tier);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestI64Cmp(ExecutionTier execution_tier, WasmOpcode opcode,
int64_t expected, int64_t a, int64_t b) {
{
WasmRunner<int32_t> r(execution_tier);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier);
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
WASM_EXEC_TEST(I64Binops) {
TestI64Binop(execution_tier, kExprI64Add, -5586332274295447011,
0x501B72EBABC26847, 0x625DE9793D8F79D6);
TestI64Binop(execution_tier, kExprI64Sub, 9001903251710731490,
0xF24FE6474640002E, 0x7562B6F711991B4C);
TestI64Binop(execution_tier, kExprI64Mul, -4569547818546064176,
0x231A263C2CBC6451, 0xEAD44DE6BD3E23D0);
TestI64Binop(execution_tier, kExprI64Mul, -25963122347507043,
0x4DA1FA47C9352B73, 0x91FE82317AA035AF);
TestI64Binop(execution_tier, kExprI64Mul, 7640290486138131960,
0x185731ABE8EEA47C, 0x714EC59F1380D4C2);
TestI64Binop(execution_tier, kExprI64DivS, -91517, 0x93B1190A34DE56A0,
0x00004D8F68863948);
TestI64Binop(execution_tier, kExprI64DivU, 149016, 0xE15B3727E8A2080A,
0x0000631BFA72DB8B);
TestI64Binop(execution_tier, kExprI64RemS, -664128064149968,
0x9A78B4E4FE708692, 0x0003E0B6B3BE7609);
TestI64Binop(execution_tier, kExprI64RemU, 1742040017332765,
0x0CE84708C6258C81, 0x000A6FDE82016697);
TestI64Binop(execution_tier, kExprI64And, 2531040582801836054,
0xAF257D1602644A16, 0x33B290A91A10D997);
TestI64Binop(execution_tier, kExprI64Ior, 8556201506536114940,
0x169D9BE7BD3F0A5C, 0x66BCA28D77AF40E8);
TestI64Binop(execution_tier, kExprI64Xor, -4605655183785456377,
0xB6EA20A5D48E85B8, 0x76FF4DA6C80688BF);
TestI64Binop(execution_tier, kExprI64Shl, -7240704056088331264,
0xEF4DC1ED030E8FFE, 9);
TestI64Binop(execution_tier, kExprI64ShrU, 12500673744059159,
0xB1A52FA7DEEC5D14, 10);
TestI64Binop(execution_tier, kExprI64ShrS, 1725103446999874,
0x3107C791461A112B, 11);
TestI64Binop(execution_tier, kExprI64Ror, -8960135652432576946,
0x73418D1717E4E83A, 12);
TestI64Binop(execution_tier, kExprI64Ror, 7617662827409989779,
0xEBFF67CF0C126D36, 13);
TestI64Binop(execution_tier, kExprI64Rol, -2097714064174346012,
0x43938B8DB0B0F230, 14);
TestI64Binop(execution_tier, kExprI64Rol, 8728493013947314237,
0xE07AF243AC4D219D, 15);
}
WASM_EXEC_TEST(I64Compare) {
TestI64Cmp(execution_tier, kExprI64Eq, 0, 0xB915D8FA494064F0,
0x04D700B2536019A3);
TestI64Cmp(execution_tier, kExprI64Ne, 1, 0xC2FAFAAAB0446CDC,
0x52A3328F780C97A3);
TestI64Cmp(execution_tier, kExprI64LtS, 0, 0x673636E6306B0578,
0x028EC9ECA78F7227);
TestI64Cmp(execution_tier, kExprI64LeS, 1, 0xAE5214114B86A0FA,
0x7C1D21DA3DFD0CCF);
TestI64Cmp(execution_tier, kExprI64LtU, 0, 0x7D52166381EC1CE0,
0x59F4A6A9E78CD3D8);
TestI64Cmp(execution_tier, kExprI64LeU, 1, 0xE4169A385C7EA0E0,
0xFBDBED2C8781E5BC);
TestI64Cmp(execution_tier, kExprI64GtS, 0, 0x9D08FF8FB5F42E81,
0xD4E5C9D7FE09F621);
TestI64Cmp(execution_tier, kExprI64GeS, 1, 0x78DA3B2F73264E0F,
0x6FE5E2A67C501CBE);
TestI64Cmp(execution_tier, kExprI64GtU, 0, 0x8F691284E44F7DA9,
0xD5EA9BC1EE149192);
TestI64Cmp(execution_tier, kExprI64GeU, 0, 0x0886A0C58C7AA224,
0x5DDBE5A81FD7EE47);
}
WASM_EXEC_TEST(I64Clz) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{0, 0x8000100000000000}, {1, 0x4000050000000000},
{2, 0x2000030000000000}, {3, 0x1000000300000000},
{4, 0x0805000000000000}, {5, 0x0400600000000000},
{6, 0x0200000000000000}, {7, 0x010000A000000000},
{8, 0x00800C0000000000}, {9, 0x0040000000000000},
{10, 0x0020000D00000000}, {11, 0x00100F0000000000},
{12, 0x0008000000000000}, {13, 0x0004100000000000},
{14, 0x0002002000000000}, {15, 0x0001030000000000},
{16, 0x0000804000000000}, {17, 0x0000400500000000},
{18, 0x0000205000000000}, {19, 0x0000170000000000},
{20, 0x0000087000000000}, {21, 0x0000040500000000},
{22, 0x0000020300000000}, {23, 0x0000010100000000},
{24, 0x0000008900000000}, {25, 0x0000004100000000},
{26, 0x0000002200000000}, {27, 0x0000001300000000},
{28, 0x0000000800000000}, {29, 0x0000000400000000},
{30, 0x0000000200000000}, {31, 0x0000000100000000},
{32, 0x0000000080001000}, {33, 0x0000000040000500},
{34, 0x0000000020000300}, {35, 0x0000000010000003},
{36, 0x0000000008050000}, {37, 0x0000000004006000},
{38, 0x0000000002000000}, {39, 0x00000000010000A0},
{40, 0x0000000000800C00}, {41, 0x0000000000400000},
{42, 0x000000000020000D}, {43, 0x0000000000100F00},
{44, 0x0000000000080000}, {45, 0x0000000000041000},
{46, 0x0000000000020020}, {47, 0x0000000000010300},
{48, 0x0000000000008040}, {49, 0x0000000000004005},
{50, 0x0000000000002050}, {51, 0x0000000000001700},
{52, 0x0000000000000870}, {53, 0x0000000000000405},
{54, 0x0000000000000203}, {55, 0x0000000000000101},
{56, 0x0000000000000089}, {57, 0x0000000000000041},
{58, 0x0000000000000022}, {59, 0x0000000000000013},
{60, 0x0000000000000008}, {61, 0x0000000000000004},
{62, 0x0000000000000002}, {63, 0x0000000000000001},
{64, 0x0000000000000000}};
WasmRunner<int64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_CLZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64Ctz) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0x0000000000000000}, {63, 0x8000000000000000},
{62, 0x4000000000000000}, {61, 0x2000000000000000},
{60, 0x1000000000000000}, {59, 0xA800000000000000},
{58, 0xF400000000000000}, {57, 0x6200000000000000},
{56, 0x9100000000000000}, {55, 0xCD80000000000000},
{54, 0x0940000000000000}, {53, 0xAF20000000000000},
{52, 0xAC10000000000000}, {51, 0xE0B8000000000000},
{50, 0x9CE4000000000000}, {49, 0xC792000000000000},
{48, 0xB8F1000000000000}, {47, 0x3B9F800000000000},
{46, 0xDB4C400000000000}, {45, 0xE9A3200000000000},
{44, 0xFCA6100000000000}, {43, 0x6C8A780000000000},
{42, 0x8CE5A40000000000}, {41, 0xCB7D020000000000},
{40, 0xCB4DC10000000000}, {39, 0xDFBEC58000000000},
{38, 0x27A9DB4000000000}, {37, 0xDE3BCB2000000000},
{36, 0xD7E8A61000000000}, {35, 0x9AFDBC8800000000},
{34, 0x9AFDBC8400000000}, {33, 0x9AFDBC8200000000},
{32, 0x9AFDBC8100000000}, {31, 0x0000000080000000},
{30, 0x0000000040000000}, {29, 0x0000000020000000},
{28, 0x0000000010000000}, {27, 0x00000000A8000000},
{26, 0x00000000F4000000}, {25, 0x0000000062000000},
{24, 0x0000000091000000}, {23, 0x00000000CD800000},
{22, 0x0000000009400000}, {21, 0x00000000AF200000},
{20, 0x00000000AC100000}, {19, 0x00000000E0B80000},
{18, 0x000000009CE40000}, {17, 0x00000000C7920000},
{16, 0x00000000B8F10000}, {15, 0x000000003B9F8000},
{14, 0x00000000DB4C4000}, {13, 0x00000000E9A32000},
{12, 0x00000000FCA61000}, {11, 0x000000006C8A7800},
{10, 0x000000008CE5A400}, {9, 0x00000000CB7D0200},
{8, 0x00000000CB4DC100}, {7, 0x00000000DFBEC580},
{6, 0x0000000027A9DB40}, {5, 0x00000000DE3BCB20},
{4, 0x00000000D7E8A610}, {3, 0x000000009AFDBC88},
{2, 0x000000009AFDBC84}, {1, 0x000000009AFDBC82},
{0, 0x000000009AFDBC81}};
WasmRunner<int64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_CTZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64Popcnt2) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0xFFFFFFFFFFFFFFFF},
{0, 0x0000000000000000},
{2, 0x0000080000008000},
{26, 0x1123456782345678},
{38, 0xFFEDCBA09EDCBA09}};
WasmRunner<int64_t, uint64_t> r(execution_tier);
BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
// Test the WasmRunner with an Int64 return value and different numbers of
// Int64 parameters.
WASM_EXEC_TEST(I64WasmRunner) {
FOR_INT64_INPUTS(i) {
WasmRunner<int64_t> r(execution_tier);
BUILD(r, WASM_I64V(i));
CHECK_EQ(i, r.Call());
}
{
WasmRunner<int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT64_INPUTS(i) { CHECK_EQ(i, r.Call(i)); }
}
{
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(i ^ j, r.Call(i, j)); }
}
}
{
WasmRunner<int64_t, int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0),
WASM_I64_XOR(WASM_GET_LOCAL(1), WASM_GET_LOCAL(2))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(i ^ j ^ j, r.Call(i, j, j));
CHECK_EQ(j ^ i ^ j, r.Call(j, i, j));
CHECK_EQ(j ^ j ^ i, r.Call(j, j, i));
}
}
}
{
WasmRunner<int64_t, int64_t, int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0),
WASM_I64_XOR(WASM_GET_LOCAL(1),
WASM_I64_XOR(WASM_GET_LOCAL(2),
WASM_GET_LOCAL(3)))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(i ^ j ^ j ^ j, r.Call(i, j, j, j));
CHECK_EQ(j ^ i ^ j ^ j, r.Call(j, i, j, j));
CHECK_EQ(j ^ j ^ i ^ j, r.Call(j, j, i, j));
CHECK_EQ(j ^ j ^ j ^ i, r.Call(j, j, j, i));
}
}
}
}
WASM_EXEC_TEST(Call_Int64Sub) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
// Build the target function.
TestSignatures sigs;
WasmFunctionCompiler& t = r.NewFunction(sigs.l_ll());
BUILD(t, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
// Build the caller function.
BUILD(r, WASM_CALL_FUNCTION(t.function_index(), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(base::SubWithWraparound(i, j), r.Call(i, j));
}
}
}
WASM_EXEC_TEST(LoadStoreI64_sx) {
byte loads[] = {kExprI64LoadMem8S, kExprI64LoadMem16S, kExprI64LoadMem32S,
kExprI64LoadMem};
for (size_t m = 0; m < arraysize(loads); m++) {
WasmRunner<int64_t> r(execution_tier);
byte* memory = r.builder().AddMemoryElems<byte>(kWasmPageSize);
byte code[] = {
kExprI32Const, 8, // --
kExprI32Const, 0, // --
loads[m], // --
ZERO_ALIGNMENT, // --
ZERO_OFFSET, // --
kExprI64StoreMem, // --
ZERO_ALIGNMENT, // --
ZERO_OFFSET, // --
kExprI32Const, 0, // --
loads[m], // --
ZERO_ALIGNMENT, // --
ZERO_OFFSET, // --
};
r.Build(code, code + arraysize(code));
// Try a bunch of different negative values.
for (int i = -1; i >= -128; i -= 11) {
int size = 1 << m;
r.builder().BlankMemory();
memory[size - 1] = static_cast<byte>(i); // set the high order byte.
int64_t expected = static_cast<uint64_t>(static_cast<int64_t>(i))
<< ((size - 1) * 8);
CHECK_EQ(expected, r.Call());
CHECK_EQ(static_cast<byte>(i), memory[8 + size - 1]);
for (int j = size; j < 8; j++) {
CHECK_EQ(255, memory[8 + j]);
}
}
}
}
WASM_EXEC_TEST(I64ReinterpretF64) {
WasmRunner<int64_t> r(execution_tier);
int64_t* memory =
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, WASM_I64_REINTERPRET_F64(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int64_t expected =
base::MulWithWraparound(static_cast<int64_t>(i), int64_t{0x300010001L});
r.builder().WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(SignallingNanSurvivesI64ReinterpretF64) {
WasmRunner<int64_t> r(execution_tier);
BUILD(r, WASM_I64_REINTERPRET_F64(WASM_SEQ(kExprF64Const, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xF4, 0x7F)));
// This is a signalling nan.
CHECK_EQ(0x7FF4000000000000, r.Call());
}
WASM_EXEC_TEST(F64ReinterpretI64) {
WasmRunner<int64_t, int64_t> r(execution_tier);
int64_t* memory =
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, WASM_STORE_MEM(MachineType::Float64(), WASM_ZERO,
WASM_F64_REINTERPRET_I64(WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) {
int64_t expected =
base::MulWithWraparound(static_cast<int64_t>(i), int64_t{0x300010001L});
CHECK_EQ(expected, r.Call(expected));
CHECK_EQ(expected, r.builder().ReadMemory<int64_t>(&memory[0]));
}
}
WASM_EXEC_TEST(LoadMemI64) {
WasmRunner<int64_t> r(execution_tier);
int64_t* memory =
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
r.builder().RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int64(), WASM_ZERO));
r.builder().WriteMemory<int64_t>(&memory[0], 0x1ABBCCDD00112233LL);
CHECK_EQ(0x1ABBCCDD00112233LL, r.Call());
r.builder().WriteMemory<int64_t>(&memory[0], 0x33AABBCCDD001122LL);
CHECK_EQ(0x33AABBCCDD001122LL, r.Call());
r.builder().WriteMemory<int64_t>(&memory[0], 77777777);
CHECK_EQ(77777777, r.Call());
}
WASM_EXEC_TEST(LoadMemI64_alignment) {
for (byte alignment = 0; alignment <= 3; alignment++) {
WasmRunner<int64_t> r(execution_tier);
int64_t* memory =
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
r.builder().RandomizeMemory(1111);
BUILD(r,
WASM_LOAD_MEM_ALIGNMENT(MachineType::Int64(), WASM_ZERO, alignment));
r.builder().WriteMemory<int64_t>(&memory[0], 0x1ABBCCDD00112233LL);
CHECK_EQ(0x1ABBCCDD00112233LL, r.Call());
r.builder().WriteMemory<int64_t>(&memory[0], 0x33AABBCCDD001122LL);
CHECK_EQ(0x33AABBCCDD001122LL, r.Call());
r.builder().WriteMemory<int64_t>(&memory[0], 77777777);
CHECK_EQ(77777777, r.Call());
}
}
WASM_EXEC_TEST(MemI64_Sum) {
const int kNumElems = 20;
WasmRunner<uint64_t, int32_t> r(execution_tier);
uint64_t* memory =
r.builder().AddMemoryElems<uint64_t>(kWasmPageSize / sizeof(uint64_t));
const byte kSum = r.AllocateLocal(kWasmI64);
BUILD(r, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
WASM_SET_LOCAL(
kSum, WASM_I64_ADD(WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int64(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(8))))),
WASM_GET_LOCAL(1));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
r.builder().RandomizeMemory(i * 33);
uint64_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += r.builder().ReadMemory(&memory[j]);
}
uint64_t result = r.Call(8 * (kNumElems - 1));
CHECK_EQ(expected, result);
}
}
WASM_EXEC_TEST(StoreMemI64_alignment) {
const int64_t kWritten = 0x12345678ABCD0011ll;
for (byte i = 0; i <= 3; i++) {
WasmRunner<int64_t, int64_t> r(execution_tier);
int64_t* memory =
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int64(), WASM_ZERO, i,
WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
r.builder().RandomizeMemory(1111);
r.builder().WriteMemory<int64_t>(&memory[0], 0);
CHECK_EQ(kWritten, r.Call(kWritten));
CHECK_EQ(kWritten, r.builder().ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(I64Global) {
WasmRunner<int32_t, int32_t> r(execution_tier);
int64_t* global = r.builder().AddGlobal<int64_t>();
// global = global + p0
BUILD(r, WASM_SET_GLOBAL(
0, WASM_I64_AND(WASM_GET_GLOBAL(0),
WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO);
r.builder().WriteMemory<int64_t>(global, 0xFFFFFFFFFFFFFFFFLL);
for (int i = 9; i < 444444; i += 111111) {
int64_t expected = ReadLittleEndianValue<int64_t>(global) & i;
r.Call(i);
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(global));
}
}
WASM_EXEC_TEST(I64Eqz) {
WasmRunner<int32_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_EQZ(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) {
int32_t result = i == 0 ? 1 : 0;
CHECK_EQ(result, r.Call(i));
}
}
WASM_EXEC_TEST(I64Ror) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
int64_t expected = base::bits::RotateRight64(i, j & 0x3F);
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(I64Rol) {
WasmRunner<int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
int64_t expected = base::bits::RotateLeft64(i, j & 0x3F);
CHECK_EQ(expected, r.Call(i, j));
}
}
}
WASM_EXEC_TEST(StoreMem_offset_oob_i64) {
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
constexpr size_t num_bytes = kWasmPageSize;
for (size_t m = 0; m < arraysize(machineTypes); m++) {
WasmRunner<int32_t, uint32_t> r(execution_tier);
byte* memory = r.builder().AddMemoryElems<byte>(num_bytes);
r.builder().RandomizeMemory(1119 + static_cast<int>(m));
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = ValueTypes::MemSize(machineTypes[m]);
uint32_t boundary = num_bytes - 8 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP32(r.Call(offset)); // out of bounds.
}
}
}
WASM_EXEC_TEST(Store_i64_narrowed) {
constexpr byte kOpcodes[] = {kExprI64StoreMem8, kExprI64StoreMem16,
kExprI64StoreMem32, kExprI64StoreMem};
int stored_size_in_bytes = 0;
for (auto opcode : kOpcodes) {
stored_size_in_bytes = std::max(1, stored_size_in_bytes * 2);
constexpr int kBytes = 24;
uint8_t expected_memory[kBytes] = {0};
WasmRunner<int32_t, int32_t, int64_t> r(execution_tier);
uint8_t* memory = r.builder().AddMemoryElems<uint8_t>(kWasmPageSize);
constexpr uint64_t kPattern = 0x0123456789abcdef;
BUILD(r, WASM_GET_LOCAL(0), // index
WASM_GET_LOCAL(1), // value
opcode, ZERO_ALIGNMENT, ZERO_OFFSET, // store
WASM_ZERO); // return value
for (int i = 0; i <= kBytes - stored_size_in_bytes; ++i) {
uint64_t pattern = base::bits::RotateLeft64(kPattern, i % 64);
r.Call(i, pattern);
for (int b = 0; b < stored_size_in_bytes; ++b) {
expected_memory[i + b] = static_cast<uint8_t>(pattern >> (b * 8));
}
for (int w = 0; w < kBytes; ++w) {
CHECK_EQ(expected_memory[w], memory[w]);
}
}
}
}
WASM_EXEC_TEST(UnalignedInt64Load) {
WasmRunner<uint64_t> r(execution_tier);
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, WASM_LOAD_MEM_ALIGNMENT(MachineType::Int64(), WASM_ONE, 3));
r.Call();
}
WASM_EXEC_TEST(UnalignedInt64Store) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemoryElems<uint64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, WASM_SEQ(WASM_STORE_MEM_ALIGNMENT(MachineType::Int64(), WASM_ONE, 3,
WASM_I64V_1(1)),
WASM_I32V_1(12)));
r.Call();
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \
} while (false)
static void CompileCallIndirectMany(ExecutionTier tier, ValueType param) {
// Make sure we don't run out of registers when compiling indirect calls
// with many many parameters.
TestSignatures sigs;
for (byte num_params = 0; num_params < 40; num_params++) {
WasmRunner<void> r(tier);
FunctionSig* sig = sigs.many(r.zone(), kWasmStmt, param, num_params);
r.builder().AddSignature(sig);
r.builder().AddSignature(sig);
r.builder().AddIndirectFunctionTable(nullptr, 0);
WasmFunctionCompiler& t = r.NewFunction(sig);
std::vector<byte> code;
for (byte p = 0; p < num_params; p++) {
ADD_CODE(code, kExprGetLocal, p);
}
ADD_CODE(code, kExprI32Const, 0);
ADD_CODE(code, kExprCallIndirect, 1, TABLE_ZERO);
t.Build(&code[0], &code[0] + code.size());
}
}
WASM_EXEC_TEST(Compile_Wasm_CallIndirect_Many_i64) {
CompileCallIndirectMany(execution_tier, kWasmI64);
}
static void Run_WasmMixedCall_N(ExecutionTier execution_tier, int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Int64(),
MachineType::Float64(), MachineType::Float32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Float64(), MachineType::Float32(),
MachineType::Float64(), MachineType::Int32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Int32()};
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; which++) {
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(ValueTypes::ValueTypeFor(result));
for (int i = 0; i < num_params; i++) {
b.AddParam(ValueTypes::ValueTypeFor(memtypes[i]));
}
WasmFunctionCompiler& t = r.NewFunction(b.Build());
BUILD(t, WASM_GET_LOCAL(which));
// =========================================================================
// Build the calling function.
// =========================================================================
std::vector<byte> code;
// Load the arguments.
for (int i = 0; i < num_params; i++) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I32V_2(offset)));
}
// Call the selector function.
ADD_CODE(code, WASM_CALL_FUNCTION0(t.function_index()));
// Store the result in a local.
byte local_index = r.AllocateLocal(ValueTypes::ValueTypeFor(result));
ADD_CODE(code, kExprSetLocal, local_index);
// Store the result in memory.
ADD_CODE(code,
WASM_STORE_MEM(result, WASM_ZERO, WASM_GET_LOCAL(local_index)));
// Return the expected value.
ADD_CODE(code, WASM_I32V_2(kExpected));
r.Build(&code[0], &code[0] + code.size());
// Run the code.
for (int t = 0; t < 10; t++) {
r.builder().RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = ValueTypes::MemSize(result);
for (int i = 0; i < size; i++) {
int base = (which + 1) * kElemSize;
byte expected = r.builder().raw_mem_at<byte>(base + i);
byte result = r.builder().raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
WASM_EXEC_TEST(MixedCall_i64_0) { Run_WasmMixedCall_N(execution_tier, 0); }
WASM_EXEC_TEST(MixedCall_i64_1) { Run_WasmMixedCall_N(execution_tier, 1); }
WASM_EXEC_TEST(MixedCall_i64_2) { Run_WasmMixedCall_N(execution_tier, 2); }
WASM_EXEC_TEST(MixedCall_i64_3) { Run_WasmMixedCall_N(execution_tier, 3); }
WASM_EXEC_TEST(Regress5874) {
WasmRunner<int32_t> r(execution_tier);
r.builder().AddMemoryElems<int64_t>(kWasmPageSize / sizeof(int64_t));
BUILD(r, kExprI64Const, 0x00, // --
kExprI32ConvertI64, // --
kExprI64Const, 0x00, // --
kExprI64StoreMem, 0x03, 0x00, // --
kExprI32Const, 0x00); // --
r.Call();
}
WASM_EXEC_TEST(Regression_6858) {
// WasmRunner with 5 params and returns, which is the maximum.
WasmRunner<int64_t, int64_t, int64_t, int64_t, int64_t> r(execution_tier);
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
int64_t dividend = 15;
int64_t divisor = 0;
int64_t filler = 34;
CHECK_TRAP64(r.Call(dividend, divisor, filler, filler));
}
#undef ADD_CODE
// clang-format gets confused about these closing parentheses (wants to change
// the first comment to "// namespace v8". Disable it.
// clang-format off
} // namespace test_run_wasm_64
} // namespace wasm
} // namespace internal
} // namespace v8
// clang-format on