v8/src/handles.cc
iposva@chromium.org ea653021fc - Allow hidden properties to be set on any JSObject through the V8 C++ API.
- Use the hidden properties to expose a IdentityHash accessor.

Review URL: http://codereview.chromium.org/50016

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1550 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-03-19 18:50:00 +00:00

684 lines
24 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "bootstrapper.h"
#include "compiler.h"
#include "debug.h"
#include "execution.h"
#include "global-handles.h"
#include "natives.h"
#include "runtime.h"
namespace v8 { namespace internal {
v8::ImplementationUtilities::HandleScopeData HandleScope::current_ =
{ -1, NULL, NULL };
int HandleScope::NumberOfHandles() {
int n = HandleScopeImplementer::instance()->Blocks()->length();
if (n == 0) return 0;
return ((n - 1) * kHandleBlockSize) +
(current_.next - HandleScopeImplementer::instance()->Blocks()->last());
}
void** HandleScope::Extend() {
void** result = current_.next;
ASSERT(result == current_.limit);
// Make sure there's at least one scope on the stack and that the
// top of the scope stack isn't a barrier.
if (current_.extensions < 0) {
Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
"Cannot create a handle without a HandleScope");
return NULL;
}
HandleScopeImplementer* impl = HandleScopeImplementer::instance();
// If there's more room in the last block, we use that. This is used
// for fast creation of scopes after scope barriers.
if (!impl->Blocks()->is_empty()) {
void** limit = &impl->Blocks()->last()[kHandleBlockSize];
if (current_.limit != limit) {
current_.limit = limit;
}
}
// If we still haven't found a slot for the handle, we extend the
// current handle scope by allocating a new handle block.
if (result == current_.limit) {
// If there's a spare block, use it for growing the current scope.
result = impl->GetSpareOrNewBlock();
// Add the extension to the global list of blocks, but count the
// extension as part of the current scope.
impl->Blocks()->Add(result);
current_.extensions++;
current_.limit = &result[kHandleBlockSize];
}
return result;
}
void HandleScope::DeleteExtensions() {
ASSERT(current_.extensions != 0);
HandleScopeImplementer::instance()->DeleteExtensions(current_.extensions);
}
void HandleScope::ZapRange(void** start, void** end) {
if (start == NULL) return;
for (void** p = start; p < end; p++) {
*p = reinterpret_cast<void*>(v8::internal::kHandleZapValue);
}
}
Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
Handle<JSArray> array) {
CALL_HEAP_FUNCTION(content->AddKeysFromJSArray(*array), FixedArray);
}
Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
Handle<FixedArray> second) {
CALL_HEAP_FUNCTION(first->UnionOfKeys(*second), FixedArray);
}
Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
Handle<JSFunction> constructor,
Handle<JSGlobalProxy> global) {
CALL_HEAP_FUNCTION(Heap::ReinitializeJSGlobalProxy(*constructor, *global),
JSGlobalProxy);
}
void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
func->shared()->set_expected_nof_properties(nof);
if (func->has_initial_map()) {
Handle<Map> new_initial_map =
Factory::CopyMapDropTransitions(Handle<Map>(func->initial_map()));
new_initial_map->set_unused_property_fields(nof);
func->set_initial_map(*new_initial_map);
}
}
void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
CALL_HEAP_FUNCTION_VOID(func->SetPrototype(*value));
}
static int ExpectedNofPropertiesFromEstimate(int estimate) {
// TODO(1231235): We need dynamic feedback to estimate the number
// of expected properties in an object. The static hack below
// is barely a solution.
if (estimate == 0) return 4;
return estimate + 2;
}
void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
int estimate) {
shared->set_expected_nof_properties(
ExpectedNofPropertiesFromEstimate(estimate));
}
void SetExpectedNofPropertiesFromEstimate(Handle<JSFunction> func,
int estimate) {
SetExpectedNofProperties(
func, ExpectedNofPropertiesFromEstimate(estimate));
}
void NormalizeProperties(Handle<JSObject> object,
PropertyNormalizationMode mode) {
CALL_HEAP_FUNCTION_VOID(object->NormalizeProperties(mode));
}
void NormalizeElements(Handle<JSObject> object) {
CALL_HEAP_FUNCTION_VOID(object->NormalizeElements());
}
void TransformToFastProperties(Handle<JSObject> object,
int unused_property_fields) {
CALL_HEAP_FUNCTION_VOID(
object->TransformToFastProperties(unused_property_fields));
}
void FlattenString(Handle<String> string) {
CALL_HEAP_FUNCTION_VOID(string->TryFlattenIfNotFlat());
ASSERT(string->IsFlat());
}
Handle<Object> SetPrototype(Handle<JSFunction> function,
Handle<Object> prototype) {
CALL_HEAP_FUNCTION(Accessors::FunctionSetPrototype(*function,
*prototype,
NULL),
Object);
}
Handle<Object> SetProperty(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->SetProperty(*key, *value, attributes), Object);
}
Handle<Object> SetProperty(Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(
Runtime::SetObjectProperty(object, key, value, attributes), Object);
}
Handle<Object> IgnoreAttributesAndSetLocalProperty(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->
IgnoreAttributesAndSetLocalProperty(*key, *value, attributes), Object);
}
Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->SetPropertyWithInterceptor(*key,
*value,
attributes),
Object);
}
Handle<Object> GetProperty(Handle<JSObject> obj,
const char* name) {
Handle<String> str = Factory::LookupAsciiSymbol(name);
CALL_HEAP_FUNCTION(obj->GetProperty(*str), Object);
}
Handle<Object> GetProperty(Handle<Object> obj,
Handle<Object> key) {
CALL_HEAP_FUNCTION(Runtime::GetObjectProperty(obj, key), Object);
}
Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name,
PropertyAttributes* attributes) {
CALL_HEAP_FUNCTION(holder->GetPropertyWithInterceptor(*receiver,
*name,
attributes),
Object);
}
Handle<Object> GetPrototype(Handle<Object> obj) {
Handle<Object> result(obj->GetPrototype());
return result;
}
Handle<Object> GetHiddenProperties(Handle<JSObject> obj,
bool create_if_needed) {
CALL_HEAP_FUNCTION(obj->GetHiddenProperties(create_if_needed), Object);
}
Handle<Object> DeleteElement(Handle<JSObject> obj,
uint32_t index) {
CALL_HEAP_FUNCTION(obj->DeleteElement(index), Object);
}
Handle<Object> DeleteProperty(Handle<JSObject> obj,
Handle<String> prop) {
CALL_HEAP_FUNCTION(obj->DeleteProperty(*prop), Object);
}
Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
CALL_HEAP_FUNCTION(Heap::LookupSingleCharacterStringFromCode(index), Object);
}
Handle<String> SubString(Handle<String> str, int start, int end) {
CALL_HEAP_FUNCTION(str->Slice(start, end), String);
}
Handle<Object> SetElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value) {
CALL_HEAP_FUNCTION(object->SetElement(index, *value), Object);
}
Handle<JSObject> Copy(Handle<JSObject> obj) {
CALL_HEAP_FUNCTION(Heap::CopyJSObject(*obj), JSObject);
}
// Wrappers for scripts are kept alive and cached in weak global
// handles referred from proxy objects held by the scripts as long as
// they are used. When they are not used anymore, the garbage
// collector will call the weak callback on the global handle
// associated with the wrapper and get rid of both the wrapper and the
// handle.
static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
Handle<Object> cache = Utils::OpenHandle(*handle);
JSValue* wrapper = JSValue::cast(*cache);
Proxy* proxy = Script::cast(wrapper->value())->wrapper();
ASSERT(proxy->proxy() == reinterpret_cast<Address>(cache.location()));
proxy->set_proxy(0);
GlobalHandles::Destroy(cache.location());
Counters::script_wrappers.Decrement();
}
Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
Handle<Object> cache(reinterpret_cast<Object**>(script->wrapper()->proxy()));
if (!cache.is_null()) {
// Return the script wrapper directly from the cache.
return Handle<JSValue>(JSValue::cast(*cache));
}
// Construct a new script wrapper.
Counters::script_wrappers.Increment();
Handle<JSFunction> constructor = Top::script_function();
Handle<JSValue> result =
Handle<JSValue>::cast(Factory::NewJSObject(constructor));
result->set_value(*script);
// Create a new weak global handle and use it to cache the wrapper
// for future use. The cache will automatically be cleared by the
// garbage collector when it is not used anymore.
Handle<Object> handle = GlobalHandles::Create(*result);
GlobalHandles::MakeWeak(handle.location(), NULL, &ClearWrapperCache);
script->wrapper()->set_proxy(reinterpret_cast<Address>(handle.location()));
return result;
}
// Init line_ends array with code positions of line ends inside script
// source.
void InitScriptLineEnds(Handle<Script> script) {
if (!script->line_ends()->IsUndefined()) return;
if (!script->source()->IsString()) {
ASSERT(script->source()->IsUndefined());
script->set_line_ends(*(Factory::NewJSArray(0)));
ASSERT(script->line_ends()->IsJSArray());
return;
}
Handle<String> src(String::cast(script->source()));
const int src_len = src->length();
Handle<String> new_line = Factory::NewStringFromAscii(CStrVector("\n"));
// Pass 1: Identify line count.
int line_count = 0;
int position = 0;
while (position != -1 && position < src_len) {
position = Runtime::StringMatch(src, new_line, position);
if (position != -1) {
position++;
}
// Even if the last line misses a line end, it is counted.
line_count++;
}
// Pass 2: Fill in line ends positions
Handle<FixedArray> array = Factory::NewFixedArray(line_count);
int array_index = 0;
position = 0;
while (position != -1 && position < src_len) {
position = Runtime::StringMatch(src, new_line, position);
// If the script does not end with a line ending add the final end
// position as just past the last line ending.
array->set(array_index++,
Smi::FromInt(position != -1 ? position++ : src_len));
}
ASSERT(array_index == line_count);
Handle<JSArray> object = Factory::NewJSArrayWithElements(array);
script->set_line_ends(*object);
ASSERT(script->line_ends()->IsJSArray());
}
// Convert code position into line number.
int GetScriptLineNumber(Handle<Script> script, int code_pos) {
InitScriptLineEnds(script);
AssertNoAllocation no_allocation;
JSArray* line_ends_array = JSArray::cast(script->line_ends());
const int line_ends_len = (Smi::cast(line_ends_array->length()))->value();
int line = -1;
if (line_ends_len > 0 &&
code_pos <= (Smi::cast(line_ends_array->GetElement(0)))->value()) {
line = 0;
} else {
for (int i = 1; i < line_ends_len; ++i) {
if ((Smi::cast(line_ends_array->GetElement(i - 1)))->value() < code_pos &&
code_pos <= (Smi::cast(line_ends_array->GetElement(i)))->value()) {
line = i;
break;
}
}
}
return line != -1 ? line + script->line_offset()->value() : line;
}
// Compute the property keys from the interceptor.
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSObject> receiver,
Handle<JSObject> object) {
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
Handle<Object> data(interceptor->data());
v8::AccessorInfo info(
v8::Utils::ToLocal(receiver),
v8::Utils::ToLocal(data),
v8::Utils::ToLocal(object));
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::NamedPropertyEnumerator enum_fun =
v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
LOG(ApiObjectAccess("interceptor-named-enum", *object));
{
// Leaving JavaScript.
VMState state(OTHER);
result = enum_fun(info);
}
}
return result;
}
// Compute the element keys from the interceptor.
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSObject> receiver,
Handle<JSObject> object) {
Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
Handle<Object> data(interceptor->data());
v8::AccessorInfo info(
v8::Utils::ToLocal(receiver),
v8::Utils::ToLocal(data),
v8::Utils::ToLocal(object));
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::IndexedPropertyEnumerator enum_fun =
v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
LOG(ApiObjectAccess("interceptor-indexed-enum", *object));
{
// Leaving JavaScript.
VMState state(OTHER);
result = enum_fun(info);
}
}
return result;
}
Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSObject> object) {
Handle<FixedArray> content = Factory::empty_fixed_array();
JSObject* arguments_boilerplate =
Top::context()->global_context()->arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
bool allow_enumeration = (object->map()->constructor() != arguments_function);
// Only collect keys if access is permitted.
if (allow_enumeration) {
for (Handle<Object> p = object;
*p != Heap::null_value();
p = Handle<Object>(p->GetPrototype())) {
Handle<JSObject> current(JSObject::cast(*p));
// Check access rights if required.
if (current->IsAccessCheckNeeded() &&
!Top::MayNamedAccess(*current, Heap::undefined_value(),
v8::ACCESS_KEYS)) {
Top::ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
break;
}
// Compute the property keys.
content = UnionOfKeys(content, GetEnumPropertyKeys(current));
// Add the property keys from the interceptor.
if (current->HasNamedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForNamedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
}
// Compute the element keys.
Handle<FixedArray> element_keys =
Factory::NewFixedArray(current->NumberOfEnumElements());
current->GetEnumElementKeys(*element_keys);
content = UnionOfKeys(content, element_keys);
// Add the element keys from the interceptor.
if (current->HasIndexedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForIndexedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
}
}
}
return content;
}
Handle<JSArray> GetKeysFor(Handle<JSObject> object) {
Counters::for_in.Increment();
Handle<FixedArray> elements = GetKeysInFixedArrayFor(object);
return Factory::NewJSArrayWithElements(elements);
}
Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object) {
int index = 0;
if (object->HasFastProperties()) {
if (object->map()->instance_descriptors()->HasEnumCache()) {
Counters::enum_cache_hits.Increment();
DescriptorArray* desc = object->map()->instance_descriptors();
return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()));
}
Counters::enum_cache_misses.Increment();
int num_enum = object->NumberOfEnumProperties();
Handle<FixedArray> storage = Factory::NewFixedArray(num_enum);
Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum);
for (DescriptorReader r(object->map()->instance_descriptors());
!r.eos();
r.advance()) {
if (r.IsProperty() && !r.IsDontEnum()) {
(*storage)->set(index, r.GetKey());
(*sort_array)->set(index, Smi::FromInt(r.GetDetails().index()));
index++;
}
}
(*storage)->SortPairs(*sort_array);
Handle<FixedArray> bridge_storage =
Factory::NewFixedArray(DescriptorArray::kEnumCacheBridgeLength);
DescriptorArray* desc = object->map()->instance_descriptors();
desc->SetEnumCache(*bridge_storage, *storage);
ASSERT(storage->length() == index);
return storage;
} else {
int num_enum = object->NumberOfEnumProperties();
Handle<FixedArray> storage = Factory::NewFixedArray(num_enum);
Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum);
object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array);
return storage;
}
}
bool CompileLazyShared(Handle<SharedFunctionInfo> shared,
ClearExceptionFlag flag,
int loop_nesting) {
// Compile the source information to a code object.
ASSERT(!shared->is_compiled());
bool result = Compiler::CompileLazy(shared, loop_nesting);
ASSERT(result != Top::has_pending_exception());
if (!result && flag == CLEAR_EXCEPTION) Top::clear_pending_exception();
return result;
}
bool CompileLazy(Handle<JSFunction> function, ClearExceptionFlag flag) {
// Compile the source information to a code object.
Handle<SharedFunctionInfo> shared(function->shared());
return CompileLazyShared(shared, flag, 0);
}
bool CompileLazyInLoop(Handle<JSFunction> function, ClearExceptionFlag flag) {
// Compile the source information to a code object.
Handle<SharedFunctionInfo> shared(function->shared());
return CompileLazyShared(shared, flag, 1);
}
OptimizedObjectForAddingMultipleProperties::
OptimizedObjectForAddingMultipleProperties(Handle<JSObject> object,
bool condition) {
object_ = object;
if (condition && object_->HasFastProperties()) {
// Normalize the properties of object to avoid n^2 behavior
// when extending the object multiple properties.
unused_property_fields_ = object->map()->unused_property_fields();
NormalizeProperties(object_, KEEP_INOBJECT_PROPERTIES);
has_been_transformed_ = true;
} else {
has_been_transformed_ = false;
}
}
OptimizedObjectForAddingMultipleProperties::
~OptimizedObjectForAddingMultipleProperties() {
// Reoptimize the object to allow fast property access.
if (has_been_transformed_) {
TransformToFastProperties(object_, unused_property_fields_);
}
}
void LoadLazy(Handle<JSFunction> fun, bool* pending_exception) {
HandleScope scope;
Handle<FixedArray> info(FixedArray::cast(fun->shared()->lazy_load_data()));
int index = Smi::cast(info->get(0))->value();
ASSERT(index >= 0);
Handle<Context> compile_context(Context::cast(info->get(1)));
Handle<Context> function_context(Context::cast(info->get(2)));
Handle<Object> receiver(compile_context->global()->builtins());
Vector<const char> name = Natives::GetScriptName(index);
Handle<JSFunction> boilerplate;
if (!Bootstrapper::NativesCacheLookup(name, &boilerplate)) {
Handle<String> source_code = Bootstrapper::NativesSourceLookup(index);
Handle<String> script_name = Factory::NewStringFromAscii(name);
bool allow_natives_syntax = FLAG_allow_natives_syntax;
FLAG_allow_natives_syntax = true;
boilerplate = Compiler::Compile(source_code, script_name, 0, 0, NULL, NULL);
FLAG_allow_natives_syntax = allow_natives_syntax;
// If the compilation failed (possibly due to stack overflows), we
// should never enter the result in the natives cache. Instead we
// return from the function without marking the function as having
// been lazily loaded.
if (boilerplate.is_null()) {
*pending_exception = true;
return;
}
Bootstrapper::NativesCacheAdd(name, boilerplate);
}
// We shouldn't get here if compiling the script failed.
ASSERT(!boilerplate.is_null());
// When the debugger running in its own context touches lazy loaded
// functions loading can be triggered. In that case ensure that the
// execution of the boilerplate is in the correct context.
SaveContext save;
if (!Debug::debug_context().is_null() &&
Top::context() == *Debug::debug_context()) {
Top::set_context(*compile_context);
}
// Reset the lazy load data before running the script to make sure
// not to get recursive lazy loading.
fun->shared()->set_lazy_load_data(Heap::undefined_value());
// Run the script.
Handle<JSFunction> script_fun(
Factory::NewFunctionFromBoilerplate(boilerplate, function_context));
Execution::Call(script_fun, receiver, 0, NULL, pending_exception);
// If lazy loading failed, restore the unloaded state of fun.
if (*pending_exception) fun->shared()->set_lazy_load_data(*info);
}
void SetupLazy(Handle<JSFunction> fun,
int index,
Handle<Context> compile_context,
Handle<Context> function_context) {
Handle<FixedArray> arr = Factory::NewFixedArray(3);
arr->set(0, Smi::FromInt(index));
arr->set(1, *compile_context); // Compile in this context
arr->set(2, *function_context); // Set function context to this
fun->shared()->set_lazy_load_data(*arr);
}
} } // namespace v8::internal