v8/src/code-stubs.h
marja 6ad87e4f86 [strong] More scoping related errors: object literal methods.
This CL adds errors for illegal references which occur inside object literal
methods inside computed properrty names.

BUG=v8:3948,v8:3956
LOG=N

Review URL: https://codereview.chromium.org/994043003

Cr-Commit-Position: refs/heads/master@{#27118}
2015-03-10 16:48:07 +00:00

2742 lines
87 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUBS_H_
#define V8_CODE_STUBS_H_
#include "src/allocation.h"
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/globals.h"
#include "src/ic/ic-state.h"
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
// List of code stubs used on all platforms.
#define CODE_STUB_LIST_ALL_PLATFORMS(V) \
/* PlatformCodeStubs */ \
V(ArgumentsAccess) \
V(ArrayConstructor) \
V(BinaryOpICWithAllocationSite) \
V(CallApiFunction) \
V(CallApiAccessor) \
V(CallApiGetter) \
V(CallConstruct) \
V(CallFunction) \
V(CallIC) \
V(CallIC_Array) \
V(CEntry) \
V(CompareIC) \
V(DoubleToI) \
V(FunctionPrototype) \
V(Instanceof) \
V(InternalArrayConstructor) \
V(JSEntry) \
V(KeyedLoadICTrampoline) \
V(LoadICTrampoline) \
V(CallICTrampoline) \
V(CallIC_ArrayTrampoline) \
V(LoadIndexedInterceptor) \
V(LoadIndexedString) \
V(MathPow) \
V(ProfileEntryHook) \
V(RecordWrite) \
V(RegExpExec) \
V(StoreArrayLiteralElement) \
V(StoreBufferOverflow) \
V(StoreElement) \
V(StringCompare) \
V(StubFailureTrampoline) \
V(SubString) \
V(ToNumber) \
/* HydrogenCodeStubs */ \
V(AllocateHeapNumber) \
V(ArrayNArgumentsConstructor) \
V(ArrayNoArgumentConstructor) \
V(ArraySingleArgumentConstructor) \
V(BinaryOpIC) \
V(BinaryOpWithAllocationSite) \
V(CompareNilIC) \
V(CreateAllocationSite) \
V(CreateWeakCell) \
V(ElementsTransitionAndStore) \
V(FastCloneShallowArray) \
V(FastCloneShallowObject) \
V(FastNewClosure) \
V(FastNewContext) \
V(InternalArrayNArgumentsConstructor) \
V(InternalArrayNoArgumentConstructor) \
V(InternalArraySingleArgumentConstructor) \
V(KeyedLoadGeneric) \
V(LoadScriptContextField) \
V(LoadDictionaryElement) \
V(LoadFastElement) \
V(MegamorphicLoad) \
V(NameDictionaryLookup) \
V(NumberToString) \
V(RegExpConstructResult) \
V(StoreFastElement) \
V(StoreScriptContextField) \
V(StringAdd) \
V(ToBoolean) \
V(TransitionElementsKind) \
V(VectorKeyedLoad) \
V(VectorLoad) \
/* IC Handler stubs */ \
V(LoadConstant) \
V(LoadField) \
V(KeyedLoadSloppyArguments) \
V(StoreField) \
V(StoreGlobal) \
V(StoreTransition) \
V(StringLength) \
V(RestParamAccess)
// List of code stubs only used on ARM 32 bits platforms.
#if V8_TARGET_ARCH_ARM
#define CODE_STUB_LIST_ARM(V) V(DirectCEntry)
#else
#define CODE_STUB_LIST_ARM(V)
#endif
// List of code stubs only used on ARM 64 bits platforms.
#if V8_TARGET_ARCH_ARM64
#define CODE_STUB_LIST_ARM64(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#else
#define CODE_STUB_LIST_ARM64(V)
#endif
// List of code stubs only used on PPC platforms.
#ifdef V8_TARGET_ARCH_PPC
#define CODE_STUB_LIST_PPC(V) \
V(DirectCEntry) \
V(StoreRegistersState) \
V(RestoreRegistersState)
#else
#define CODE_STUB_LIST_PPC(V)
#endif
// List of code stubs only used on MIPS platforms.
#if V8_TARGET_ARCH_MIPS
#define CODE_STUB_LIST_MIPS(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#elif V8_TARGET_ARCH_MIPS64
#define CODE_STUB_LIST_MIPS(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#else
#define CODE_STUB_LIST_MIPS(V)
#endif
// Combined list of code stubs.
#define CODE_STUB_LIST(V) \
CODE_STUB_LIST_ALL_PLATFORMS(V) \
CODE_STUB_LIST_ARM(V) \
CODE_STUB_LIST_ARM64(V) \
CODE_STUB_LIST_PPC(V) \
CODE_STUB_LIST_MIPS(V)
// Stub is base classes of all stubs.
class CodeStub BASE_EMBEDDED {
public:
enum Major {
// TODO(mvstanton): eliminate the NoCache key by getting rid
// of the non-monomorphic-cache.
NoCache = 0, // marker for stubs that do custom caching]
#define DEF_ENUM(name) name,
CODE_STUB_LIST(DEF_ENUM)
#undef DEF_ENUM
NUMBER_OF_IDS
};
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GetCode();
// Retrieve the code for the stub, make and return a copy of the code.
Handle<Code> GetCodeCopy(const Code::FindAndReplacePattern& pattern);
static Major MajorKeyFromKey(uint32_t key) {
return static_cast<Major>(MajorKeyBits::decode(key));
}
static uint32_t MinorKeyFromKey(uint32_t key) {
return MinorKeyBits::decode(key);
}
// Gets the major key from a code object that is a code stub or binary op IC.
static Major GetMajorKey(Code* code_stub) {
return MajorKeyFromKey(code_stub->stub_key());
}
static uint32_t NoCacheKey() { return MajorKeyBits::encode(NoCache); }
static const char* MajorName(Major major_key, bool allow_unknown_keys);
explicit CodeStub(Isolate* isolate) : minor_key_(0), isolate_(isolate) {}
virtual ~CodeStub() {}
static void GenerateStubsAheadOfTime(Isolate* isolate);
static void GenerateFPStubs(Isolate* isolate);
// Some stubs put untagged junk on the stack that cannot be scanned by the
// GC. This means that we must be statically sure that no GC can occur while
// they are running. If that is the case they should override this to return
// true, which will cause an assertion if we try to call something that can
// GC or if we try to put a stack frame on top of the junk, which would not
// result in a traversable stack.
virtual bool SometimesSetsUpAFrame() { return true; }
// Lookup the code in the (possibly custom) cache.
bool FindCodeInCache(Code** code_out);
virtual CallInterfaceDescriptor GetCallInterfaceDescriptor() = 0;
virtual void InitializeDescriptor(CodeStubDescriptor* descriptor) {}
static void InitializeDescriptor(Isolate* isolate, uint32_t key,
CodeStubDescriptor* desc);
static MaybeHandle<Code> GetCode(Isolate* isolate, uint32_t key);
// Returns information for computing the number key.
virtual Major MajorKey() const = 0;
uint32_t MinorKey() const { return minor_key_; }
// BinaryOpStub needs to override this.
virtual Code::Kind GetCodeKind() const;
virtual InlineCacheState GetICState() const { return UNINITIALIZED; }
virtual ExtraICState GetExtraICState() const { return kNoExtraICState; }
virtual Code::StubType GetStubType() const { return Code::NORMAL; }
friend std::ostream& operator<<(std::ostream& os, const CodeStub& s) {
s.PrintName(os);
return os;
}
Isolate* isolate() const { return isolate_; }
protected:
CodeStub(uint32_t key, Isolate* isolate)
: minor_key_(MinorKeyFromKey(key)), isolate_(isolate) {}
// Generates the assembler code for the stub.
virtual Handle<Code> GenerateCode() = 0;
// Returns whether the code generated for this stub needs to be allocated as
// a fixed (non-moveable) code object.
virtual bool NeedsImmovableCode() { return false; }
virtual void PrintName(std::ostream& os) const; // NOLINT
virtual void PrintBaseName(std::ostream& os) const; // NOLINT
virtual void PrintState(std::ostream& os) const { ; } // NOLINT
// Computes the key based on major and minor.
uint32_t GetKey() {
DCHECK(static_cast<int>(MajorKey()) < NUMBER_OF_IDS);
return MinorKeyBits::encode(MinorKey()) | MajorKeyBits::encode(MajorKey());
}
uint32_t minor_key_;
private:
// Perform bookkeeping required after code generation when stub code is
// initially generated.
void RecordCodeGeneration(Handle<Code> code);
// Finish the code object after it has been generated.
virtual void FinishCode(Handle<Code> code) { }
// Activate newly generated stub. Is called after
// registering stub in the stub cache.
virtual void Activate(Code* code) { }
// Add the code to a specialized cache, specific to an individual
// stub type. Please note, this method must add the code object to a
// roots object, otherwise we will remove the code during GC.
virtual void AddToSpecialCache(Handle<Code> new_object) { }
// Find code in a specialized cache, work is delegated to the specific stub.
virtual bool FindCodeInSpecialCache(Code** code_out) {
return false;
}
// If a stub uses a special cache override this.
virtual bool UseSpecialCache() { return false; }
// We use this dispatch to statically instantiate the correct code stub for
// the given stub key and call the passed function with that code stub.
typedef void (*DispatchedCall)(CodeStub* stub, void** value_out);
static void Dispatch(Isolate* isolate, uint32_t key, void** value_out,
DispatchedCall call);
static void GetCodeDispatchCall(CodeStub* stub, void** value_out);
STATIC_ASSERT(NUMBER_OF_IDS < (1 << kStubMajorKeyBits));
class MajorKeyBits: public BitField<uint32_t, 0, kStubMajorKeyBits> {};
class MinorKeyBits: public BitField<uint32_t,
kStubMajorKeyBits, kStubMinorKeyBits> {}; // NOLINT
friend class BreakPointIterator;
Isolate* isolate_;
};
// TODO(svenpanne) This class is only used to construct a more or less sensible
// CompilationInfo for testing purposes, basically pretending that we are
// currently compiling some kind of code stub. Remove this when the pipeline and
// testing machinery is restructured in such a way that we don't have to come up
// with a CompilationInfo out of thin air, although we only need a few parts of
// it.
struct FakeStubForTesting : public CodeStub {
explicit FakeStubForTesting(Isolate* isolate) : CodeStub(isolate) {}
// Only used by pipeline.cc's GetDebugName in DEBUG mode.
Major MajorKey() const OVERRIDE { return CodeStub::NoCache; }
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
UNREACHABLE();
return CallInterfaceDescriptor();
}
Handle<Code> GenerateCode() OVERRIDE {
UNREACHABLE();
return Handle<Code>();
}
};
#define DEFINE_CODE_STUB_BASE(NAME, SUPER) \
public: \
NAME(uint32_t key, Isolate* isolate) : SUPER(key, isolate) {} \
\
private: \
DISALLOW_COPY_AND_ASSIGN(NAME)
#define DEFINE_CODE_STUB(NAME, SUPER) \
protected: \
inline Major MajorKey() const OVERRIDE { return NAME; }; \
DEFINE_CODE_STUB_BASE(NAME##Stub, SUPER)
#define DEFINE_PLATFORM_CODE_STUB(NAME, SUPER) \
private: \
void Generate(MacroAssembler* masm) OVERRIDE; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_HYDROGEN_CODE_STUB(NAME, SUPER) \
public: \
void InitializeDescriptor(CodeStubDescriptor* descriptor) OVERRIDE; \
Handle<Code> GenerateCode() OVERRIDE; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_HANDLER_CODE_STUB(NAME, SUPER) \
public: \
Handle<Code> GenerateCode() OVERRIDE; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_CALL_INTERFACE_DESCRIPTOR(NAME) \
public: \
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE { \
return NAME##Descriptor(isolate()); \
}
// There are some code stubs we just can't describe right now with a
// CallInterfaceDescriptor. Isolate behavior for those cases with this macro.
// An attempt to retrieve a descriptor will fail.
#define DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR() \
public: \
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE { \
UNREACHABLE(); \
return CallInterfaceDescriptor(); \
}
class PlatformCodeStub : public CodeStub {
public:
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GenerateCode() OVERRIDE;
Code::Kind GetCodeKind() const OVERRIDE { return Code::STUB; }
protected:
explicit PlatformCodeStub(Isolate* isolate) : CodeStub(isolate) {}
// Generates the assembler code for the stub.
virtual void Generate(MacroAssembler* masm) = 0;
DEFINE_CODE_STUB_BASE(PlatformCodeStub, CodeStub);
};
enum StubFunctionMode { NOT_JS_FUNCTION_STUB_MODE, JS_FUNCTION_STUB_MODE };
enum HandlerArgumentsMode { DONT_PASS_ARGUMENTS, PASS_ARGUMENTS };
class CodeStubDescriptor {
public:
explicit CodeStubDescriptor(CodeStub* stub);
CodeStubDescriptor(Isolate* isolate, uint32_t stub_key);
void Initialize(Address deoptimization_handler = NULL,
int hint_stack_parameter_count = -1,
StubFunctionMode function_mode = NOT_JS_FUNCTION_STUB_MODE);
void Initialize(Register stack_parameter_count,
Address deoptimization_handler = NULL,
int hint_stack_parameter_count = -1,
StubFunctionMode function_mode = NOT_JS_FUNCTION_STUB_MODE,
HandlerArgumentsMode handler_mode = DONT_PASS_ARGUMENTS);
void SetMissHandler(ExternalReference handler) {
miss_handler_ = handler;
has_miss_handler_ = true;
// Our miss handler infrastructure doesn't currently support
// variable stack parameter counts.
DCHECK(!stack_parameter_count_.is_valid());
}
void set_call_descriptor(CallInterfaceDescriptor d) { call_descriptor_ = d; }
CallInterfaceDescriptor call_descriptor() const { return call_descriptor_; }
int GetEnvironmentParameterCount() const {
return call_descriptor().GetEnvironmentParameterCount();
}
Representation GetEnvironmentParameterRepresentation(int index) const {
return call_descriptor().GetEnvironmentParameterRepresentation(index);
}
ExternalReference miss_handler() const {
DCHECK(has_miss_handler_);
return miss_handler_;
}
bool has_miss_handler() const {
return has_miss_handler_;
}
bool IsEnvironmentParameterCountRegister(int index) const {
return call_descriptor().GetEnvironmentParameterRegister(index).is(
stack_parameter_count_);
}
int GetHandlerParameterCount() const {
int params = call_descriptor().GetEnvironmentParameterCount();
if (handler_arguments_mode_ == PASS_ARGUMENTS) {
params += 1;
}
return params;
}
int hint_stack_parameter_count() const { return hint_stack_parameter_count_; }
Register stack_parameter_count() const { return stack_parameter_count_; }
StubFunctionMode function_mode() const { return function_mode_; }
Address deoptimization_handler() const { return deoptimization_handler_; }
private:
CallInterfaceDescriptor call_descriptor_;
Register stack_parameter_count_;
// If hint_stack_parameter_count_ > 0, the code stub can optimize the
// return sequence. Default value is -1, which means it is ignored.
int hint_stack_parameter_count_;
StubFunctionMode function_mode_;
Address deoptimization_handler_;
HandlerArgumentsMode handler_arguments_mode_;
ExternalReference miss_handler_;
bool has_miss_handler_;
};
class HydrogenCodeStub : public CodeStub {
public:
enum InitializationState {
UNINITIALIZED,
INITIALIZED
};
Code::Kind GetCodeKind() const OVERRIDE { return Code::STUB; }
template<class SubClass>
static Handle<Code> GetUninitialized(Isolate* isolate) {
SubClass::GenerateAheadOfTime(isolate);
return SubClass().GetCode(isolate);
}
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GenerateCode() OVERRIDE = 0;
bool IsUninitialized() const { return IsMissBits::decode(minor_key_); }
Handle<Code> GenerateLightweightMissCode(ExternalReference miss);
template<class StateType>
void TraceTransition(StateType from, StateType to);
protected:
explicit HydrogenCodeStub(Isolate* isolate,
InitializationState state = INITIALIZED)
: CodeStub(isolate) {
minor_key_ = IsMissBits::encode(state == UNINITIALIZED);
}
void set_sub_minor_key(uint32_t key) {
minor_key_ = SubMinorKeyBits::update(minor_key_, key);
}
uint32_t sub_minor_key() const { return SubMinorKeyBits::decode(minor_key_); }
static const int kSubMinorKeyBits = kStubMinorKeyBits - 1;
private:
class IsMissBits : public BitField<bool, kSubMinorKeyBits, 1> {};
class SubMinorKeyBits : public BitField<int, 0, kSubMinorKeyBits> {};
void GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss);
DEFINE_CODE_STUB_BASE(HydrogenCodeStub, CodeStub);
};
// Helper interface to prepare to/restore after making runtime calls.
class RuntimeCallHelper {
public:
virtual ~RuntimeCallHelper() {}
virtual void BeforeCall(MacroAssembler* masm) const = 0;
virtual void AfterCall(MacroAssembler* masm) const = 0;
protected:
RuntimeCallHelper() {}
private:
DISALLOW_COPY_AND_ASSIGN(RuntimeCallHelper);
};
} } // namespace v8::internal
#if V8_TARGET_ARCH_IA32
#include "src/ia32/code-stubs-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/x64/code-stubs-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/code-stubs-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/arm/code-stubs-arm.h"
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/code-stubs-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/code-stubs-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/code-stubs-mips64.h"
#elif V8_TARGET_ARCH_X87
#include "src/x87/code-stubs-x87.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
// RuntimeCallHelper implementation used in stubs: enters/leaves a
// newly created internal frame before/after the runtime call.
class StubRuntimeCallHelper : public RuntimeCallHelper {
public:
StubRuntimeCallHelper() {}
virtual void BeforeCall(MacroAssembler* masm) const;
virtual void AfterCall(MacroAssembler* masm) const;
};
// Trivial RuntimeCallHelper implementation.
class NopRuntimeCallHelper : public RuntimeCallHelper {
public:
NopRuntimeCallHelper() {}
virtual void BeforeCall(MacroAssembler* masm) const {}
virtual void AfterCall(MacroAssembler* masm) const {}
};
class NumberToStringStub FINAL : public HydrogenCodeStub {
public:
explicit NumberToStringStub(Isolate* isolate) : HydrogenCodeStub(isolate) {}
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kNumber = 0;
DEFINE_CALL_INTERFACE_DESCRIPTOR(NumberToString);
DEFINE_HYDROGEN_CODE_STUB(NumberToString, HydrogenCodeStub);
};
class FastNewClosureStub : public HydrogenCodeStub {
public:
FastNewClosureStub(Isolate* isolate, LanguageMode language_mode,
FunctionKind kind)
: HydrogenCodeStub(isolate) {
DCHECK(IsValidFunctionKind(kind));
set_sub_minor_key(LanguageModeBits::encode(language_mode) |
FunctionKindBits::encode(kind));
}
LanguageMode language_mode() const {
return LanguageModeBits::decode(sub_minor_key());
}
FunctionKind kind() const {
return FunctionKindBits::decode(sub_minor_key());
}
private:
STATIC_ASSERT(LANGUAGE_END == 3);
class LanguageModeBits : public BitField<LanguageMode, 0, 2> {};
class FunctionKindBits : public BitField<FunctionKind, 2, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewClosure);
DEFINE_HYDROGEN_CODE_STUB(FastNewClosure, HydrogenCodeStub);
};
class FastNewContextStub FINAL : public HydrogenCodeStub {
public:
static const int kMaximumSlots = 64;
FastNewContextStub(Isolate* isolate, int slots) : HydrogenCodeStub(isolate) {
DCHECK(slots > 0 && slots <= kMaximumSlots);
set_sub_minor_key(SlotsBits::encode(slots));
}
int slots() const { return SlotsBits::decode(sub_minor_key()); }
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kFunction = 0;
private:
class SlotsBits : public BitField<int, 0, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewContext);
DEFINE_HYDROGEN_CODE_STUB(FastNewContext, HydrogenCodeStub);
};
class FastCloneShallowArrayStub : public HydrogenCodeStub {
public:
FastCloneShallowArrayStub(Isolate* isolate,
AllocationSiteMode allocation_site_mode)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(AllocationSiteModeBits::encode(allocation_site_mode));
}
AllocationSiteMode allocation_site_mode() const {
return AllocationSiteModeBits::decode(sub_minor_key());
}
private:
class AllocationSiteModeBits: public BitField<AllocationSiteMode, 0, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastCloneShallowArray);
DEFINE_HYDROGEN_CODE_STUB(FastCloneShallowArray, HydrogenCodeStub);
};
class FastCloneShallowObjectStub : public HydrogenCodeStub {
public:
// Maximum number of properties in copied object.
static const int kMaximumClonedProperties = 6;
FastCloneShallowObjectStub(Isolate* isolate, int length)
: HydrogenCodeStub(isolate) {
DCHECK_GE(length, 0);
DCHECK_LE(length, kMaximumClonedProperties);
set_sub_minor_key(LengthBits::encode(length));
}
int length() const { return LengthBits::decode(sub_minor_key()); }
private:
class LengthBits : public BitField<int, 0, 4> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastCloneShallowObject);
DEFINE_HYDROGEN_CODE_STUB(FastCloneShallowObject, HydrogenCodeStub);
};
class CreateAllocationSiteStub : public HydrogenCodeStub {
public:
explicit CreateAllocationSiteStub(Isolate* isolate)
: HydrogenCodeStub(isolate) { }
static void GenerateAheadOfTime(Isolate* isolate);
DEFINE_CALL_INTERFACE_DESCRIPTOR(CreateAllocationSite);
DEFINE_HYDROGEN_CODE_STUB(CreateAllocationSite, HydrogenCodeStub);
};
class CreateWeakCellStub : public HydrogenCodeStub {
public:
explicit CreateWeakCellStub(Isolate* isolate) : HydrogenCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
DEFINE_CALL_INTERFACE_DESCRIPTOR(CreateWeakCell);
DEFINE_HYDROGEN_CODE_STUB(CreateWeakCell, HydrogenCodeStub);
};
class InstanceofStub: public PlatformCodeStub {
public:
enum Flags {
kNoFlags = 0,
kArgsInRegisters = 1 << 0,
kCallSiteInlineCheck = 1 << 1,
kReturnTrueFalseObject = 1 << 2
};
InstanceofStub(Isolate* isolate, Flags flags) : PlatformCodeStub(isolate) {
minor_key_ = FlagBits::encode(flags);
}
static Register left() { return InstanceofDescriptor::left(); }
static Register right() { return InstanceofDescriptor::right(); }
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (HasArgsInRegisters()) {
return InstanceofDescriptor(isolate());
}
return ContextOnlyDescriptor(isolate());
}
private:
Flags flags() const { return FlagBits::decode(minor_key_); }
bool HasArgsInRegisters() const { return (flags() & kArgsInRegisters) != 0; }
bool HasCallSiteInlineCheck() const {
return (flags() & kCallSiteInlineCheck) != 0;
}
bool ReturnTrueFalseObject() const {
return (flags() & kReturnTrueFalseObject) != 0;
}
void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
class FlagBits : public BitField<Flags, 0, 3> {};
DEFINE_PLATFORM_CODE_STUB(Instanceof, PlatformCodeStub);
};
enum AllocationSiteOverrideMode {
DONT_OVERRIDE,
DISABLE_ALLOCATION_SITES,
LAST_ALLOCATION_SITE_OVERRIDE_MODE = DISABLE_ALLOCATION_SITES
};
class ArrayConstructorStub: public PlatformCodeStub {
public:
enum ArgumentCountKey { ANY, NONE, ONE, MORE_THAN_ONE };
ArrayConstructorStub(Isolate* isolate, int argument_count);
explicit ArrayConstructorStub(Isolate* isolate);
private:
ArgumentCountKey argument_count() const {
return ArgumentCountBits::decode(minor_key_);
}
void GenerateDispatchToArrayStub(MacroAssembler* masm,
AllocationSiteOverrideMode mode);
void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
class ArgumentCountBits : public BitField<ArgumentCountKey, 0, 2> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayConstructor);
DEFINE_PLATFORM_CODE_STUB(ArrayConstructor, PlatformCodeStub);
};
class InternalArrayConstructorStub: public PlatformCodeStub {
public:
explicit InternalArrayConstructorStub(Isolate* isolate);
private:
void GenerateCase(MacroAssembler* masm, ElementsKind kind);
DEFINE_CALL_INTERFACE_DESCRIPTOR(InternalArrayConstructor);
DEFINE_PLATFORM_CODE_STUB(InternalArrayConstructor, PlatformCodeStub);
};
class MathPowStub: public PlatformCodeStub {
public:
enum ExponentType { INTEGER, DOUBLE, TAGGED, ON_STACK };
MathPowStub(Isolate* isolate, ExponentType exponent_type)
: PlatformCodeStub(isolate) {
minor_key_ = ExponentTypeBits::encode(exponent_type);
}
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (exponent_type() == TAGGED) {
return MathPowTaggedDescriptor(isolate());
} else if (exponent_type() == INTEGER) {
return MathPowIntegerDescriptor(isolate());
}
// A CallInterfaceDescriptor doesn't specify double registers (yet).
return ContextOnlyDescriptor(isolate());
}
private:
ExponentType exponent_type() const {
return ExponentTypeBits::decode(minor_key_);
}
class ExponentTypeBits : public BitField<ExponentType, 0, 2> {};
DEFINE_PLATFORM_CODE_STUB(MathPow, PlatformCodeStub);
};
class CallICStub: public PlatformCodeStub {
public:
CallICStub(Isolate* isolate, const CallICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
static int ExtractArgcFromMinorKey(int minor_key) {
CallICState state(static_cast<ExtraICState>(minor_key));
return state.arg_count();
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::CALL_IC; }
InlineCacheState GetICState() const OVERRIDE { return DEFAULT; }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(minor_key_);
}
protected:
bool CallAsMethod() const {
return state().call_type() == CallICState::METHOD;
}
int arg_count() const { return state().arg_count(); }
CallICState state() const {
return CallICState(static_cast<ExtraICState>(minor_key_));
}
// Code generation helpers.
void GenerateMiss(MacroAssembler* masm);
private:
void PrintState(std::ostream& os) const OVERRIDE; // NOLINT
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunctionWithFeedbackAndVector);
DEFINE_PLATFORM_CODE_STUB(CallIC, PlatformCodeStub);
};
class CallIC_ArrayStub: public CallICStub {
public:
CallIC_ArrayStub(Isolate* isolate, const CallICState& state_in)
: CallICStub(isolate, state_in) {}
InlineCacheState GetICState() const FINAL { return MONOMORPHIC; }
private:
void PrintState(std::ostream& os) const OVERRIDE; // NOLINT
DEFINE_PLATFORM_CODE_STUB(CallIC_Array, CallICStub);
};
// TODO(verwaest): Translate to hydrogen code stub.
class FunctionPrototypeStub : public PlatformCodeStub {
public:
explicit FunctionPrototypeStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::HANDLER; }
// TODO(mvstanton): only the receiver register is accessed. When this is
// translated to a hydrogen code stub, a new CallInterfaceDescriptor
// should be created that just uses that register for more efficient code.
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (FLAG_vector_ics) {
return VectorLoadICDescriptor(isolate());
}
return LoadDescriptor(isolate());
}
DEFINE_PLATFORM_CODE_STUB(FunctionPrototype, PlatformCodeStub);
};
// TODO(mvstanton): Translate to hydrogen code stub.
class LoadIndexedInterceptorStub : public PlatformCodeStub {
public:
explicit LoadIndexedInterceptorStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::HANDLER; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_PLATFORM_CODE_STUB(LoadIndexedInterceptor, PlatformCodeStub);
};
class LoadIndexedStringStub : public PlatformCodeStub {
public:
explicit LoadIndexedStringStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::HANDLER; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_PLATFORM_CODE_STUB(LoadIndexedString, PlatformCodeStub);
};
class HandlerStub : public HydrogenCodeStub {
public:
Code::Kind GetCodeKind() const OVERRIDE { return Code::HANDLER; }
ExtraICState GetExtraICState() const OVERRIDE { return kind(); }
InlineCacheState GetICState() const OVERRIDE { return MONOMORPHIC; }
void InitializeDescriptor(CodeStubDescriptor* descriptor) OVERRIDE;
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE;
protected:
explicit HandlerStub(Isolate* isolate) : HydrogenCodeStub(isolate) {}
virtual Code::Kind kind() const = 0;
DEFINE_CODE_STUB_BASE(HandlerStub, HydrogenCodeStub);
};
class LoadFieldStub: public HandlerStub {
public:
LoadFieldStub(Isolate* isolate, FieldIndex index) : HandlerStub(isolate) {
int property_index_key = index.GetFieldAccessStubKey();
set_sub_minor_key(LoadFieldByIndexBits::encode(property_index_key));
}
FieldIndex index() const {
int property_index_key = LoadFieldByIndexBits::decode(sub_minor_key());
return FieldIndex::FromFieldAccessStubKey(property_index_key);
}
protected:
Code::Kind kind() const OVERRIDE { return Code::LOAD_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
private:
class LoadFieldByIndexBits : public BitField<int, 0, 13> {};
DEFINE_HANDLER_CODE_STUB(LoadField, HandlerStub);
};
class KeyedLoadSloppyArgumentsStub : public HandlerStub {
public:
explicit KeyedLoadSloppyArgumentsStub(Isolate* isolate)
: HandlerStub(isolate) {}
protected:
Code::Kind kind() const OVERRIDE { return Code::KEYED_LOAD_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
private:
DEFINE_HANDLER_CODE_STUB(KeyedLoadSloppyArguments, HandlerStub);
};
class LoadConstantStub : public HandlerStub {
public:
LoadConstantStub(Isolate* isolate, int constant_index)
: HandlerStub(isolate) {
set_sub_minor_key(ConstantIndexBits::encode(constant_index));
}
int constant_index() const {
return ConstantIndexBits::decode(sub_minor_key());
}
protected:
Code::Kind kind() const OVERRIDE { return Code::LOAD_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
private:
class ConstantIndexBits : public BitField<int, 0, kSubMinorKeyBits> {};
DEFINE_HANDLER_CODE_STUB(LoadConstant, HandlerStub);
};
class StringLengthStub: public HandlerStub {
public:
explicit StringLengthStub(Isolate* isolate) : HandlerStub(isolate) {}
protected:
Code::Kind kind() const OVERRIDE { return Code::LOAD_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
DEFINE_HANDLER_CODE_STUB(StringLength, HandlerStub);
};
class StoreFieldStub : public HandlerStub {
public:
StoreFieldStub(Isolate* isolate, FieldIndex index,
Representation representation)
: HandlerStub(isolate) {
int property_index_key = index.GetFieldAccessStubKey();
uint8_t repr = PropertyDetails::EncodeRepresentation(representation);
set_sub_minor_key(StoreFieldByIndexBits::encode(property_index_key) |
RepresentationBits::encode(repr));
}
FieldIndex index() const {
int property_index_key = StoreFieldByIndexBits::decode(sub_minor_key());
return FieldIndex::FromFieldAccessStubKey(property_index_key);
}
Representation representation() {
uint8_t repr = RepresentationBits::decode(sub_minor_key());
return PropertyDetails::DecodeRepresentation(repr);
}
protected:
Code::Kind kind() const OVERRIDE { return Code::STORE_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
private:
class StoreFieldByIndexBits : public BitField<int, 0, 13> {};
class RepresentationBits : public BitField<uint8_t, 13, 4> {};
DEFINE_HANDLER_CODE_STUB(StoreField, HandlerStub);
};
class StoreTransitionStub : public HandlerStub {
public:
enum StoreMode {
StoreMapOnly,
StoreMapAndValue,
ExtendStorageAndStoreMapAndValue
};
explicit StoreTransitionStub(Isolate* isolate) : HandlerStub(isolate) {
set_sub_minor_key(StoreModeBits::encode(StoreMapOnly));
}
StoreTransitionStub(Isolate* isolate, FieldIndex index,
Representation representation, StoreMode store_mode)
: HandlerStub(isolate) {
DCHECK(store_mode != StoreMapOnly);
int property_index_key = index.GetFieldAccessStubKey();
uint8_t repr = PropertyDetails::EncodeRepresentation(representation);
set_sub_minor_key(StoreFieldByIndexBits::encode(property_index_key) |
RepresentationBits::encode(repr) |
StoreModeBits::encode(store_mode));
}
FieldIndex index() const {
DCHECK(store_mode() != StoreMapOnly);
int property_index_key = StoreFieldByIndexBits::decode(sub_minor_key());
return FieldIndex::FromFieldAccessStubKey(property_index_key);
}
Representation representation() {
DCHECK(store_mode() != StoreMapOnly);
uint8_t repr = RepresentationBits::decode(sub_minor_key());
return PropertyDetails::DecodeRepresentation(repr);
}
StoreMode store_mode() const {
return StoreModeBits::decode(sub_minor_key());
}
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE;
protected:
Code::Kind kind() const OVERRIDE { return Code::STORE_IC; }
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
private:
class StoreFieldByIndexBits : public BitField<int, 0, 13> {};
class RepresentationBits : public BitField<uint8_t, 13, 4> {};
class StoreModeBits : public BitField<StoreMode, 17, 2> {};
DEFINE_HANDLER_CODE_STUB(StoreTransition, HandlerStub);
};
class StoreGlobalStub : public HandlerStub {
public:
StoreGlobalStub(Isolate* isolate, bool is_constant, bool check_global)
: HandlerStub(isolate) {
set_sub_minor_key(IsConstantBits::encode(is_constant) |
CheckGlobalBits::encode(check_global));
}
static Handle<HeapObject> property_cell_placeholder(Isolate* isolate) {
return isolate->factory()->uninitialized_value();
}
Handle<Code> GetCodeCopyFromTemplate(Handle<GlobalObject> global,
Handle<PropertyCell> cell) {
if (check_global()) {
Code::FindAndReplacePattern pattern;
pattern.Add(isolate()->factory()->meta_map(),
Map::WeakCellForMap(Handle<Map>(global->map())));
pattern.Add(Handle<Map>(property_cell_placeholder(isolate())->map()),
isolate()->factory()->NewWeakCell(cell));
return CodeStub::GetCodeCopy(pattern);
} else {
Code::FindAndReplacePattern pattern;
pattern.Add(Handle<Map>(property_cell_placeholder(isolate())->map()),
isolate()->factory()->NewWeakCell(cell));
return CodeStub::GetCodeCopy(pattern);
}
}
Code::Kind kind() const OVERRIDE { return Code::STORE_IC; }
bool is_constant() const { return IsConstantBits::decode(sub_minor_key()); }
bool check_global() const { return CheckGlobalBits::decode(sub_minor_key()); }
void set_is_constant(bool value) {
set_sub_minor_key(IsConstantBits::update(sub_minor_key(), value));
}
Representation representation() {
return Representation::FromKind(
RepresentationBits::decode(sub_minor_key()));
}
void set_representation(Representation r) {
set_sub_minor_key(RepresentationBits::update(sub_minor_key(), r.kind()));
}
private:
class IsConstantBits: public BitField<bool, 0, 1> {};
class RepresentationBits: public BitField<Representation::Kind, 1, 8> {};
class CheckGlobalBits: public BitField<bool, 9, 1> {};
DEFINE_HANDLER_CODE_STUB(StoreGlobal, HandlerStub);
};
class CallApiFunctionStub : public PlatformCodeStub {
public:
explicit CallApiFunctionStub(Isolate* isolate, bool call_data_undefined)
: PlatformCodeStub(isolate) {
minor_key_ = CallDataUndefinedBits::encode(call_data_undefined);
}
private:
bool call_data_undefined() const {
return CallDataUndefinedBits::decode(minor_key_);
}
class CallDataUndefinedBits : public BitField<bool, 0, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ApiFunction);
DEFINE_PLATFORM_CODE_STUB(CallApiFunction, PlatformCodeStub);
};
class CallApiAccessorStub : public PlatformCodeStub {
public:
CallApiAccessorStub(Isolate* isolate, bool is_store, bool call_data_undefined)
: PlatformCodeStub(isolate) {
minor_key_ = IsStoreBits::encode(is_store) |
CallDataUndefinedBits::encode(call_data_undefined) |
ArgumentBits::encode(is_store ? 1 : 0);
}
protected:
// For CallApiFunctionWithFixedArgsStub, see below.
static const int kArgBits = 3;
CallApiAccessorStub(Isolate* isolate, int argc, bool call_data_undefined)
: PlatformCodeStub(isolate) {
minor_key_ = IsStoreBits::encode(false) |
CallDataUndefinedBits::encode(call_data_undefined) |
ArgumentBits::encode(argc);
}
private:
bool is_store() const { return IsStoreBits::decode(minor_key_); }
bool call_data_undefined() const {
return CallDataUndefinedBits::decode(minor_key_);
}
int argc() const { return ArgumentBits::decode(minor_key_); }
class IsStoreBits: public BitField<bool, 0, 1> {};
class CallDataUndefinedBits: public BitField<bool, 1, 1> {};
class ArgumentBits : public BitField<int, 2, kArgBits> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ApiAccessor);
DEFINE_PLATFORM_CODE_STUB(CallApiAccessor, PlatformCodeStub);
};
// TODO(dcarney): see if it's possible to remove this later without performance
// degradation.
// This is not a real stub, but a way of generating the CallApiAccessorStub
// (which has the same abi) which makes it clear that it is not an accessor.
class CallApiFunctionWithFixedArgsStub : public CallApiAccessorStub {
public:
static const int kMaxFixedArgs = (1 << kArgBits) - 1;
CallApiFunctionWithFixedArgsStub(Isolate* isolate, int argc,
bool call_data_undefined)
: CallApiAccessorStub(isolate, argc, call_data_undefined) {
DCHECK(0 <= argc && argc <= kMaxFixedArgs);
}
};
typedef ApiAccessorDescriptor ApiFunctionWithFixedArgsDescriptor;
class CallApiGetterStub : public PlatformCodeStub {
public:
explicit CallApiGetterStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ApiGetter);
DEFINE_PLATFORM_CODE_STUB(CallApiGetter, PlatformCodeStub);
};
class BinaryOpICStub : public HydrogenCodeStub {
public:
BinaryOpICStub(Isolate* isolate, Token::Value op)
: HydrogenCodeStub(isolate, UNINITIALIZED) {
BinaryOpICState state(isolate, op);
set_sub_minor_key(state.GetExtraICState());
}
BinaryOpICStub(Isolate* isolate, const BinaryOpICState& state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(state.GetExtraICState());
}
static void GenerateAheadOfTime(Isolate* isolate);
Code::Kind GetCodeKind() const OVERRIDE { return Code::BINARY_OP_IC; }
InlineCacheState GetICState() const FINAL { return state().GetICState(); }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(sub_minor_key());
}
BinaryOpICState state() const {
return BinaryOpICState(isolate(), GetExtraICState());
}
void PrintState(std::ostream& os) const FINAL; // NOLINT
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kLeft = 0;
static const int kRight = 1;
private:
static void GenerateAheadOfTime(Isolate* isolate,
const BinaryOpICState& state);
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOp);
DEFINE_HYDROGEN_CODE_STUB(BinaryOpIC, HydrogenCodeStub);
};
// TODO(bmeurer): Merge this into the BinaryOpICStub once we have proper tail
// call support for stubs in Hydrogen.
class BinaryOpICWithAllocationSiteStub FINAL : public PlatformCodeStub {
public:
BinaryOpICWithAllocationSiteStub(Isolate* isolate,
const BinaryOpICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
static void GenerateAheadOfTime(Isolate* isolate);
Handle<Code> GetCodeCopyFromTemplate(Handle<AllocationSite> allocation_site) {
Code::FindAndReplacePattern pattern;
pattern.Add(isolate()->factory()->undefined_map(), allocation_site);
return CodeStub::GetCodeCopy(pattern);
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::BINARY_OP_IC; }
InlineCacheState GetICState() const OVERRIDE { return state().GetICState(); }
ExtraICState GetExtraICState() const OVERRIDE {
return static_cast<ExtraICState>(minor_key_);
}
void PrintState(std::ostream& os) const OVERRIDE; // NOLINT
private:
BinaryOpICState state() const {
return BinaryOpICState(isolate(), static_cast<ExtraICState>(minor_key_));
}
static void GenerateAheadOfTime(Isolate* isolate,
const BinaryOpICState& state);
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithAllocationSite);
DEFINE_PLATFORM_CODE_STUB(BinaryOpICWithAllocationSite, PlatformCodeStub);
};
class BinaryOpWithAllocationSiteStub FINAL : public BinaryOpICStub {
public:
BinaryOpWithAllocationSiteStub(Isolate* isolate, Token::Value op)
: BinaryOpICStub(isolate, op) {}
BinaryOpWithAllocationSiteStub(Isolate* isolate, const BinaryOpICState& state)
: BinaryOpICStub(isolate, state) {}
Code::Kind GetCodeKind() const FINAL { return Code::STUB; }
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kAllocationSite = 0;
static const int kLeft = 1;
static const int kRight = 2;
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithAllocationSite);
DEFINE_HYDROGEN_CODE_STUB(BinaryOpWithAllocationSite, BinaryOpICStub);
};
enum StringAddFlags {
// Omit both parameter checks.
STRING_ADD_CHECK_NONE = 0,
// Check left parameter.
STRING_ADD_CHECK_LEFT = 1 << 0,
// Check right parameter.
STRING_ADD_CHECK_RIGHT = 1 << 1,
// Check both parameters.
STRING_ADD_CHECK_BOTH = STRING_ADD_CHECK_LEFT | STRING_ADD_CHECK_RIGHT
};
class StringAddStub FINAL : public HydrogenCodeStub {
public:
StringAddStub(Isolate* isolate, StringAddFlags flags,
PretenureFlag pretenure_flag)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(StringAddFlagsBits::encode(flags) |
PretenureFlagBits::encode(pretenure_flag));
}
StringAddFlags flags() const {
return StringAddFlagsBits::decode(sub_minor_key());
}
PretenureFlag pretenure_flag() const {
return PretenureFlagBits::decode(sub_minor_key());
}
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kLeft = 0;
static const int kRight = 1;
private:
class StringAddFlagsBits: public BitField<StringAddFlags, 0, 2> {};
class PretenureFlagBits: public BitField<PretenureFlag, 2, 1> {};
void PrintBaseName(std::ostream& os) const OVERRIDE; // NOLINT
DEFINE_CALL_INTERFACE_DESCRIPTOR(StringAdd);
DEFINE_HYDROGEN_CODE_STUB(StringAdd, HydrogenCodeStub);
};
class CompareICStub : public PlatformCodeStub {
public:
CompareICStub(Isolate* isolate, Token::Value op, CompareICState::State left,
CompareICState::State right, CompareICState::State state)
: PlatformCodeStub(isolate) {
DCHECK(Token::IsCompareOp(op));
minor_key_ = OpBits::encode(op - Token::EQ) | LeftStateBits::encode(left) |
RightStateBits::encode(right) | StateBits::encode(state);
}
void set_known_map(Handle<Map> map) { known_map_ = map; }
InlineCacheState GetICState() const OVERRIDE;
Token::Value op() const {
return static_cast<Token::Value>(Token::EQ + OpBits::decode(minor_key_));
}
CompareICState::State left() const {
return LeftStateBits::decode(minor_key_);
}
CompareICState::State right() const {
return RightStateBits::decode(minor_key_);
}
CompareICState::State state() const { return StateBits::decode(minor_key_); }
private:
Code::Kind GetCodeKind() const OVERRIDE { return Code::COMPARE_IC; }
void GenerateSmis(MacroAssembler* masm);
void GenerateNumbers(MacroAssembler* masm);
void GenerateInternalizedStrings(MacroAssembler* masm);
void GenerateStrings(MacroAssembler* masm);
void GenerateUniqueNames(MacroAssembler* masm);
void GenerateObjects(MacroAssembler* masm);
void GenerateMiss(MacroAssembler* masm);
void GenerateKnownObjects(MacroAssembler* masm);
void GenerateGeneric(MacroAssembler* masm);
bool strict() const { return op() == Token::EQ_STRICT; }
Condition GetCondition() const;
void AddToSpecialCache(Handle<Code> new_object) OVERRIDE;
bool FindCodeInSpecialCache(Code** code_out) OVERRIDE;
bool UseSpecialCache() OVERRIDE {
return state() == CompareICState::KNOWN_OBJECT;
}
class OpBits : public BitField<int, 0, 3> {};
class LeftStateBits : public BitField<CompareICState::State, 3, 4> {};
class RightStateBits : public BitField<CompareICState::State, 7, 4> {};
class StateBits : public BitField<CompareICState::State, 11, 4> {};
Handle<Map> known_map_;
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOp);
DEFINE_PLATFORM_CODE_STUB(CompareIC, PlatformCodeStub);
};
class CompareNilICStub : public HydrogenCodeStub {
public:
Type* GetType(Zone* zone, Handle<Map> map = Handle<Map>());
Type* GetInputType(Zone* zone, Handle<Map> map);
CompareNilICStub(Isolate* isolate, NilValue nil) : HydrogenCodeStub(isolate) {
set_sub_minor_key(NilValueBits::encode(nil));
}
CompareNilICStub(Isolate* isolate, ExtraICState ic_state,
InitializationState init_state = INITIALIZED)
: HydrogenCodeStub(isolate, init_state) {
set_sub_minor_key(ic_state);
}
static Handle<Code> GetUninitialized(Isolate* isolate,
NilValue nil) {
return CompareNilICStub(isolate, nil, UNINITIALIZED).GetCode();
}
InlineCacheState GetICState() const OVERRIDE {
State state = this->state();
if (state.Contains(GENERIC)) {
return MEGAMORPHIC;
} else if (state.Contains(MONOMORPHIC_MAP)) {
return MONOMORPHIC;
} else {
return PREMONOMORPHIC;
}
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::COMPARE_NIL_IC; }
ExtraICState GetExtraICState() const OVERRIDE { return sub_minor_key(); }
void UpdateStatus(Handle<Object> object);
bool IsMonomorphic() const { return state().Contains(MONOMORPHIC_MAP); }
NilValue nil_value() const { return NilValueBits::decode(sub_minor_key()); }
void ClearState() {
set_sub_minor_key(TypesBits::update(sub_minor_key(), 0));
}
void PrintState(std::ostream& os) const OVERRIDE; // NOLINT
void PrintBaseName(std::ostream& os) const OVERRIDE; // NOLINT
private:
CompareNilICStub(Isolate* isolate, NilValue nil,
InitializationState init_state)
: HydrogenCodeStub(isolate, init_state) {
set_sub_minor_key(NilValueBits::encode(nil));
}
enum CompareNilType {
UNDEFINED,
NULL_TYPE,
MONOMORPHIC_MAP,
GENERIC,
NUMBER_OF_TYPES
};
// At most 6 different types can be distinguished, because the Code object
// only has room for a single byte to hold a set and there are two more
// boolean flags we need to store. :-P
STATIC_ASSERT(NUMBER_OF_TYPES <= 6);
class State : public EnumSet<CompareNilType, byte> {
public:
State() : EnumSet<CompareNilType, byte>(0) { }
explicit State(byte bits) : EnumSet<CompareNilType, byte>(bits) { }
};
friend std::ostream& operator<<(std::ostream& os, const State& s);
State state() const { return State(TypesBits::decode(sub_minor_key())); }
class NilValueBits : public BitField<NilValue, 0, 1> {};
class TypesBits : public BitField<byte, 1, NUMBER_OF_TYPES> {};
friend class CompareNilIC;
DEFINE_CALL_INTERFACE_DESCRIPTOR(CompareNil);
DEFINE_HYDROGEN_CODE_STUB(CompareNilIC, HydrogenCodeStub);
};
std::ostream& operator<<(std::ostream& os, const CompareNilICStub::State& s);
class CEntryStub : public PlatformCodeStub {
public:
CEntryStub(Isolate* isolate, int result_size,
SaveFPRegsMode save_doubles = kDontSaveFPRegs)
: PlatformCodeStub(isolate) {
minor_key_ = SaveDoublesBits::encode(save_doubles == kSaveFPRegs);
DCHECK(result_size == 1 || result_size == 2);
#if _WIN64 || V8_TARGET_ARCH_PPC
minor_key_ = ResultSizeBits::update(minor_key_, result_size);
#endif // _WIN64
}
// The version of this stub that doesn't save doubles is generated ahead of
// time, so it's OK to call it from other stubs that can't cope with GC during
// their code generation. On machines that always have gp registers (x64) we
// can generate both variants ahead of time.
static void GenerateAheadOfTime(Isolate* isolate);
private:
bool save_doubles() const { return SaveDoublesBits::decode(minor_key_); }
#if _WIN64 || V8_TARGET_ARCH_PPC
int result_size() const { return ResultSizeBits::decode(minor_key_); }
#endif // _WIN64
bool NeedsImmovableCode() OVERRIDE;
class SaveDoublesBits : public BitField<bool, 0, 1> {};
class ResultSizeBits : public BitField<int, 1, 3> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(CEntry, PlatformCodeStub);
};
class JSEntryStub : public PlatformCodeStub {
public:
JSEntryStub(Isolate* isolate, StackFrame::Type type)
: PlatformCodeStub(isolate) {
DCHECK(type == StackFrame::ENTRY || type == StackFrame::ENTRY_CONSTRUCT);
minor_key_ = StackFrameTypeBits::encode(type);
}
private:
void FinishCode(Handle<Code> code) OVERRIDE;
void PrintName(std::ostream& os) const OVERRIDE { // NOLINT
os << (type() == StackFrame::ENTRY ? "JSEntryStub"
: "JSConstructEntryStub");
}
StackFrame::Type type() const {
return StackFrameTypeBits::decode(minor_key_);
}
class StackFrameTypeBits : public BitField<StackFrame::Type, 0, 5> {};
int handler_offset_;
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(JSEntry, PlatformCodeStub);
};
class ArgumentsAccessStub: public PlatformCodeStub {
public:
enum Type {
READ_ELEMENT,
NEW_SLOPPY_FAST,
NEW_SLOPPY_SLOW,
NEW_STRICT
};
enum HasNewTarget { NO_NEW_TARGET, HAS_NEW_TARGET };
ArgumentsAccessStub(Isolate* isolate, Type type,
HasNewTarget has_new_target = NO_NEW_TARGET)
: PlatformCodeStub(isolate) {
minor_key_ =
TypeBits::encode(type) | HasNewTargetBits::encode(has_new_target);
}
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (type() == READ_ELEMENT) {
return ArgumentsAccessReadDescriptor(isolate());
}
return ContextOnlyDescriptor(isolate());
}
private:
Type type() const { return TypeBits::decode(minor_key_); }
bool has_new_target() const {
return HasNewTargetBits::decode(minor_key_) == HAS_NEW_TARGET;
}
void GenerateReadElement(MacroAssembler* masm);
void GenerateNewStrict(MacroAssembler* masm);
void GenerateNewSloppyFast(MacroAssembler* masm);
void GenerateNewSloppySlow(MacroAssembler* masm);
void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
class TypeBits : public BitField<Type, 0, 2> {};
class HasNewTargetBits : public BitField<HasNewTarget, 2, 1> {};
DEFINE_PLATFORM_CODE_STUB(ArgumentsAccess, PlatformCodeStub);
};
class RestParamAccessStub: public PlatformCodeStub {
public:
explicit RestParamAccessStub(Isolate* isolate) : PlatformCodeStub(isolate) { }
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
return ContextOnlyDescriptor(isolate());
}
private:
void GenerateNew(MacroAssembler* masm);
virtual void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
DEFINE_PLATFORM_CODE_STUB(RestParamAccess, PlatformCodeStub);
};
class RegExpExecStub: public PlatformCodeStub {
public:
explicit RegExpExecStub(Isolate* isolate) : PlatformCodeStub(isolate) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(ContextOnly);
DEFINE_PLATFORM_CODE_STUB(RegExpExec, PlatformCodeStub);
};
class RegExpConstructResultStub FINAL : public HydrogenCodeStub {
public:
explicit RegExpConstructResultStub(Isolate* isolate)
: HydrogenCodeStub(isolate) { }
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kLength = 0;
static const int kIndex = 1;
static const int kInput = 2;
DEFINE_CALL_INTERFACE_DESCRIPTOR(RegExpConstructResult);
DEFINE_HYDROGEN_CODE_STUB(RegExpConstructResult, HydrogenCodeStub);
};
class CallFunctionStub: public PlatformCodeStub {
public:
CallFunctionStub(Isolate* isolate, int argc, CallFunctionFlags flags)
: PlatformCodeStub(isolate) {
DCHECK(argc >= 0 && argc <= Code::kMaxArguments);
minor_key_ = ArgcBits::encode(argc) | FlagBits::encode(flags);
}
static int ExtractArgcFromMinorKey(int minor_key) {
return ArgcBits::decode(minor_key);
}
private:
int argc() const { return ArgcBits::decode(minor_key_); }
int flags() const { return FlagBits::decode(minor_key_); }
bool CallAsMethod() const {
return flags() == CALL_AS_METHOD || flags() == WRAP_AND_CALL;
}
bool NeedsChecks() const { return flags() != WRAP_AND_CALL; }
void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
// Minor key encoding in 32 bits with Bitfield <Type, shift, size>.
class FlagBits : public BitField<CallFunctionFlags, 0, 2> {};
class ArgcBits : public BitField<unsigned, 2, Code::kArgumentsBits> {};
STATIC_ASSERT(Code::kArgumentsBits + 2 <= kStubMinorKeyBits);
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunction);
DEFINE_PLATFORM_CODE_STUB(CallFunction, PlatformCodeStub);
};
class CallConstructStub: public PlatformCodeStub {
public:
CallConstructStub(Isolate* isolate, CallConstructorFlags flags)
: PlatformCodeStub(isolate) {
minor_key_ = FlagBits::encode(flags);
}
void FinishCode(Handle<Code> code) OVERRIDE {
code->set_has_function_cache(RecordCallTarget());
}
private:
CallConstructorFlags flags() const { return FlagBits::decode(minor_key_); }
bool RecordCallTarget() const {
return (flags() & RECORD_CONSTRUCTOR_TARGET) != 0;
}
bool IsSuperConstructorCall() const {
return (flags() & SUPER_CONSTRUCTOR_CALL) != 0;
}
void PrintName(std::ostream& os) const OVERRIDE; // NOLINT
class FlagBits : public BitField<CallConstructorFlags, 0, 2> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallConstruct);
DEFINE_PLATFORM_CODE_STUB(CallConstruct, PlatformCodeStub);
};
enum StringIndexFlags {
// Accepts smis or heap numbers.
STRING_INDEX_IS_NUMBER,
// Accepts smis or heap numbers that are valid array indices
// (ECMA-262 15.4). Invalid indices are reported as being out of
// range.
STRING_INDEX_IS_ARRAY_INDEX
};
enum ReceiverCheckMode {
// We don't know anything about the receiver.
RECEIVER_IS_UNKNOWN,
// We know the receiver is a string.
RECEIVER_IS_STRING
};
// Generates code implementing String.prototype.charCodeAt.
//
// Only supports the case when the receiver is a string and the index
// is a number (smi or heap number) that is a valid index into the
// string. Additional index constraints are specified by the
// flags. Otherwise, bails out to the provided labels.
//
// Register usage: |object| may be changed to another string in a way
// that doesn't affect charCodeAt/charAt semantics, |index| is
// preserved, |scratch| and |result| are clobbered.
class StringCharCodeAtGenerator {
public:
StringCharCodeAtGenerator(Register object, Register index, Register result,
Label* receiver_not_string, Label* index_not_number,
Label* index_out_of_range,
StringIndexFlags index_flags,
ReceiverCheckMode check_mode = RECEIVER_IS_UNKNOWN)
: object_(object),
index_(index),
result_(result),
receiver_not_string_(receiver_not_string),
index_not_number_(index_not_number),
index_out_of_range_(index_out_of_range),
index_flags_(index_flags),
check_mode_(check_mode) {
DCHECK(!result_.is(object_));
DCHECK(!result_.is(index_));
}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm);
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm,
const RuntimeCallHelper& call_helper);
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
masm->bind(&index_not_smi_);
masm->bind(&call_runtime_);
masm->jmp(bailout);
}
private:
Register object_;
Register index_;
Register result_;
Label* receiver_not_string_;
Label* index_not_number_;
Label* index_out_of_range_;
StringIndexFlags index_flags_;
ReceiverCheckMode check_mode_;
Label call_runtime_;
Label index_not_smi_;
Label got_smi_index_;
Label exit_;
DISALLOW_COPY_AND_ASSIGN(StringCharCodeAtGenerator);
};
// Generates code for creating a one-char string from a char code.
class StringCharFromCodeGenerator {
public:
StringCharFromCodeGenerator(Register code,
Register result)
: code_(code),
result_(result) {
DCHECK(!code_.is(result_));
}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm);
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm,
const RuntimeCallHelper& call_helper);
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
masm->bind(&slow_case_);
masm->jmp(bailout);
}
private:
Register code_;
Register result_;
Label slow_case_;
Label exit_;
DISALLOW_COPY_AND_ASSIGN(StringCharFromCodeGenerator);
};
// Generates code implementing String.prototype.charAt.
//
// Only supports the case when the receiver is a string and the index
// is a number (smi or heap number) that is a valid index into the
// string. Additional index constraints are specified by the
// flags. Otherwise, bails out to the provided labels.
//
// Register usage: |object| may be changed to another string in a way
// that doesn't affect charCodeAt/charAt semantics, |index| is
// preserved, |scratch1|, |scratch2|, and |result| are clobbered.
class StringCharAtGenerator {
public:
StringCharAtGenerator(Register object, Register index, Register scratch,
Register result, Label* receiver_not_string,
Label* index_not_number, Label* index_out_of_range,
StringIndexFlags index_flags,
ReceiverCheckMode check_mode = RECEIVER_IS_UNKNOWN)
: char_code_at_generator_(object, index, scratch, receiver_not_string,
index_not_number, index_out_of_range,
index_flags, check_mode),
char_from_code_generator_(scratch, result) {}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
char_code_at_generator_.SkipSlow(masm, bailout);
char_from_code_generator_.SkipSlow(masm, bailout);
}
private:
StringCharCodeAtGenerator char_code_at_generator_;
StringCharFromCodeGenerator char_from_code_generator_;
DISALLOW_COPY_AND_ASSIGN(StringCharAtGenerator);
};
class LoadDictionaryElementStub : public HydrogenCodeStub {
public:
explicit LoadDictionaryElementStub(Isolate* isolate)
: HydrogenCodeStub(isolate) {}
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (FLAG_vector_ics) {
return VectorLoadICDescriptor(isolate());
}
return LoadDescriptor(isolate());
}
DEFINE_HYDROGEN_CODE_STUB(LoadDictionaryElement, HydrogenCodeStub);
};
class KeyedLoadGenericStub : public HydrogenCodeStub {
public:
explicit KeyedLoadGenericStub(Isolate* isolate) : HydrogenCodeStub(isolate) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::KEYED_LOAD_IC; }
InlineCacheState GetICState() const OVERRIDE { return GENERIC; }
// Since KeyedLoadGeneric stub doesn't miss (simply calls runtime), it
// doesn't need to use the VectorLoadICDescriptor for the case when
// flag --vector-ics is true.
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_HYDROGEN_CODE_STUB(KeyedLoadGeneric, HydrogenCodeStub);
};
class LoadICTrampolineStub : public PlatformCodeStub {
public:
LoadICTrampolineStub(Isolate* isolate, const LoadICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::LOAD_IC; }
InlineCacheState GetICState() const FINAL { return DEFAULT; }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(minor_key_);
}
private:
LoadICState state() const {
return LoadICState(static_cast<ExtraICState>(minor_key_));
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(VectorLoadICTrampoline);
DEFINE_PLATFORM_CODE_STUB(LoadICTrampoline, PlatformCodeStub);
};
class KeyedLoadICTrampolineStub : public LoadICTrampolineStub {
public:
explicit KeyedLoadICTrampolineStub(Isolate* isolate)
: LoadICTrampolineStub(isolate, LoadICState(0)) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::KEYED_LOAD_IC; }
DEFINE_PLATFORM_CODE_STUB(KeyedLoadICTrampoline, LoadICTrampolineStub);
};
class CallICTrampolineStub : public PlatformCodeStub {
public:
CallICTrampolineStub(Isolate* isolate, const CallICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::CALL_IC; }
InlineCacheState GetICState() const FINAL { return DEFAULT; }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(minor_key_);
}
protected:
CallICState state() const {
return CallICState(static_cast<ExtraICState>(minor_key_));
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunctionWithFeedback);
DEFINE_PLATFORM_CODE_STUB(CallICTrampoline, PlatformCodeStub);
};
class CallIC_ArrayTrampolineStub : public CallICTrampolineStub {
public:
CallIC_ArrayTrampolineStub(Isolate* isolate, const CallICState& state)
: CallICTrampolineStub(isolate, state) {}
private:
DEFINE_PLATFORM_CODE_STUB(CallIC_ArrayTrampoline, CallICTrampolineStub);
};
class MegamorphicLoadStub : public HydrogenCodeStub {
public:
MegamorphicLoadStub(Isolate* isolate, const LoadICState& state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(state.GetExtraICState());
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::LOAD_IC; }
InlineCacheState GetICState() const FINAL { return MEGAMORPHIC; }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(sub_minor_key());
}
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (FLAG_vector_ics) {
return VectorLoadICDescriptor(isolate());
}
return LoadDescriptor(isolate());
}
DEFINE_HYDROGEN_CODE_STUB(MegamorphicLoad, HydrogenCodeStub);
};
class VectorLoadStub : public HydrogenCodeStub {
public:
explicit VectorLoadStub(Isolate* isolate, const LoadICState& state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(state.GetExtraICState());
}
Code::Kind GetCodeKind() const OVERRIDE { return Code::LOAD_IC; }
InlineCacheState GetICState() const FINAL { return DEFAULT; }
ExtraICState GetExtraICState() const FINAL {
return static_cast<ExtraICState>(sub_minor_key());
}
private:
LoadICState state() const { return LoadICState(GetExtraICState()); }
DEFINE_CALL_INTERFACE_DESCRIPTOR(VectorLoadIC);
DEFINE_HYDROGEN_CODE_STUB(VectorLoad, HydrogenCodeStub);
};
class VectorKeyedLoadStub : public VectorLoadStub {
public:
explicit VectorKeyedLoadStub(Isolate* isolate)
: VectorLoadStub(isolate, LoadICState(0)) {}
Code::Kind GetCodeKind() const OVERRIDE { return Code::KEYED_LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(VectorLoadIC);
DEFINE_HYDROGEN_CODE_STUB(VectorKeyedLoad, VectorLoadStub);
};
class DoubleToIStub : public PlatformCodeStub {
public:
DoubleToIStub(Isolate* isolate, Register source, Register destination,
int offset, bool is_truncating, bool skip_fastpath = false)
: PlatformCodeStub(isolate) {
minor_key_ = SourceRegisterBits::encode(source.code()) |
DestinationRegisterBits::encode(destination.code()) |
OffsetBits::encode(offset) |
IsTruncatingBits::encode(is_truncating) |
SkipFastPathBits::encode(skip_fastpath) |
SSE3Bits::encode(CpuFeatures::IsSupported(SSE3) ? 1 : 0);
}
bool SometimesSetsUpAFrame() OVERRIDE { return false; }
private:
Register source() const {
return Register::from_code(SourceRegisterBits::decode(minor_key_));
}
Register destination() const {
return Register::from_code(DestinationRegisterBits::decode(minor_key_));
}
bool is_truncating() const { return IsTruncatingBits::decode(minor_key_); }
bool skip_fastpath() const { return SkipFastPathBits::decode(minor_key_); }
int offset() const { return OffsetBits::decode(minor_key_); }
static const int kBitsPerRegisterNumber = 6;
STATIC_ASSERT((1L << kBitsPerRegisterNumber) >= Register::kNumRegisters);
class SourceRegisterBits:
public BitField<int, 0, kBitsPerRegisterNumber> {}; // NOLINT
class DestinationRegisterBits:
public BitField<int, kBitsPerRegisterNumber,
kBitsPerRegisterNumber> {}; // NOLINT
class IsTruncatingBits:
public BitField<bool, 2 * kBitsPerRegisterNumber, 1> {}; // NOLINT
class OffsetBits:
public BitField<int, 2 * kBitsPerRegisterNumber + 1, 3> {}; // NOLINT
class SkipFastPathBits:
public BitField<int, 2 * kBitsPerRegisterNumber + 4, 1> {}; // NOLINT
class SSE3Bits:
public BitField<int, 2 * kBitsPerRegisterNumber + 5, 1> {}; // NOLINT
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(DoubleToI, PlatformCodeStub);
};
class ScriptContextFieldStub : public HandlerStub {
public:
ScriptContextFieldStub(Isolate* isolate,
const ScriptContextTable::LookupResult* lookup_result)
: HandlerStub(isolate) {
DCHECK(Accepted(lookup_result));
set_sub_minor_key(ContextIndexBits::encode(lookup_result->context_index) |
SlotIndexBits::encode(lookup_result->slot_index));
}
int context_index() const {
return ContextIndexBits::decode(sub_minor_key());
}
int slot_index() const { return SlotIndexBits::decode(sub_minor_key()); }
static bool Accepted(const ScriptContextTable::LookupResult* lookup_result) {
return ContextIndexBits::is_valid(lookup_result->context_index) &&
SlotIndexBits::is_valid(lookup_result->slot_index);
}
private:
static const int kContextIndexBits = 13;
static const int kSlotIndexBits = 13;
class ContextIndexBits : public BitField<int, 0, kContextIndexBits> {};
class SlotIndexBits
: public BitField<int, kContextIndexBits, kSlotIndexBits> {};
Code::StubType GetStubType() const OVERRIDE { return Code::FAST; }
DEFINE_CODE_STUB_BASE(ScriptContextFieldStub, HandlerStub);
};
class LoadScriptContextFieldStub : public ScriptContextFieldStub {
public:
LoadScriptContextFieldStub(
Isolate* isolate, const ScriptContextTable::LookupResult* lookup_result)
: ScriptContextFieldStub(isolate, lookup_result) {}
private:
Code::Kind kind() const OVERRIDE { return Code::LOAD_IC; }
DEFINE_HANDLER_CODE_STUB(LoadScriptContextField, ScriptContextFieldStub);
};
class StoreScriptContextFieldStub : public ScriptContextFieldStub {
public:
StoreScriptContextFieldStub(
Isolate* isolate, const ScriptContextTable::LookupResult* lookup_result)
: ScriptContextFieldStub(isolate, lookup_result) {}
private:
Code::Kind kind() const OVERRIDE { return Code::STORE_IC; }
DEFINE_HANDLER_CODE_STUB(StoreScriptContextField, ScriptContextFieldStub);
};
class LoadFastElementStub : public HydrogenCodeStub {
public:
LoadFastElementStub(Isolate* isolate, bool is_js_array,
ElementsKind elements_kind)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(ElementsKindBits::encode(elements_kind) |
IsJSArrayBits::encode(is_js_array));
}
bool is_js_array() const { return IsJSArrayBits::decode(sub_minor_key()); }
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
private:
class ElementsKindBits: public BitField<ElementsKind, 0, 8> {};
class IsJSArrayBits: public BitField<bool, 8, 1> {};
CallInterfaceDescriptor GetCallInterfaceDescriptor() OVERRIDE {
if (FLAG_vector_ics) {
return VectorLoadICDescriptor(isolate());
}
return LoadDescriptor(isolate());
}
DEFINE_HYDROGEN_CODE_STUB(LoadFastElement, HydrogenCodeStub);
};
class StoreFastElementStub : public HydrogenCodeStub {
public:
StoreFastElementStub(Isolate* isolate, bool is_js_array,
ElementsKind elements_kind, KeyedAccessStoreMode mode)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(ElementsKindBits::encode(elements_kind) |
IsJSArrayBits::encode(is_js_array) |
StoreModeBits::encode(mode));
}
bool is_js_array() const { return IsJSArrayBits::decode(sub_minor_key()); }
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
KeyedAccessStoreMode store_mode() const {
return StoreModeBits::decode(sub_minor_key());
}
private:
class ElementsKindBits: public BitField<ElementsKind, 0, 8> {};
class StoreModeBits: public BitField<KeyedAccessStoreMode, 8, 4> {};
class IsJSArrayBits: public BitField<bool, 12, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(Store);
DEFINE_HYDROGEN_CODE_STUB(StoreFastElement, HydrogenCodeStub);
};
class TransitionElementsKindStub : public HydrogenCodeStub {
public:
TransitionElementsKindStub(Isolate* isolate,
ElementsKind from_kind,
ElementsKind to_kind,
bool is_js_array) : HydrogenCodeStub(isolate) {
set_sub_minor_key(FromKindBits::encode(from_kind) |
ToKindBits::encode(to_kind) |
IsJSArrayBits::encode(is_js_array));
}
ElementsKind from_kind() const {
return FromKindBits::decode(sub_minor_key());
}
ElementsKind to_kind() const { return ToKindBits::decode(sub_minor_key()); }
bool is_js_array() const { return IsJSArrayBits::decode(sub_minor_key()); }
private:
class FromKindBits: public BitField<ElementsKind, 8, 8> {};
class ToKindBits: public BitField<ElementsKind, 0, 8> {};
class IsJSArrayBits: public BitField<bool, 16, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(TransitionElementsKind);
DEFINE_HYDROGEN_CODE_STUB(TransitionElementsKind, HydrogenCodeStub);
};
class AllocateHeapNumberStub FINAL : public HydrogenCodeStub {
public:
explicit AllocateHeapNumberStub(Isolate* isolate)
: HydrogenCodeStub(isolate) {}
private:
DEFINE_CALL_INTERFACE_DESCRIPTOR(AllocateHeapNumber);
DEFINE_HYDROGEN_CODE_STUB(AllocateHeapNumber, HydrogenCodeStub);
};
class ArrayConstructorStubBase : public HydrogenCodeStub {
public:
ArrayConstructorStubBase(Isolate* isolate,
ElementsKind kind,
AllocationSiteOverrideMode override_mode)
: HydrogenCodeStub(isolate) {
// It only makes sense to override local allocation site behavior
// if there is a difference between the global allocation site policy
// for an ElementsKind and the desired usage of the stub.
DCHECK(override_mode != DISABLE_ALLOCATION_SITES ||
AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE);
set_sub_minor_key(ElementsKindBits::encode(kind) |
AllocationSiteOverrideModeBits::encode(override_mode));
}
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
AllocationSiteOverrideMode override_mode() const {
return AllocationSiteOverrideModeBits::decode(sub_minor_key());
}
static void GenerateStubsAheadOfTime(Isolate* isolate);
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kConstructor = 0;
static const int kAllocationSite = 1;
protected:
std::ostream& BasePrintName(std::ostream& os,
const char* name) const; // NOLINT
private:
// Ensure data fits within available bits.
STATIC_ASSERT(LAST_ALLOCATION_SITE_OVERRIDE_MODE == 1);
class ElementsKindBits: public BitField<ElementsKind, 0, 8> {};
class AllocationSiteOverrideModeBits: public
BitField<AllocationSiteOverrideMode, 8, 1> {}; // NOLINT
DEFINE_CODE_STUB_BASE(ArrayConstructorStubBase, HydrogenCodeStub);
};
class ArrayNoArgumentConstructorStub : public ArrayConstructorStubBase {
public:
ArrayNoArgumentConstructorStub(
Isolate* isolate,
ElementsKind kind,
AllocationSiteOverrideMode override_mode = DONT_OVERRIDE)
: ArrayConstructorStubBase(isolate, kind, override_mode) {
}
private:
void PrintName(std::ostream& os) const OVERRIDE { // NOLINT
BasePrintName(os, "ArrayNoArgumentConstructorStub");
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayConstructorConstantArgCount);
DEFINE_HYDROGEN_CODE_STUB(ArrayNoArgumentConstructor,
ArrayConstructorStubBase);
};
class ArraySingleArgumentConstructorStub : public ArrayConstructorStubBase {
public:
ArraySingleArgumentConstructorStub(
Isolate* isolate,
ElementsKind kind,
AllocationSiteOverrideMode override_mode = DONT_OVERRIDE)
: ArrayConstructorStubBase(isolate, kind, override_mode) {
}
private:
void PrintName(std::ostream& os) const OVERRIDE { // NOLINT
BasePrintName(os, "ArraySingleArgumentConstructorStub");
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayConstructor);
DEFINE_HYDROGEN_CODE_STUB(ArraySingleArgumentConstructor,
ArrayConstructorStubBase);
};
class ArrayNArgumentsConstructorStub : public ArrayConstructorStubBase {
public:
ArrayNArgumentsConstructorStub(
Isolate* isolate,
ElementsKind kind,
AllocationSiteOverrideMode override_mode = DONT_OVERRIDE)
: ArrayConstructorStubBase(isolate, kind, override_mode) {
}
private:
void PrintName(std::ostream& os) const OVERRIDE { // NOLINT
BasePrintName(os, "ArrayNArgumentsConstructorStub");
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayConstructor);
DEFINE_HYDROGEN_CODE_STUB(ArrayNArgumentsConstructor,
ArrayConstructorStubBase);
};
class InternalArrayConstructorStubBase : public HydrogenCodeStub {
public:
InternalArrayConstructorStubBase(Isolate* isolate, ElementsKind kind)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(ElementsKindBits::encode(kind));
}
static void GenerateStubsAheadOfTime(Isolate* isolate);
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
static const int kConstructor = 0;
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
private:
class ElementsKindBits : public BitField<ElementsKind, 0, 8> {};
DEFINE_CODE_STUB_BASE(InternalArrayConstructorStubBase, HydrogenCodeStub);
};
class InternalArrayNoArgumentConstructorStub : public
InternalArrayConstructorStubBase {
public:
InternalArrayNoArgumentConstructorStub(Isolate* isolate,
ElementsKind kind)
: InternalArrayConstructorStubBase(isolate, kind) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(InternalArrayConstructorConstantArgCount);
DEFINE_HYDROGEN_CODE_STUB(InternalArrayNoArgumentConstructor,
InternalArrayConstructorStubBase);
};
class InternalArraySingleArgumentConstructorStub : public
InternalArrayConstructorStubBase {
public:
InternalArraySingleArgumentConstructorStub(Isolate* isolate,
ElementsKind kind)
: InternalArrayConstructorStubBase(isolate, kind) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(InternalArrayConstructor);
DEFINE_HYDROGEN_CODE_STUB(InternalArraySingleArgumentConstructor,
InternalArrayConstructorStubBase);
};
class InternalArrayNArgumentsConstructorStub : public
InternalArrayConstructorStubBase {
public:
InternalArrayNArgumentsConstructorStub(Isolate* isolate, ElementsKind kind)
: InternalArrayConstructorStubBase(isolate, kind) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(InternalArrayConstructor);
DEFINE_HYDROGEN_CODE_STUB(InternalArrayNArgumentsConstructor,
InternalArrayConstructorStubBase);
};
class StoreElementStub : public PlatformCodeStub {
public:
StoreElementStub(Isolate* isolate, ElementsKind elements_kind)
: PlatformCodeStub(isolate) {
minor_key_ = ElementsKindBits::encode(elements_kind);
}
private:
ElementsKind elements_kind() const {
return ElementsKindBits::decode(minor_key_);
}
class ElementsKindBits : public BitField<ElementsKind, 0, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(Store);
DEFINE_PLATFORM_CODE_STUB(StoreElement, PlatformCodeStub);
};
class ToBooleanStub: public HydrogenCodeStub {
public:
enum Type {
UNDEFINED,
BOOLEAN,
NULL_TYPE,
SMI,
SPEC_OBJECT,
STRING,
SYMBOL,
HEAP_NUMBER,
NUMBER_OF_TYPES
};
enum ResultMode {
RESULT_AS_SMI, // For Smi(1) on truthy value, Smi(0) otherwise.
RESULT_AS_ODDBALL, // For {true} on truthy value, {false} otherwise.
RESULT_AS_INVERSE_ODDBALL // For {false} on truthy value, {true} otherwise.
};
// At most 8 different types can be distinguished, because the Code object
// only has room for a single byte to hold a set of these types. :-P
STATIC_ASSERT(NUMBER_OF_TYPES <= 8);
class Types : public EnumSet<Type, byte> {
public:
Types() : EnumSet<Type, byte>(0) {}
explicit Types(byte bits) : EnumSet<Type, byte>(bits) {}
byte ToByte() const { return ToIntegral(); }
bool UpdateStatus(Handle<Object> object);
bool NeedsMap() const;
bool CanBeUndetectable() const;
bool IsGeneric() const { return ToIntegral() == Generic().ToIntegral(); }
static Types Generic() { return Types((1 << NUMBER_OF_TYPES) - 1); }
};
ToBooleanStub(Isolate* isolate, ResultMode mode, Types types = Types())
: HydrogenCodeStub(isolate) {
set_sub_minor_key(TypesBits::encode(types.ToByte()) |
ResultModeBits::encode(mode));
}
ToBooleanStub(Isolate* isolate, ExtraICState state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(TypesBits::encode(static_cast<byte>(state)) |
ResultModeBits::encode(RESULT_AS_SMI));
}
bool UpdateStatus(Handle<Object> object);
Types types() const { return Types(TypesBits::decode(sub_minor_key())); }
ResultMode mode() const { return ResultModeBits::decode(sub_minor_key()); }
Code::Kind GetCodeKind() const OVERRIDE { return Code::TO_BOOLEAN_IC; }
void PrintState(std::ostream& os) const OVERRIDE; // NOLINT
bool SometimesSetsUpAFrame() OVERRIDE { return false; }
static Handle<Code> GetUninitialized(Isolate* isolate) {
return ToBooleanStub(isolate, UNINITIALIZED).GetCode();
}
ExtraICState GetExtraICState() const OVERRIDE { return types().ToIntegral(); }
InlineCacheState GetICState() const OVERRIDE {
if (types().IsEmpty()) {
return ::v8::internal::UNINITIALIZED;
} else {
return MONOMORPHIC;
}
}
private:
ToBooleanStub(Isolate* isolate, InitializationState init_state)
: HydrogenCodeStub(isolate, init_state) {
set_sub_minor_key(ResultModeBits::encode(RESULT_AS_SMI));
}
class TypesBits : public BitField<byte, 0, NUMBER_OF_TYPES> {};
class ResultModeBits : public BitField<ResultMode, NUMBER_OF_TYPES, 2> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ToBoolean);
DEFINE_HYDROGEN_CODE_STUB(ToBoolean, HydrogenCodeStub);
};
std::ostream& operator<<(std::ostream& os, const ToBooleanStub::Types& t);
class ElementsTransitionAndStoreStub : public HydrogenCodeStub {
public:
ElementsTransitionAndStoreStub(Isolate* isolate, ElementsKind from_kind,
ElementsKind to_kind, bool is_jsarray,
KeyedAccessStoreMode store_mode)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(FromBits::encode(from_kind) | ToBits::encode(to_kind) |
IsJSArrayBits::encode(is_jsarray) |
StoreModeBits::encode(store_mode));
}
ElementsKind from_kind() const { return FromBits::decode(sub_minor_key()); }
ElementsKind to_kind() const { return ToBits::decode(sub_minor_key()); }
bool is_jsarray() const { return IsJSArrayBits::decode(sub_minor_key()); }
KeyedAccessStoreMode store_mode() const {
return StoreModeBits::decode(sub_minor_key());
}
// Parameters accessed via CodeStubGraphBuilder::GetParameter()
enum ParameterIndices {
kValueIndex,
kMapIndex,
kKeyIndex,
kObjectIndex,
kParameterCount
};
static const Register ValueRegister() {
return ElementTransitionAndStoreDescriptor::ValueRegister();
}
static const Register MapRegister() {
return ElementTransitionAndStoreDescriptor::MapRegister();
}
static const Register KeyRegister() {
return ElementTransitionAndStoreDescriptor::NameRegister();
}
static const Register ObjectRegister() {
return ElementTransitionAndStoreDescriptor::ReceiverRegister();
}
private:
class FromBits : public BitField<ElementsKind, 0, 8> {};
class ToBits : public BitField<ElementsKind, 8, 8> {};
class IsJSArrayBits : public BitField<bool, 16, 1> {};
class StoreModeBits : public BitField<KeyedAccessStoreMode, 17, 4> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ElementTransitionAndStore);
DEFINE_HYDROGEN_CODE_STUB(ElementsTransitionAndStore, HydrogenCodeStub);
};
class StoreArrayLiteralElementStub : public PlatformCodeStub {
public:
explicit StoreArrayLiteralElementStub(Isolate* isolate)
: PlatformCodeStub(isolate) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreArrayLiteralElement);
DEFINE_PLATFORM_CODE_STUB(StoreArrayLiteralElement, PlatformCodeStub);
};
class StubFailureTrampolineStub : public PlatformCodeStub {
public:
StubFailureTrampolineStub(Isolate* isolate, StubFunctionMode function_mode)
: PlatformCodeStub(isolate) {
minor_key_ = FunctionModeField::encode(function_mode);
}
static void GenerateAheadOfTime(Isolate* isolate);
private:
StubFunctionMode function_mode() const {
return FunctionModeField::decode(minor_key_);
}
class FunctionModeField : public BitField<StubFunctionMode, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StubFailureTrampoline, PlatformCodeStub);
};
class ProfileEntryHookStub : public PlatformCodeStub {
public:
explicit ProfileEntryHookStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
// The profile entry hook function is not allowed to cause a GC.
bool SometimesSetsUpAFrame() OVERRIDE { return false; }
// Generates a call to the entry hook if it's enabled.
static void MaybeCallEntryHook(MacroAssembler* masm);
private:
static void EntryHookTrampoline(intptr_t function,
intptr_t stack_pointer,
Isolate* isolate);
// ProfileEntryHookStub is called at the start of a function, so it has the
// same register set.
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunction)
DEFINE_PLATFORM_CODE_STUB(ProfileEntryHook, PlatformCodeStub);
};
class StoreBufferOverflowStub : public PlatformCodeStub {
public:
StoreBufferOverflowStub(Isolate* isolate, SaveFPRegsMode save_fp)
: PlatformCodeStub(isolate) {
minor_key_ = SaveDoublesBits::encode(save_fp == kSaveFPRegs);
}
static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate);
bool SometimesSetsUpAFrame() OVERRIDE { return false; }
private:
bool save_doubles() const { return SaveDoublesBits::decode(minor_key_); }
class SaveDoublesBits : public BitField<bool, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StoreBufferOverflow, PlatformCodeStub);
};
class SubStringStub : public PlatformCodeStub {
public:
explicit SubStringStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ContextOnly);
DEFINE_PLATFORM_CODE_STUB(SubString, PlatformCodeStub);
};
class ToNumberStub FINAL : public PlatformCodeStub {
public:
explicit ToNumberStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ToNumber);
DEFINE_PLATFORM_CODE_STUB(ToNumber, PlatformCodeStub);
};
class StringCompareStub : public PlatformCodeStub {
public:
explicit StringCompareStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ContextOnly);
DEFINE_PLATFORM_CODE_STUB(StringCompare, PlatformCodeStub);
};
#undef DEFINE_CALL_INTERFACE_DESCRIPTOR
#undef DEFINE_PLATFORM_CODE_STUB
#undef DEFINE_HANDLER_CODE_STUB
#undef DEFINE_HYDROGEN_CODE_STUB
#undef DEFINE_CODE_STUB
#undef DEFINE_CODE_STUB_BASE
} } // namespace v8::internal
#endif // V8_CODE_STUBS_H_