v8/test/unittests/interpreter/bytecodes-unittest.cc
rmcilroy e5ac75c635 [Interpreter] Optimize BytecodeArrayBuilder and BytecodeArrayWriter.
This CL optimizes the code in BytecodeArrayBuilder and
BytecodeArrayWriter by making the following main changes:

 - Move operand scale calculation out of BytecodeArrayWriter to the
BytecodeNode constructor, where the decision on which operands are
scalable can generally be statically decided by the compiler.
 - Move the maximum register calculation out of BytecodeArrayWriter
and into BytecodeRegisterOptimizer (which is the only place outside
BytecodeGenerator which updates which registers are used). This
avoids the BytecodeArrayWriter needing to know the operand types
of a node as it writes it.
 - Modify EmitBytecodes to use individual push_backs rather than
building a buffer and calling insert, since this turns out to be faster.
 - Initialize BytecodeArrayWriter's bytecode vector by reserving 512
bytes,
 - Make common functions in Bytecodes constexpr so that they
can be statically calculated by the compiler.
 - Move common functions and constructors in Bytecodes and
BytecodeNode to the header so that they can be inlined.
 - Change large static switch statements in Bytecodes to const array
lookups, and move to the header to allow inlining.

I also took the opportunity to remove a number of unused helper
functions, and rework some others for consistency.

This reduces the percentage of time spent in making BytecodeArrays
 in  CodeLoad from ~15% to ~11% according to perf. The
CoadLoad score increase by around 2%.

BUG=v8:4280

Committed: https://crrev.com/b11a8b4d41bf09d6b3d6cf214fe3fb61faf01a64
Review-Url: https://codereview.chromium.org/2351763002
Cr-Original-Commit-Position: refs/heads/master@{#39599}
Cr-Commit-Position: refs/heads/master@{#39637}
2016-09-22 16:34:31 +00:00

271 lines
11 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "src/v8.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecodes.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
TEST(OperandConversion, Registers) {
int register_count = 128;
int step = register_count / 7;
for (int i = 0; i < register_count; i += step) {
if (i <= kMaxInt8) {
uint32_t operand0 = Register(i).ToOperand();
Register reg0 = Register::FromOperand(operand0);
CHECK_EQ(i, reg0.index());
}
uint32_t operand1 = Register(i).ToOperand();
Register reg1 = Register::FromOperand(operand1);
CHECK_EQ(i, reg1.index());
uint32_t operand2 = Register(i).ToOperand();
Register reg2 = Register::FromOperand(operand2);
CHECK_EQ(i, reg2.index());
}
}
TEST(OperandConversion, Parameters) {
int parameter_counts[] = {7, 13, 99};
size_t count = sizeof(parameter_counts) / sizeof(parameter_counts[0]);
for (size_t p = 0; p < count; p++) {
int parameter_count = parameter_counts[p];
for (int i = 0; i < parameter_count; i++) {
Register r = Register::FromParameterIndex(i, parameter_count);
uint32_t operand_value = r.ToOperand();
Register s = Register::FromOperand(operand_value);
CHECK_EQ(i, s.ToParameterIndex(parameter_count));
}
}
}
TEST(OperandConversion, RegistersParametersNoOverlap) {
int register_count = 128;
int parameter_count = 100;
int32_t register_space_size = base::bits::RoundUpToPowerOfTwo32(
static_cast<uint32_t>(register_count + parameter_count));
uint32_t range = static_cast<uint32_t>(register_space_size);
std::vector<uint8_t> operand_count(range);
for (int i = 0; i < register_count; i += 1) {
Register r = Register(i);
int32_t operand = r.ToOperand();
uint8_t index = static_cast<uint8_t>(operand);
CHECK_LT(index, operand_count.size());
operand_count[index] += 1;
CHECK_EQ(operand_count[index], 1);
}
for (int i = 0; i < parameter_count; i += 1) {
Register r = Register::FromParameterIndex(i, parameter_count);
uint32_t operand = r.ToOperand();
uint8_t index = static_cast<uint8_t>(operand);
CHECK_LT(index, operand_count.size());
operand_count[index] += 1;
CHECK_EQ(operand_count[index], 1);
}
}
TEST(OperandScaling, ScalableAndNonScalable) {
const OperandScale kOperandScales[] = {
#define VALUE(Name, _) OperandScale::k##Name,
OPERAND_SCALE_LIST(VALUE)
#undef VALUE
};
for (OperandScale operand_scale : kOperandScales) {
int scale = static_cast<int>(operand_scale);
CHECK_EQ(Bytecodes::Size(Bytecode::kCallRuntime, operand_scale),
1 + 2 + 2 * scale);
CHECK_EQ(Bytecodes::Size(Bytecode::kCreateObjectLiteral, operand_scale),
1 + 2 * scale + 1 + 1 * scale);
CHECK_EQ(Bytecodes::Size(Bytecode::kTestIn, operand_scale), 1 + scale);
}
}
TEST(Bytecodes, RegisterOperands) {
CHECK(Bytecodes::IsRegisterOperandType(OperandType::kReg));
CHECK(Bytecodes::IsRegisterInputOperandType(OperandType::kReg));
CHECK(!Bytecodes::IsRegisterOutputOperandType(OperandType::kReg));
CHECK(!Bytecodes::IsRegisterInputOperandType(OperandType::kRegOut));
CHECK(Bytecodes::IsRegisterOutputOperandType(OperandType::kRegOut));
#define IS_REGISTER_OPERAND_TYPE(Name, _) \
CHECK(Bytecodes::IsRegisterOperandType(OperandType::k##Name));
REGISTER_OPERAND_TYPE_LIST(IS_REGISTER_OPERAND_TYPE)
#undef IS_REGISTER_OPERAND_TYPE
#define IS_NOT_REGISTER_OPERAND_TYPE(Name, _) \
CHECK(!Bytecodes::IsRegisterOperandType(OperandType::k##Name));
NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OPERAND_TYPE)
#undef IS_NOT_REGISTER_OPERAND_TYPE
#define IS_REGISTER_INPUT_OPERAND_TYPE(Name, _) \
CHECK(Bytecodes::IsRegisterInputOperandType(OperandType::k##Name));
REGISTER_INPUT_OPERAND_TYPE_LIST(IS_REGISTER_INPUT_OPERAND_TYPE)
#undef IS_REGISTER_INPUT_OPERAND_TYPE
#define IS_NOT_REGISTER_INPUT_OPERAND_TYPE(Name, _) \
CHECK(!Bytecodes::IsRegisterInputOperandType(OperandType::k##Name));
NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_INPUT_OPERAND_TYPE);
REGISTER_OUTPUT_OPERAND_TYPE_LIST(IS_NOT_REGISTER_INPUT_OPERAND_TYPE)
#undef IS_NOT_REGISTER_INPUT_OPERAND_TYPE
#define IS_REGISTER_OUTPUT_OPERAND_TYPE(Name, _) \
CHECK(Bytecodes::IsRegisterOutputOperandType(OperandType::k##Name));
REGISTER_OUTPUT_OPERAND_TYPE_LIST(IS_REGISTER_OUTPUT_OPERAND_TYPE)
#undef IS_REGISTER_OUTPUT_OPERAND_TYPE
#define IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE(Name, _) \
CHECK(!Bytecodes::IsRegisterOutputOperandType(OperandType::k##Name));
NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE)
REGISTER_INPUT_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE)
#undef IS_NOT_REGISTER_INPUT_OPERAND_TYPE
}
TEST(Bytecodes, DebugBreakExistForEachBytecode) {
static const OperandScale kOperandScale = OperandScale::kSingle;
#define CHECK_DEBUG_BREAK_SIZE(Name, ...) \
if (!Bytecodes::IsDebugBreak(Bytecode::k##Name) && \
!Bytecodes::IsPrefixScalingBytecode(Bytecode::k##Name)) { \
Bytecode debug_bytecode = Bytecodes::GetDebugBreak(Bytecode::k##Name); \
CHECK_EQ(Bytecodes::Size(Bytecode::k##Name, kOperandScale), \
Bytecodes::Size(debug_bytecode, kOperandScale)); \
}
BYTECODE_LIST(CHECK_DEBUG_BREAK_SIZE)
#undef CHECK_DEBUG_BREAK_SIZE
}
TEST(Bytecodes, DebugBreakForPrefixBytecodes) {
CHECK_EQ(Bytecode::kDebugBreakWide,
Bytecodes::GetDebugBreak(Bytecode::kWide));
CHECK_EQ(Bytecode::kDebugBreakExtraWide,
Bytecodes::GetDebugBreak(Bytecode::kExtraWide));
}
TEST(Bytecodes, PrefixMappings) {
Bytecode prefixes[] = {Bytecode::kWide, Bytecode::kExtraWide};
TRACED_FOREACH(Bytecode, prefix, prefixes) {
CHECK_EQ(prefix, Bytecodes::OperandScaleToPrefixBytecode(
Bytecodes::PrefixBytecodeToOperandScale(prefix)));
}
}
TEST(Bytecodes, ScaleForSignedOperand) {
CHECK(Bytecodes::ScaleForSignedOperand(0) == OperandScale::kSingle);
CHECK(Bytecodes::ScaleForSignedOperand(kMaxInt8) == OperandScale::kSingle);
CHECK(Bytecodes::ScaleForSignedOperand(kMinInt8) == OperandScale::kSingle);
CHECK(Bytecodes::ScaleForSignedOperand(kMaxInt8 + 1) ==
OperandScale::kDouble);
CHECK(Bytecodes::ScaleForSignedOperand(kMinInt8 - 1) ==
OperandScale::kDouble);
CHECK(Bytecodes::ScaleForSignedOperand(kMaxInt16) == OperandScale::kDouble);
CHECK(Bytecodes::ScaleForSignedOperand(kMinInt16) == OperandScale::kDouble);
CHECK(Bytecodes::ScaleForSignedOperand(kMaxInt16 + 1) ==
OperandScale::kQuadruple);
CHECK(Bytecodes::ScaleForSignedOperand(kMinInt16 - 1) ==
OperandScale::kQuadruple);
CHECK(Bytecodes::ScaleForSignedOperand(kMaxInt) == OperandScale::kQuadruple);
CHECK(Bytecodes::ScaleForSignedOperand(kMinInt) == OperandScale::kQuadruple);
}
TEST(Bytecodes, ScaleForUnsignedOperands) {
// int overloads
CHECK(Bytecodes::ScaleForUnsignedOperand(0) == OperandScale::kSingle);
CHECK(Bytecodes::ScaleForUnsignedOperand(kMaxUInt8) == OperandScale::kSingle);
CHECK(Bytecodes::ScaleForUnsignedOperand(kMaxUInt8 + 1) ==
OperandScale::kDouble);
CHECK(Bytecodes::ScaleForUnsignedOperand(kMaxUInt16) ==
OperandScale::kDouble);
CHECK(Bytecodes::ScaleForUnsignedOperand(kMaxUInt16 + 1) ==
OperandScale::kQuadruple);
// size_t overloads
CHECK(Bytecodes::ScaleForUnsignedOperand(static_cast<size_t>(0)) ==
OperandScale::kSingle);
CHECK(Bytecodes::ScaleForUnsignedOperand(static_cast<size_t>(kMaxUInt8)) ==
OperandScale::kSingle);
CHECK(Bytecodes::ScaleForUnsignedOperand(
static_cast<size_t>(kMaxUInt8 + 1)) == OperandScale::kDouble);
CHECK(Bytecodes::ScaleForUnsignedOperand(static_cast<size_t>(kMaxUInt16)) ==
OperandScale::kDouble);
CHECK(Bytecodes::ScaleForUnsignedOperand(
static_cast<size_t>(kMaxUInt16 + 1)) == OperandScale::kQuadruple);
CHECK(Bytecodes::ScaleForUnsignedOperand(static_cast<size_t>(kMaxUInt32)) ==
OperandScale::kQuadruple);
}
TEST(Bytecodes, SizesForUnsignedOperands) {
// int overloads
CHECK(Bytecodes::SizeForUnsignedOperand(0) == OperandSize::kByte);
CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt8) == OperandSize::kByte);
CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt8 + 1) ==
OperandSize::kShort);
CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt16) == OperandSize::kShort);
CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt16 + 1) ==
OperandSize::kQuad);
// size_t overloads
CHECK(Bytecodes::SizeForUnsignedOperand(static_cast<size_t>(0)) ==
OperandSize::kByte);
CHECK(Bytecodes::SizeForUnsignedOperand(static_cast<size_t>(kMaxUInt8)) ==
OperandSize::kByte);
CHECK(Bytecodes::SizeForUnsignedOperand(static_cast<size_t>(kMaxUInt8 + 1)) ==
OperandSize::kShort);
CHECK(Bytecodes::SizeForUnsignedOperand(static_cast<size_t>(kMaxUInt16)) ==
OperandSize::kShort);
CHECK(Bytecodes::SizeForUnsignedOperand(
static_cast<size_t>(kMaxUInt16 + 1)) == OperandSize::kQuad);
CHECK(Bytecodes::SizeForUnsignedOperand(static_cast<size_t>(kMaxUInt32)) ==
OperandSize::kQuad);
}
TEST(OperandScale, PrefixesRequired) {
CHECK(!Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kSingle));
CHECK(Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kDouble));
CHECK(
Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kQuadruple));
CHECK(Bytecodes::OperandScaleToPrefixBytecode(OperandScale::kDouble) ==
Bytecode::kWide);
CHECK(Bytecodes::OperandScaleToPrefixBytecode(OperandScale::kQuadruple) ==
Bytecode::kExtraWide);
}
TEST(AccumulatorUse, LogicalOperators) {
CHECK_EQ(AccumulatorUse::kNone | AccumulatorUse::kRead,
AccumulatorUse::kRead);
CHECK_EQ(AccumulatorUse::kRead | AccumulatorUse::kWrite,
AccumulatorUse::kReadWrite);
CHECK_EQ(AccumulatorUse::kRead & AccumulatorUse::kReadWrite,
AccumulatorUse::kRead);
CHECK_EQ(AccumulatorUse::kRead & AccumulatorUse::kWrite,
AccumulatorUse::kNone);
}
TEST(AccumulatorUse, SampleBytecodes) {
CHECK(Bytecodes::ReadsAccumulator(Bytecode::kStar));
CHECK(!Bytecodes::WritesAccumulator(Bytecode::kStar));
CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kStar),
AccumulatorUse::kRead);
CHECK(!Bytecodes::ReadsAccumulator(Bytecode::kLdar));
CHECK(Bytecodes::WritesAccumulator(Bytecode::kLdar));
CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kLdar),
AccumulatorUse::kWrite);
CHECK(Bytecodes::ReadsAccumulator(Bytecode::kAdd));
CHECK(Bytecodes::WritesAccumulator(Bytecode::kAdd));
CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kAdd),
AccumulatorUse::kReadWrite);
}
} // namespace interpreter
} // namespace internal
} // namespace v8