v8/test/cctest/compiler/test-instruction.cc
jochen cb7aa79b12 Expose a lower bound of malloc'd memory via heap statistics
We expect that the majority of malloc'd memory held by V8 is allocated
in Zone objects. Introduce an Allocator class that is used by Zones to
manage memory, and allows for querying the current usage.

BUG=none
R=titzer@chromium.org,bmeurer@chromium.org,jarin@chromium.org
LOG=n
TBR=rossberg@chromium.org

Review URL: https://codereview.chromium.org/1847543002

Cr-Commit-Position: refs/heads/master@{#35196}
2016-04-01 10:01:56 +00:00

328 lines
9.5 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
typedef v8::internal::compiler::Instruction TestInstr;
typedef v8::internal::compiler::InstructionSequence TestInstrSeq;
// A testing helper for the register code abstraction.
class InstructionTester : public HandleAndZoneScope {
public: // We're all friends here.
InstructionTester()
: graph(zone()),
schedule(zone()),
common(zone()),
machine(zone()),
code(NULL) {}
Graph graph;
Schedule schedule;
CommonOperatorBuilder common;
MachineOperatorBuilder machine;
TestInstrSeq* code;
Zone* zone() { return main_zone(); }
void allocCode() {
if (schedule.rpo_order()->size() == 0) {
// Compute the RPO order.
Scheduler::ComputeSpecialRPO(main_zone(), &schedule);
CHECK_NE(0u, schedule.rpo_order()->size());
}
InstructionBlocks* instruction_blocks =
TestInstrSeq::InstructionBlocksFor(main_zone(), &schedule);
code = new (main_zone())
TestInstrSeq(main_isolate(), main_zone(), instruction_blocks);
}
Node* Int32Constant(int32_t val) {
Node* node = graph.NewNode(common.Int32Constant(val));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* Float64Constant(double val) {
Node* node = graph.NewNode(common.Float64Constant(val));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* Parameter(int32_t which) {
Node* node = graph.NewNode(common.Parameter(which));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* NewNode(BasicBlock* block) {
Node* node = graph.NewNode(common.Int32Constant(111));
schedule.AddNode(block, node);
return node;
}
int NewInstr() {
InstructionCode opcode = static_cast<InstructionCode>(110);
TestInstr* instr = TestInstr::New(zone(), opcode);
return code->AddInstruction(instr);
}
UnallocatedOperand Unallocated(int vreg) {
return UnallocatedOperand(UnallocatedOperand::ANY, vreg);
}
RpoNumber RpoFor(BasicBlock* block) {
return RpoNumber::FromInt(block->rpo_number());
}
InstructionBlock* BlockAt(BasicBlock* block) {
return code->InstructionBlockAt(RpoFor(block));
}
BasicBlock* GetBasicBlock(int instruction_index) {
const InstructionBlock* block =
code->GetInstructionBlock(instruction_index);
return schedule.rpo_order()->at(block->rpo_number().ToSize());
}
int first_instruction_index(BasicBlock* block) {
return BlockAt(block)->first_instruction_index();
}
int last_instruction_index(BasicBlock* block) {
return BlockAt(block)->last_instruction_index();
}
};
TEST(InstructionBasic) {
InstructionTester R;
for (int i = 0; i < 10; i++) {
R.Int32Constant(i); // Add some nodes to the graph.
}
BasicBlock* last = R.schedule.start();
for (int i = 0; i < 5; i++) {
BasicBlock* block = R.schedule.NewBasicBlock();
R.schedule.AddGoto(last, block);
last = block;
}
R.allocCode();
BasicBlockVector* blocks = R.schedule.rpo_order();
CHECK_EQ(static_cast<int>(blocks->size()), R.code->InstructionBlockCount());
for (auto block : *blocks) {
CHECK_EQ(block->rpo_number(), R.BlockAt(block)->rpo_number().ToInt());
CHECK(!block->loop_end());
}
}
TEST(InstructionGetBasicBlock) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
BasicBlock* b1 = R.schedule.NewBasicBlock();
BasicBlock* b2 = R.schedule.NewBasicBlock();
BasicBlock* b3 = R.schedule.end();
R.schedule.AddGoto(b0, b1);
R.schedule.AddGoto(b1, b2);
R.schedule.AddGoto(b2, b3);
R.allocCode();
R.code->StartBlock(R.RpoFor(b0));
int i0 = R.NewInstr();
int i1 = R.NewInstr();
R.code->EndBlock(R.RpoFor(b0));
R.code->StartBlock(R.RpoFor(b1));
int i2 = R.NewInstr();
int i3 = R.NewInstr();
int i4 = R.NewInstr();
int i5 = R.NewInstr();
R.code->EndBlock(R.RpoFor(b1));
R.code->StartBlock(R.RpoFor(b2));
int i6 = R.NewInstr();
int i7 = R.NewInstr();
int i8 = R.NewInstr();
R.code->EndBlock(R.RpoFor(b2));
R.code->StartBlock(R.RpoFor(b3));
R.code->EndBlock(R.RpoFor(b3));
CHECK_EQ(b0, R.GetBasicBlock(i0));
CHECK_EQ(b0, R.GetBasicBlock(i1));
CHECK_EQ(b1, R.GetBasicBlock(i2));
CHECK_EQ(b1, R.GetBasicBlock(i3));
CHECK_EQ(b1, R.GetBasicBlock(i4));
CHECK_EQ(b1, R.GetBasicBlock(i5));
CHECK_EQ(b2, R.GetBasicBlock(i6));
CHECK_EQ(b2, R.GetBasicBlock(i7));
CHECK_EQ(b2, R.GetBasicBlock(i8));
CHECK_EQ(b0, R.GetBasicBlock(R.first_instruction_index(b0)));
CHECK_EQ(b0, R.GetBasicBlock(R.last_instruction_index(b0)));
CHECK_EQ(b1, R.GetBasicBlock(R.first_instruction_index(b1)));
CHECK_EQ(b1, R.GetBasicBlock(R.last_instruction_index(b1)));
CHECK_EQ(b2, R.GetBasicBlock(R.first_instruction_index(b2)));
CHECK_EQ(b2, R.GetBasicBlock(R.last_instruction_index(b2)));
CHECK_EQ(b3, R.GetBasicBlock(R.first_instruction_index(b3)));
CHECK_EQ(b3, R.GetBasicBlock(R.last_instruction_index(b3)));
}
TEST(InstructionIsGapAt) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
R.schedule.AddReturn(b0, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103);
R.code->StartBlock(R.RpoFor(b0));
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(R.RpoFor(b0));
CHECK(R.code->instructions().size() == 2);
}
TEST(InstructionIsGapAt2) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
BasicBlock* b1 = R.schedule.end();
R.schedule.AddGoto(b0, b1);
R.schedule.AddReturn(b1, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103);
R.code->StartBlock(R.RpoFor(b0));
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(R.RpoFor(b0));
TestInstr* i1 = TestInstr::New(R.zone(), 102);
TestInstr* g1 = TestInstr::New(R.zone(), 104);
R.code->StartBlock(R.RpoFor(b1));
R.code->AddInstruction(i1);
R.code->AddInstruction(g1);
R.code->EndBlock(R.RpoFor(b1));
CHECK(R.code->instructions().size() == 4);
}
TEST(InstructionAddGapMove) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
R.schedule.AddReturn(b0, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103);
R.code->StartBlock(R.RpoFor(b0));
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(R.RpoFor(b0));
CHECK(R.code->instructions().size() == 2);
int index = 0;
for (auto instr : R.code->instructions()) {
UnallocatedOperand op1 = R.Unallocated(index++);
UnallocatedOperand op2 = R.Unallocated(index++);
instr->GetOrCreateParallelMove(TestInstr::START, R.zone())
->AddMove(op1, op2);
ParallelMove* move = instr->GetParallelMove(TestInstr::START);
CHECK(move);
CHECK_EQ(1u, move->size());
MoveOperands* cur = move->at(0);
CHECK(op1.Equals(cur->source()));
CHECK(op2.Equals(cur->destination()));
}
}
TEST(InstructionOperands) {
base::AccountingAllocator allocator;
Zone zone(&allocator);
{
TestInstr* i = TestInstr::New(&zone, 101);
CHECK_EQ(0, static_cast<int>(i->OutputCount()));
CHECK_EQ(0, static_cast<int>(i->InputCount()));
CHECK_EQ(0, static_cast<int>(i->TempCount()));
}
int vreg = 15;
InstructionOperand outputs[] = {
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)};
InstructionOperand inputs[] = {
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)};
InstructionOperand temps[] = {
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg),
UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)};
for (size_t i = 0; i < arraysize(outputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
for (size_t k = 0; k < arraysize(temps); k++) {
TestInstr* m =
TestInstr::New(&zone, 101, i, outputs, j, inputs, k, temps);
CHECK(i == m->OutputCount());
CHECK(j == m->InputCount());
CHECK(k == m->TempCount());
for (size_t z = 0; z < i; z++) {
CHECK(outputs[z].Equals(*m->OutputAt(z)));
}
for (size_t z = 0; z < j; z++) {
CHECK(inputs[z].Equals(*m->InputAt(z)));
}
for (size_t z = 0; z < k; z++) {
CHECK(temps[z].Equals(*m->TempAt(z)));
}
}
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8