v8/test/unittests/wasm/decoder-unittest.cc
Clemens Backes 5bf16197ec [wasm] Simplify LEB decoding
Remove one "mode" of LEB decoding by eliminating the {AdvancePCFlag},
and doing the PC advance in the caller instead.
The returned length is now always zero in case of an error, thus remove
the respective checks from the unit tests. The returned length does not
really matter if we ran into an error.

R=thibaudm@chromium.org

Change-Id: Ibfd94dd981cefa2fc24c7af560c85afd1c826f2c
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2449972
Reviewed-by: Thibaud Michaud <thibaudm@chromium.org>
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Cr-Commit-Position: refs/heads/master@{#70404}
2020-10-08 13:58:01 +00:00

688 lines
24 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/base/overflowing-math.h"
#include "src/objects/objects-inl.h"
#include "src/wasm/decoder.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
class DecoderTest : public TestWithZone {
public:
DecoderTest() : decoder(nullptr, nullptr) {}
Decoder decoder;
};
#define CHECK_UINT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(static_cast<uint32_t>(expected), \
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), \
&length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
EXPECT_EQ(data, decoder.pc()); \
EXPECT_TRUE(decoder.ok()); \
EXPECT_EQ(static_cast<uint32_t>(expected), decoder.consume_u32v()); \
EXPECT_EQ(data + expected_length, decoder.pc()); \
} while (false)
#define CHECK_INT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, decoder.read_i32v<Decoder::kFullValidation>( \
decoder.start(), &length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
EXPECT_EQ(data, decoder.pc()); \
EXPECT_TRUE(decoder.ok()); \
EXPECT_EQ(expected, decoder.consume_i32v()); \
EXPECT_EQ(data + expected_length, decoder.pc()); \
} while (false)
#define CHECK_UINT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(static_cast<uint64_t>(expected), \
decoder.read_u64v<Decoder::kFullValidation>(decoder.start(), \
&length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
} while (false)
#define CHECK_INT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, decoder.read_i64v<Decoder::kFullValidation>( \
decoder.start(), &length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
} while (false)
TEST_F(DecoderTest, ReadU32v_OneByte) {
CHECK_UINT32V_INLINE(0, 1, 0);
CHECK_UINT32V_INLINE(5, 1, 5);
CHECK_UINT32V_INLINE(7, 1, 7);
CHECK_UINT32V_INLINE(9, 1, 9);
CHECK_UINT32V_INLINE(37, 1, 37);
CHECK_UINT32V_INLINE(69, 1, 69);
CHECK_UINT32V_INLINE(110, 1, 110);
CHECK_UINT32V_INLINE(125, 1, 125);
CHECK_UINT32V_INLINE(126, 1, 126);
CHECK_UINT32V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadU32v_TwoByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0);
CHECK_UINT32V_INLINE(444, 2, U32V_2(444));
CHECK_UINT32V_INLINE(544, 2, U32V_2(544));
CHECK_UINT32V_INLINE(1311, 2, U32V_2(1311));
CHECK_UINT32V_INLINE(2333, 2, U32V_2(2333));
for (uint32_t i = 0; i < 1 << 14; i = i * 13 + 1) {
CHECK_UINT32V_INLINE(i, 2, U32V_2(i));
}
const uint32_t max = (1 << 14) - 1;
CHECK_UINT32V_INLINE(max, 2, U32V_2(max));
}
TEST_F(DecoderTest, ReadU32v_ThreeByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0);
CHECK_UINT32V_INLINE(11, 3, U32V_3(11));
CHECK_UINT32V_INLINE(101, 3, U32V_3(101));
CHECK_UINT32V_INLINE(446, 3, U32V_3(446));
CHECK_UINT32V_INLINE(546, 3, U32V_3(546));
CHECK_UINT32V_INLINE(1319, 3, U32V_3(1319));
CHECK_UINT32V_INLINE(2338, 3, U32V_3(2338));
CHECK_UINT32V_INLINE(8191, 3, U32V_3(8191));
CHECK_UINT32V_INLINE(9999, 3, U32V_3(9999));
CHECK_UINT32V_INLINE(14444, 3, U32V_3(14444));
CHECK_UINT32V_INLINE(314444, 3, U32V_3(314444));
CHECK_UINT32V_INLINE(614444, 3, U32V_3(614444));
const uint32_t max = (1 << 21) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 3) {
CHECK_UINT32V_INLINE(i, 3, U32V_3(i), 0);
}
CHECK_UINT32V_INLINE(max, 3, U32V_3(max));
}
TEST_F(DecoderTest, ReadU32v_FourByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 4, U32V_4(13));
CHECK_UINT32V_INLINE(107, 4, U32V_4(107));
CHECK_UINT32V_INLINE(449, 4, U32V_4(449));
CHECK_UINT32V_INLINE(541, 4, U32V_4(541));
CHECK_UINT32V_INLINE(1317, 4, U32V_4(1317));
CHECK_UINT32V_INLINE(2334, 4, U32V_4(2334));
CHECK_UINT32V_INLINE(8191, 4, U32V_4(8191));
CHECK_UINT32V_INLINE(9994, 4, U32V_4(9994));
CHECK_UINT32V_INLINE(14442, 4, U32V_4(14442));
CHECK_UINT32V_INLINE(314442, 4, U32V_4(314442));
CHECK_UINT32V_INLINE(614442, 4, U32V_4(614442));
CHECK_UINT32V_INLINE(1614442, 4, U32V_4(1614442));
CHECK_UINT32V_INLINE(5614442, 4, U32V_4(5614442));
CHECK_UINT32V_INLINE(19614442, 4, U32V_4(19614442));
const uint32_t max = (1 << 28) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 5) {
CHECK_UINT32V_INLINE(i, 4, U32V_4(i), 0);
}
CHECK_UINT32V_INLINE(max, 4, U32V_4(max));
}
TEST_F(DecoderTest, ReadU32v_FiveByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 5, U32V_5(13));
CHECK_UINT32V_INLINE(107, 5, U32V_5(107));
CHECK_UINT32V_INLINE(449, 5, U32V_5(449));
CHECK_UINT32V_INLINE(541, 5, U32V_5(541));
CHECK_UINT32V_INLINE(1317, 5, U32V_5(1317));
CHECK_UINT32V_INLINE(2334, 5, U32V_5(2334));
CHECK_UINT32V_INLINE(8191, 5, U32V_5(8191));
CHECK_UINT32V_INLINE(9994, 5, U32V_5(9994));
CHECK_UINT32V_INLINE(24442, 5, U32V_5(24442));
CHECK_UINT32V_INLINE(414442, 5, U32V_5(414442));
CHECK_UINT32V_INLINE(714442, 5, U32V_5(714442));
CHECK_UINT32V_INLINE(1614442, 5, U32V_5(1614442));
CHECK_UINT32V_INLINE(6614442, 5, U32V_5(6614442));
CHECK_UINT32V_INLINE(89614442, 5, U32V_5(89614442));
CHECK_UINT32V_INLINE(2219614442u, 5, U32V_5(2219614442u));
CHECK_UINT32V_INLINE(3219614442u, 5, U32V_5(3219614442u));
CHECK_UINT32V_INLINE(4019614442u, 5, U32V_5(4019614442u));
const uint32_t max = 0xFFFFFFFFu;
for (uint32_t i = 1; i < 32; i++) {
uint32_t val = 0x983489AAu << i;
CHECK_UINT32V_INLINE(val, 5, U32V_5(val), 0);
}
CHECK_UINT32V_INLINE(max, 5, U32V_5(max));
}
TEST_F(DecoderTest, ReadU32v_various) {
for (int i = 0; i < 10; i++) {
uint32_t x = 0xCCCCCCCCu * i;
for (int width = 0; width < 32; width++) {
uint32_t val = x >> width;
CHECK_UINT32V_INLINE(val & MASK_7, 1, U32V_1(val));
CHECK_UINT32V_INLINE(val & MASK_14, 2, U32V_2(val));
CHECK_UINT32V_INLINE(val & MASK_21, 3, U32V_3(val));
CHECK_UINT32V_INLINE(val & MASK_28, 4, U32V_4(val));
CHECK_UINT32V_INLINE(val, 5, U32V_5(val));
}
}
}
TEST_F(DecoderTest, ReadI32v_OneByte) {
CHECK_INT32V_INLINE(0, 1, 0);
CHECK_INT32V_INLINE(4, 1, 4);
CHECK_INT32V_INLINE(6, 1, 6);
CHECK_INT32V_INLINE(9, 1, 9);
CHECK_INT32V_INLINE(33, 1, 33);
CHECK_INT32V_INLINE(61, 1, 61);
CHECK_INT32V_INLINE(63, 1, 63);
CHECK_INT32V_INLINE(-1, 1, 127);
CHECK_INT32V_INLINE(-2, 1, 126);
CHECK_INT32V_INLINE(-11, 1, 117);
CHECK_INT32V_INLINE(-62, 1, 66);
CHECK_INT32V_INLINE(-63, 1, 65);
CHECK_INT32V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadI32v_TwoByte) {
CHECK_INT32V_INLINE(0, 2, U32V_2(0));
CHECK_INT32V_INLINE(9, 2, U32V_2(9));
CHECK_INT32V_INLINE(61, 2, U32V_2(61));
CHECK_INT32V_INLINE(63, 2, U32V_2(63));
CHECK_INT32V_INLINE(-1, 2, U32V_2(-1));
CHECK_INT32V_INLINE(-2, 2, U32V_2(-2));
CHECK_INT32V_INLINE(-63, 2, U32V_2(-63));
CHECK_INT32V_INLINE(-64, 2, U32V_2(-64));
CHECK_INT32V_INLINE(-200, 2, U32V_2(-200));
CHECK_INT32V_INLINE(-1002, 2, U32V_2(-1002));
CHECK_INT32V_INLINE(-2004, 2, U32V_2(-2004));
CHECK_INT32V_INLINE(-4077, 2, U32V_2(-4077));
CHECK_INT32V_INLINE(207, 2, U32V_2(207));
CHECK_INT32V_INLINE(1009, 2, U32V_2(1009));
CHECK_INT32V_INLINE(2003, 2, U32V_2(2003));
CHECK_INT32V_INLINE(4072, 2, U32V_2(4072));
const int32_t min = 0 - (1 << 13);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
const int32_t max = (1 << 13) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
}
TEST_F(DecoderTest, ReadI32v_ThreeByte) {
CHECK_INT32V_INLINE(0, 3, U32V_3(0));
CHECK_INT32V_INLINE(9, 3, U32V_3(9));
CHECK_INT32V_INLINE(61, 3, U32V_3(61));
CHECK_INT32V_INLINE(63, 3, U32V_3(63));
CHECK_INT32V_INLINE(-1, 3, U32V_3(-1));
CHECK_INT32V_INLINE(-2, 3, U32V_3(-2));
CHECK_INT32V_INLINE(-63, 3, U32V_3(-63));
CHECK_INT32V_INLINE(-64, 3, U32V_3(-64));
CHECK_INT32V_INLINE(-207, 3, U32V_3(-207));
CHECK_INT32V_INLINE(-1012, 3, U32V_3(-1012));
CHECK_INT32V_INLINE(-4067, 3, U32V_3(-4067));
CHECK_INT32V_INLINE(-14067, 3, U32V_3(-14067));
CHECK_INT32V_INLINE(-234061, 3, U32V_3(-234061));
CHECK_INT32V_INLINE(237, 3, U32V_3(237));
CHECK_INT32V_INLINE(1309, 3, U32V_3(1309));
CHECK_INT32V_INLINE(4372, 3, U32V_3(4372));
CHECK_INT32V_INLINE(64372, 3, U32V_3(64372));
CHECK_INT32V_INLINE(374372, 3, U32V_3(374372));
const int32_t min = 0 - (1 << 20);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
const int32_t max = (1 << 20) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
}
TEST_F(DecoderTest, ReadI32v_FourByte) {
CHECK_INT32V_INLINE(0, 4, U32V_4(0));
CHECK_INT32V_INLINE(9, 4, U32V_4(9));
CHECK_INT32V_INLINE(61, 4, U32V_4(61));
CHECK_INT32V_INLINE(63, 4, U32V_4(63));
CHECK_INT32V_INLINE(-1, 4, U32V_4(-1));
CHECK_INT32V_INLINE(-2, 4, U32V_4(-2));
CHECK_INT32V_INLINE(-63, 4, U32V_4(-63));
CHECK_INT32V_INLINE(-64, 4, U32V_4(-64));
CHECK_INT32V_INLINE(-267, 4, U32V_4(-267));
CHECK_INT32V_INLINE(-1612, 4, U32V_4(-1612));
CHECK_INT32V_INLINE(-4667, 4, U32V_4(-4667));
CHECK_INT32V_INLINE(-16067, 4, U32V_4(-16067));
CHECK_INT32V_INLINE(-264061, 4, U32V_4(-264061));
CHECK_INT32V_INLINE(-1264061, 4, U32V_4(-1264061));
CHECK_INT32V_INLINE(-6264061, 4, U32V_4(-6264061));
CHECK_INT32V_INLINE(-8264061, 4, U32V_4(-8264061));
CHECK_INT32V_INLINE(277, 4, U32V_4(277));
CHECK_INT32V_INLINE(1709, 4, U32V_4(1709));
CHECK_INT32V_INLINE(4772, 4, U32V_4(4772));
CHECK_INT32V_INLINE(67372, 4, U32V_4(67372));
CHECK_INT32V_INLINE(374372, 4, U32V_4(374372));
CHECK_INT32V_INLINE(2374372, 4, U32V_4(2374372));
CHECK_INT32V_INLINE(7374372, 4, U32V_4(7374372));
CHECK_INT32V_INLINE(9374372, 4, U32V_4(9374372));
const int32_t min = 0 - (1 << 27);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
const int32_t max = (1 << 27) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
}
TEST_F(DecoderTest, ReadI32v_FiveByte) {
CHECK_INT32V_INLINE(0, 5, U32V_5(0));
CHECK_INT32V_INLINE(16, 5, U32V_5(16));
CHECK_INT32V_INLINE(94, 5, U32V_5(94));
CHECK_INT32V_INLINE(127, 5, U32V_5(127));
CHECK_INT32V_INLINE(-1, 5, U32V_5(-1));
CHECK_INT32V_INLINE(-2, 5, U32V_5(-2));
CHECK_INT32V_INLINE(-63, 5, U32V_5(-63));
CHECK_INT32V_INLINE(-64, 5, U32V_5(-64));
CHECK_INT32V_INLINE(-257, 5, U32V_5(-257));
CHECK_INT32V_INLINE(-1512, 5, U32V_5(-1512));
CHECK_INT32V_INLINE(-4567, 5, U32V_5(-4567));
CHECK_INT32V_INLINE(-15067, 5, U32V_5(-15067));
CHECK_INT32V_INLINE(-254061, 5, U32V_5(-254061));
CHECK_INT32V_INLINE(-1364061, 5, U32V_5(-1364061));
CHECK_INT32V_INLINE(-6364061, 5, U32V_5(-6364061));
CHECK_INT32V_INLINE(-8364061, 5, U32V_5(-8364061));
CHECK_INT32V_INLINE(-28364061, 5, U32V_5(-28364061));
CHECK_INT32V_INLINE(-228364061, 5, U32V_5(-228364061));
CHECK_INT32V_INLINE(227, 5, U32V_5(227));
CHECK_INT32V_INLINE(1209, 5, U32V_5(1209));
CHECK_INT32V_INLINE(4272, 5, U32V_5(4272));
CHECK_INT32V_INLINE(62372, 5, U32V_5(62372));
CHECK_INT32V_INLINE(324372, 5, U32V_5(324372));
CHECK_INT32V_INLINE(2274372, 5, U32V_5(2274372));
CHECK_INT32V_INLINE(7274372, 5, U32V_5(7274372));
CHECK_INT32V_INLINE(9274372, 5, U32V_5(9274372));
CHECK_INT32V_INLINE(42374372, 5, U32V_5(42374372));
CHECK_INT32V_INLINE(429374372, 5, U32V_5(429374372));
const int32_t min = kMinInt;
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
const int32_t max = kMaxInt;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
}
TEST_F(DecoderTest, ReadU32v_off_end1) {
static const byte data[] = {U32V_1(11)};
unsigned length = 0;
decoder.Reset(data, data);
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_off_end2) {
static const byte data[] = {U32V_2(1111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end3) {
static const byte data[] = {U32V_3(111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end4) {
static const byte data[] = {U32V_4(11111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end5) {
static const byte data[] = {U32V_5(111111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 16; i++) {
data[4] = static_cast<byte>(i << 4);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.read_u32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI32v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0x7F};
decoder.Reset(data, data + sizeof(data));
decoder.read_i32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_EQ(5u, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI32v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.read_i32v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_Bits) {
// A more exhaustive test.
const int kMaxSize = 5;
const uint32_t kVals[] = {
0xAABBCCDD, 0x11223344, 0x33445566, 0xFFEEDDCC, 0xF0F0F0F0, 0x0F0F0F0F,
0xEEEEEEEE, 0xAAAAAAAA, 0x12345678, 0x9ABCDEF0, 0x80309488, 0x729ED997,
0xC4A0CF81, 0x16C6EB85, 0x4206DB8E, 0xF3B089D5, 0xAA2E223E, 0xF99E29C8,
0x4A4357D8, 0x1890B1C1, 0x8D80A085, 0xACB6AE4C, 0x1B827E10, 0xEB5C7BD9,
0xBB1BC146, 0xDF57A33l};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...32
for (int i = 1; i <= 32; i++) {
uint32_t val = kVals[v];
if (i < 32)
val &= base::SubWithWraparound(base::ShlWithWraparound(1, i), 1);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...5
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint32_t result =
decoder.read_u32v<Decoder::kFullValidation>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_OneByte) {
CHECK_UINT64V_INLINE(0, 1, 0);
CHECK_UINT64V_INLINE(6, 1, 6);
CHECK_UINT64V_INLINE(8, 1, 8);
CHECK_UINT64V_INLINE(12, 1, 12);
CHECK_UINT64V_INLINE(33, 1, 33);
CHECK_UINT64V_INLINE(59, 1, 59);
CHECK_UINT64V_INLINE(110, 1, 110);
CHECK_UINT64V_INLINE(125, 1, 125);
CHECK_UINT64V_INLINE(126, 1, 126);
CHECK_UINT64V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadI64v_OneByte) {
CHECK_INT64V_INLINE(0, 1, 0);
CHECK_INT64V_INLINE(4, 1, 4);
CHECK_INT64V_INLINE(6, 1, 6);
CHECK_INT64V_INLINE(9, 1, 9);
CHECK_INT64V_INLINE(33, 1, 33);
CHECK_INT64V_INLINE(61, 1, 61);
CHECK_INT64V_INLINE(63, 1, 63);
CHECK_INT64V_INLINE(-1, 1, 127);
CHECK_INT64V_INLINE(-2, 1, 126);
CHECK_INT64V_INLINE(-11, 1, 117);
CHECK_INT64V_INLINE(-62, 1, 66);
CHECK_INT64V_INLINE(-63, 1, 65);
CHECK_INT64V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadU64v_PowerOf2) {
const int kMaxSize = 10;
byte data[kMaxSize];
for (unsigned i = 0; i < 64; i++) {
const uint64_t val = 1ull << i;
unsigned index = i / 7;
data[index] = 1 << (i % 7);
memset(data, 0x80, index);
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned length;
uint64_t result =
decoder.read_u64v<Decoder::kFullValidation>(data, &length);
if (limit <= index) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(index + 1, length);
}
}
}
}
TEST_F(DecoderTest, ReadU64v_Bits) {
const int kMaxSize = 10;
const uint64_t kVals[] = {
0xAABBCCDD11223344ull, 0x33445566FFEEDDCCull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789ABCDEF0ull, 0x80309488729ED997ull, 0xC4A0CF8116C6EB85ull,
0x4206DB8EF3B089D5ull, 0xAA2E223EF99E29C8ull, 0x4A4357D81890B1C1ull,
0x8D80A085ACB6AE4Cull, 0x1B827E10EB5C7BD9ull, 0xBB1BC146DF57A338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
uint64_t val = kVals[v];
if (i < 64) val &= ((1ull << i) - 1);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint64_t result =
decoder.read_u64v<Decoder::kFullValidation>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadI64v_Bits) {
const int kMaxSize = 10;
// Exhaustive signedness test.
const uint64_t kVals[] = {
0xAABBCCDD11223344ull, 0x33445566FFEEDDCCull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789ABCDEF0ull, 0x80309488729ED997ull, 0xC4A0CF8116C6EB85ull,
0x4206DB8EF3B089D5ull, 0xAA2E223EF99E29C8ull, 0x4A4357D81890B1C1ull,
0x8D80A085ACB6AE4Cull, 0x1B827E10EB5C7BD9ull, 0xBB1BC146DF57A338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
const int64_t val = bit_cast<int64_t>(kVals[v] << (64 - i)) >> (64 - i);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
int64_t result =
decoder.read_i64v<Decoder::kFullValidation>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 128; i++) {
data[9] = static_cast<byte>(i << 1);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.read_u64v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI64v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F};
decoder.Reset(data, data + sizeof(data));
decoder.read_i64v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_EQ(10u, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI64v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.read_i64v<Decoder::kFullValidation>(decoder.start(), &length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, FailOnNullData) {
decoder.Reset(nullptr, nullptr);
decoder.checkAvailable(1);
EXPECT_FALSE(decoder.ok());
EXPECT_FALSE(decoder.toResult(nullptr).ok());
}
#undef CHECK_UINT32V_INLINE
#undef CHECK_INT32V_INLINE
#undef CHECK_UINT64V_INLINE
#undef CHECK_INT64V_INLINE
} // namespace wasm
} // namespace internal
} // namespace v8