94dc107504
BUG= R=jarin@chromium.org, jochen@chromium.org Review URL: https://codereview.chromium.org/163683003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19377 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1042 lines
32 KiB
C++
1042 lines
32 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_MARK_COMPACT_H_
|
|
#define V8_MARK_COMPACT_H_
|
|
|
|
#include "compiler-intrinsics.h"
|
|
#include "spaces.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Callback function, returns whether an object is alive. The heap size
|
|
// of the object is returned in size. It optionally updates the offset
|
|
// to the first live object in the page (only used for old and map objects).
|
|
typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
|
|
|
|
// Forward declarations.
|
|
class CodeFlusher;
|
|
class GCTracer;
|
|
class MarkCompactCollector;
|
|
class MarkingVisitor;
|
|
class RootMarkingVisitor;
|
|
|
|
|
|
class Marking {
|
|
public:
|
|
explicit Marking(Heap* heap)
|
|
: heap_(heap) {
|
|
}
|
|
|
|
INLINE(static MarkBit MarkBitFrom(Address addr));
|
|
|
|
INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
|
|
return MarkBitFrom(reinterpret_cast<Address>(obj));
|
|
}
|
|
|
|
// Impossible markbits: 01
|
|
static const char* kImpossibleBitPattern;
|
|
INLINE(static bool IsImpossible(MarkBit mark_bit)) {
|
|
return !mark_bit.Get() && mark_bit.Next().Get();
|
|
}
|
|
|
|
// Black markbits: 10 - this is required by the sweeper.
|
|
static const char* kBlackBitPattern;
|
|
INLINE(static bool IsBlack(MarkBit mark_bit)) {
|
|
return mark_bit.Get() && !mark_bit.Next().Get();
|
|
}
|
|
|
|
// White markbits: 00 - this is required by the mark bit clearer.
|
|
static const char* kWhiteBitPattern;
|
|
INLINE(static bool IsWhite(MarkBit mark_bit)) {
|
|
return !mark_bit.Get();
|
|
}
|
|
|
|
// Grey markbits: 11
|
|
static const char* kGreyBitPattern;
|
|
INLINE(static bool IsGrey(MarkBit mark_bit)) {
|
|
return mark_bit.Get() && mark_bit.Next().Get();
|
|
}
|
|
|
|
INLINE(static void MarkBlack(MarkBit mark_bit)) {
|
|
mark_bit.Set();
|
|
mark_bit.Next().Clear();
|
|
}
|
|
|
|
INLINE(static void BlackToGrey(MarkBit markbit)) {
|
|
markbit.Next().Set();
|
|
}
|
|
|
|
INLINE(static void WhiteToGrey(MarkBit markbit)) {
|
|
markbit.Set();
|
|
markbit.Next().Set();
|
|
}
|
|
|
|
INLINE(static void GreyToBlack(MarkBit markbit)) {
|
|
markbit.Next().Clear();
|
|
}
|
|
|
|
INLINE(static void BlackToGrey(HeapObject* obj)) {
|
|
BlackToGrey(MarkBitFrom(obj));
|
|
}
|
|
|
|
INLINE(static void AnyToGrey(MarkBit markbit)) {
|
|
markbit.Set();
|
|
markbit.Next().Set();
|
|
}
|
|
|
|
// Returns true if the the object whose mark is transferred is marked black.
|
|
bool TransferMark(Address old_start, Address new_start);
|
|
|
|
#ifdef DEBUG
|
|
enum ObjectColor {
|
|
BLACK_OBJECT,
|
|
WHITE_OBJECT,
|
|
GREY_OBJECT,
|
|
IMPOSSIBLE_COLOR
|
|
};
|
|
|
|
static const char* ColorName(ObjectColor color) {
|
|
switch (color) {
|
|
case BLACK_OBJECT: return "black";
|
|
case WHITE_OBJECT: return "white";
|
|
case GREY_OBJECT: return "grey";
|
|
case IMPOSSIBLE_COLOR: return "impossible";
|
|
}
|
|
return "error";
|
|
}
|
|
|
|
static ObjectColor Color(HeapObject* obj) {
|
|
return Color(Marking::MarkBitFrom(obj));
|
|
}
|
|
|
|
static ObjectColor Color(MarkBit mark_bit) {
|
|
if (IsBlack(mark_bit)) return BLACK_OBJECT;
|
|
if (IsWhite(mark_bit)) return WHITE_OBJECT;
|
|
if (IsGrey(mark_bit)) return GREY_OBJECT;
|
|
UNREACHABLE();
|
|
return IMPOSSIBLE_COLOR;
|
|
}
|
|
#endif
|
|
|
|
// Returns true if the transferred color is black.
|
|
INLINE(static bool TransferColor(HeapObject* from,
|
|
HeapObject* to)) {
|
|
MarkBit from_mark_bit = MarkBitFrom(from);
|
|
MarkBit to_mark_bit = MarkBitFrom(to);
|
|
bool is_black = false;
|
|
if (from_mark_bit.Get()) {
|
|
to_mark_bit.Set();
|
|
is_black = true; // Looks black so far.
|
|
}
|
|
if (from_mark_bit.Next().Get()) {
|
|
to_mark_bit.Next().Set();
|
|
is_black = false; // Was actually gray.
|
|
}
|
|
return is_black;
|
|
}
|
|
|
|
private:
|
|
Heap* heap_;
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Marking deque for tracing live objects.
|
|
class MarkingDeque {
|
|
public:
|
|
MarkingDeque()
|
|
: array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) { }
|
|
|
|
void Initialize(Address low, Address high) {
|
|
HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
|
|
HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
|
|
array_ = obj_low;
|
|
mask_ = RoundDownToPowerOf2(static_cast<int>(obj_high - obj_low)) - 1;
|
|
top_ = bottom_ = 0;
|
|
overflowed_ = false;
|
|
}
|
|
|
|
inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
|
|
|
|
inline bool IsEmpty() { return top_ == bottom_; }
|
|
|
|
bool overflowed() const { return overflowed_; }
|
|
|
|
void ClearOverflowed() { overflowed_ = false; }
|
|
|
|
void SetOverflowed() { overflowed_ = true; }
|
|
|
|
// Push the (marked) object on the marking stack if there is room,
|
|
// otherwise mark the object as overflowed and wait for a rescan of the
|
|
// heap.
|
|
INLINE(void PushBlack(HeapObject* object)) {
|
|
ASSERT(object->IsHeapObject());
|
|
if (IsFull()) {
|
|
Marking::BlackToGrey(object);
|
|
MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size());
|
|
SetOverflowed();
|
|
} else {
|
|
array_[top_] = object;
|
|
top_ = ((top_ + 1) & mask_);
|
|
}
|
|
}
|
|
|
|
INLINE(void PushGrey(HeapObject* object)) {
|
|
ASSERT(object->IsHeapObject());
|
|
if (IsFull()) {
|
|
SetOverflowed();
|
|
} else {
|
|
array_[top_] = object;
|
|
top_ = ((top_ + 1) & mask_);
|
|
}
|
|
}
|
|
|
|
INLINE(HeapObject* Pop()) {
|
|
ASSERT(!IsEmpty());
|
|
top_ = ((top_ - 1) & mask_);
|
|
HeapObject* object = array_[top_];
|
|
ASSERT(object->IsHeapObject());
|
|
return object;
|
|
}
|
|
|
|
INLINE(void UnshiftGrey(HeapObject* object)) {
|
|
ASSERT(object->IsHeapObject());
|
|
if (IsFull()) {
|
|
SetOverflowed();
|
|
} else {
|
|
bottom_ = ((bottom_ - 1) & mask_);
|
|
array_[bottom_] = object;
|
|
}
|
|
}
|
|
|
|
HeapObject** array() { return array_; }
|
|
int bottom() { return bottom_; }
|
|
int top() { return top_; }
|
|
int mask() { return mask_; }
|
|
void set_top(int top) { top_ = top; }
|
|
|
|
private:
|
|
HeapObject** array_;
|
|
// array_[(top - 1) & mask_] is the top element in the deque. The Deque is
|
|
// empty when top_ == bottom_. It is full when top_ + 1 == bottom
|
|
// (mod mask + 1).
|
|
int top_;
|
|
int bottom_;
|
|
int mask_;
|
|
bool overflowed_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
|
|
};
|
|
|
|
|
|
class SlotsBufferAllocator {
|
|
public:
|
|
SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
|
|
void DeallocateBuffer(SlotsBuffer* buffer);
|
|
|
|
void DeallocateChain(SlotsBuffer** buffer_address);
|
|
};
|
|
|
|
|
|
// SlotsBuffer records a sequence of slots that has to be updated
|
|
// after live objects were relocated from evacuation candidates.
|
|
// All slots are either untyped or typed:
|
|
// - Untyped slots are expected to contain a tagged object pointer.
|
|
// They are recorded by an address.
|
|
// - Typed slots are expected to contain an encoded pointer to a heap
|
|
// object where the way of encoding depends on the type of the slot.
|
|
// They are recorded as a pair (SlotType, slot address).
|
|
// We assume that zero-page is never mapped this allows us to distinguish
|
|
// untyped slots from typed slots during iteration by a simple comparison:
|
|
// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
|
|
// is the first element of typed slot's pair.
|
|
class SlotsBuffer {
|
|
public:
|
|
typedef Object** ObjectSlot;
|
|
|
|
explicit SlotsBuffer(SlotsBuffer* next_buffer)
|
|
: idx_(0), chain_length_(1), next_(next_buffer) {
|
|
if (next_ != NULL) {
|
|
chain_length_ = next_->chain_length_ + 1;
|
|
}
|
|
}
|
|
|
|
~SlotsBuffer() {
|
|
}
|
|
|
|
void Add(ObjectSlot slot) {
|
|
ASSERT(0 <= idx_ && idx_ < kNumberOfElements);
|
|
slots_[idx_++] = slot;
|
|
}
|
|
|
|
enum SlotType {
|
|
EMBEDDED_OBJECT_SLOT,
|
|
RELOCATED_CODE_OBJECT,
|
|
CODE_TARGET_SLOT,
|
|
CODE_ENTRY_SLOT,
|
|
DEBUG_TARGET_SLOT,
|
|
JS_RETURN_SLOT,
|
|
NUMBER_OF_SLOT_TYPES
|
|
};
|
|
|
|
static const char* SlotTypeToString(SlotType type) {
|
|
switch (type) {
|
|
case EMBEDDED_OBJECT_SLOT:
|
|
return "EMBEDDED_OBJECT_SLOT";
|
|
case RELOCATED_CODE_OBJECT:
|
|
return "RELOCATED_CODE_OBJECT";
|
|
case CODE_TARGET_SLOT:
|
|
return "CODE_TARGET_SLOT";
|
|
case CODE_ENTRY_SLOT:
|
|
return "CODE_ENTRY_SLOT";
|
|
case DEBUG_TARGET_SLOT:
|
|
return "DEBUG_TARGET_SLOT";
|
|
case JS_RETURN_SLOT:
|
|
return "JS_RETURN_SLOT";
|
|
case NUMBER_OF_SLOT_TYPES:
|
|
return "NUMBER_OF_SLOT_TYPES";
|
|
}
|
|
return "UNKNOWN SlotType";
|
|
}
|
|
|
|
void UpdateSlots(Heap* heap);
|
|
|
|
void UpdateSlotsWithFilter(Heap* heap);
|
|
|
|
SlotsBuffer* next() { return next_; }
|
|
|
|
static int SizeOfChain(SlotsBuffer* buffer) {
|
|
if (buffer == NULL) return 0;
|
|
return static_cast<int>(buffer->idx_ +
|
|
(buffer->chain_length_ - 1) * kNumberOfElements);
|
|
}
|
|
|
|
inline bool IsFull() {
|
|
return idx_ == kNumberOfElements;
|
|
}
|
|
|
|
inline bool HasSpaceForTypedSlot() {
|
|
return idx_ < kNumberOfElements - 1;
|
|
}
|
|
|
|
static void UpdateSlotsRecordedIn(Heap* heap,
|
|
SlotsBuffer* buffer,
|
|
bool code_slots_filtering_required) {
|
|
while (buffer != NULL) {
|
|
if (code_slots_filtering_required) {
|
|
buffer->UpdateSlotsWithFilter(heap);
|
|
} else {
|
|
buffer->UpdateSlots(heap);
|
|
}
|
|
buffer = buffer->next();
|
|
}
|
|
}
|
|
|
|
enum AdditionMode {
|
|
FAIL_ON_OVERFLOW,
|
|
IGNORE_OVERFLOW
|
|
};
|
|
|
|
static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
|
|
return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
|
|
}
|
|
|
|
INLINE(static bool AddTo(SlotsBufferAllocator* allocator,
|
|
SlotsBuffer** buffer_address,
|
|
ObjectSlot slot,
|
|
AdditionMode mode)) {
|
|
SlotsBuffer* buffer = *buffer_address;
|
|
if (buffer == NULL || buffer->IsFull()) {
|
|
if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
|
|
allocator->DeallocateChain(buffer_address);
|
|
return false;
|
|
}
|
|
buffer = allocator->AllocateBuffer(buffer);
|
|
*buffer_address = buffer;
|
|
}
|
|
buffer->Add(slot);
|
|
return true;
|
|
}
|
|
|
|
static bool IsTypedSlot(ObjectSlot slot);
|
|
|
|
static bool AddTo(SlotsBufferAllocator* allocator,
|
|
SlotsBuffer** buffer_address,
|
|
SlotType type,
|
|
Address addr,
|
|
AdditionMode mode);
|
|
|
|
static const int kNumberOfElements = 1021;
|
|
|
|
private:
|
|
static const int kChainLengthThreshold = 15;
|
|
|
|
intptr_t idx_;
|
|
intptr_t chain_length_;
|
|
SlotsBuffer* next_;
|
|
ObjectSlot slots_[kNumberOfElements];
|
|
};
|
|
|
|
|
|
// CodeFlusher collects candidates for code flushing during marking and
|
|
// processes those candidates after marking has completed in order to
|
|
// reset those functions referencing code objects that would otherwise
|
|
// be unreachable. Code objects can be referenced in three ways:
|
|
// - SharedFunctionInfo references unoptimized code.
|
|
// - JSFunction references either unoptimized or optimized code.
|
|
// - OptimizedCodeMap references optimized code.
|
|
// We are not allowed to flush unoptimized code for functions that got
|
|
// optimized or inlined into optimized code, because we might bailout
|
|
// into the unoptimized code again during deoptimization.
|
|
class CodeFlusher {
|
|
public:
|
|
explicit CodeFlusher(Isolate* isolate)
|
|
: isolate_(isolate),
|
|
jsfunction_candidates_head_(NULL),
|
|
shared_function_info_candidates_head_(NULL),
|
|
optimized_code_map_holder_head_(NULL) {}
|
|
|
|
void AddCandidate(SharedFunctionInfo* shared_info) {
|
|
if (GetNextCandidate(shared_info) == NULL) {
|
|
SetNextCandidate(shared_info, shared_function_info_candidates_head_);
|
|
shared_function_info_candidates_head_ = shared_info;
|
|
}
|
|
}
|
|
|
|
void AddCandidate(JSFunction* function) {
|
|
ASSERT(function->code() == function->shared()->code());
|
|
if (GetNextCandidate(function)->IsUndefined()) {
|
|
SetNextCandidate(function, jsfunction_candidates_head_);
|
|
jsfunction_candidates_head_ = function;
|
|
}
|
|
}
|
|
|
|
void AddOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
|
|
if (GetNextCodeMap(code_map_holder)->IsUndefined()) {
|
|
SetNextCodeMap(code_map_holder, optimized_code_map_holder_head_);
|
|
optimized_code_map_holder_head_ = code_map_holder;
|
|
}
|
|
}
|
|
|
|
void EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder);
|
|
void EvictCandidate(SharedFunctionInfo* shared_info);
|
|
void EvictCandidate(JSFunction* function);
|
|
|
|
void ProcessCandidates() {
|
|
ProcessOptimizedCodeMaps();
|
|
ProcessSharedFunctionInfoCandidates();
|
|
ProcessJSFunctionCandidates();
|
|
}
|
|
|
|
void EvictAllCandidates() {
|
|
EvictOptimizedCodeMaps();
|
|
EvictJSFunctionCandidates();
|
|
EvictSharedFunctionInfoCandidates();
|
|
}
|
|
|
|
void IteratePointersToFromSpace(ObjectVisitor* v);
|
|
|
|
private:
|
|
void ProcessOptimizedCodeMaps();
|
|
void ProcessJSFunctionCandidates();
|
|
void ProcessSharedFunctionInfoCandidates();
|
|
void EvictOptimizedCodeMaps();
|
|
void EvictJSFunctionCandidates();
|
|
void EvictSharedFunctionInfoCandidates();
|
|
|
|
static JSFunction** GetNextCandidateSlot(JSFunction* candidate) {
|
|
return reinterpret_cast<JSFunction**>(
|
|
HeapObject::RawField(candidate, JSFunction::kNextFunctionLinkOffset));
|
|
}
|
|
|
|
static JSFunction* GetNextCandidate(JSFunction* candidate) {
|
|
Object* next_candidate = candidate->next_function_link();
|
|
return reinterpret_cast<JSFunction*>(next_candidate);
|
|
}
|
|
|
|
static void SetNextCandidate(JSFunction* candidate,
|
|
JSFunction* next_candidate) {
|
|
candidate->set_next_function_link(next_candidate);
|
|
}
|
|
|
|
static void ClearNextCandidate(JSFunction* candidate, Object* undefined) {
|
|
ASSERT(undefined->IsUndefined());
|
|
candidate->set_next_function_link(undefined, SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
|
|
Object* next_candidate = candidate->code()->gc_metadata();
|
|
return reinterpret_cast<SharedFunctionInfo*>(next_candidate);
|
|
}
|
|
|
|
static void SetNextCandidate(SharedFunctionInfo* candidate,
|
|
SharedFunctionInfo* next_candidate) {
|
|
candidate->code()->set_gc_metadata(next_candidate);
|
|
}
|
|
|
|
static void ClearNextCandidate(SharedFunctionInfo* candidate) {
|
|
candidate->code()->set_gc_metadata(NULL, SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
static SharedFunctionInfo* GetNextCodeMap(SharedFunctionInfo* holder) {
|
|
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
|
Object* next_map = code_map->get(SharedFunctionInfo::kNextMapIndex);
|
|
return reinterpret_cast<SharedFunctionInfo*>(next_map);
|
|
}
|
|
|
|
static void SetNextCodeMap(SharedFunctionInfo* holder,
|
|
SharedFunctionInfo* next_holder) {
|
|
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
|
code_map->set(SharedFunctionInfo::kNextMapIndex, next_holder);
|
|
}
|
|
|
|
static void ClearNextCodeMap(SharedFunctionInfo* holder) {
|
|
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
|
code_map->set_undefined(SharedFunctionInfo::kNextMapIndex);
|
|
}
|
|
|
|
Isolate* isolate_;
|
|
JSFunction* jsfunction_candidates_head_;
|
|
SharedFunctionInfo* shared_function_info_candidates_head_;
|
|
SharedFunctionInfo* optimized_code_map_holder_head_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
|
|
};
|
|
|
|
|
|
// Defined in isolate.h.
|
|
class ThreadLocalTop;
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Mark-Compact collector
|
|
class MarkCompactCollector {
|
|
public:
|
|
// Type of functions to compute forwarding addresses of objects in
|
|
// compacted spaces. Given an object and its size, return a (non-failure)
|
|
// Object* that will be the object after forwarding. There is a separate
|
|
// allocation function for each (compactable) space based on the location
|
|
// of the object before compaction.
|
|
typedef MaybeObject* (*AllocationFunction)(Heap* heap,
|
|
HeapObject* object,
|
|
int object_size);
|
|
|
|
// Type of functions to encode the forwarding address for an object.
|
|
// Given the object, its size, and the new (non-failure) object it will be
|
|
// forwarded to, encode the forwarding address. For paged spaces, the
|
|
// 'offset' input/output parameter contains the offset of the forwarded
|
|
// object from the forwarding address of the previous live object in the
|
|
// page as input, and is updated to contain the offset to be used for the
|
|
// next live object in the same page. For spaces using a different
|
|
// encoding (i.e., contiguous spaces), the offset parameter is ignored.
|
|
typedef void (*EncodingFunction)(Heap* heap,
|
|
HeapObject* old_object,
|
|
int object_size,
|
|
Object* new_object,
|
|
int* offset);
|
|
|
|
// Type of functions to process non-live objects.
|
|
typedef void (*ProcessNonLiveFunction)(HeapObject* object, Isolate* isolate);
|
|
|
|
// Pointer to member function, used in IterateLiveObjects.
|
|
typedef int (MarkCompactCollector::*LiveObjectCallback)(HeapObject* obj);
|
|
|
|
// Set the global flags, it must be called before Prepare to take effect.
|
|
inline void SetFlags(int flags);
|
|
|
|
static void Initialize();
|
|
|
|
void SetUp();
|
|
|
|
void TearDown();
|
|
|
|
void CollectEvacuationCandidates(PagedSpace* space);
|
|
|
|
void AddEvacuationCandidate(Page* p);
|
|
|
|
// Prepares for GC by resetting relocation info in old and map spaces and
|
|
// choosing spaces to compact.
|
|
void Prepare(GCTracer* tracer);
|
|
|
|
// Performs a global garbage collection.
|
|
void CollectGarbage();
|
|
|
|
enum CompactionMode {
|
|
INCREMENTAL_COMPACTION,
|
|
NON_INCREMENTAL_COMPACTION
|
|
};
|
|
|
|
bool StartCompaction(CompactionMode mode);
|
|
|
|
void AbortCompaction();
|
|
|
|
// During a full GC, there is a stack-allocated GCTracer that is used for
|
|
// bookkeeping information. Return a pointer to that tracer.
|
|
GCTracer* tracer() { return tracer_; }
|
|
|
|
#ifdef DEBUG
|
|
// Checks whether performing mark-compact collection.
|
|
bool in_use() { return state_ > PREPARE_GC; }
|
|
bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
|
|
#endif
|
|
|
|
// Determine type of object and emit deletion log event.
|
|
static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
|
|
|
|
// Distinguishable invalid map encodings (for single word and multiple words)
|
|
// that indicate free regions.
|
|
static const uint32_t kSingleFreeEncoding = 0;
|
|
static const uint32_t kMultiFreeEncoding = 1;
|
|
|
|
static inline bool IsMarked(Object* obj);
|
|
|
|
inline Heap* heap() const { return heap_; }
|
|
inline Isolate* isolate() const;
|
|
|
|
CodeFlusher* code_flusher() { return code_flusher_; }
|
|
inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
|
|
void EnableCodeFlushing(bool enable);
|
|
|
|
enum SweeperType {
|
|
CONSERVATIVE,
|
|
LAZY_CONSERVATIVE,
|
|
PARALLEL_CONSERVATIVE,
|
|
CONCURRENT_CONSERVATIVE,
|
|
PRECISE
|
|
};
|
|
|
|
enum SweepingParallelism {
|
|
SWEEP_SEQUENTIALLY,
|
|
SWEEP_IN_PARALLEL
|
|
};
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void VerifyMarkbitsAreClean();
|
|
static void VerifyMarkbitsAreClean(PagedSpace* space);
|
|
static void VerifyMarkbitsAreClean(NewSpace* space);
|
|
void VerifyWeakEmbeddedObjectsInOptimizedCode();
|
|
void VerifyOmittedMapChecks();
|
|
#endif
|
|
|
|
// Sweep a single page from the given space conservatively.
|
|
// Return a number of reclaimed bytes.
|
|
template<SweepingParallelism type>
|
|
static intptr_t SweepConservatively(PagedSpace* space,
|
|
FreeList* free_list,
|
|
Page* p);
|
|
|
|
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) {
|
|
return Page::FromAddress(reinterpret_cast<Address>(anchor))->
|
|
ShouldSkipEvacuationSlotRecording();
|
|
}
|
|
|
|
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
|
|
return Page::FromAddress(reinterpret_cast<Address>(host))->
|
|
ShouldSkipEvacuationSlotRecording();
|
|
}
|
|
|
|
INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
|
|
return Page::FromAddress(reinterpret_cast<Address>(obj))->
|
|
IsEvacuationCandidate();
|
|
}
|
|
|
|
INLINE(void EvictEvacuationCandidate(Page* page)) {
|
|
if (FLAG_trace_fragmentation) {
|
|
PrintF("Page %p is too popular. Disabling evacuation.\n",
|
|
reinterpret_cast<void*>(page));
|
|
}
|
|
|
|
// TODO(gc) If all evacuation candidates are too popular we
|
|
// should stop slots recording entirely.
|
|
page->ClearEvacuationCandidate();
|
|
|
|
// We were not collecting slots on this page that point
|
|
// to other evacuation candidates thus we have to
|
|
// rescan the page after evacuation to discover and update all
|
|
// pointers to evacuated objects.
|
|
if (page->owner()->identity() == OLD_DATA_SPACE) {
|
|
evacuation_candidates_.RemoveElement(page);
|
|
} else {
|
|
page->SetFlag(Page::RESCAN_ON_EVACUATION);
|
|
}
|
|
}
|
|
|
|
void RecordRelocSlot(RelocInfo* rinfo, Object* target);
|
|
void RecordCodeEntrySlot(Address slot, Code* target);
|
|
void RecordCodeTargetPatch(Address pc, Code* target);
|
|
|
|
INLINE(void RecordSlot(Object** anchor_slot, Object** slot, Object* object));
|
|
|
|
void MigrateObject(Address dst,
|
|
Address src,
|
|
int size,
|
|
AllocationSpace to_old_space);
|
|
|
|
bool TryPromoteObject(HeapObject* object, int object_size);
|
|
|
|
inline Object* encountered_weak_collections() {
|
|
return encountered_weak_collections_;
|
|
}
|
|
inline void set_encountered_weak_collections(Object* weak_collection) {
|
|
encountered_weak_collections_ = weak_collection;
|
|
}
|
|
|
|
void InvalidateCode(Code* code);
|
|
|
|
void ClearMarkbits();
|
|
|
|
bool abort_incremental_marking() const { return abort_incremental_marking_; }
|
|
|
|
bool is_compacting() const { return compacting_; }
|
|
|
|
MarkingParity marking_parity() { return marking_parity_; }
|
|
|
|
// Concurrent and parallel sweeping support.
|
|
void SweepInParallel(PagedSpace* space);
|
|
|
|
void WaitUntilSweepingCompleted();
|
|
|
|
intptr_t RefillFreeLists(PagedSpace* space);
|
|
|
|
bool AreSweeperThreadsActivated();
|
|
|
|
bool IsConcurrentSweepingInProgress();
|
|
|
|
void set_sequential_sweeping(bool sequential_sweeping) {
|
|
sequential_sweeping_ = sequential_sweeping;
|
|
}
|
|
|
|
bool sequential_sweeping() const {
|
|
return sequential_sweeping_;
|
|
}
|
|
|
|
// Mark the global table which maps weak objects to dependent code without
|
|
// marking its contents.
|
|
void MarkWeakObjectToCodeTable();
|
|
|
|
// Special case for processing weak references in a full collection. We need
|
|
// to artifically keep AllocationSites alive for a time.
|
|
void MarkAllocationSite(AllocationSite* site);
|
|
|
|
private:
|
|
class SweeperTask;
|
|
|
|
explicit MarkCompactCollector(Heap* heap);
|
|
~MarkCompactCollector();
|
|
|
|
bool MarkInvalidatedCode();
|
|
bool WillBeDeoptimized(Code* code);
|
|
void RemoveDeadInvalidatedCode();
|
|
void ProcessInvalidatedCode(ObjectVisitor* visitor);
|
|
|
|
void UnlinkEvacuationCandidates();
|
|
void ReleaseEvacuationCandidates();
|
|
|
|
void StartSweeperThreads();
|
|
|
|
#ifdef DEBUG
|
|
enum CollectorState {
|
|
IDLE,
|
|
PREPARE_GC,
|
|
MARK_LIVE_OBJECTS,
|
|
SWEEP_SPACES,
|
|
ENCODE_FORWARDING_ADDRESSES,
|
|
UPDATE_POINTERS,
|
|
RELOCATE_OBJECTS
|
|
};
|
|
|
|
// The current stage of the collector.
|
|
CollectorState state_;
|
|
#endif
|
|
|
|
// Global flag that forces sweeping to be precise, so we can traverse the
|
|
// heap.
|
|
bool sweep_precisely_;
|
|
|
|
bool reduce_memory_footprint_;
|
|
|
|
bool abort_incremental_marking_;
|
|
|
|
MarkingParity marking_parity_;
|
|
|
|
// True if we are collecting slots to perform evacuation from evacuation
|
|
// candidates.
|
|
bool compacting_;
|
|
|
|
bool was_marked_incrementally_;
|
|
|
|
// True if concurrent or parallel sweeping is currently in progress.
|
|
bool sweeping_pending_;
|
|
|
|
Semaphore pending_sweeper_jobs_semaphore_;
|
|
|
|
bool sequential_sweeping_;
|
|
|
|
// A pointer to the current stack-allocated GC tracer object during a full
|
|
// collection (NULL before and after).
|
|
GCTracer* tracer_;
|
|
|
|
SlotsBufferAllocator slots_buffer_allocator_;
|
|
|
|
SlotsBuffer* migration_slots_buffer_;
|
|
|
|
// Finishes GC, performs heap verification if enabled.
|
|
void Finish();
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Phase 1: Marking live objects.
|
|
//
|
|
// Before: The heap has been prepared for garbage collection by
|
|
// MarkCompactCollector::Prepare() and is otherwise in its
|
|
// normal state.
|
|
//
|
|
// After: Live objects are marked and non-live objects are unmarked.
|
|
|
|
friend class RootMarkingVisitor;
|
|
friend class MarkingVisitor;
|
|
friend class MarkCompactMarkingVisitor;
|
|
friend class CodeMarkingVisitor;
|
|
friend class SharedFunctionInfoMarkingVisitor;
|
|
|
|
// Mark code objects that are active on the stack to prevent them
|
|
// from being flushed.
|
|
void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
|
|
|
|
void PrepareForCodeFlushing();
|
|
|
|
// Marking operations for objects reachable from roots.
|
|
void MarkLiveObjects();
|
|
|
|
void AfterMarking();
|
|
|
|
// Marks the object black and pushes it on the marking stack.
|
|
// This is for non-incremental marking only.
|
|
INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
|
|
|
|
// Marks the object black assuming that it is not yet marked.
|
|
// This is for non-incremental marking only.
|
|
INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
|
|
|
|
// Mark the heap roots and all objects reachable from them.
|
|
void MarkRoots(RootMarkingVisitor* visitor);
|
|
|
|
// Mark the string table specially. References to internalized strings from
|
|
// the string table are weak.
|
|
void MarkStringTable(RootMarkingVisitor* visitor);
|
|
|
|
// Mark objects in implicit references groups if their parent object
|
|
// is marked.
|
|
void MarkImplicitRefGroups();
|
|
|
|
// Mark objects reachable (transitively) from objects in the marking stack
|
|
// or overflowed in the heap.
|
|
void ProcessMarkingDeque();
|
|
|
|
// Mark objects reachable (transitively) from objects in the marking stack
|
|
// or overflowed in the heap. This respects references only considered in
|
|
// the final atomic marking pause including the following:
|
|
// - Processing of objects reachable through Harmony WeakMaps.
|
|
// - Objects reachable due to host application logic like object groups
|
|
// or implicit references' groups.
|
|
void ProcessEphemeralMarking(ObjectVisitor* visitor);
|
|
|
|
// If the call-site of the top optimized code was not prepared for
|
|
// deoptimization, then treat the maps in the code as strong pointers,
|
|
// otherwise a map can die and deoptimize the code.
|
|
void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
|
|
|
|
// Mark objects reachable (transitively) from objects in the marking
|
|
// stack. This function empties the marking stack, but may leave
|
|
// overflowed objects in the heap, in which case the marking stack's
|
|
// overflow flag will be set.
|
|
void EmptyMarkingDeque();
|
|
|
|
// Refill the marking stack with overflowed objects from the heap. This
|
|
// function either leaves the marking stack full or clears the overflow
|
|
// flag on the marking stack.
|
|
void RefillMarkingDeque();
|
|
|
|
// After reachable maps have been marked process per context object
|
|
// literal map caches removing unmarked entries.
|
|
void ProcessMapCaches();
|
|
|
|
// Callback function for telling whether the object *p is an unmarked
|
|
// heap object.
|
|
static bool IsUnmarkedHeapObject(Object** p);
|
|
static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
|
|
|
|
// Map transitions from a live map to a dead map must be killed.
|
|
// We replace them with a null descriptor, with the same key.
|
|
void ClearNonLiveReferences();
|
|
void ClearNonLivePrototypeTransitions(Map* map);
|
|
void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark);
|
|
|
|
void ClearAndDeoptimizeDependentCode(DependentCode* dependent_code);
|
|
void ClearNonLiveDependentCode(DependentCode* dependent_code);
|
|
|
|
// Marking detaches initial maps from SharedFunctionInfo objects
|
|
// to make this reference weak. We need to reattach initial maps
|
|
// back after collection. This is either done during
|
|
// ClearNonLiveTransitions pass or by calling this function.
|
|
void ReattachInitialMaps();
|
|
|
|
// Mark all values associated with reachable keys in weak collections
|
|
// encountered so far. This might push new object or even new weak maps onto
|
|
// the marking stack.
|
|
void ProcessWeakCollections();
|
|
|
|
// After all reachable objects have been marked those weak map entries
|
|
// with an unreachable key are removed from all encountered weak maps.
|
|
// The linked list of all encountered weak maps is destroyed.
|
|
void ClearWeakCollections();
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Phase 2: Sweeping to clear mark bits and free non-live objects for
|
|
// a non-compacting collection.
|
|
//
|
|
// Before: Live objects are marked and non-live objects are unmarked.
|
|
//
|
|
// After: Live objects are unmarked, non-live regions have been added to
|
|
// their space's free list. Active eden semispace is compacted by
|
|
// evacuation.
|
|
//
|
|
|
|
// If we are not compacting the heap, we simply sweep the spaces except
|
|
// for the large object space, clearing mark bits and adding unmarked
|
|
// regions to each space's free list.
|
|
void SweepSpaces();
|
|
|
|
int DiscoverAndPromoteBlackObjectsOnPage(NewSpace* new_space,
|
|
NewSpacePage* p);
|
|
|
|
void EvacuateNewSpace();
|
|
|
|
void EvacuateLiveObjectsFromPage(Page* p);
|
|
|
|
void EvacuatePages();
|
|
|
|
void EvacuateNewSpaceAndCandidates();
|
|
|
|
void SweepSpace(PagedSpace* space, SweeperType sweeper);
|
|
|
|
// Finalizes the parallel sweeping phase. Marks all the pages that were
|
|
// swept in parallel.
|
|
void ParallelSweepSpacesComplete();
|
|
|
|
void ParallelSweepSpaceComplete(PagedSpace* space);
|
|
|
|
#ifdef DEBUG
|
|
friend class MarkObjectVisitor;
|
|
static void VisitObject(HeapObject* obj);
|
|
|
|
friend class UnmarkObjectVisitor;
|
|
static void UnmarkObject(HeapObject* obj);
|
|
#endif
|
|
|
|
Heap* heap_;
|
|
MarkingDeque marking_deque_;
|
|
CodeFlusher* code_flusher_;
|
|
Object* encountered_weak_collections_;
|
|
bool have_code_to_deoptimize_;
|
|
|
|
List<Page*> evacuation_candidates_;
|
|
List<Code*> invalidated_code_;
|
|
|
|
SmartPointer<FreeList> free_list_old_data_space_;
|
|
SmartPointer<FreeList> free_list_old_pointer_space_;
|
|
|
|
friend class Heap;
|
|
};
|
|
|
|
|
|
class MarkBitCellIterator BASE_EMBEDDED {
|
|
public:
|
|
explicit MarkBitCellIterator(MemoryChunk* chunk)
|
|
: chunk_(chunk) {
|
|
last_cell_index_ = Bitmap::IndexToCell(
|
|
Bitmap::CellAlignIndex(
|
|
chunk_->AddressToMarkbitIndex(chunk_->area_end())));
|
|
cell_base_ = chunk_->area_start();
|
|
cell_index_ = Bitmap::IndexToCell(
|
|
Bitmap::CellAlignIndex(
|
|
chunk_->AddressToMarkbitIndex(cell_base_)));
|
|
cells_ = chunk_->markbits()->cells();
|
|
}
|
|
|
|
inline bool Done() { return cell_index_ == last_cell_index_; }
|
|
|
|
inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
|
|
|
|
inline MarkBit::CellType* CurrentCell() {
|
|
ASSERT(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
|
|
chunk_->AddressToMarkbitIndex(cell_base_))));
|
|
return &cells_[cell_index_];
|
|
}
|
|
|
|
inline Address CurrentCellBase() {
|
|
ASSERT(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
|
|
chunk_->AddressToMarkbitIndex(cell_base_))));
|
|
return cell_base_;
|
|
}
|
|
|
|
inline void Advance() {
|
|
cell_index_++;
|
|
cell_base_ += 32 * kPointerSize;
|
|
}
|
|
|
|
private:
|
|
MemoryChunk* chunk_;
|
|
MarkBit::CellType* cells_;
|
|
unsigned int last_cell_index_;
|
|
unsigned int cell_index_;
|
|
Address cell_base_;
|
|
};
|
|
|
|
|
|
class SequentialSweepingScope BASE_EMBEDDED {
|
|
public:
|
|
explicit SequentialSweepingScope(MarkCompactCollector *collector) :
|
|
collector_(collector) {
|
|
collector_->set_sequential_sweeping(true);
|
|
}
|
|
|
|
~SequentialSweepingScope() {
|
|
collector_->set_sequential_sweeping(false);
|
|
}
|
|
|
|
private:
|
|
MarkCompactCollector* collector_;
|
|
};
|
|
|
|
|
|
const char* AllocationSpaceName(AllocationSpace space);
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_MARK_COMPACT_H_
|