v8/src/objects.cc
2013-11-11 15:28:47 +00:00

16540 lines
566 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "allocation-site-scopes.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "codegen.h"
#include "cpu-profiler.h"
#include "debug.h"
#include "deoptimizer.h"
#include "date.h"
#include "elements.h"
#include "execution.h"
#include "full-codegen.h"
#include "hydrogen.h"
#include "isolate-inl.h"
#include "log.h"
#include "objects-inl.h"
#include "objects-visiting.h"
#include "objects-visiting-inl.h"
#include "macro-assembler.h"
#include "mark-compact.h"
#include "safepoint-table.h"
#include "string-stream.h"
#include "utils.h"
#ifdef ENABLE_DISASSEMBLER
#include "disasm.h"
#include "disassembler.h"
#endif
namespace v8 {
namespace internal {
MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor,
Object* value) {
Object* result;
{ MaybeObject* maybe_result =
constructor->GetHeap()->AllocateJSObject(constructor);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
JSValue::cast(result)->set_value(value);
return result;
}
MaybeObject* Object::ToObject(Context* native_context) {
if (IsNumber()) {
return CreateJSValue(native_context->number_function(), this);
} else if (IsBoolean()) {
return CreateJSValue(native_context->boolean_function(), this);
} else if (IsString()) {
return CreateJSValue(native_context->string_function(), this);
}
ASSERT(IsJSObject());
return this;
}
MaybeObject* Object::ToObject(Isolate* isolate) {
if (IsJSReceiver()) {
return this;
} else if (IsNumber()) {
Context* native_context = isolate->context()->native_context();
return CreateJSValue(native_context->number_function(), this);
} else if (IsBoolean()) {
Context* native_context = isolate->context()->native_context();
return CreateJSValue(native_context->boolean_function(), this);
} else if (IsString()) {
Context* native_context = isolate->context()->native_context();
return CreateJSValue(native_context->string_function(), this);
} else if (IsSymbol()) {
Context* native_context = isolate->context()->native_context();
return CreateJSValue(native_context->symbol_function(), this);
}
// Throw a type error.
return Failure::InternalError();
}
bool Object::BooleanValue() {
if (IsBoolean()) return IsTrue();
if (IsSmi()) return Smi::cast(this)->value() != 0;
if (IsUndefined() || IsNull()) return false;
if (IsUndetectableObject()) return false; // Undetectable object is false.
if (IsString()) return String::cast(this)->length() != 0;
if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
return true;
}
void Object::Lookup(Name* name, LookupResult* result) {
Object* holder = NULL;
if (IsJSReceiver()) {
holder = this;
} else {
Context* native_context = result->isolate()->context()->native_context();
if (IsNumber()) {
holder = native_context->number_function()->instance_prototype();
} else if (IsString()) {
holder = native_context->string_function()->instance_prototype();
} else if (IsSymbol()) {
holder = native_context->symbol_function()->instance_prototype();
} else if (IsBoolean()) {
holder = native_context->boolean_function()->instance_prototype();
} else {
result->isolate()->PushStackTraceAndDie(
0xDEAD0000, this, JSReceiver::cast(this)->map(), 0xDEAD0001);
}
}
ASSERT(holder != NULL); // Cannot handle null or undefined.
JSReceiver::cast(holder)->Lookup(name, result);
}
Handle<Object> Object::GetPropertyWithReceiver(
Handle<Object> object,
Handle<Object> receiver,
Handle<Name> name,
PropertyAttributes* attributes) {
LookupResult lookup(name->GetIsolate());
object->Lookup(*name, &lookup);
Handle<Object> result =
GetProperty(object, receiver, &lookup, name, attributes);
ASSERT(*attributes <= ABSENT);
return result;
}
MaybeObject* Object::GetPropertyWithReceiver(Object* receiver,
Name* name,
PropertyAttributes* attributes) {
LookupResult result(name->GetIsolate());
Lookup(name, &result);
MaybeObject* value = GetProperty(receiver, &result, name, attributes);
ASSERT(*attributes <= ABSENT);
return value;
}
bool Object::ToInt32(int32_t* value) {
if (IsSmi()) {
*value = Smi::cast(this)->value();
return true;
}
if (IsHeapNumber()) {
double num = HeapNumber::cast(this)->value();
if (FastI2D(FastD2I(num)) == num) {
*value = FastD2I(num);
return true;
}
}
return false;
}
bool Object::ToUint32(uint32_t* value) {
if (IsSmi()) {
int num = Smi::cast(this)->value();
if (num >= 0) {
*value = static_cast<uint32_t>(num);
return true;
}
}
if (IsHeapNumber()) {
double num = HeapNumber::cast(this)->value();
if (num >= 0 && FastUI2D(FastD2UI(num)) == num) {
*value = FastD2UI(num);
return true;
}
}
return false;
}
template<typename To>
static inline To* CheckedCast(void *from) {
uintptr_t temp = reinterpret_cast<uintptr_t>(from);
ASSERT(temp % sizeof(To) == 0);
return reinterpret_cast<To*>(temp);
}
static MaybeObject* PerformCompare(const BitmaskCompareDescriptor& descriptor,
char* ptr,
Heap* heap) {
uint32_t bitmask = descriptor.bitmask;
uint32_t compare_value = descriptor.compare_value;
uint32_t value;
switch (descriptor.size) {
case 1:
value = static_cast<uint32_t>(*CheckedCast<uint8_t>(ptr));
compare_value &= 0xff;
bitmask &= 0xff;
break;
case 2:
value = static_cast<uint32_t>(*CheckedCast<uint16_t>(ptr));
compare_value &= 0xffff;
bitmask &= 0xffff;
break;
case 4:
value = *CheckedCast<uint32_t>(ptr);
break;
default:
UNREACHABLE();
return NULL;
}
return heap->ToBoolean((bitmask & value) == (bitmask & compare_value));
}
static MaybeObject* PerformCompare(const PointerCompareDescriptor& descriptor,
char* ptr,
Heap* heap) {
uintptr_t compare_value =
reinterpret_cast<uintptr_t>(descriptor.compare_value);
uintptr_t value = *CheckedCast<uintptr_t>(ptr);
return heap->ToBoolean(compare_value == value);
}
static MaybeObject* GetPrimitiveValue(
const PrimitiveValueDescriptor& descriptor,
char* ptr,
Heap* heap) {
int32_t int32_value = 0;
switch (descriptor.data_type) {
case kDescriptorInt8Type:
int32_value = *CheckedCast<int8_t>(ptr);
break;
case kDescriptorUint8Type:
int32_value = *CheckedCast<uint8_t>(ptr);
break;
case kDescriptorInt16Type:
int32_value = *CheckedCast<int16_t>(ptr);
break;
case kDescriptorUint16Type:
int32_value = *CheckedCast<uint16_t>(ptr);
break;
case kDescriptorInt32Type:
int32_value = *CheckedCast<int32_t>(ptr);
break;
case kDescriptorUint32Type: {
uint32_t value = *CheckedCast<uint32_t>(ptr);
return heap->NumberFromUint32(value);
}
case kDescriptorBoolType: {
uint8_t byte = *CheckedCast<uint8_t>(ptr);
return heap->ToBoolean(byte & (0x1 << descriptor.bool_offset));
}
case kDescriptorFloatType: {
float value = *CheckedCast<float>(ptr);
return heap->NumberFromDouble(value);
}
case kDescriptorDoubleType: {
double value = *CheckedCast<double>(ptr);
return heap->NumberFromDouble(value);
}
}
return heap->NumberFromInt32(int32_value);
}
static MaybeObject* GetDeclaredAccessorProperty(Object* receiver,
DeclaredAccessorInfo* info,
Isolate* isolate) {
char* current = reinterpret_cast<char*>(receiver);
DeclaredAccessorDescriptorIterator iterator(info->descriptor());
while (true) {
const DeclaredAccessorDescriptorData* data = iterator.Next();
switch (data->type) {
case kDescriptorReturnObject: {
ASSERT(iterator.Complete());
current = *CheckedCast<char*>(current);
return *CheckedCast<Object*>(current);
}
case kDescriptorPointerDereference:
ASSERT(!iterator.Complete());
current = *reinterpret_cast<char**>(current);
break;
case kDescriptorPointerShift:
ASSERT(!iterator.Complete());
current += data->pointer_shift_descriptor.byte_offset;
break;
case kDescriptorObjectDereference: {
ASSERT(!iterator.Complete());
Object* object = CheckedCast<Object>(current);
int field = data->object_dereference_descriptor.internal_field;
Object* smi = JSObject::cast(object)->GetInternalField(field);
ASSERT(smi->IsSmi());
current = reinterpret_cast<char*>(smi);
break;
}
case kDescriptorBitmaskCompare:
ASSERT(iterator.Complete());
return PerformCompare(data->bitmask_compare_descriptor,
current,
isolate->heap());
case kDescriptorPointerCompare:
ASSERT(iterator.Complete());
return PerformCompare(data->pointer_compare_descriptor,
current,
isolate->heap());
case kDescriptorPrimitiveValue:
ASSERT(iterator.Complete());
return GetPrimitiveValue(data->primitive_value_descriptor,
current,
isolate->heap());
}
}
UNREACHABLE();
return NULL;
}
Handle<FixedArray> JSObject::EnsureWritableFastElements(
Handle<JSObject> object) {
CALL_HEAP_FUNCTION(object->GetIsolate(),
object->EnsureWritableFastElements(),
FixedArray);
}
Handle<Object> JSObject::GetPropertyWithCallback(Handle<JSObject> object,
Handle<Object> receiver,
Handle<Object> structure,
Handle<Name> name) {
Isolate* isolate = name->GetIsolate();
// To accommodate both the old and the new api we switch on the
// data structure used to store the callbacks. Eventually foreign
// callbacks should be phased out.
if (structure->IsForeign()) {
AccessorDescriptor* callback =
reinterpret_cast<AccessorDescriptor*>(
Handle<Foreign>::cast(structure)->foreign_address());
CALL_HEAP_FUNCTION(isolate,
(callback->getter)(isolate, *receiver, callback->data),
Object);
}
// api style callbacks.
if (structure->IsAccessorInfo()) {
Handle<AccessorInfo> accessor_info = Handle<AccessorInfo>::cast(structure);
if (!accessor_info->IsCompatibleReceiver(*receiver)) {
Handle<Object> args[2] = { name, receiver };
Handle<Object> error =
isolate->factory()->NewTypeError("incompatible_method_receiver",
HandleVector(args,
ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>::null();
}
// TODO(rossberg): Handling symbols in the API requires changing the API,
// so we do not support it for now.
if (name->IsSymbol()) return isolate->factory()->undefined_value();
if (structure->IsDeclaredAccessorInfo()) {
CALL_HEAP_FUNCTION(
isolate,
GetDeclaredAccessorProperty(*receiver,
DeclaredAccessorInfo::cast(*structure),
isolate),
Object);
}
Handle<ExecutableAccessorInfo> data =
Handle<ExecutableAccessorInfo>::cast(structure);
v8::AccessorGetterCallback call_fun =
v8::ToCData<v8::AccessorGetterCallback>(data->getter());
if (call_fun == NULL) return isolate->factory()->undefined_value();
HandleScope scope(isolate);
Handle<JSObject> self = Handle<JSObject>::cast(receiver);
Handle<String> key = Handle<String>::cast(name);
LOG(isolate, ApiNamedPropertyAccess("load", *self, *name));
PropertyCallbackArguments args(isolate, data->data(), *self, *object);
v8::Handle<v8::Value> result =
args.Call(call_fun, v8::Utils::ToLocal(key));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (result.IsEmpty()) {
return isolate->factory()->undefined_value();
}
Handle<Object> return_value = v8::Utils::OpenHandle(*result);
return_value->VerifyApiCallResultType();
return scope.CloseAndEscape(return_value);
}
// __defineGetter__ callback
Handle<Object> getter(Handle<AccessorPair>::cast(structure)->getter(),
isolate);
if (getter->IsSpecFunction()) {
// TODO(rossberg): nicer would be to cast to some JSCallable here...
CALL_HEAP_FUNCTION(
isolate,
object->GetPropertyWithDefinedGetter(*receiver,
JSReceiver::cast(*getter)),
Object);
}
// Getter is not a function.
return isolate->factory()->undefined_value();
}
MaybeObject* JSProxy::GetPropertyWithHandler(Object* receiver_raw,
Name* name_raw) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<Object> receiver(receiver_raw, isolate);
Handle<Object> name(name_raw, isolate);
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) return isolate->heap()->undefined_value();
Handle<Object> args[] = { receiver, name };
Handle<Object> result = CallTrap(
"get", isolate->derived_get_trap(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return Failure::Exception();
return *result;
}
Handle<Object> Object::GetProperty(Handle<Object> object,
Handle<Name> name) {
// TODO(rossberg): The index test should not be here but in the GetProperty
// method (or somewhere else entirely). Needs more global clean-up.
uint32_t index;
Isolate* isolate = name->GetIsolate();
if (name->AsArrayIndex(&index))
return GetElement(isolate, object, index);
CALL_HEAP_FUNCTION(isolate, object->GetProperty(*name), Object);
}
Handle<Object> Object::GetElement(Isolate* isolate,
Handle<Object> object,
uint32_t index) {
CALL_HEAP_FUNCTION(isolate, object->GetElement(isolate, index), Object);
}
MaybeObject* JSProxy::GetElementWithHandler(Object* receiver,
uint32_t index) {
String* name;
MaybeObject* maybe = GetHeap()->Uint32ToString(index);
if (!maybe->To<String>(&name)) return maybe;
return GetPropertyWithHandler(receiver, name);
}
Handle<Object> JSProxy::SetElementWithHandler(Handle<JSProxy> proxy,
Handle<JSReceiver> receiver,
uint32_t index,
Handle<Object> value,
StrictModeFlag strict_mode) {
Isolate* isolate = proxy->GetIsolate();
Handle<String> name = isolate->factory()->Uint32ToString(index);
return SetPropertyWithHandler(
proxy, receiver, name, value, NONE, strict_mode);
}
bool JSProxy::HasElementWithHandler(Handle<JSProxy> proxy, uint32_t index) {
Isolate* isolate = proxy->GetIsolate();
Handle<String> name = isolate->factory()->Uint32ToString(index);
return HasPropertyWithHandler(proxy, name);
}
MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver,
JSReceiver* getter) {
Isolate* isolate = getter->GetIsolate();
HandleScope scope(isolate);
Handle<JSReceiver> fun(getter);
Handle<Object> self(receiver, isolate);
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug* debug = isolate->debug();
// Handle stepping into a getter if step into is active.
// TODO(rossberg): should this apply to getters that are function proxies?
if (debug->StepInActive() && fun->IsJSFunction()) {
debug->HandleStepIn(
Handle<JSFunction>::cast(fun), Handle<Object>::null(), 0, false);
}
#endif
bool has_pending_exception;
Handle<Object> result = Execution::Call(
isolate, fun, self, 0, NULL, &has_pending_exception, true);
// Check for pending exception and return the result.
if (has_pending_exception) return Failure::Exception();
return *result;
}
// Only deal with CALLBACKS and INTERCEPTOR
Handle<Object> JSObject::GetPropertyWithFailedAccessCheck(
Handle<JSObject> object,
Handle<Object> receiver,
LookupResult* result,
Handle<Name> name,
PropertyAttributes* attributes) {
Isolate* isolate = name->GetIsolate();
if (result->IsProperty()) {
switch (result->type()) {
case CALLBACKS: {
// Only allow API accessors.
Handle<Object> callback_obj(result->GetCallbackObject(), isolate);
if (callback_obj->IsAccessorInfo()) {
if (!AccessorInfo::cast(*callback_obj)->all_can_read()) break;
*attributes = result->GetAttributes();
// Fall through to GetPropertyWithCallback.
} else if (callback_obj->IsAccessorPair()) {
if (!AccessorPair::cast(*callback_obj)->all_can_read()) break;
// Fall through to GetPropertyWithCallback.
} else {
break;
}
Handle<JSObject> holder(result->holder(), isolate);
return GetPropertyWithCallback(holder, receiver, callback_obj, name);
}
case NORMAL:
case FIELD:
case CONSTANT: {
// Search ALL_CAN_READ accessors in prototype chain.
LookupResult r(isolate);
result->holder()->LookupRealNamedPropertyInPrototypes(*name, &r);
if (r.IsProperty()) {
return GetPropertyWithFailedAccessCheck(
object, receiver, &r, name, attributes);
}
break;
}
case INTERCEPTOR: {
// If the object has an interceptor, try real named properties.
// No access check in GetPropertyAttributeWithInterceptor.
LookupResult r(isolate);
result->holder()->LookupRealNamedProperty(*name, &r);
if (r.IsProperty()) {
return GetPropertyWithFailedAccessCheck(
object, receiver, &r, name, attributes);
}
break;
}
default:
UNREACHABLE();
}
}
// No accessible property found.
*attributes = ABSENT;
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_GET);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return isolate->factory()->undefined_value();
}
PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck(
Object* receiver,
LookupResult* result,
Name* name,
bool continue_search) {
if (result->IsProperty()) {
switch (result->type()) {
case CALLBACKS: {
// Only allow API accessors.
Object* obj = result->GetCallbackObject();
if (obj->IsAccessorInfo()) {
AccessorInfo* info = AccessorInfo::cast(obj);
if (info->all_can_read()) {
return result->GetAttributes();
}
} else if (obj->IsAccessorPair()) {
AccessorPair* pair = AccessorPair::cast(obj);
if (pair->all_can_read()) {
return result->GetAttributes();
}
}
break;
}
case NORMAL:
case FIELD:
case CONSTANT: {
if (!continue_search) break;
// Search ALL_CAN_READ accessors in prototype chain.
LookupResult r(GetIsolate());
result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
if (r.IsProperty()) {
return GetPropertyAttributeWithFailedAccessCheck(receiver,
&r,
name,
continue_search);
}
break;
}
case INTERCEPTOR: {
// If the object has an interceptor, try real named properties.
// No access check in GetPropertyAttributeWithInterceptor.
LookupResult r(GetIsolate());
if (continue_search) {
result->holder()->LookupRealNamedProperty(name, &r);
} else {
result->holder()->LocalLookupRealNamedProperty(name, &r);
}
if (!r.IsFound()) break;
return GetPropertyAttributeWithFailedAccessCheck(receiver,
&r,
name,
continue_search);
}
case HANDLER:
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
}
}
GetIsolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
return ABSENT;
}
Object* JSObject::GetNormalizedProperty(LookupResult* result) {
ASSERT(!HasFastProperties());
Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
if (IsGlobalObject()) {
value = PropertyCell::cast(value)->value();
}
ASSERT(!value->IsPropertyCell() && !value->IsCell());
return value;
}
void JSObject::SetNormalizedProperty(Handle<JSObject> object,
LookupResult* result,
Handle<Object> value) {
ASSERT(!object->HasFastProperties());
NameDictionary* property_dictionary = object->property_dictionary();
if (object->IsGlobalObject()) {
Handle<PropertyCell> cell(PropertyCell::cast(
property_dictionary->ValueAt(result->GetDictionaryEntry())));
PropertyCell::SetValueInferType(cell, value);
} else {
property_dictionary->ValueAtPut(result->GetDictionaryEntry(), *value);
}
}
// TODO(mstarzinger): Temporary wrapper until handlified.
static Handle<NameDictionary> NameDictionaryAdd(Handle<NameDictionary> dict,
Handle<Name> name,
Handle<Object> value,
PropertyDetails details) {
CALL_HEAP_FUNCTION(dict->GetIsolate(),
dict->Add(*name, *value, details),
NameDictionary);
}
void JSObject::SetNormalizedProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyDetails details) {
ASSERT(!object->HasFastProperties());
Handle<NameDictionary> property_dictionary(object->property_dictionary());
if (!name->IsUniqueName()) {
name = object->GetIsolate()->factory()->InternalizedStringFromString(
Handle<String>::cast(name));
}
int entry = property_dictionary->FindEntry(*name);
if (entry == NameDictionary::kNotFound) {
Handle<Object> store_value = value;
if (object->IsGlobalObject()) {
store_value = object->GetIsolate()->factory()->NewPropertyCell(value);
}
property_dictionary =
NameDictionaryAdd(property_dictionary, name, store_value, details);
object->set_properties(*property_dictionary);
return;
}
PropertyDetails original_details = property_dictionary->DetailsAt(entry);
int enumeration_index;
// Preserve the enumeration index unless the property was deleted.
if (original_details.IsDeleted()) {
enumeration_index = property_dictionary->NextEnumerationIndex();
property_dictionary->SetNextEnumerationIndex(enumeration_index + 1);
} else {
enumeration_index = original_details.dictionary_index();
ASSERT(enumeration_index > 0);
}
details = PropertyDetails(
details.attributes(), details.type(), enumeration_index);
if (object->IsGlobalObject()) {
Handle<PropertyCell> cell(
PropertyCell::cast(property_dictionary->ValueAt(entry)));
PropertyCell::SetValueInferType(cell, value);
// Please note we have to update the property details.
property_dictionary->DetailsAtPut(entry, details);
} else {
property_dictionary->SetEntry(entry, *name, *value, details);
}
}
// TODO(mstarzinger): Temporary wrapper until target is handlified.
Handle<NameDictionary> NameDictionaryShrink(Handle<NameDictionary> dict,
Handle<Name> name) {
CALL_HEAP_FUNCTION(dict->GetIsolate(), dict->Shrink(*name), NameDictionary);
}
Handle<Object> JSObject::DeleteNormalizedProperty(Handle<JSObject> object,
Handle<Name> name,
DeleteMode mode) {
ASSERT(!object->HasFastProperties());
Isolate* isolate = object->GetIsolate();
Handle<NameDictionary> dictionary(object->property_dictionary());
int entry = dictionary->FindEntry(*name);
if (entry != NameDictionary::kNotFound) {
// If we have a global object set the cell to the hole.
if (object->IsGlobalObject()) {
PropertyDetails details = dictionary->DetailsAt(entry);
if (details.IsDontDelete()) {
if (mode != FORCE_DELETION) return isolate->factory()->false_value();
// When forced to delete global properties, we have to make a
// map change to invalidate any ICs that think they can load
// from the DontDelete cell without checking if it contains
// the hole value.
Handle<Map> new_map = Map::CopyDropDescriptors(handle(object->map()));
ASSERT(new_map->is_dictionary_map());
object->set_map(*new_map);
}
Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
Handle<Object> value = isolate->factory()->the_hole_value();
PropertyCell::SetValueInferType(cell, value);
dictionary->DetailsAtPut(entry, details.AsDeleted());
} else {
Handle<Object> deleted(dictionary->DeleteProperty(entry, mode), isolate);
if (*deleted == isolate->heap()->true_value()) {
Handle<NameDictionary> new_properties =
NameDictionaryShrink(dictionary, name);
object->set_properties(*new_properties);
}
return deleted;
}
}
return isolate->factory()->true_value();
}
bool JSObject::IsDirty() {
Object* cons_obj = map()->constructor();
if (!cons_obj->IsJSFunction())
return true;
JSFunction* fun = JSFunction::cast(cons_obj);
if (!fun->shared()->IsApiFunction())
return true;
// If the object is fully fast case and has the same map it was
// created with then no changes can have been made to it.
return map() != fun->initial_map()
|| !HasFastObjectElements()
|| !HasFastProperties();
}
Handle<Object> Object::GetProperty(Handle<Object> object,
Handle<Object> receiver,
LookupResult* result,
Handle<Name> key,
PropertyAttributes* attributes) {
Isolate* isolate = result->isolate();
CALL_HEAP_FUNCTION(
isolate,
object->GetProperty(*receiver, result, *key, attributes),
Object);
}
MaybeObject* Object::GetPropertyOrFail(Handle<Object> object,
Handle<Object> receiver,
LookupResult* result,
Handle<Name> key,
PropertyAttributes* attributes) {
Isolate* isolate = result->isolate();
CALL_HEAP_FUNCTION_PASS_EXCEPTION(
isolate,
object->GetProperty(*receiver, result, *key, attributes));
}
// TODO(yangguo): handlify this and get rid of.
MaybeObject* Object::GetProperty(Object* receiver,
LookupResult* result,
Name* name,
PropertyAttributes* attributes) {
Isolate* isolate = name->GetIsolate();
Heap* heap = isolate->heap();
#ifdef DEBUG
// TODO(mstarzinger): Only because of the AssertNoContextChange, drop as soon
// as this method has been fully handlified.
HandleScope scope(isolate);
#endif
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
// Traverse the prototype chain from the current object (this) to
// the holder and check for access rights. This avoids traversing the
// objects more than once in case of interceptors, because the
// holder will always be the interceptor holder and the search may
// only continue with a current object just after the interceptor
// holder in the prototype chain.
// Proxy handlers do not use the proxy's prototype, so we can skip this.
if (!result->IsHandler()) {
Object* last = result->IsProperty()
? result->holder()
: Object::cast(heap->null_value());
ASSERT(this != this->GetPrototype(isolate));
for (Object* current = this;
true;
current = current->GetPrototype(isolate)) {
if (current->IsAccessCheckNeeded()) {
// Check if we're allowed to read from the current object. Note
// that even though we may not actually end up loading the named
// property from the current object, we still check that we have
// access to it.
JSObject* checked = JSObject::cast(current);
if (!isolate->MayNamedAccess(checked, name, v8::ACCESS_GET)) {
HandleScope scope(isolate);
Handle<Object> value = JSObject::GetPropertyWithFailedAccessCheck(
handle(checked, isolate),
handle(receiver, isolate),
result,
handle(name, isolate),
attributes);
RETURN_IF_EMPTY_HANDLE(isolate, value);
return *value;
}
}
// Stop traversing the chain once we reach the last object in the
// chain; either the holder of the result or null in case of an
// absent property.
if (current == last) break;
}
}
if (!result->IsProperty()) {
*attributes = ABSENT;
return heap->undefined_value();
}
*attributes = result->GetAttributes();
Object* value;
switch (result->type()) {
case NORMAL:
value = result->holder()->GetNormalizedProperty(result);
ASSERT(!value->IsTheHole() || result->IsReadOnly());
return value->IsTheHole() ? heap->undefined_value() : value;
case FIELD: {
MaybeObject* maybe_result = result->holder()->FastPropertyAt(
result->representation(),
result->GetFieldIndex().field_index());
if (!maybe_result->To(&value)) return maybe_result;
ASSERT(!value->IsTheHole() || result->IsReadOnly());
return value->IsTheHole() ? heap->undefined_value() : value;
}
case CONSTANT:
return result->GetConstant();
case CALLBACKS: {
HandleScope scope(isolate);
Handle<Object> value = JSObject::GetPropertyWithCallback(
handle(result->holder(), isolate),
handle(receiver, isolate),
handle(result->GetCallbackObject(), isolate),
handle(name, isolate));
RETURN_IF_EMPTY_HANDLE(isolate, value);
return *value;
}
case HANDLER:
return result->proxy()->GetPropertyWithHandler(receiver, name);
case INTERCEPTOR: {
HandleScope scope(isolate);
Handle<Object> value = JSObject::GetPropertyWithInterceptor(
handle(result->holder(), isolate),
handle(receiver, isolate),
handle(name, isolate),
attributes);
RETURN_IF_EMPTY_HANDLE(isolate, value);
return *value;
}
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
break;
}
UNREACHABLE();
return NULL;
}
MaybeObject* Object::GetElementWithReceiver(Isolate* isolate,
Object* receiver,
uint32_t index) {
Heap* heap = isolate->heap();
Object* holder = this;
// Iterate up the prototype chain until an element is found or the null
// prototype is encountered.
for (holder = this;
holder != heap->null_value();
holder = holder->GetPrototype(isolate)) {
if (!holder->IsJSObject()) {
Context* native_context = isolate->context()->native_context();
if (holder->IsNumber()) {
holder = native_context->number_function()->instance_prototype();
} else if (holder->IsString()) {
holder = native_context->string_function()->instance_prototype();
} else if (holder->IsSymbol()) {
holder = native_context->symbol_function()->instance_prototype();
} else if (holder->IsBoolean()) {
holder = native_context->boolean_function()->instance_prototype();
} else if (holder->IsJSProxy()) {
return JSProxy::cast(holder)->GetElementWithHandler(receiver, index);
} else {
// Undefined and null have no indexed properties.
ASSERT(holder->IsUndefined() || holder->IsNull());
return heap->undefined_value();
}
}
// Inline the case for JSObjects. Doing so significantly improves the
// performance of fetching elements where checking the prototype chain is
// necessary.
JSObject* js_object = JSObject::cast(holder);
// Check access rights if needed.
if (js_object->IsAccessCheckNeeded()) {
Isolate* isolate = heap->isolate();
if (!isolate->MayIndexedAccess(js_object, index, v8::ACCESS_GET)) {
isolate->ReportFailedAccessCheck(js_object, v8::ACCESS_GET);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return heap->undefined_value();
}
}
if (js_object->HasIndexedInterceptor()) {
return js_object->GetElementWithInterceptor(receiver, index);
}
if (js_object->elements() != heap->empty_fixed_array()) {
MaybeObject* result = js_object->GetElementsAccessor()->Get(
receiver, js_object, index);
if (result != heap->the_hole_value()) return result;
}
}
return heap->undefined_value();
}
Object* Object::GetPrototype(Isolate* isolate) {
if (IsSmi()) {
Context* context = isolate->context()->native_context();
return context->number_function()->instance_prototype();
}
HeapObject* heap_object = HeapObject::cast(this);
// The object is either a number, a string, a boolean,
// a real JS object, or a Harmony proxy.
if (heap_object->IsJSReceiver()) {
return heap_object->map()->prototype();
}
Context* context = isolate->context()->native_context();
if (heap_object->IsHeapNumber()) {
return context->number_function()->instance_prototype();
}
if (heap_object->IsString()) {
return context->string_function()->instance_prototype();
}
if (heap_object->IsSymbol()) {
return context->symbol_function()->instance_prototype();
}
if (heap_object->IsBoolean()) {
return context->boolean_function()->instance_prototype();
} else {
return isolate->heap()->null_value();
}
}
Object* Object::GetHash() {
// The object is either a number, a name, an odd-ball,
// a real JS object, or a Harmony proxy.
if (IsNumber()) {
uint32_t hash = ComputeLongHash(double_to_uint64(Number()));
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (IsName()) {
uint32_t hash = Name::cast(this)->Hash();
return Smi::FromInt(hash);
}
if (IsOddball()) {
uint32_t hash = Oddball::cast(this)->to_string()->Hash();
return Smi::FromInt(hash);
}
ASSERT(IsJSReceiver());
return JSReceiver::cast(this)->GetIdentityHash();
}
Handle<Object> Object::GetOrCreateHash(Handle<Object> object,
Isolate* isolate) {
Handle<Object> hash(object->GetHash(), isolate);
if (hash->IsSmi())
return hash;
ASSERT(object->IsJSReceiver());
return JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver>::cast(object));
}
bool Object::SameValue(Object* other) {
if (other == this) return true;
// The object is either a number, a name, an odd-ball,
// a real JS object, or a Harmony proxy.
if (IsNumber() && other->IsNumber()) {
double this_value = Number();
double other_value = other->Number();
bool equal = this_value == other_value;
// SameValue(NaN, NaN) is true.
if (!equal) return std::isnan(this_value) && std::isnan(other_value);
// SameValue(0.0, -0.0) is false.
return (this_value != 0) || ((1 / this_value) == (1 / other_value));
}
if (IsString() && other->IsString()) {
return String::cast(this)->Equals(String::cast(other));
}
return false;
}
void Object::ShortPrint(FILE* out) {
HeapStringAllocator allocator;
StringStream accumulator(&allocator);
ShortPrint(&accumulator);
accumulator.OutputToFile(out);
}
void Object::ShortPrint(StringStream* accumulator) {
if (IsSmi()) {
Smi::cast(this)->SmiPrint(accumulator);
} else if (IsFailure()) {
Failure::cast(this)->FailurePrint(accumulator);
} else {
HeapObject::cast(this)->HeapObjectShortPrint(accumulator);
}
}
void Smi::SmiPrint(FILE* out) {
PrintF(out, "%d", value());
}
void Smi::SmiPrint(StringStream* accumulator) {
accumulator->Add("%d", value());
}
void Failure::FailurePrint(StringStream* accumulator) {
accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value()));
}
void Failure::FailurePrint(FILE* out) {
PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value()));
}
// Should a word be prefixed by 'a' or 'an' in order to read naturally in
// English? Returns false for non-ASCII or words that don't start with
// a capital letter. The a/an rule follows pronunciation in English.
// We don't use the BBC's overcorrect "an historic occasion" though if
// you speak a dialect you may well say "an 'istoric occasion".
static bool AnWord(String* str) {
if (str->length() == 0) return false; // A nothing.
int c0 = str->Get(0);
int c1 = str->length() > 1 ? str->Get(1) : 0;
if (c0 == 'U') {
if (c1 > 'Z') {
return true; // An Umpire, but a UTF8String, a U.
}
} else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
return true; // An Ape, an ABCBook.
} else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
(c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
c0 == 'S' || c0 == 'X')) {
return true; // An MP3File, an M.
}
return false;
}
MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) {
#ifdef DEBUG
// Do not attempt to flatten in debug mode when allocation is not
// allowed. This is to avoid an assertion failure when allocating.
// Flattening strings is the only case where we always allow
// allocation because no GC is performed if the allocation fails.
if (!AllowHeapAllocation::IsAllowed()) return this;
#endif
Heap* heap = GetHeap();
switch (StringShape(this).representation_tag()) {
case kConsStringTag: {
ConsString* cs = ConsString::cast(this);
if (cs->second()->length() == 0) {
return cs->first();
}
// There's little point in putting the flat string in new space if the
// cons string is in old space. It can never get GCed until there is
// an old space GC.
PretenureFlag tenure = heap->InNewSpace(this) ? pretenure : TENURED;
int len = length();
Object* object;
String* result;
if (IsOneByteRepresentation()) {
{ MaybeObject* maybe_object =
heap->AllocateRawOneByteString(len, tenure);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
result = String::cast(object);
String* first = cs->first();
int first_length = first->length();
uint8_t* dest = SeqOneByteString::cast(result)->GetChars();
WriteToFlat(first, dest, 0, first_length);
String* second = cs->second();
WriteToFlat(second,
dest + first_length,
0,
len - first_length);
} else {
{ MaybeObject* maybe_object =
heap->AllocateRawTwoByteString(len, tenure);
if (!maybe_object->ToObject(&object)) return maybe_object;
}
result = String::cast(object);
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
String* first = cs->first();
int first_length = first->length();
WriteToFlat(first, dest, 0, first_length);
String* second = cs->second();
WriteToFlat(second,
dest + first_length,
0,
len - first_length);
}
cs->set_first(result);
cs->set_second(heap->empty_string(), SKIP_WRITE_BARRIER);
return result;
}
default:
return this;
}
}
bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
// Externalizing twice leaks the external resource, so it's
// prohibited by the API.
ASSERT(!this->IsExternalString());
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
// Assert that the resource and the string are equivalent.
ASSERT(static_cast<size_t>(this->length()) == resource->length());
ScopedVector<uc16> smart_chars(this->length());
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
ASSERT(memcmp(smart_chars.start(),
resource->data(),
resource->length() * sizeof(smart_chars[0])) == 0);
}
#endif // DEBUG
Heap* heap = GetHeap();
int size = this->Size(); // Byte size of the original string.
if (size < ExternalString::kShortSize) {
return false;
}
bool is_ascii = this->IsOneByteRepresentation();
bool is_internalized = this->IsInternalizedString();
// Morph the object to an external string by adjusting the map and
// reinitializing the fields.
if (size >= ExternalString::kSize) {
this->set_map_no_write_barrier(
is_internalized
? (is_ascii
? heap->external_internalized_string_with_one_byte_data_map()
: heap->external_internalized_string_map())
: (is_ascii
? heap->external_string_with_one_byte_data_map()
: heap->external_string_map()));
} else {
this->set_map_no_write_barrier(
is_internalized
? (is_ascii
? heap->
short_external_internalized_string_with_one_byte_data_map()
: heap->short_external_internalized_string_map())
: (is_ascii
? heap->short_external_string_with_one_byte_data_map()
: heap->short_external_string_map()));
}
ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
self->set_resource(resource);
if (is_internalized) self->Hash(); // Force regeneration of the hash value.
// Fill the remainder of the string with dead wood.
int new_size = this->Size(); // Byte size of the external String object.
heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
if (Marking::IsBlack(Marking::MarkBitFrom(this))) {
MemoryChunk::IncrementLiveBytesFromMutator(this->address(),
new_size - size);
}
return true;
}
bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) {
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
// Assert that the resource and the string are equivalent.
ASSERT(static_cast<size_t>(this->length()) == resource->length());
if (this->IsTwoByteRepresentation()) {
ScopedVector<uint16_t> smart_chars(this->length());
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
ASSERT(String::IsOneByte(smart_chars.start(), this->length()));
}
ScopedVector<char> smart_chars(this->length());
String::WriteToFlat(this, smart_chars.start(), 0, this->length());
ASSERT(memcmp(smart_chars.start(),
resource->data(),
resource->length() * sizeof(smart_chars[0])) == 0);
}
#endif // DEBUG
Heap* heap = GetHeap();
int size = this->Size(); // Byte size of the original string.
if (size < ExternalString::kShortSize) {
return false;
}
bool is_internalized = this->IsInternalizedString();
// Morph the object to an external string by adjusting the map and
// reinitializing the fields. Use short version if space is limited.
if (size >= ExternalString::kSize) {
this->set_map_no_write_barrier(
is_internalized ? heap->external_ascii_internalized_string_map()
: heap->external_ascii_string_map());
} else {
this->set_map_no_write_barrier(
is_internalized ? heap->short_external_ascii_internalized_string_map()
: heap->short_external_ascii_string_map());
}
ExternalAsciiString* self = ExternalAsciiString::cast(this);
self->set_resource(resource);
if (is_internalized) self->Hash(); // Force regeneration of the hash value.
// Fill the remainder of the string with dead wood.
int new_size = this->Size(); // Byte size of the external String object.
heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
if (Marking::IsBlack(Marking::MarkBitFrom(this))) {
MemoryChunk::IncrementLiveBytesFromMutator(this->address(),
new_size - size);
}
return true;
}
void String::StringShortPrint(StringStream* accumulator) {
int len = length();
if (len > kMaxShortPrintLength) {
accumulator->Add("<Very long string[%u]>", len);
return;
}
if (!LooksValid()) {
accumulator->Add("<Invalid String>");
return;
}
ConsStringIteratorOp op;
StringCharacterStream stream(this, &op);
bool truncated = false;
if (len > kMaxShortPrintLength) {
len = kMaxShortPrintLength;
truncated = true;
}
bool ascii = true;
for (int i = 0; i < len; i++) {
uint16_t c = stream.GetNext();
if (c < 32 || c >= 127) {
ascii = false;
}
}
stream.Reset(this);
if (ascii) {
accumulator->Add("<String[%u]: ", length());
for (int i = 0; i < len; i++) {
accumulator->Put(static_cast<char>(stream.GetNext()));
}
accumulator->Put('>');
} else {
// Backslash indicates that the string contains control
// characters and that backslashes are therefore escaped.
accumulator->Add("<String[%u]\\: ", length());
for (int i = 0; i < len; i++) {
uint16_t c = stream.GetNext();
if (c == '\n') {
accumulator->Add("\\n");
} else if (c == '\r') {
accumulator->Add("\\r");
} else if (c == '\\') {
accumulator->Add("\\\\");
} else if (c < 32 || c > 126) {
accumulator->Add("\\x%02x", c);
} else {
accumulator->Put(static_cast<char>(c));
}
}
if (truncated) {
accumulator->Put('.');
accumulator->Put('.');
accumulator->Put('.');
}
accumulator->Put('>');
}
return;
}
void JSObject::JSObjectShortPrint(StringStream* accumulator) {
switch (map()->instance_type()) {
case JS_ARRAY_TYPE: {
double length = JSArray::cast(this)->length()->IsUndefined()
? 0
: JSArray::cast(this)->length()->Number();
accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
break;
}
case JS_WEAK_MAP_TYPE: {
accumulator->Add("<JS WeakMap>");
break;
}
case JS_WEAK_SET_TYPE: {
accumulator->Add("<JS WeakSet>");
break;
}
case JS_REGEXP_TYPE: {
accumulator->Add("<JS RegExp>");
break;
}
case JS_FUNCTION_TYPE: {
JSFunction* function = JSFunction::cast(this);
Object* fun_name = function->shared()->DebugName();
bool printed = false;
if (fun_name->IsString()) {
String* str = String::cast(fun_name);
if (str->length() > 0) {
accumulator->Add("<JS Function ");
accumulator->Put(str);
printed = true;
}
}
if (!printed) {
accumulator->Add("<JS Function");
}
accumulator->Add(" (SharedFunctionInfo %p)",
reinterpret_cast<void*>(function->shared()));
accumulator->Put('>');
break;
}
case JS_GENERATOR_OBJECT_TYPE: {
accumulator->Add("<JS Generator>");
break;
}
case JS_MODULE_TYPE: {
accumulator->Add("<JS Module>");
break;
}
// All other JSObjects are rather similar to each other (JSObject,
// JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
default: {
Map* map_of_this = map();
Heap* heap = GetHeap();
Object* constructor = map_of_this->constructor();
bool printed = false;
if (constructor->IsHeapObject() &&
!heap->Contains(HeapObject::cast(constructor))) {
accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
} else {
bool global_object = IsJSGlobalProxy();
if (constructor->IsJSFunction()) {
if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
} else {
Object* constructor_name =
JSFunction::cast(constructor)->shared()->name();
if (constructor_name->IsString()) {
String* str = String::cast(constructor_name);
if (str->length() > 0) {
bool vowel = AnWord(str);
accumulator->Add("<%sa%s ",
global_object ? "Global Object: " : "",
vowel ? "n" : "");
accumulator->Put(str);
accumulator->Add(" with %smap %p",
map_of_this->is_deprecated() ? "deprecated " : "",
map_of_this);
printed = true;
}
}
}
}
if (!printed) {
accumulator->Add("<JS %sObject", global_object ? "Global " : "");
}
}
if (IsJSValue()) {
accumulator->Add(" value = ");
JSValue::cast(this)->value()->ShortPrint(accumulator);
}
accumulator->Put('>');
break;
}
}
}
void JSObject::PrintElementsTransition(
FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements,
ElementsKind to_kind, FixedArrayBase* to_elements) {
if (from_kind != to_kind) {
PrintF(file, "elements transition [");
PrintElementsKind(file, from_kind);
PrintF(file, " -> ");
PrintElementsKind(file, to_kind);
PrintF(file, "] in ");
JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
PrintF(file, " for ");
ShortPrint(file);
PrintF(file, " from ");
from_elements->ShortPrint(file);
PrintF(file, " to ");
to_elements->ShortPrint(file);
PrintF(file, "\n");
}
}
void Map::PrintGeneralization(FILE* file,
const char* reason,
int modify_index,
int split,
int descriptors,
bool constant_to_field,
Representation old_representation,
Representation new_representation) {
PrintF(file, "[generalizing ");
constructor_name()->PrintOn(file);
PrintF(file, "] ");
String::cast(instance_descriptors()->GetKey(modify_index))->PrintOn(file);
if (constant_to_field) {
PrintF(file, ":c->f");
} else {
PrintF(file, ":%s->%s",
old_representation.Mnemonic(),
new_representation.Mnemonic());
}
PrintF(file, " (");
if (strlen(reason) > 0) {
PrintF(file, "%s", reason);
} else {
PrintF(file, "+%i maps", descriptors - split);
}
PrintF(file, ") [");
JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
PrintF(file, "]\n");
}
void JSObject::PrintInstanceMigration(FILE* file,
Map* original_map,
Map* new_map) {
PrintF(file, "[migrating ");
map()->constructor_name()->PrintOn(file);
PrintF(file, "] ");
DescriptorArray* o = original_map->instance_descriptors();
DescriptorArray* n = new_map->instance_descriptors();
for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) {
Representation o_r = o->GetDetails(i).representation();
Representation n_r = n->GetDetails(i).representation();
if (!o_r.Equals(n_r)) {
String::cast(o->GetKey(i))->PrintOn(file);
PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic());
} else if (o->GetDetails(i).type() == CONSTANT &&
n->GetDetails(i).type() == FIELD) {
Name* name = o->GetKey(i);
if (name->IsString()) {
String::cast(name)->PrintOn(file);
} else {
PrintF(file, "???");
}
PrintF(file, " ");
}
}
PrintF(file, "\n");
}
void HeapObject::HeapObjectShortPrint(StringStream* accumulator) {
Heap* heap = GetHeap();
if (!heap->Contains(this)) {
accumulator->Add("!!!INVALID POINTER!!!");
return;
}
if (!heap->Contains(map())) {
accumulator->Add("!!!INVALID MAP!!!");
return;
}
accumulator->Add("%p ", this);
if (IsString()) {
String::cast(this)->StringShortPrint(accumulator);
return;
}
if (IsJSObject()) {
JSObject::cast(this)->JSObjectShortPrint(accumulator);
return;
}
switch (map()->instance_type()) {
case MAP_TYPE:
accumulator->Add("<Map(elements=%u)>", Map::cast(this)->elements_kind());
break;
case FIXED_ARRAY_TYPE:
accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length());
break;
case FIXED_DOUBLE_ARRAY_TYPE:
accumulator->Add("<FixedDoubleArray[%u]>",
FixedDoubleArray::cast(this)->length());
break;
case BYTE_ARRAY_TYPE:
accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length());
break;
case FREE_SPACE_TYPE:
accumulator->Add("<FreeSpace[%u]>", FreeSpace::cast(this)->Size());
break;
case EXTERNAL_PIXEL_ARRAY_TYPE:
accumulator->Add("<ExternalPixelArray[%u]>",
ExternalPixelArray::cast(this)->length());
break;
case EXTERNAL_BYTE_ARRAY_TYPE:
accumulator->Add("<ExternalByteArray[%u]>",
ExternalByteArray::cast(this)->length());
break;
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
accumulator->Add("<ExternalUnsignedByteArray[%u]>",
ExternalUnsignedByteArray::cast(this)->length());
break;
case EXTERNAL_SHORT_ARRAY_TYPE:
accumulator->Add("<ExternalShortArray[%u]>",
ExternalShortArray::cast(this)->length());
break;
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
accumulator->Add("<ExternalUnsignedShortArray[%u]>",
ExternalUnsignedShortArray::cast(this)->length());
break;
case EXTERNAL_INT_ARRAY_TYPE:
accumulator->Add("<ExternalIntArray[%u]>",
ExternalIntArray::cast(this)->length());
break;
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
accumulator->Add("<ExternalUnsignedIntArray[%u]>",
ExternalUnsignedIntArray::cast(this)->length());
break;
case EXTERNAL_FLOAT_ARRAY_TYPE:
accumulator->Add("<ExternalFloatArray[%u]>",
ExternalFloatArray::cast(this)->length());
break;
case EXTERNAL_DOUBLE_ARRAY_TYPE:
accumulator->Add("<ExternalDoubleArray[%u]>",
ExternalDoubleArray::cast(this)->length());
break;
case SHARED_FUNCTION_INFO_TYPE: {
SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
SmartArrayPointer<char> debug_name =
shared->DebugName()->ToCString();
if (debug_name[0] != 0) {
accumulator->Add("<SharedFunctionInfo %s>", *debug_name);
} else {
accumulator->Add("<SharedFunctionInfo>");
}
break;
}
case JS_MESSAGE_OBJECT_TYPE:
accumulator->Add("<JSMessageObject>");
break;
#define MAKE_STRUCT_CASE(NAME, Name, name) \
case NAME##_TYPE: \
accumulator->Put('<'); \
accumulator->Add(#Name); \
accumulator->Put('>'); \
break;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
case CODE_TYPE:
accumulator->Add("<Code>");
break;
case ODDBALL_TYPE: {
if (IsUndefined())
accumulator->Add("<undefined>");
else if (IsTheHole())
accumulator->Add("<the hole>");
else if (IsNull())
accumulator->Add("<null>");
else if (IsTrue())
accumulator->Add("<true>");
else if (IsFalse())
accumulator->Add("<false>");
else
accumulator->Add("<Odd Oddball>");
break;
}
case SYMBOL_TYPE: {
Symbol* symbol = Symbol::cast(this);
accumulator->Add("<Symbol: %d", symbol->Hash());
if (!symbol->name()->IsUndefined()) {
accumulator->Add(" ");
String::cast(symbol->name())->StringShortPrint(accumulator);
}
accumulator->Add(">");
break;
}
case HEAP_NUMBER_TYPE:
accumulator->Add("<Number: ");
HeapNumber::cast(this)->HeapNumberPrint(accumulator);
accumulator->Put('>');
break;
case JS_PROXY_TYPE:
accumulator->Add("<JSProxy>");
break;
case JS_FUNCTION_PROXY_TYPE:
accumulator->Add("<JSFunctionProxy>");
break;
case FOREIGN_TYPE:
accumulator->Add("<Foreign>");
break;
case CELL_TYPE:
accumulator->Add("Cell for ");
Cell::cast(this)->value()->ShortPrint(accumulator);
break;
case PROPERTY_CELL_TYPE:
accumulator->Add("PropertyCell for ");
PropertyCell::cast(this)->value()->ShortPrint(accumulator);
break;
default:
accumulator->Add("<Other heap object (%d)>", map()->instance_type());
break;
}
}
void HeapObject::Iterate(ObjectVisitor* v) {
// Handle header
IteratePointer(v, kMapOffset);
// Handle object body
Map* m = map();
IterateBody(m->instance_type(), SizeFromMap(m), v);
}
void HeapObject::IterateBody(InstanceType type, int object_size,
ObjectVisitor* v) {
// Avoiding <Type>::cast(this) because it accesses the map pointer field.
// During GC, the map pointer field is encoded.
if (type < FIRST_NONSTRING_TYPE) {
switch (type & kStringRepresentationMask) {
case kSeqStringTag:
break;
case kConsStringTag:
ConsString::BodyDescriptor::IterateBody(this, v);
break;
case kSlicedStringTag:
SlicedString::BodyDescriptor::IterateBody(this, v);
break;
case kExternalStringTag:
if ((type & kStringEncodingMask) == kOneByteStringTag) {
reinterpret_cast<ExternalAsciiString*>(this)->
ExternalAsciiStringIterateBody(v);
} else {
reinterpret_cast<ExternalTwoByteString*>(this)->
ExternalTwoByteStringIterateBody(v);
}
break;
}
return;
}
switch (type) {
case FIXED_ARRAY_TYPE:
FixedArray::BodyDescriptor::IterateBody(this, object_size, v);
break;
case CONSTANT_POOL_ARRAY_TYPE:
reinterpret_cast<ConstantPoolArray*>(this)->ConstantPoolIterateBody(v);
break;
case FIXED_DOUBLE_ARRAY_TYPE:
break;
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_GENERATOR_OBJECT_TYPE:
case JS_MODULE_TYPE:
case JS_VALUE_TYPE:
case JS_DATE_TYPE:
case JS_ARRAY_TYPE:
case JS_ARRAY_BUFFER_TYPE:
case JS_TYPED_ARRAY_TYPE:
case JS_DATA_VIEW_TYPE:
case JS_SET_TYPE:
case JS_MAP_TYPE:
case JS_WEAK_MAP_TYPE:
case JS_WEAK_SET_TYPE:
case JS_REGEXP_TYPE:
case JS_GLOBAL_PROXY_TYPE:
case JS_GLOBAL_OBJECT_TYPE:
case JS_BUILTINS_OBJECT_TYPE:
case JS_MESSAGE_OBJECT_TYPE:
JSObject::BodyDescriptor::IterateBody(this, object_size, v);
break;
case JS_FUNCTION_TYPE:
reinterpret_cast<JSFunction*>(this)
->JSFunctionIterateBody(object_size, v);
break;
case ODDBALL_TYPE:
Oddball::BodyDescriptor::IterateBody(this, v);
break;
case JS_PROXY_TYPE:
JSProxy::BodyDescriptor::IterateBody(this, v);
break;
case JS_FUNCTION_PROXY_TYPE:
JSFunctionProxy::BodyDescriptor::IterateBody(this, v);
break;
case FOREIGN_TYPE:
reinterpret_cast<Foreign*>(this)->ForeignIterateBody(v);
break;
case MAP_TYPE:
Map::BodyDescriptor::IterateBody(this, v);
break;
case CODE_TYPE:
reinterpret_cast<Code*>(this)->CodeIterateBody(v);
break;
case CELL_TYPE:
Cell::BodyDescriptor::IterateBody(this, v);
break;
case PROPERTY_CELL_TYPE:
PropertyCell::BodyDescriptor::IterateBody(this, v);
break;
case SYMBOL_TYPE:
Symbol::BodyDescriptor::IterateBody(this, v);
break;
case HEAP_NUMBER_TYPE:
case FILLER_TYPE:
case BYTE_ARRAY_TYPE:
case FREE_SPACE_TYPE:
case EXTERNAL_PIXEL_ARRAY_TYPE:
case EXTERNAL_BYTE_ARRAY_TYPE:
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
case EXTERNAL_SHORT_ARRAY_TYPE:
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
case EXTERNAL_INT_ARRAY_TYPE:
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
case EXTERNAL_FLOAT_ARRAY_TYPE:
case EXTERNAL_DOUBLE_ARRAY_TYPE:
break;
case SHARED_FUNCTION_INFO_TYPE: {
SharedFunctionInfo::BodyDescriptor::IterateBody(this, v);
break;
}
#define MAKE_STRUCT_CASE(NAME, Name, name) \
case NAME##_TYPE:
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
if (type == ALLOCATION_SITE_TYPE) {
AllocationSite::BodyDescriptor::IterateBody(this, v);
} else {
StructBodyDescriptor::IterateBody(this, object_size, v);
}
break;
default:
PrintF("Unknown type: %d\n", type);
UNREACHABLE();
}
}
bool HeapNumber::HeapNumberBooleanValue() {
// NaN, +0, and -0 should return the false object
#if __BYTE_ORDER == __LITTLE_ENDIAN
union IeeeDoubleLittleEndianArchType u;
#elif __BYTE_ORDER == __BIG_ENDIAN
union IeeeDoubleBigEndianArchType u;
#endif
u.d = value();
if (u.bits.exp == 2047) {
// Detect NaN for IEEE double precision floating point.
if ((u.bits.man_low | u.bits.man_high) != 0) return false;
}
if (u.bits.exp == 0) {
// Detect +0, and -0 for IEEE double precision floating point.
if ((u.bits.man_low | u.bits.man_high) == 0) return false;
}
return true;
}
void HeapNumber::HeapNumberPrint(FILE* out) {
PrintF(out, "%.16g", Number());
}
void HeapNumber::HeapNumberPrint(StringStream* accumulator) {
// The Windows version of vsnprintf can allocate when printing a %g string
// into a buffer that may not be big enough. We don't want random memory
// allocation when producing post-crash stack traces, so we print into a
// buffer that is plenty big enough for any floating point number, then
// print that using vsnprintf (which may truncate but never allocate if
// there is no more space in the buffer).
EmbeddedVector<char, 100> buffer;
OS::SNPrintF(buffer, "%.16g", Number());
accumulator->Add("%s", buffer.start());
}
String* JSReceiver::class_name() {
if (IsJSFunction() && IsJSFunctionProxy()) {
return GetHeap()->function_class_string();
}
if (map()->constructor()->IsJSFunction()) {
JSFunction* constructor = JSFunction::cast(map()->constructor());
return String::cast(constructor->shared()->instance_class_name());
}
// If the constructor is not present, return "Object".
return GetHeap()->Object_string();
}
String* Map::constructor_name() {
if (constructor()->IsJSFunction()) {
JSFunction* constructor = JSFunction::cast(this->constructor());
String* name = String::cast(constructor->shared()->name());
if (name->length() > 0) return name;
String* inferred_name = constructor->shared()->inferred_name();
if (inferred_name->length() > 0) return inferred_name;
Object* proto = prototype();
if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name();
}
// TODO(rossberg): what about proxies?
// If the constructor is not present, return "Object".
return GetHeap()->Object_string();
}
String* JSReceiver::constructor_name() {
return map()->constructor_name();
}
// TODO(mstarzinger): Temporary wrapper until handlified.
static Handle<Object> NewStorageFor(Isolate* isolate,
Handle<Object> object,
Representation representation) {
Heap* heap = isolate->heap();
CALL_HEAP_FUNCTION(isolate,
object->AllocateNewStorageFor(heap, representation),
Object);
}
void JSObject::AddFastPropertyUsingMap(Handle<JSObject> object,
Handle<Map> new_map,
Handle<Name> name,
Handle<Object> value,
int field_index,
Representation representation) {
Isolate* isolate = object->GetIsolate();
// This method is used to transition to a field. If we are transitioning to a
// double field, allocate new storage.
Handle<Object> storage = NewStorageFor(isolate, value, representation);
if (object->map()->unused_property_fields() == 0) {
int new_unused = new_map->unused_property_fields();
Handle<FixedArray> properties(object->properties());
Handle<FixedArray> values = isolate->factory()->CopySizeFixedArray(
properties, properties->length() + new_unused + 1);
object->set_properties(*values);
}
object->set_map(*new_map);
object->FastPropertyAtPut(field_index, *storage);
}
static MaybeObject* CopyAddFieldDescriptor(Map* map,
Name* name,
int index,
PropertyAttributes attributes,
Representation representation,
TransitionFlag flag) {
Map* new_map;
FieldDescriptor new_field_desc(name, index, attributes, representation);
MaybeObject* maybe_map = map->CopyAddDescriptor(&new_field_desc, flag);
if (!maybe_map->To(&new_map)) return maybe_map;
int unused_property_fields = map->unused_property_fields() - 1;
if (unused_property_fields < 0) {
unused_property_fields += JSObject::kFieldsAdded;
}
new_map->set_unused_property_fields(unused_property_fields);
return new_map;
}
static Handle<Map> CopyAddFieldDescriptor(Handle<Map> map,
Handle<Name> name,
int index,
PropertyAttributes attributes,
Representation representation,
TransitionFlag flag) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
CopyAddFieldDescriptor(
*map, *name, index, attributes, representation, flag),
Map);
}
void JSObject::AddFastProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StoreFromKeyed store_mode,
ValueType value_type,
TransitionFlag flag) {
ASSERT(!object->IsJSGlobalProxy());
ASSERT(DescriptorArray::kNotFound ==
object->map()->instance_descriptors()->Search(
*name, object->map()->NumberOfOwnDescriptors()));
// Normalize the object if the name is an actual name (not the
// hidden strings) and is not a real identifier.
// Normalize the object if it will have too many fast properties.
Isolate* isolate = object->GetIsolate();
if (!name->IsCacheable(isolate) ||
object->TooManyFastProperties(store_mode)) {
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
AddSlowProperty(object, name, value, attributes);
return;
}
// Compute the new index for new field.
int index = object->map()->NextFreePropertyIndex();
// Allocate new instance descriptors with (name, index) added
if (object->IsJSContextExtensionObject()) value_type = FORCE_TAGGED;
Representation representation = value->OptimalRepresentation(value_type);
Handle<Map> new_map = CopyAddFieldDescriptor(
handle(object->map()), name, index, attributes, representation, flag);
AddFastPropertyUsingMap(object, new_map, name, value, index, representation);
}
static MaybeObject* CopyAddConstantDescriptor(Map* map,
Name* name,
Object* value,
PropertyAttributes attributes,
TransitionFlag flag) {
ConstantDescriptor new_constant_desc(name, value, attributes);
return map->CopyAddDescriptor(&new_constant_desc, flag);
}
static Handle<Map> CopyAddConstantDescriptor(Handle<Map> map,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
TransitionFlag flag) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
CopyAddConstantDescriptor(
*map, *name, *value, attributes, flag),
Map);
}
void JSObject::AddConstantProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> constant,
PropertyAttributes attributes,
TransitionFlag initial_flag) {
TransitionFlag flag =
// Do not add transitions to global objects.
(object->IsGlobalObject() ||
// Don't add transitions to special properties with non-trivial
// attributes.
attributes != NONE)
? OMIT_TRANSITION
: initial_flag;
// Allocate new instance descriptors with (name, constant) added.
Handle<Map> new_map = CopyAddConstantDescriptor(
handle(object->map()), name, constant, attributes, flag);
object->set_map(*new_map);
}
void JSObject::AddSlowProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes) {
ASSERT(!object->HasFastProperties());
Isolate* isolate = object->GetIsolate();
Handle<NameDictionary> dict(object->property_dictionary());
if (object->IsGlobalObject()) {
// In case name is an orphaned property reuse the cell.
int entry = dict->FindEntry(*name);
if (entry != NameDictionary::kNotFound) {
Handle<PropertyCell> cell(PropertyCell::cast(dict->ValueAt(entry)));
PropertyCell::SetValueInferType(cell, value);
// Assign an enumeration index to the property and update
// SetNextEnumerationIndex.
int index = dict->NextEnumerationIndex();
PropertyDetails details = PropertyDetails(attributes, NORMAL, index);
dict->SetNextEnumerationIndex(index + 1);
dict->SetEntry(entry, *name, *cell, details);
return;
}
Handle<PropertyCell> cell = isolate->factory()->NewPropertyCell(value);
PropertyCell::SetValueInferType(cell, value);
value = cell;
}
PropertyDetails details = PropertyDetails(attributes, NORMAL, 0);
Handle<NameDictionary> result = NameDictionaryAdd(dict, name, value, details);
if (*dict != *result) object->set_properties(*result);
}
Handle<Object> JSObject::AddProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
JSReceiver::StoreFromKeyed store_mode,
ExtensibilityCheck extensibility_check,
ValueType value_type,
StoreMode mode,
TransitionFlag transition_flag) {
ASSERT(!object->IsJSGlobalProxy());
Isolate* isolate = object->GetIsolate();
if (!name->IsUniqueName()) {
name = isolate->factory()->InternalizedStringFromString(
Handle<String>::cast(name));
}
if (extensibility_check == PERFORM_EXTENSIBILITY_CHECK &&
!object->map()->is_extensible()) {
if (strict_mode == kNonStrictMode) {
return value;
} else {
Handle<Object> args[1] = { name };
Handle<Object> error = isolate->factory()->NewTypeError(
"object_not_extensible", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
}
if (object->HasFastProperties()) {
// Ensure the descriptor array does not get too big.
if (object->map()->NumberOfOwnDescriptors() <
DescriptorArray::kMaxNumberOfDescriptors) {
// TODO(verwaest): Support other constants.
// if (mode == ALLOW_AS_CONSTANT &&
// !value->IsTheHole() &&
// !value->IsConsString()) {
if (value->IsJSFunction()) {
AddConstantProperty(object, name, value, attributes, transition_flag);
} else {
AddFastProperty(object, name, value, attributes, store_mode,
value_type, transition_flag);
}
} else {
// Normalize the object to prevent very large instance descriptors.
// This eliminates unwanted N^2 allocation and lookup behavior.
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
AddSlowProperty(object, name, value, attributes);
}
} else {
AddSlowProperty(object, name, value, attributes);
}
if (FLAG_harmony_observation &&
object->map()->is_observed() &&
*name != isolate->heap()->hidden_string()) {
Handle<Object> old_value = isolate->factory()->the_hole_value();
EnqueueChangeRecord(object, "add", name, old_value);
}
return value;
}
void JSObject::EnqueueChangeRecord(Handle<JSObject> object,
const char* type_str,
Handle<Name> name,
Handle<Object> old_value) {
Isolate* isolate = object->GetIsolate();
HandleScope scope(isolate);
Handle<String> type = isolate->factory()->InternalizeUtf8String(type_str);
if (object->IsJSGlobalObject()) {
object = handle(JSGlobalObject::cast(*object)->global_receiver(), isolate);
}
Handle<Object> args[] = { type, object, name, old_value };
int argc = name.is_null() ? 2 : old_value->IsTheHole() ? 3 : 4;
bool threw;
Execution::Call(isolate,
Handle<JSFunction>(isolate->observers_notify_change()),
isolate->factory()->undefined_value(),
argc, args,
&threw);
ASSERT(!threw);
}
void JSObject::DeliverChangeRecords(Isolate* isolate) {
ASSERT(isolate->observer_delivery_pending());
bool threw = false;
Execution::Call(
isolate,
isolate->observers_deliver_changes(),
isolate->factory()->undefined_value(),
0,
NULL,
&threw);
ASSERT(!threw);
isolate->set_observer_delivery_pending(false);
}
Handle<Object> JSObject::SetPropertyPostInterceptor(
Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode) {
// Check local property, ignore interceptor.
LookupResult result(object->GetIsolate());
object->LocalLookupRealNamedProperty(*name, &result);
if (!result.IsFound()) {
object->map()->LookupTransition(*object, *name, &result);
}
if (result.IsFound()) {
// An existing property or a map transition was found. Use set property to
// handle all these cases.
return SetPropertyForResult(object, &result, name, value, attributes,
strict_mode, MAY_BE_STORE_FROM_KEYED);
}
bool done = false;
Handle<Object> result_object = SetPropertyViaPrototypes(
object, name, value, attributes, strict_mode, &done);
if (done) return result_object;
// Add a new real property.
return AddProperty(object, name, value, attributes, strict_mode);
}
static void ReplaceSlowProperty(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes) {
NameDictionary* dictionary = object->property_dictionary();
int old_index = dictionary->FindEntry(*name);
int new_enumeration_index = 0; // 0 means "Use the next available index."
if (old_index != -1) {
// All calls to ReplaceSlowProperty have had all transitions removed.
new_enumeration_index = dictionary->DetailsAt(old_index).dictionary_index();
}
PropertyDetails new_details(attributes, NORMAL, new_enumeration_index);
JSObject::SetNormalizedProperty(object, name, value, new_details);
}
const char* Representation::Mnemonic() const {
switch (kind_) {
case kNone: return "v";
case kTagged: return "t";
case kSmi: return "s";
case kDouble: return "d";
case kInteger32: return "i";
case kHeapObject: return "h";
case kExternal: return "x";
default:
UNREACHABLE();
return NULL;
}
}
enum RightTrimMode { FROM_GC, FROM_MUTATOR };
static void ZapEndOfFixedArray(Address new_end, int to_trim) {
// If we are doing a big trim in old space then we zap the space.
Object** zap = reinterpret_cast<Object**>(new_end);
zap++; // Header of filler must be at least one word so skip that.
for (int i = 1; i < to_trim; i++) {
*zap++ = Smi::FromInt(0);
}
}
template<RightTrimMode trim_mode>
static void RightTrimFixedArray(Heap* heap, FixedArray* elms, int to_trim) {
ASSERT(elms->map() != heap->fixed_cow_array_map());
// For now this trick is only applied to fixed arrays in new and paged space.
ASSERT(!heap->lo_space()->Contains(elms));
const int len = elms->length();
ASSERT(to_trim < len);
Address new_end = elms->address() + FixedArray::SizeFor(len - to_trim);
if (trim_mode != FROM_GC || Heap::ShouldZapGarbage()) {
ZapEndOfFixedArray(new_end, to_trim);
}
int size_delta = to_trim * kPointerSize;
// Technically in new space this write might be omitted (except for
// debug mode which iterates through the heap), but to play safer
// we still do it.
heap->CreateFillerObjectAt(new_end, size_delta);
elms->set_length(len - to_trim);
// Maintain marking consistency for IncrementalMarking.
if (Marking::IsBlack(Marking::MarkBitFrom(elms))) {
if (trim_mode == FROM_GC) {
MemoryChunk::IncrementLiveBytesFromGC(elms->address(), -size_delta);
} else {
MemoryChunk::IncrementLiveBytesFromMutator(elms->address(), -size_delta);
}
}
// The array may not be moved during GC,
// and size has to be adjusted nevertheless.
HeapProfiler* profiler = heap->isolate()->heap_profiler();
if (profiler->is_tracking_allocations()) {
profiler->UpdateObjectSizeEvent(elms->address(), elms->Size());
}
}
bool Map::InstancesNeedRewriting(Map* target,
int target_number_of_fields,
int target_inobject,
int target_unused) {
// If fields were added (or removed), rewrite the instance.
int number_of_fields = NumberOfFields();
ASSERT(target_number_of_fields >= number_of_fields);
if (target_number_of_fields != number_of_fields) return true;
if (FLAG_track_double_fields) {
// If smi descriptors were replaced by double descriptors, rewrite.
DescriptorArray* old_desc = instance_descriptors();
DescriptorArray* new_desc = target->instance_descriptors();
int limit = NumberOfOwnDescriptors();
for (int i = 0; i < limit; i++) {
if (new_desc->GetDetails(i).representation().IsDouble() &&
!old_desc->GetDetails(i).representation().IsDouble()) {
return true;
}
}
}
// If no fields were added, and no inobject properties were removed, setting
// the map is sufficient.
if (target_inobject == inobject_properties()) return false;
// In-object slack tracking may have reduced the object size of the new map.
// In that case, succeed if all existing fields were inobject, and they still
// fit within the new inobject size.
ASSERT(target_inobject < inobject_properties());
if (target_number_of_fields <= target_inobject) {
ASSERT(target_number_of_fields + target_unused == target_inobject);
return false;
}
// Otherwise, properties will need to be moved to the backing store.
return true;
}
// To migrate an instance to a map:
// - First check whether the instance needs to be rewritten. If not, simply
// change the map.
// - Otherwise, allocate a fixed array large enough to hold all fields, in
// addition to unused space.
// - Copy all existing properties in, in the following order: backing store
// properties, unused fields, inobject properties.
// - If all allocation succeeded, commit the state atomically:
// * Copy inobject properties from the backing store back into the object.
// * Trim the difference in instance size of the object. This also cleanly
// frees inobject properties that moved to the backing store.
// * If there are properties left in the backing store, trim of the space used
// to temporarily store the inobject properties.
// * If there are properties left in the backing store, install the backing
// store.
void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map) {
Isolate* isolate = object->GetIsolate();
Handle<Map> old_map(object->map());
int number_of_fields = new_map->NumberOfFields();
int inobject = new_map->inobject_properties();
int unused = new_map->unused_property_fields();
// Nothing to do if no functions were converted to fields and no smis were
// converted to doubles.
if (!old_map->InstancesNeedRewriting(
*new_map, number_of_fields, inobject, unused)) {
object->set_map(*new_map);
return;
}
int total_size = number_of_fields + unused;
int external = total_size - inobject;
Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size);
Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors());
int descriptors = new_map->NumberOfOwnDescriptors();
for (int i = 0; i < descriptors; i++) {
PropertyDetails details = new_descriptors->GetDetails(i);
if (details.type() != FIELD) continue;
PropertyDetails old_details = old_descriptors->GetDetails(i);
if (old_details.type() == CALLBACKS) {
ASSERT(details.representation().IsTagged());
continue;
}
ASSERT(old_details.type() == CONSTANT ||
old_details.type() == FIELD);
Object* raw_value = old_details.type() == CONSTANT
? old_descriptors->GetValue(i)
: object->RawFastPropertyAt(old_descriptors->GetFieldIndex(i));
Handle<Object> value(raw_value, isolate);
if (FLAG_track_double_fields &&
!old_details.representation().IsDouble() &&
details.representation().IsDouble()) {
if (old_details.representation().IsNone()) {
value = handle(Smi::FromInt(0), isolate);
}
value = NewStorageFor(isolate, value, details.representation());
}
ASSERT(!(FLAG_track_double_fields &&
details.representation().IsDouble() &&
value->IsSmi()));
int target_index = new_descriptors->GetFieldIndex(i) - inobject;
if (target_index < 0) target_index += total_size;
array->set(target_index, *value);
}
// From here on we cannot fail and we shouldn't GC anymore.
DisallowHeapAllocation no_allocation;
// Copy (real) inobject properties. If necessary, stop at number_of_fields to
// avoid overwriting |one_pointer_filler_map|.
int limit = Min(inobject, number_of_fields);
for (int i = 0; i < limit; i++) {
object->FastPropertyAtPut(i, array->get(external + i));
}
// Create filler object past the new instance size.
int new_instance_size = new_map->instance_size();
int instance_size_delta = old_map->instance_size() - new_instance_size;
ASSERT(instance_size_delta >= 0);
Address address = object->address() + new_instance_size;
isolate->heap()->CreateFillerObjectAt(address, instance_size_delta);
// If there are properties in the new backing store, trim it to the correct
// size and install the backing store into the object.
if (external > 0) {
RightTrimFixedArray<FROM_MUTATOR>(isolate->heap(), *array, inobject);
object->set_properties(*array);
}
object->set_map(*new_map);
}
Handle<TransitionArray> Map::AddTransition(Handle<Map> map,
Handle<Name> key,
Handle<Map> target,
SimpleTransitionFlag flag) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
map->AddTransition(*key, *target, flag),
TransitionArray);
}
void JSObject::GeneralizeFieldRepresentation(Handle<JSObject> object,
int modify_index,
Representation new_representation,
StoreMode store_mode) {
Handle<Map> new_map = Map::GeneralizeRepresentation(
handle(object->map()), modify_index, new_representation, store_mode);
if (object->map() == *new_map) return;
return MigrateToMap(object, new_map);
}
int Map::NumberOfFields() {
DescriptorArray* descriptors = instance_descriptors();
int result = 0;
for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
if (descriptors->GetDetails(i).type() == FIELD) result++;
}
return result;
}
Handle<Map> Map::CopyGeneralizeAllRepresentations(Handle<Map> map,
int modify_index,
StoreMode store_mode,
PropertyAttributes attributes,
const char* reason) {
Handle<Map> new_map = Copy(map);
DescriptorArray* descriptors = new_map->instance_descriptors();
descriptors->InitializeRepresentations(Representation::Tagged());
// Unless the instance is being migrated, ensure that modify_index is a field.
PropertyDetails details = descriptors->GetDetails(modify_index);
if (store_mode == FORCE_FIELD && details.type() != FIELD) {
FieldDescriptor d(descriptors->GetKey(modify_index),
new_map->NumberOfFields(),
attributes,
Representation::Tagged());
d.SetSortedKeyIndex(details.pointer());
descriptors->Set(modify_index, &d);
int unused_property_fields = new_map->unused_property_fields() - 1;
if (unused_property_fields < 0) {
unused_property_fields += JSObject::kFieldsAdded;
}
new_map->set_unused_property_fields(unused_property_fields);
}
if (FLAG_trace_generalization) {
map->PrintGeneralization(stdout, reason, modify_index,
new_map->NumberOfOwnDescriptors(),
new_map->NumberOfOwnDescriptors(),
details.type() == CONSTANT && store_mode == FORCE_FIELD,
Representation::Tagged(), Representation::Tagged());
}
return new_map;
}
void Map::DeprecateTransitionTree() {
if (!FLAG_track_fields) return;
if (is_deprecated()) return;
if (HasTransitionArray()) {
TransitionArray* transitions = this->transitions();
for (int i = 0; i < transitions->number_of_transitions(); i++) {
transitions->GetTarget(i)->DeprecateTransitionTree();
}
}
deprecate();
dependent_code()->DeoptimizeDependentCodeGroup(
GetIsolate(), DependentCode::kTransitionGroup);
NotifyLeafMapLayoutChange();
}
// Invalidates a transition target at |key|, and installs |new_descriptors| over
// the current instance_descriptors to ensure proper sharing of descriptor
// arrays.
void Map::DeprecateTarget(Name* key, DescriptorArray* new_descriptors) {
if (HasTransitionArray()) {
TransitionArray* transitions = this->transitions();
int transition = transitions->Search(key);
if (transition != TransitionArray::kNotFound) {
transitions->GetTarget(transition)->DeprecateTransitionTree();
}
}
// Don't overwrite the empty descriptor array.
if (NumberOfOwnDescriptors() == 0) return;
DescriptorArray* to_replace = instance_descriptors();
Map* current = this;
while (current->instance_descriptors() == to_replace) {
current->SetEnumLength(Map::kInvalidEnumCache);
current->set_instance_descriptors(new_descriptors);
Object* next = current->GetBackPointer();
if (next->IsUndefined()) break;
current = Map::cast(next);
}
set_owns_descriptors(false);
}
Map* Map::FindRootMap() {
Map* result = this;
while (true) {
Object* back = result->GetBackPointer();
if (back->IsUndefined()) return result;
result = Map::cast(back);
}
}
// Returns NULL if the updated map is incompatible.
Map* Map::FindUpdatedMap(int verbatim,
int length,
DescriptorArray* descriptors) {
// This can only be called on roots of transition trees.
ASSERT(GetBackPointer()->IsUndefined());
Map* current = this;
for (int i = verbatim; i < length; i++) {
if (!current->HasTransitionArray()) break;
Name* name = descriptors->GetKey(i);
TransitionArray* transitions = current->transitions();
int transition = transitions->Search(name);
if (transition == TransitionArray::kNotFound) break;
current = transitions->GetTarget(transition);
PropertyDetails details = descriptors->GetDetails(i);
PropertyDetails target_details =
current->instance_descriptors()->GetDetails(i);
if (details.attributes() != target_details.attributes()) return NULL;
if (details.type() == CALLBACKS) {
if (target_details.type() != CALLBACKS) return NULL;
if (descriptors->GetValue(i) !=
current->instance_descriptors()->GetValue(i)) {
return NULL;
}
}
}
return current;
}
Map* Map::FindLastMatchMap(int verbatim,
int length,
DescriptorArray* descriptors) {
// This can only be called on roots of transition trees.
ASSERT(GetBackPointer()->IsUndefined());
Map* current = this;
for (int i = verbatim; i < length; i++) {
if (!current->HasTransitionArray()) break;
Name* name = descriptors->GetKey(i);
TransitionArray* transitions = current->transitions();
int transition = transitions->Search(name);
if (transition == TransitionArray::kNotFound) break;
Map* next = transitions->GetTarget(transition);
DescriptorArray* next_descriptors = next->instance_descriptors();
if (next_descriptors->GetValue(i) != descriptors->GetValue(i)) break;
PropertyDetails details = descriptors->GetDetails(i);
PropertyDetails next_details = next_descriptors->GetDetails(i);
if (details.type() != next_details.type()) break;
if (details.attributes() != next_details.attributes()) break;
if (!details.representation().Equals(next_details.representation())) break;
current = next;
}
return current;
}
// Generalize the representation of the descriptor at |modify_index|.
// This method rewrites the transition tree to reflect the new change. To avoid
// high degrees over polymorphism, and to stabilize quickly, on every rewrite
// the new type is deduced by merging the current type with any potential new
// (partial) version of the type in the transition tree.
// To do this, on each rewrite:
// - Search the root of the transition tree using FindRootMap.
// - Find |updated|, the newest matching version of this map using
// FindUpdatedMap. This uses the keys in the own map's descriptor array to
// walk the transition tree.
// - Merge/generalize the descriptor array of the current map and |updated|.
// - Generalize the |modify_index| descriptor using |new_representation|.
// - Walk the tree again starting from the root towards |updated|. Stop at
// |split_map|, the first map who's descriptor array does not match the merged
// descriptor array.
// - If |updated| == |split_map|, |updated| is in the expected state. Return it.
// - Otherwise, invalidate the outdated transition target from |updated|, and
// replace its transition tree with a new branch for the updated descriptors.
Handle<Map> Map::GeneralizeRepresentation(Handle<Map> old_map,
int modify_index,
Representation new_representation,
StoreMode store_mode) {
Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
Representation old_representation = old_details.representation();
// It's fine to transition from None to anything but double without any
// modification to the object, because the default uninitialized value for
// representation None can be overwritten by both smi and tagged values.
// Doubles, however, would require a box allocation.
if (old_representation.IsNone() &&
!new_representation.IsNone() &&
!new_representation.IsDouble()) {
old_descriptors->SetRepresentation(modify_index, new_representation);
return old_map;
}
int descriptors = old_map->NumberOfOwnDescriptors();
Handle<Map> root_map(old_map->FindRootMap());
// Check the state of the root map.
if (!old_map->EquivalentToForTransition(*root_map)) {
return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
old_details.attributes(), "not equivalent");
}
int verbatim = root_map->NumberOfOwnDescriptors();
if (store_mode != ALLOW_AS_CONSTANT && modify_index < verbatim) {
return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
old_details.attributes(), "root modification");
}
Map* raw_updated = root_map->FindUpdatedMap(
verbatim, descriptors, *old_descriptors);
if (raw_updated == NULL) {
return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
old_details.attributes(), "incompatible");
}
Handle<Map> updated(raw_updated);
Handle<DescriptorArray> updated_descriptors(updated->instance_descriptors());
int valid = updated->NumberOfOwnDescriptors();
// Directly change the map if the target map is more general. Ensure that the
// target type of the modify_index is a FIELD, unless we are migrating.
if (updated_descriptors->IsMoreGeneralThan(
verbatim, valid, descriptors, *old_descriptors) &&
(store_mode == ALLOW_AS_CONSTANT ||
updated_descriptors->GetDetails(modify_index).type() == FIELD)) {
Representation updated_representation =
updated_descriptors->GetDetails(modify_index).representation();
if (new_representation.fits_into(updated_representation)) return updated;
}
Handle<DescriptorArray> new_descriptors = DescriptorArray::Merge(
updated_descriptors, verbatim, valid, descriptors, modify_index,
store_mode, old_descriptors);
ASSERT(store_mode == ALLOW_AS_CONSTANT ||
new_descriptors->GetDetails(modify_index).type() == FIELD);
old_representation =
new_descriptors->GetDetails(modify_index).representation();
Representation updated_representation =
new_representation.generalize(old_representation);
if (!updated_representation.Equals(old_representation)) {
new_descriptors->SetRepresentation(modify_index, updated_representation);
}
Handle<Map> split_map(root_map->FindLastMatchMap(
verbatim, descriptors, *new_descriptors));
int split_descriptors = split_map->NumberOfOwnDescriptors();
// This is shadowed by |updated_descriptors| being more general than
// |old_descriptors|.
ASSERT(descriptors != split_descriptors);
int descriptor = split_descriptors;
split_map->DeprecateTarget(
old_descriptors->GetKey(descriptor), *new_descriptors);
if (FLAG_trace_generalization) {
old_map->PrintGeneralization(
stdout, "", modify_index, descriptor, descriptors,
old_descriptors->GetDetails(modify_index).type() == CONSTANT &&
store_mode == FORCE_FIELD,
old_representation, updated_representation);
}
// Add missing transitions.
Handle<Map> new_map = split_map;
for (; descriptor < descriptors; descriptor++) {
new_map = Map::CopyInstallDescriptors(new_map, descriptor, new_descriptors);
new_map->set_migration_target(true);
}
new_map->set_owns_descriptors(true);
return new_map;
}
// Generalize the representation of all FIELD descriptors.
Handle<Map> Map::GeneralizeAllFieldRepresentations(
Handle<Map> map,
Representation new_representation) {
Handle<DescriptorArray> descriptors(map->instance_descriptors());
for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
PropertyDetails details = descriptors->GetDetails(i);
if (details.type() == FIELD) {
map = GeneralizeRepresentation(map, i, new_representation, FORCE_FIELD);
}
}
return map;
}
Map* Map::CurrentMapForDeprecated() {
DisallowHeapAllocation no_allocation;
if (!is_deprecated()) return this;
DescriptorArray* old_descriptors = instance_descriptors();
int descriptors = NumberOfOwnDescriptors();
Map* root_map = FindRootMap();
// Check the state of the root map.
if (!EquivalentToForTransition(root_map)) return NULL;
int verbatim = root_map->NumberOfOwnDescriptors();
Map* updated = root_map->FindUpdatedMap(
verbatim, descriptors, old_descriptors);
if (updated == NULL) return NULL;
DescriptorArray* updated_descriptors = updated->instance_descriptors();
int valid = updated->NumberOfOwnDescriptors();
if (!updated_descriptors->IsMoreGeneralThan(
verbatim, valid, descriptors, old_descriptors)) {
return NULL;
}
return updated;
}
Handle<Object> JSObject::SetPropertyWithInterceptor(
Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode) {
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return value;
Isolate* isolate = object->GetIsolate();
Handle<String> name_string = Handle<String>::cast(name);
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
if (!interceptor->setter()->IsUndefined()) {
LOG(isolate,
ApiNamedPropertyAccess("interceptor-named-set", *object, *name));
PropertyCallbackArguments args(
isolate, interceptor->data(), *object, *object);
v8::NamedPropertySetterCallback setter =
v8::ToCData<v8::NamedPropertySetterCallback>(interceptor->setter());
Handle<Object> value_unhole = value->IsTheHole()
? Handle<Object>(isolate->factory()->undefined_value()) : value;
v8::Handle<v8::Value> result = args.Call(setter,
v8::Utils::ToLocal(name_string),
v8::Utils::ToLocal(value_unhole));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!result.IsEmpty()) return value;
}
Handle<Object> result =
SetPropertyPostInterceptor(object, name, value, attributes, strict_mode);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return result;
}
Handle<Object> JSReceiver::SetProperty(Handle<JSReceiver> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
StoreFromKeyed store_mode) {
LookupResult result(object->GetIsolate());
object->LocalLookup(*name, &result, true);
if (!result.IsFound()) {
object->map()->LookupTransition(JSObject::cast(*object), *name, &result);
}
return SetProperty(object, &result, name, value, attributes, strict_mode,
store_mode);
}
Handle<Object> JSObject::SetPropertyWithCallback(Handle<JSObject> object,
Handle<Object> structure,
Handle<Name> name,
Handle<Object> value,
Handle<JSObject> holder,
StrictModeFlag strict_mode) {
Isolate* isolate = object->GetIsolate();
// We should never get here to initialize a const with the hole
// value since a const declaration would conflict with the setter.
ASSERT(!value->IsTheHole());
// To accommodate both the old and the new api we switch on the
// data structure used to store the callbacks. Eventually foreign
// callbacks should be phased out.
if (structure->IsForeign()) {
AccessorDescriptor* callback =
reinterpret_cast<AccessorDescriptor*>(
Handle<Foreign>::cast(structure)->foreign_address());
CALL_AND_RETRY_OR_DIE(isolate,
(callback->setter)(
isolate, *object, *value, callback->data),
break,
return Handle<Object>());
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return value;
}
if (structure->IsExecutableAccessorInfo()) {
// api style callbacks
ExecutableAccessorInfo* data = ExecutableAccessorInfo::cast(*structure);
if (!data->IsCompatibleReceiver(*object)) {
Handle<Object> args[2] = { name, object };
Handle<Object> error =
isolate->factory()->NewTypeError("incompatible_method_receiver",
HandleVector(args,
ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return value;
Object* call_obj = data->setter();
v8::AccessorSetterCallback call_fun =
v8::ToCData<v8::AccessorSetterCallback>(call_obj);
if (call_fun == NULL) return value;
Handle<String> key = Handle<String>::cast(name);
LOG(isolate, ApiNamedPropertyAccess("store", *object, *name));
PropertyCallbackArguments args(
isolate, data->data(), *object, JSObject::cast(*holder));
args.Call(call_fun,
v8::Utils::ToLocal(key),
v8::Utils::ToLocal(value));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return value;
}
if (structure->IsAccessorPair()) {
Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
if (setter->IsSpecFunction()) {
// TODO(rossberg): nicer would be to cast to some JSCallable here...
return SetPropertyWithDefinedSetter(
object, Handle<JSReceiver>::cast(setter), value);
} else {
if (strict_mode == kNonStrictMode) {
return value;
}
Handle<Object> args[2] = { name, holder };
Handle<Object> error =
isolate->factory()->NewTypeError("no_setter_in_callback",
HandleVector(args, 2));
isolate->Throw(*error);
return Handle<Object>();
}
}
// TODO(dcarney): Handle correctly.
if (structure->IsDeclaredAccessorInfo()) {
return value;
}
UNREACHABLE();
return Handle<Object>();
}
Handle<Object> JSReceiver::SetPropertyWithDefinedSetter(
Handle<JSReceiver> object,
Handle<JSReceiver> setter,
Handle<Object> value) {
Isolate* isolate = object->GetIsolate();
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug* debug = isolate->debug();
// Handle stepping into a setter if step into is active.
// TODO(rossberg): should this apply to getters that are function proxies?
if (debug->StepInActive() && setter->IsJSFunction()) {
debug->HandleStepIn(
Handle<JSFunction>::cast(setter), Handle<Object>::null(), 0, false);
}
#endif
bool has_pending_exception;
Handle<Object> argv[] = { value };
Execution::Call(
isolate, setter, object, ARRAY_SIZE(argv), argv, &has_pending_exception);
// Check for pending exception and return the result.
if (has_pending_exception) return Handle<Object>();
return value;
}
MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes(
uint32_t index,
Object* value,
bool* found,
StrictModeFlag strict_mode) {
Heap* heap = GetHeap();
for (Object* pt = GetPrototype();
pt != heap->null_value();
pt = pt->GetPrototype(GetIsolate())) {
if (pt->IsJSProxy()) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<JSProxy> proxy(JSProxy::cast(pt));
Handle<JSObject> self(this, isolate);
Handle<String> name = isolate->factory()->Uint32ToString(index);
Handle<Object> value_handle(value, isolate);
Handle<Object> result = JSProxy::SetPropertyViaPrototypesWithHandler(
proxy, self, name, value_handle, NONE, strict_mode, found);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
if (!JSObject::cast(pt)->HasDictionaryElements()) {
continue;
}
SeededNumberDictionary* dictionary =
JSObject::cast(pt)->element_dictionary();
int entry = dictionary->FindEntry(index);
if (entry != SeededNumberDictionary::kNotFound) {
PropertyDetails details = dictionary->DetailsAt(entry);
if (details.type() == CALLBACKS) {
*found = true;
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<JSObject> self(this, isolate);
Handle<Object> structure(dictionary->ValueAt(entry), isolate);
Handle<Object> value_handle(value, isolate);
Handle<JSObject> holder(JSObject::cast(pt));
Handle<Object> result = SetElementWithCallback(
self, structure, index, value_handle, holder, strict_mode);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
}
}
*found = false;
return heap->the_hole_value();
}
Handle<Object> JSObject::SetPropertyViaPrototypes(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
bool* done) {
Isolate* isolate = object->GetIsolate();
*done = false;
// We could not find a local property so let's check whether there is an
// accessor that wants to handle the property, or whether the property is
// read-only on the prototype chain.
LookupResult result(isolate);
object->LookupRealNamedPropertyInPrototypes(*name, &result);
if (result.IsFound()) {
switch (result.type()) {
case NORMAL:
case FIELD:
case CONSTANT:
*done = result.IsReadOnly();
break;
case INTERCEPTOR: {
PropertyAttributes attr =
result.holder()->GetPropertyAttributeWithInterceptor(
*object, *name, true);
*done = !!(attr & READ_ONLY);
break;
}
case CALLBACKS: {
if (!FLAG_es5_readonly && result.IsReadOnly()) break;
*done = true;
Handle<Object> callback_object(result.GetCallbackObject(), isolate);
return SetPropertyWithCallback(object, callback_object, name, value,
handle(result.holder()), strict_mode);
}
case HANDLER: {
Handle<JSProxy> proxy(result.proxy());
return JSProxy::SetPropertyViaPrototypesWithHandler(
proxy, object, name, value, attributes, strict_mode, done);
}
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
break;
}
}
// If we get here with *done true, we have encountered a read-only property.
if (!FLAG_es5_readonly) *done = false;
if (*done) {
if (strict_mode == kNonStrictMode) return value;
Handle<Object> args[] = { name, object };
Handle<Object> error = isolate->factory()->NewTypeError(
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
return isolate->factory()->the_hole_value();
}
void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
Handle<DescriptorArray> descriptors(map->instance_descriptors());
if (slack <= descriptors->NumberOfSlackDescriptors()) return;
int number_of_descriptors = descriptors->number_of_descriptors();
Isolate* isolate = map->GetIsolate();
Handle<DescriptorArray> new_descriptors =
isolate->factory()->NewDescriptorArray(number_of_descriptors, slack);
DescriptorArray::WhitenessWitness witness(*new_descriptors);
for (int i = 0; i < number_of_descriptors; ++i) {
new_descriptors->CopyFrom(i, *descriptors, i, witness);
}
map->set_instance_descriptors(*new_descriptors);
}
template<class T>
static int AppendUniqueCallbacks(NeanderArray* callbacks,
Handle<typename T::Array> array,
int valid_descriptors) {
int nof_callbacks = callbacks->length();
Isolate* isolate = array->GetIsolate();
// Ensure the keys are unique names before writing them into the
// instance descriptor. Since it may cause a GC, it has to be done before we
// temporarily put the heap in an invalid state while appending descriptors.
for (int i = 0; i < nof_callbacks; ++i) {
Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
if (entry->name()->IsUniqueName()) continue;
Handle<String> key =
isolate->factory()->InternalizedStringFromString(
Handle<String>(String::cast(entry->name())));
entry->set_name(*key);
}
// Fill in new callback descriptors. Process the callbacks from
// back to front so that the last callback with a given name takes
// precedence over previously added callbacks with that name.
for (int i = nof_callbacks - 1; i >= 0; i--) {
AccessorInfo* entry = AccessorInfo::cast(callbacks->get(i));
Name* key = Name::cast(entry->name());
// Check if a descriptor with this name already exists before writing.
if (!T::Contains(key, entry, valid_descriptors, array)) {
T::Insert(key, entry, valid_descriptors, array);
valid_descriptors++;
}
}
return valid_descriptors;
}
struct DescriptorArrayAppender {
typedef DescriptorArray Array;
static bool Contains(Name* key,
AccessorInfo* entry,
int valid_descriptors,
Handle<DescriptorArray> array) {
return array->Search(key, valid_descriptors) != DescriptorArray::kNotFound;
}
static void Insert(Name* key,
AccessorInfo* entry,
int valid_descriptors,
Handle<DescriptorArray> array) {
CallbacksDescriptor desc(key, entry, entry->property_attributes());
array->Append(&desc);
}
};
struct FixedArrayAppender {
typedef FixedArray Array;
static bool Contains(Name* key,
AccessorInfo* entry,
int valid_descriptors,
Handle<FixedArray> array) {
for (int i = 0; i < valid_descriptors; i++) {
if (key == AccessorInfo::cast(array->get(i))->name()) return true;
}
return false;
}
static void Insert(Name* key,
AccessorInfo* entry,
int valid_descriptors,
Handle<FixedArray> array) {
array->set(valid_descriptors, entry);
}
};
void Map::AppendCallbackDescriptors(Handle<Map> map,
Handle<Object> descriptors) {
int nof = map->NumberOfOwnDescriptors();
Handle<DescriptorArray> array(map->instance_descriptors());
NeanderArray callbacks(descriptors);
ASSERT(array->NumberOfSlackDescriptors() >= callbacks.length());
nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof);
map->SetNumberOfOwnDescriptors(nof);
}
int AccessorInfo::AppendUnique(Handle<Object> descriptors,
Handle<FixedArray> array,
int valid_descriptors) {
NeanderArray callbacks(descriptors);
ASSERT(array->length() >= callbacks.length() + valid_descriptors);
return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks,
array,
valid_descriptors);
}
static bool ContainsMap(MapHandleList* maps, Handle<Map> map) {
ASSERT(!map.is_null());
for (int i = 0; i < maps->length(); ++i) {
if (!maps->at(i).is_null() && maps->at(i).is_identical_to(map)) return true;
}
return false;
}
template <class T>
static Handle<T> MaybeNull(T* p) {
if (p == NULL) return Handle<T>::null();
return Handle<T>(p);
}
Handle<Map> Map::FindTransitionedMap(MapHandleList* candidates) {
ElementsKind kind = elements_kind();
Handle<Map> transitioned_map = Handle<Map>::null();
Handle<Map> current_map(this);
bool packed = IsFastPackedElementsKind(kind);
if (IsTransitionableFastElementsKind(kind)) {
while (CanTransitionToMoreGeneralFastElementsKind(kind, false)) {
kind = GetNextMoreGeneralFastElementsKind(kind, false);
Handle<Map> maybe_transitioned_map =
MaybeNull(current_map->LookupElementsTransitionMap(kind));
if (maybe_transitioned_map.is_null()) break;
if (ContainsMap(candidates, maybe_transitioned_map) &&
(packed || !IsFastPackedElementsKind(kind))) {
transitioned_map = maybe_transitioned_map;
if (!IsFastPackedElementsKind(kind)) packed = false;
}
current_map = maybe_transitioned_map;
}
}
return transitioned_map;
}
static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
Map* current_map = map;
int index = GetSequenceIndexFromFastElementsKind(map->elements_kind());
int to_index = IsFastElementsKind(to_kind)
? GetSequenceIndexFromFastElementsKind(to_kind)
: GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
ASSERT(index <= to_index);
for (; index < to_index; ++index) {
if (!current_map->HasElementsTransition()) return current_map;
current_map = current_map->elements_transition_map();
}
if (!IsFastElementsKind(to_kind) && current_map->HasElementsTransition()) {
Map* next_map = current_map->elements_transition_map();
if (next_map->elements_kind() == to_kind) return next_map;
}
ASSERT(IsFastElementsKind(to_kind)
? current_map->elements_kind() == to_kind
: current_map->elements_kind() == TERMINAL_FAST_ELEMENTS_KIND);
return current_map;
}
Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
Map* to_map = FindClosestElementsTransition(this, to_kind);
if (to_map->elements_kind() == to_kind) return to_map;
return NULL;
}
bool Map::IsMapInArrayPrototypeChain() {
Isolate* isolate = GetIsolate();
if (isolate->initial_array_prototype()->map() == this) {
return true;
}
if (isolate->initial_object_prototype()->map() == this) {
return true;
}
return false;
}
static MaybeObject* AddMissingElementsTransitions(Map* map,
ElementsKind to_kind) {
ASSERT(IsFastElementsKind(map->elements_kind()));
int index = GetSequenceIndexFromFastElementsKind(map->elements_kind());
int to_index = IsFastElementsKind(to_kind)
? GetSequenceIndexFromFastElementsKind(to_kind)
: GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
ASSERT(index <= to_index);
Map* current_map = map;
for (; index < to_index; ++index) {
ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(index + 1);
MaybeObject* maybe_next_map =
current_map->CopyAsElementsKind(next_kind, INSERT_TRANSITION);
if (!maybe_next_map->To(&current_map)) return maybe_next_map;
}
// In case we are exiting the fast elements kind system, just add the map in
// the end.
if (!IsFastElementsKind(to_kind)) {
MaybeObject* maybe_next_map =
current_map->CopyAsElementsKind(to_kind, INSERT_TRANSITION);
if (!maybe_next_map->To(&current_map)) return maybe_next_map;
}
ASSERT(current_map->elements_kind() == to_kind);
return current_map;
}
Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
ElementsKind to_kind) {
Isolate* isolate = object->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
object->GetElementsTransitionMap(isolate, to_kind),
Map);
}
MaybeObject* JSObject::GetElementsTransitionMapSlow(ElementsKind to_kind) {
Map* start_map = map();
ElementsKind from_kind = start_map->elements_kind();
if (from_kind == to_kind) {
return start_map;
}
bool allow_store_transition =
// Only remember the map transition if there is not an already existing
// non-matching element transition.
!start_map->IsUndefined() && !start_map->is_shared() &&
IsFastElementsKind(from_kind);
// Only store fast element maps in ascending generality.
if (IsFastElementsKind(to_kind)) {
allow_store_transition &=
IsTransitionableFastElementsKind(from_kind) &&
IsMoreGeneralElementsKindTransition(from_kind, to_kind);
}
if (!allow_store_transition) {
return start_map->CopyAsElementsKind(to_kind, OMIT_TRANSITION);
}
return start_map->AsElementsKind(to_kind);
}
MaybeObject* Map::AsElementsKind(ElementsKind kind) {
Map* closest_map = FindClosestElementsTransition(this, kind);
if (closest_map->elements_kind() == kind) {
return closest_map;
}
return AddMissingElementsTransitions(closest_map, kind);
}
void JSObject::LocalLookupRealNamedProperty(Name* name, LookupResult* result) {
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return result->NotFound();
ASSERT(proto->IsJSGlobalObject());
return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result);
}
if (HasFastProperties()) {
map()->LookupDescriptor(this, name, result);
// A property or a map transition was found. We return all of these result
// types because LocalLookupRealNamedProperty is used when setting
// properties where map transitions are handled.
ASSERT(!result->IsFound() ||
(result->holder() == this && result->IsFastPropertyType()));
// Disallow caching for uninitialized constants. These can only
// occur as fields.
if (result->IsField() &&
result->IsReadOnly() &&
RawFastPropertyAt(result->GetFieldIndex().field_index())->IsTheHole()) {
result->DisallowCaching();
}
return;
}
int entry = property_dictionary()->FindEntry(name);
if (entry != NameDictionary::kNotFound) {
Object* value = property_dictionary()->ValueAt(entry);
if (IsGlobalObject()) {
PropertyDetails d = property_dictionary()->DetailsAt(entry);
if (d.IsDeleted()) {
result->NotFound();
return;
}
value = PropertyCell::cast(value)->value();
}
// Make sure to disallow caching for uninitialized constants
// found in the dictionary-mode objects.
if (value->IsTheHole()) result->DisallowCaching();
result->DictionaryResult(this, entry);
return;
}
result->NotFound();
}
void JSObject::LookupRealNamedProperty(Name* name, LookupResult* result) {
LocalLookupRealNamedProperty(name, result);
if (result->IsFound()) return;
LookupRealNamedPropertyInPrototypes(name, result);
}
void JSObject::LookupRealNamedPropertyInPrototypes(Name* name,
LookupResult* result) {
Isolate* isolate = GetIsolate();
Heap* heap = isolate->heap();
for (Object* pt = GetPrototype();
pt != heap->null_value();
pt = pt->GetPrototype(isolate)) {
if (pt->IsJSProxy()) {
return result->HandlerResult(JSProxy::cast(pt));
}
JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
ASSERT(!(result->IsFound() && result->type() == INTERCEPTOR));
if (result->IsFound()) return;
}
result->NotFound();
}
// We only need to deal with CALLBACKS and INTERCEPTORS
Handle<Object> JSObject::SetPropertyWithFailedAccessCheck(
Handle<JSObject> object,
LookupResult* result,
Handle<Name> name,
Handle<Object> value,
bool check_prototype,
StrictModeFlag strict_mode) {
if (check_prototype && !result->IsProperty()) {
object->LookupRealNamedPropertyInPrototypes(*name, result);
}
if (result->IsProperty()) {
if (!result->IsReadOnly()) {
switch (result->type()) {
case CALLBACKS: {
Object* obj = result->GetCallbackObject();
if (obj->IsAccessorInfo()) {
Handle<AccessorInfo> info(AccessorInfo::cast(obj));
if (info->all_can_write()) {
return SetPropertyWithCallback(object,
info,
name,
value,
handle(result->holder()),
strict_mode);
}
} else if (obj->IsAccessorPair()) {
Handle<AccessorPair> pair(AccessorPair::cast(obj));
if (pair->all_can_read()) {
return SetPropertyWithCallback(object,
pair,
name,
value,
handle(result->holder()),
strict_mode);
}
}
break;
}
case INTERCEPTOR: {
// Try lookup real named properties. Note that only property can be
// set is callbacks marked as ALL_CAN_WRITE on the prototype chain.
LookupResult r(object->GetIsolate());
object->LookupRealNamedProperty(*name, &r);
if (r.IsProperty()) {
return SetPropertyWithFailedAccessCheck(object,
&r,
name,
value,
check_prototype,
strict_mode);
}
break;
}
default: {
break;
}
}
}
}
Isolate* isolate = object->GetIsolate();
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_SET);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return value;
}
Handle<Object> JSReceiver::SetProperty(Handle<JSReceiver> object,
LookupResult* result,
Handle<Name> key,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
StoreFromKeyed store_mode) {
if (result->IsHandler()) {
return JSProxy::SetPropertyWithHandler(handle(result->proxy()),
object, key, value, attributes, strict_mode);
} else {
return JSObject::SetPropertyForResult(Handle<JSObject>::cast(object),
result, key, value, attributes, strict_mode, store_mode);
}
}
bool JSProxy::HasPropertyWithHandler(Handle<JSProxy> proxy, Handle<Name> name) {
Isolate* isolate = proxy->GetIsolate();
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) return false;
Handle<Object> args[] = { name };
Handle<Object> result = proxy->CallTrap(
"has", isolate->derived_has_trap(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return false;
return result->BooleanValue();
}
Handle<Object> JSProxy::SetPropertyWithHandler(Handle<JSProxy> proxy,
Handle<JSReceiver> receiver,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode) {
Isolate* isolate = proxy->GetIsolate();
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) return value;
Handle<Object> args[] = { receiver, name, value };
proxy->CallTrap("set", isolate->derived_set_trap(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return Handle<Object>();
return value;
}
Handle<Object> JSProxy::SetPropertyViaPrototypesWithHandler(
Handle<JSProxy> proxy,
Handle<JSReceiver> receiver,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
bool* done) {
Isolate* isolate = proxy->GetIsolate();
Handle<Object> handler(proxy->handler(), isolate); // Trap might morph proxy.
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) {
*done = false;
return isolate->factory()->the_hole_value();
}
*done = true; // except where redefined...
Handle<Object> args[] = { name };
Handle<Object> result = proxy->CallTrap(
"getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return Handle<Object>();
if (result->IsUndefined()) {
*done = false;
return isolate->factory()->the_hole_value();
}
// Emulate [[GetProperty]] semantics for proxies.
bool has_pending_exception;
Handle<Object> argv[] = { result };
Handle<Object> desc = Execution::Call(
isolate, isolate->to_complete_property_descriptor(), result,
ARRAY_SIZE(argv), argv, &has_pending_exception);
if (has_pending_exception) return Handle<Object>();
// [[GetProperty]] requires to check that all properties are configurable.
Handle<String> configurable_name =
isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("configurable_"));
Handle<Object> configurable(
v8::internal::GetProperty(isolate, desc, configurable_name));
ASSERT(!isolate->has_pending_exception());
ASSERT(configurable->IsTrue() || configurable->IsFalse());
if (configurable->IsFalse()) {
Handle<String> trap =
isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("getPropertyDescriptor"));
Handle<Object> args[] = { handler, trap, name };
Handle<Object> error = isolate->factory()->NewTypeError(
"proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
ASSERT(configurable->IsTrue());
// Check for DataDescriptor.
Handle<String> hasWritable_name =
isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("hasWritable_"));
Handle<Object> hasWritable(
v8::internal::GetProperty(isolate, desc, hasWritable_name));
ASSERT(!isolate->has_pending_exception());
ASSERT(hasWritable->IsTrue() || hasWritable->IsFalse());
if (hasWritable->IsTrue()) {
Handle<String> writable_name =
isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("writable_"));
Handle<Object> writable(
v8::internal::GetProperty(isolate, desc, writable_name));
ASSERT(!isolate->has_pending_exception());
ASSERT(writable->IsTrue() || writable->IsFalse());
*done = writable->IsFalse();
if (!*done) return isolate->factory()->the_hole_value();
if (strict_mode == kNonStrictMode) return value;
Handle<Object> args[] = { name, receiver };
Handle<Object> error = isolate->factory()->NewTypeError(
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
// We have an AccessorDescriptor.
Handle<String> set_name = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("set_"));
Handle<Object> setter(v8::internal::GetProperty(isolate, desc, set_name));
ASSERT(!isolate->has_pending_exception());
if (!setter->IsUndefined()) {
// TODO(rossberg): nicer would be to cast to some JSCallable here...
return SetPropertyWithDefinedSetter(
receiver, Handle<JSReceiver>::cast(setter), value);
}
if (strict_mode == kNonStrictMode) return value;
Handle<Object> args2[] = { name, proxy };
Handle<Object> error = isolate->factory()->NewTypeError(
"no_setter_in_callback", HandleVector(args2, ARRAY_SIZE(args2)));
isolate->Throw(*error);
return Handle<Object>();
}
Handle<Object> JSProxy::DeletePropertyWithHandler(
Handle<JSProxy> proxy, Handle<Name> name, DeleteMode mode) {
Isolate* isolate = proxy->GetIsolate();
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) return isolate->factory()->false_value();
Handle<Object> args[] = { name };
Handle<Object> result = proxy->CallTrap(
"delete", Handle<Object>(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return Handle<Object>();
bool result_bool = result->BooleanValue();
if (mode == STRICT_DELETION && !result_bool) {
Handle<Object> handler(proxy->handler(), isolate);
Handle<String> trap_name = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("delete"));
Handle<Object> args[] = { handler, trap_name };
Handle<Object> error = isolate->factory()->NewTypeError(
"handler_failed", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
return isolate->factory()->ToBoolean(result_bool);
}
Handle<Object> JSProxy::DeleteElementWithHandler(
Handle<JSProxy> proxy, uint32_t index, DeleteMode mode) {
Isolate* isolate = proxy->GetIsolate();
Handle<String> name = isolate->factory()->Uint32ToString(index);
return JSProxy::DeletePropertyWithHandler(proxy, name, mode);
}
MUST_USE_RESULT PropertyAttributes JSProxy::GetPropertyAttributeWithHandler(
JSReceiver* receiver_raw,
Name* name_raw) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<JSProxy> proxy(this);
Handle<Object> handler(this->handler(), isolate); // Trap might morph proxy.
Handle<JSReceiver> receiver(receiver_raw);
Handle<Object> name(name_raw, isolate);
// TODO(rossberg): adjust once there is a story for symbols vs proxies.
if (name->IsSymbol()) return ABSENT;
Handle<Object> args[] = { name };
Handle<Object> result = CallTrap(
"getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args);
if (isolate->has_pending_exception()) return NONE;
if (result->IsUndefined()) return ABSENT;
bool has_pending_exception;
Handle<Object> argv[] = { result };
Handle<Object> desc = Execution::Call(
isolate, isolate->to_complete_property_descriptor(), result,
ARRAY_SIZE(argv), argv, &has_pending_exception);
if (has_pending_exception) return NONE;
// Convert result to PropertyAttributes.
Handle<String> enum_n = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("enumerable_"));
Handle<Object> enumerable(v8::internal::GetProperty(isolate, desc, enum_n));
if (isolate->has_pending_exception()) return NONE;
Handle<String> conf_n = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("configurable_"));
Handle<Object> configurable(v8::internal::GetProperty(isolate, desc, conf_n));
if (isolate->has_pending_exception()) return NONE;
Handle<String> writ_n = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("writable_"));
Handle<Object> writable(v8::internal::GetProperty(isolate, desc, writ_n));
if (isolate->has_pending_exception()) return NONE;
if (!writable->BooleanValue()) {
Handle<String> set_n = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("set_"));
Handle<Object> setter(v8::internal::GetProperty(isolate, desc, set_n));
if (isolate->has_pending_exception()) return NONE;
writable = isolate->factory()->ToBoolean(!setter->IsUndefined());
}
if (configurable->IsFalse()) {
Handle<String> trap = isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("getPropertyDescriptor"));
Handle<Object> args[] = { handler, trap, name };
Handle<Object> error = isolate->factory()->NewTypeError(
"proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return NONE;
}
int attributes = NONE;
if (!enumerable->BooleanValue()) attributes |= DONT_ENUM;
if (!configurable->BooleanValue()) attributes |= DONT_DELETE;
if (!writable->BooleanValue()) attributes |= READ_ONLY;
return static_cast<PropertyAttributes>(attributes);
}
MUST_USE_RESULT PropertyAttributes JSProxy::GetElementAttributeWithHandler(
JSReceiver* receiver_raw,
uint32_t index) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<JSProxy> proxy(this);
Handle<JSReceiver> receiver(receiver_raw);
Handle<String> name = isolate->factory()->Uint32ToString(index);
return proxy->GetPropertyAttributeWithHandler(*receiver, *name);
}
void JSProxy::Fix(Handle<JSProxy> proxy) {
Isolate* isolate = proxy->GetIsolate();
// Save identity hash.
Handle<Object> hash(proxy->GetIdentityHash(), isolate);
if (proxy->IsJSFunctionProxy()) {
isolate->factory()->BecomeJSFunction(proxy);
// Code will be set on the JavaScript side.
} else {
isolate->factory()->BecomeJSObject(proxy);
}
ASSERT(proxy->IsJSObject());
// Inherit identity, if it was present.
if (hash->IsSmi()) {
JSObject::SetIdentityHash(Handle<JSObject>::cast(proxy),
Handle<Smi>::cast(hash));
}
}
MUST_USE_RESULT Handle<Object> JSProxy::CallTrap(const char* name,
Handle<Object> derived,
int argc,
Handle<Object> argv[]) {
Isolate* isolate = GetIsolate();
Handle<Object> handler(this->handler(), isolate);
Handle<String> trap_name = isolate->factory()->InternalizeUtf8String(name);
Handle<Object> trap(v8::internal::GetProperty(isolate, handler, trap_name));
if (isolate->has_pending_exception()) return trap;
if (trap->IsUndefined()) {
if (derived.is_null()) {
Handle<Object> args[] = { handler, trap_name };
Handle<Object> error = isolate->factory()->NewTypeError(
"handler_trap_missing", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
trap = Handle<Object>(derived);
}
bool threw;
return Execution::Call(isolate, trap, handler, argc, argv, &threw);
}
// TODO(mstarzinger): Temporary wrapper until handlified.
static Handle<Map> MapAsElementsKind(Handle<Map> map, ElementsKind kind) {
CALL_HEAP_FUNCTION(map->GetIsolate(), map->AsElementsKind(kind), Map);
}
void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
ASSERT(object->map()->inobject_properties() == map->inobject_properties());
ElementsKind obj_kind = object->map()->elements_kind();
ElementsKind map_kind = map->elements_kind();
if (map_kind != obj_kind) {
ElementsKind to_kind = map_kind;
if (IsMoreGeneralElementsKindTransition(map_kind, obj_kind) ||
IsDictionaryElementsKind(obj_kind)) {
to_kind = obj_kind;
}
if (IsDictionaryElementsKind(to_kind)) {
NormalizeElements(object);
} else {
TransitionElementsKind(object, to_kind);
}
map = MapAsElementsKind(map, to_kind);
}
int total_size =
map->NumberOfOwnDescriptors() + map->unused_property_fields();
int out_of_object = total_size - map->inobject_properties();
if (out_of_object != object->properties()->length()) {
Isolate* isolate = object->GetIsolate();
Handle<FixedArray> new_properties = isolate->factory()->CopySizeFixedArray(
handle(object->properties()), out_of_object);
object->set_properties(*new_properties);
}
object->set_map(*map);
}
void JSObject::MigrateInstance(Handle<JSObject> object) {
// Converting any field to the most specific type will cause the
// GeneralizeFieldRepresentation algorithm to create the most general existing
// transition that matches the object. This achieves what is needed.
Handle<Map> original_map(object->map());
GeneralizeFieldRepresentation(
object, 0, Representation::None(), ALLOW_AS_CONSTANT);
if (FLAG_trace_migration) {
object->PrintInstanceMigration(stdout, *original_map, object->map());
}
}
Handle<Object> JSObject::TryMigrateInstance(Handle<JSObject> object) {
Map* new_map = object->map()->CurrentMapForDeprecated();
if (new_map == NULL) return Handle<Object>();
Handle<Map> original_map(object->map());
JSObject::MigrateToMap(object, handle(new_map));
if (FLAG_trace_migration) {
object->PrintInstanceMigration(stdout, *original_map, object->map());
}
return object;
}
Handle<Object> JSObject::SetPropertyUsingTransition(
Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes) {
Handle<Map> transition_map(lookup->GetTransitionTarget());
int descriptor = transition_map->LastAdded();
DescriptorArray* descriptors = transition_map->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
if (details.type() == CALLBACKS || attributes != details.attributes()) {
// AddProperty will either normalize the object, or create a new fast copy
// of the map. If we get a fast copy of the map, all field representations
// will be tagged since the transition is omitted.
return JSObject::AddProperty(
object, name, value, attributes, kNonStrictMode,
JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED,
JSReceiver::OMIT_EXTENSIBILITY_CHECK,
JSObject::FORCE_TAGGED, FORCE_FIELD, OMIT_TRANSITION);
}
// Keep the target CONSTANT if the same value is stored.
// TODO(verwaest): Also support keeping the placeholder
// (value->IsUninitialized) as constant.
if (details.type() == CONSTANT &&
descriptors->GetValue(descriptor) == *value) {
object->set_map(*transition_map);
return value;
}
Representation representation = details.representation();
if (!value->FitsRepresentation(representation) ||
details.type() == CONSTANT) {
transition_map = Map::GeneralizeRepresentation(transition_map,
descriptor, value->OptimalRepresentation(), FORCE_FIELD);
Object* back = transition_map->GetBackPointer();
if (back->IsMap()) {
MigrateToMap(object, handle(Map::cast(back)));
}
descriptors = transition_map->instance_descriptors();
representation = descriptors->GetDetails(descriptor).representation();
}
int field_index = descriptors->GetFieldIndex(descriptor);
AddFastPropertyUsingMap(
object, transition_map, name, value, field_index, representation);
return value;
}
static void SetPropertyToField(LookupResult* lookup,
Handle<Name> name,
Handle<Object> value) {
Representation representation = lookup->representation();
if (!value->FitsRepresentation(representation) ||
lookup->type() == CONSTANT) {
JSObject::GeneralizeFieldRepresentation(handle(lookup->holder()),
lookup->GetDescriptorIndex(),
value->OptimalRepresentation(),
FORCE_FIELD);
DescriptorArray* desc = lookup->holder()->map()->instance_descriptors();
int descriptor = lookup->GetDescriptorIndex();
representation = desc->GetDetails(descriptor).representation();
}
if (FLAG_track_double_fields && representation.IsDouble()) {
HeapNumber* storage = HeapNumber::cast(lookup->holder()->RawFastPropertyAt(
lookup->GetFieldIndex().field_index()));
storage->set_value(value->Number());
return;
}
lookup->holder()->FastPropertyAtPut(
lookup->GetFieldIndex().field_index(), *value);
}
static void ConvertAndSetLocalProperty(LookupResult* lookup,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes) {
Handle<JSObject> object(lookup->holder());
if (object->TooManyFastProperties()) {
JSObject::NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
}
if (!object->HasFastProperties()) {
ReplaceSlowProperty(object, name, value, attributes);
return;
}
int descriptor_index = lookup->GetDescriptorIndex();
if (lookup->GetAttributes() == attributes) {
JSObject::GeneralizeFieldRepresentation(
object, descriptor_index, Representation::Tagged(), FORCE_FIELD);
} else {
Handle<Map> old_map(object->map());
Handle<Map> new_map = Map::CopyGeneralizeAllRepresentations(old_map,
descriptor_index, FORCE_FIELD, attributes, "attributes mismatch");
JSObject::MigrateToMap(object, new_map);
}
DescriptorArray* descriptors = object->map()->instance_descriptors();
int index = descriptors->GetDetails(descriptor_index).field_index();
object->FastPropertyAtPut(index, *value);
}
static void SetPropertyToFieldWithAttributes(LookupResult* lookup,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes) {
if (lookup->GetAttributes() == attributes) {
if (value->IsUninitialized()) return;
SetPropertyToField(lookup, name, value);
} else {
ConvertAndSetLocalProperty(lookup, name, value, attributes);
}
}
Handle<Object> JSObject::SetPropertyForResult(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
StoreFromKeyed store_mode) {
Isolate* isolate = object->GetIsolate();
// Make sure that the top context does not change when doing callbacks or
// interceptor calls.
AssertNoContextChange ncc(isolate);
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. We internalize these short keys to avoid constantly
// reallocating them.
if (name->IsString() && !name->IsInternalizedString() &&
Handle<String>::cast(name)->length() <= 2) {
name = isolate->factory()->InternalizeString(Handle<String>::cast(name));
}
// Check access rights if needed.
if (object->IsAccessCheckNeeded()) {
if (!isolate->MayNamedAccess(*object, *name, v8::ACCESS_SET)) {
return SetPropertyWithFailedAccessCheck(object, lookup, name, value,
true, strict_mode);
}
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return value;
ASSERT(proto->IsJSGlobalObject());
return SetPropertyForResult(Handle<JSObject>::cast(proto),
lookup, name, value, attributes, strict_mode, store_mode);
}
ASSERT(!lookup->IsFound() || lookup->holder() == *object ||
lookup->holder()->map()->is_hidden_prototype());
if (!lookup->IsProperty() && !object->IsJSContextExtensionObject()) {
bool done = false;
Handle<Object> result_object = SetPropertyViaPrototypes(
object, name, value, attributes, strict_mode, &done);
if (done) return result_object;
}
if (!lookup->IsFound()) {
// Neither properties nor transitions found.
return AddProperty(
object, name, value, attributes, strict_mode, store_mode);
}
if (lookup->IsProperty() && lookup->IsReadOnly()) {
if (strict_mode == kStrictMode) {
Handle<Object> args[] = { name, object };
Handle<Object> error = isolate->factory()->NewTypeError(
"strict_read_only_property", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
} else {
return value;
}
}
Handle<Object> old_value = isolate->factory()->the_hole_value();
bool is_observed = FLAG_harmony_observation &&
object->map()->is_observed() &&
*name != isolate->heap()->hidden_string();
if (is_observed && lookup->IsDataProperty()) {
old_value = Object::GetProperty(object, name);
}
// This is a real property that is not read-only, or it is a
// transition or null descriptor and there are no setters in the prototypes.
Handle<Object> result = value;
switch (lookup->type()) {
case NORMAL:
SetNormalizedProperty(handle(lookup->holder()), lookup, value);
break;
case FIELD:
SetPropertyToField(lookup, name, value);
break;
case CONSTANT:
// Only replace the constant if necessary.
if (*value == lookup->GetConstant()) return value;
SetPropertyToField(lookup, name, value);
break;
case CALLBACKS: {
Handle<Object> callback_object(lookup->GetCallbackObject(), isolate);
return SetPropertyWithCallback(object, callback_object, name, value,
handle(lookup->holder()), strict_mode);
}
case INTERCEPTOR:
result = SetPropertyWithInterceptor(handle(lookup->holder()), name, value,
attributes, strict_mode);
break;
case TRANSITION:
result = SetPropertyUsingTransition(handle(lookup->holder()), lookup,
name, value, attributes);
break;
case HANDLER:
case NONEXISTENT:
UNREACHABLE();
}
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, result, Handle<Object>());
if (is_observed) {
if (lookup->IsTransition()) {
EnqueueChangeRecord(object, "add", name, old_value);
} else {
LookupResult new_lookup(isolate);
object->LocalLookup(*name, &new_lookup, true);
if (new_lookup.IsDataProperty()) {
Handle<Object> new_value = Object::GetProperty(object, name);
if (!new_value->SameValue(*old_value)) {
EnqueueChangeRecord(object, "update", name, old_value);
}
}
}
}
return result;
}
// Set a real local property, even if it is READ_ONLY. If the property is not
// present, add it with attributes NONE. This code is an exact clone of
// SetProperty, with the check for IsReadOnly and the check for a
// callback setter removed. The two lines looking up the LookupResult
// result are also added. If one of the functions is changed, the other
// should be.
// Note that this method cannot be used to set the prototype of a function
// because ConvertDescriptorToField() which is called in "case CALLBACKS:"
// doesn't handle function prototypes correctly.
Handle<Object> JSObject::SetLocalPropertyIgnoreAttributes(
Handle<JSObject> object,
Handle<Name> name,
Handle<Object> value,
PropertyAttributes attributes,
ValueType value_type,
StoreMode mode,
ExtensibilityCheck extensibility_check) {
Isolate* isolate = object->GetIsolate();
// Make sure that the top context does not change when doing callbacks or
// interceptor calls.
AssertNoContextChange ncc(isolate);
LookupResult lookup(isolate);
object->LocalLookup(*name, &lookup, true);
if (!lookup.IsFound()) {
object->map()->LookupTransition(*object, *name, &lookup);
}
// Check access rights if needed.
if (object->IsAccessCheckNeeded()) {
if (!isolate->MayNamedAccess(*object, *name, v8::ACCESS_SET)) {
return SetPropertyWithFailedAccessCheck(object, &lookup, name, value,
false, kNonStrictMode);
}
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return value;
ASSERT(proto->IsJSGlobalObject());
return SetLocalPropertyIgnoreAttributes(Handle<JSObject>::cast(proto),
name, value, attributes, value_type, mode, extensibility_check);
}
if (lookup.IsFound() &&
(lookup.type() == INTERCEPTOR || lookup.type() == CALLBACKS)) {
object->LocalLookupRealNamedProperty(*name, &lookup);
}
// Check for accessor in prototype chain removed here in clone.
if (!lookup.IsFound()) {
// Neither properties nor transitions found.
return AddProperty(object, name, value, attributes, kNonStrictMode,
MAY_BE_STORE_FROM_KEYED, extensibility_check, value_type, mode);
}
Handle<Object> old_value = isolate->factory()->the_hole_value();
PropertyAttributes old_attributes = ABSENT;
bool is_observed = FLAG_harmony_observation &&
object->map()->is_observed() &&
*name != isolate->heap()->hidden_string();
if (is_observed && lookup.IsProperty()) {
if (lookup.IsDataProperty()) old_value =
Object::GetProperty(object, name);
old_attributes = lookup.GetAttributes();
}
// Check of IsReadOnly removed from here in clone.
switch (lookup.type()) {
case NORMAL:
ReplaceSlowProperty(object, name, value, attributes);
break;
case FIELD:
SetPropertyToFieldWithAttributes(&lookup, name, value, attributes);
break;
case CONSTANT:
// Only replace the constant if necessary.
if (lookup.GetAttributes() != attributes ||
*value != lookup.GetConstant()) {
SetPropertyToFieldWithAttributes(&lookup, name, value, attributes);
}
break;
case CALLBACKS:
ConvertAndSetLocalProperty(&lookup, name, value, attributes);
break;
case TRANSITION: {
Handle<Object> result = SetPropertyUsingTransition(
handle(lookup.holder()), &lookup, name, value, attributes);
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, result, Handle<Object>());
break;
}
case NONEXISTENT:
case HANDLER:
case INTERCEPTOR:
UNREACHABLE();
}
if (is_observed) {
if (lookup.IsTransition()) {
EnqueueChangeRecord(object, "add", name, old_value);
} else if (old_value->IsTheHole()) {
EnqueueChangeRecord(object, "reconfigure", name, old_value);
} else {
LookupResult new_lookup(isolate);
object->LocalLookup(*name, &new_lookup, true);
bool value_changed = false;
if (new_lookup.IsDataProperty()) {
Handle<Object> new_value = Object::GetProperty(object, name);
value_changed = !old_value->SameValue(*new_value);
}
if (new_lookup.GetAttributes() != old_attributes) {
if (!value_changed) old_value = isolate->factory()->the_hole_value();
EnqueueChangeRecord(object, "reconfigure", name, old_value);
} else if (value_changed) {
EnqueueChangeRecord(object, "update", name, old_value);
}
}
}
return value;
}
PropertyAttributes JSObject::GetPropertyAttributePostInterceptor(
JSObject* receiver,
Name* name,
bool continue_search) {
// Check local property, ignore interceptor.
LookupResult result(GetIsolate());
LocalLookupRealNamedProperty(name, &result);
if (result.IsFound()) return result.GetAttributes();
if (continue_search) {
// Continue searching via the prototype chain.
Object* pt = GetPrototype();
if (!pt->IsNull()) {
return JSObject::cast(pt)->
GetPropertyAttributeWithReceiver(receiver, name);
}
}
return ABSENT;
}
PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor(
JSObject* receiver,
Name* name,
bool continue_search) {
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return ABSENT;
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
Handle<JSObject> receiver_handle(receiver);
Handle<JSObject> holder_handle(this);
Handle<String> name_handle(String::cast(name));
PropertyCallbackArguments args(isolate, interceptor->data(), receiver, this);
if (!interceptor->query()->IsUndefined()) {
v8::NamedPropertyQueryCallback query =
v8::ToCData<v8::NamedPropertyQueryCallback>(interceptor->query());
LOG(isolate,
ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name));
v8::Handle<v8::Integer> result =
args.Call(query, v8::Utils::ToLocal(name_handle));
if (!result.IsEmpty()) {
ASSERT(result->IsInt32());
return static_cast<PropertyAttributes>(result->Int32Value());
}
} else if (!interceptor->getter()->IsUndefined()) {
v8::NamedPropertyGetterCallback getter =
v8::ToCData<v8::NamedPropertyGetterCallback>(interceptor->getter());
LOG(isolate,
ApiNamedPropertyAccess("interceptor-named-get-has", this, name));
v8::Handle<v8::Value> result =
args.Call(getter, v8::Utils::ToLocal(name_handle));
if (!result.IsEmpty()) return DONT_ENUM;
}
return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle,
*name_handle,
continue_search);
}
PropertyAttributes JSReceiver::GetPropertyAttributeWithReceiver(
JSReceiver* receiver,
Name* key) {
uint32_t index = 0;
if (IsJSObject() && key->AsArrayIndex(&index)) {
return JSObject::cast(this)->GetElementAttributeWithReceiver(
receiver, index, true);
}
// Named property.
LookupResult lookup(GetIsolate());
Lookup(key, &lookup);
return GetPropertyAttributeForResult(receiver, &lookup, key, true);
}
PropertyAttributes JSReceiver::GetPropertyAttributeForResult(
JSReceiver* receiver,
LookupResult* lookup,
Name* name,
bool continue_search) {
// Check access rights if needed.
if (IsAccessCheckNeeded()) {
JSObject* this_obj = JSObject::cast(this);
Heap* heap = GetHeap();
if (!heap->isolate()->MayNamedAccess(this_obj, name, v8::ACCESS_HAS)) {
return this_obj->GetPropertyAttributeWithFailedAccessCheck(
receiver, lookup, name, continue_search);
}
}
if (lookup->IsFound()) {
switch (lookup->type()) {
case NORMAL: // fall through
case FIELD:
case CONSTANT:
case CALLBACKS:
return lookup->GetAttributes();
case HANDLER: {
return JSProxy::cast(lookup->proxy())->GetPropertyAttributeWithHandler(
receiver, name);
}
case INTERCEPTOR:
return lookup->holder()->GetPropertyAttributeWithInterceptor(
JSObject::cast(receiver), name, continue_search);
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
}
}
return ABSENT;
}
PropertyAttributes JSReceiver::GetLocalPropertyAttribute(Name* name) {
// Check whether the name is an array index.
uint32_t index = 0;
if (IsJSObject() && name->AsArrayIndex(&index)) {
return GetLocalElementAttribute(index);
}
// Named property.
LookupResult lookup(GetIsolate());
LocalLookup(name, &lookup, true);
return GetPropertyAttributeForResult(this, &lookup, name, false);
}
PropertyAttributes JSObject::GetElementAttributeWithReceiver(
JSReceiver* receiver, uint32_t index, bool continue_search) {
Isolate* isolate = GetIsolate();
// Check access rights if needed.
if (IsAccessCheckNeeded()) {
if (!isolate->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
return ABSENT;
}
}
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return ABSENT;
ASSERT(proto->IsJSGlobalObject());
return JSObject::cast(proto)->GetElementAttributeWithReceiver(
receiver, index, continue_search);
}
// Check for lookup interceptor except when bootstrapping.
if (HasIndexedInterceptor() && !isolate->bootstrapper()->IsActive()) {
return GetElementAttributeWithInterceptor(receiver, index, continue_search);
}
return GetElementAttributeWithoutInterceptor(
receiver, index, continue_search);
}
PropertyAttributes JSObject::GetElementAttributeWithInterceptor(
JSReceiver* receiver, uint32_t index, bool continue_search) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
Handle<JSReceiver> hreceiver(receiver);
Handle<JSObject> holder(this);
PropertyCallbackArguments args(isolate, interceptor->data(), receiver, this);
if (!interceptor->query()->IsUndefined()) {
v8::IndexedPropertyQueryCallback query =
v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query());
LOG(isolate,
ApiIndexedPropertyAccess("interceptor-indexed-has", this, index));
v8::Handle<v8::Integer> result = args.Call(query, index);
if (!result.IsEmpty())
return static_cast<PropertyAttributes>(result->Int32Value());
} else if (!interceptor->getter()->IsUndefined()) {
v8::IndexedPropertyGetterCallback getter =
v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
LOG(isolate,
ApiIndexedPropertyAccess("interceptor-indexed-get-has", this, index));
v8::Handle<v8::Value> result = args.Call(getter, index);
if (!result.IsEmpty()) return NONE;
}
return holder->GetElementAttributeWithoutInterceptor(
*hreceiver, index, continue_search);
}
PropertyAttributes JSObject::GetElementAttributeWithoutInterceptor(
JSReceiver* receiver, uint32_t index, bool continue_search) {
PropertyAttributes attr = GetElementsAccessor()->GetAttributes(
receiver, this, index);
if (attr != ABSENT) return attr;
// Handle [] on String objects.
if (IsStringObjectWithCharacterAt(index)) {
return static_cast<PropertyAttributes>(READ_ONLY | DONT_DELETE);
}
if (!continue_search) return ABSENT;
Object* pt = GetPrototype();
if (pt->IsJSProxy()) {
// We need to follow the spec and simulate a call to [[GetOwnProperty]].
return JSProxy::cast(pt)->GetElementAttributeWithHandler(receiver, index);
}
if (pt->IsNull()) return ABSENT;
return JSObject::cast(pt)->GetElementAttributeWithReceiver(
receiver, index, true);
}
Handle<Map> NormalizedMapCache::Get(Handle<NormalizedMapCache> cache,
Handle<JSObject> obj,
PropertyNormalizationMode mode) {
int index = obj->map()->Hash() % kEntries;
Handle<Object> result = handle(cache->get(index), cache->GetIsolate());
if (result->IsMap() &&
Handle<Map>::cast(result)->EquivalentToForNormalization(obj->map(),
mode)) {
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Handle<Map>::cast(result)->SharedMapVerify();
}
#endif
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
// The cached map should match newly created normalized map bit-by-bit,
// except for the code cache, which can contain some ics which can be
// applied to the shared map.
Handle<Map> fresh = Map::CopyNormalized(handle(obj->map()), mode,
SHARED_NORMALIZED_MAP);
ASSERT(memcmp(fresh->address(),
Handle<Map>::cast(result)->address(),
Map::kCodeCacheOffset) == 0);
STATIC_ASSERT(Map::kDependentCodeOffset ==
Map::kCodeCacheOffset + kPointerSize);
int offset = Map::kDependentCodeOffset + kPointerSize;
ASSERT(memcmp(fresh->address() + offset,
Handle<Map>::cast(result)->address() + offset,
Map::kSize - offset) == 0);
}
#endif
return Handle<Map>::cast(result);
}
Isolate* isolate = cache->GetIsolate();
Handle<Map> map = Map::CopyNormalized(handle(obj->map()), mode,
SHARED_NORMALIZED_MAP);
ASSERT(map->is_dictionary_map());
cache->set(index, *map);
isolate->counters()->normalized_maps()->Increment();
return map;
}
void NormalizedMapCache::Clear() {
int entries = length();
for (int i = 0; i != entries; i++) {
set_undefined(i);
}
}
void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object,
Handle<Name> name,
Handle<Code> code) {
Handle<Map> map(object->map());
Map::UpdateCodeCache(map, name, code);
}
void JSObject::NormalizeProperties(Handle<JSObject> object,
PropertyNormalizationMode mode,
int expected_additional_properties) {
if (!object->HasFastProperties()) return;
// The global object is always normalized.
ASSERT(!object->IsGlobalObject());
// JSGlobalProxy must never be normalized
ASSERT(!object->IsJSGlobalProxy());
Isolate* isolate = object->GetIsolate();
HandleScope scope(isolate);
Handle<Map> map(object->map());
// Allocate new content.
int real_size = map->NumberOfOwnDescriptors();
int property_count = real_size;
if (expected_additional_properties > 0) {
property_count += expected_additional_properties;
} else {
property_count += 2; // Make space for two more properties.
}
Handle<NameDictionary> dictionary =
isolate->factory()->NewNameDictionary(property_count);
Handle<DescriptorArray> descs(map->instance_descriptors());
for (int i = 0; i < real_size; i++) {
PropertyDetails details = descs->GetDetails(i);
switch (details.type()) {
case CONSTANT: {
Handle<Name> key(descs->GetKey(i));
Handle<Object> value(descs->GetConstant(i), isolate);
PropertyDetails d = PropertyDetails(
details.attributes(), NORMAL, i + 1);
dictionary = NameDictionaryAdd(dictionary, key, value, d);
break;
}
case FIELD: {
Handle<Name> key(descs->GetKey(i));
Handle<Object> value(
object->RawFastPropertyAt(descs->GetFieldIndex(i)), isolate);
PropertyDetails d =
PropertyDetails(details.attributes(), NORMAL, i + 1);
dictionary = NameDictionaryAdd(dictionary, key, value, d);
break;
}
case CALLBACKS: {
Handle<Name> key(descs->GetKey(i));
Handle<Object> value(descs->GetCallbacksObject(i), isolate);
PropertyDetails d = PropertyDetails(
details.attributes(), CALLBACKS, i + 1);
dictionary = NameDictionaryAdd(dictionary, key, value, d);
break;
}
case INTERCEPTOR:
break;
case HANDLER:
case NORMAL:
case TRANSITION:
case NONEXISTENT:
UNREACHABLE();
break;
}
}
// Copy the next enumeration index from instance descriptor.
dictionary->SetNextEnumerationIndex(real_size + 1);
Handle<NormalizedMapCache> cache(
isolate->context()->native_context()->normalized_map_cache());
Handle<Map> new_map = NormalizedMapCache::Get(cache, object, mode);
ASSERT(new_map->is_dictionary_map());
// From here on we cannot fail and we shouldn't GC anymore.
DisallowHeapAllocation no_allocation;
// Resize the object in the heap if necessary.
int new_instance_size = new_map->instance_size();
int instance_size_delta = map->instance_size() - new_instance_size;
ASSERT(instance_size_delta >= 0);
isolate->heap()->CreateFillerObjectAt(object->address() + new_instance_size,
instance_size_delta);
if (Marking::IsBlack(Marking::MarkBitFrom(*object))) {
MemoryChunk::IncrementLiveBytesFromMutator(object->address(),
-instance_size_delta);
}
object->set_map(*new_map);
map->NotifyLeafMapLayoutChange();
object->set_properties(*dictionary);
isolate->counters()->props_to_dictionary()->Increment();
#ifdef DEBUG
if (FLAG_trace_normalization) {
PrintF("Object properties have been normalized:\n");
object->Print();
}
#endif
}
void JSObject::TransformToFastProperties(Handle<JSObject> object,
int unused_property_fields) {
if (object->HasFastProperties()) return;
ASSERT(!object->IsGlobalObject());
CALL_HEAP_FUNCTION_VOID(
object->GetIsolate(),
object->property_dictionary()->TransformPropertiesToFastFor(
*object, unused_property_fields));
}
static MUST_USE_RESULT MaybeObject* CopyFastElementsToDictionary(
Isolate* isolate,
FixedArrayBase* array,
int length,
SeededNumberDictionary* dictionary) {
Heap* heap = isolate->heap();
bool has_double_elements = array->IsFixedDoubleArray();
for (int i = 0; i < length; i++) {
Object* value = NULL;
if (has_double_elements) {
FixedDoubleArray* double_array = FixedDoubleArray::cast(array);
if (double_array->is_the_hole(i)) {
value = isolate->heap()->the_hole_value();
} else {
// Objects must be allocated in the old object space, since the
// overall number of HeapNumbers needed for the conversion might
// exceed the capacity of new space, and we would fail repeatedly
// trying to convert the FixedDoubleArray.
MaybeObject* maybe_value_object =
heap->AllocateHeapNumber(double_array->get_scalar(i), TENURED);
if (!maybe_value_object->ToObject(&value)) return maybe_value_object;
}
} else {
value = FixedArray::cast(array)->get(i);
}
if (!value->IsTheHole()) {
PropertyDetails details = PropertyDetails(NONE, NORMAL, 0);
MaybeObject* maybe_result =
dictionary->AddNumberEntry(i, value, details);
if (!maybe_result->To(&dictionary)) return maybe_result;
}
}
return dictionary;
}
static Handle<SeededNumberDictionary> CopyFastElementsToDictionary(
Handle<FixedArrayBase> array,
int length,
Handle<SeededNumberDictionary> dict) {
Isolate* isolate = array->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
CopyFastElementsToDictionary(
isolate, *array, length, *dict),
SeededNumberDictionary);
}
Handle<SeededNumberDictionary> JSObject::NormalizeElements(
Handle<JSObject> object) {
CALL_HEAP_FUNCTION(object->GetIsolate(),
object->NormalizeElements(),
SeededNumberDictionary);
}
MaybeObject* JSObject::NormalizeElements() {
ASSERT(!HasExternalArrayElements());
// Find the backing store.
FixedArrayBase* array = FixedArrayBase::cast(elements());
Map* old_map = array->map();
bool is_arguments =
(old_map == old_map->GetHeap()->non_strict_arguments_elements_map());
if (is_arguments) {
array = FixedArrayBase::cast(FixedArray::cast(array)->get(1));
}
if (array->IsDictionary()) return array;
ASSERT(HasFastSmiOrObjectElements() ||
HasFastDoubleElements() ||
HasFastArgumentsElements());
// Compute the effective length and allocate a new backing store.
int length = IsJSArray()
? Smi::cast(JSArray::cast(this)->length())->value()
: array->length();
int old_capacity = 0;
int used_elements = 0;
GetElementsCapacityAndUsage(&old_capacity, &used_elements);
SeededNumberDictionary* dictionary;
MaybeObject* maybe_dictionary =
SeededNumberDictionary::Allocate(GetHeap(), used_elements);
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
maybe_dictionary = CopyFastElementsToDictionary(
GetIsolate(), array, length, dictionary);
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
// Switch to using the dictionary as the backing storage for elements.
if (is_arguments) {
FixedArray::cast(elements())->set(1, dictionary);
} else {
// Set the new map first to satify the elements type assert in
// set_elements().
Map* new_map;
MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(),
DICTIONARY_ELEMENTS);
if (!maybe->To(&new_map)) return maybe;
set_map(new_map);
set_elements(dictionary);
}
old_map->GetHeap()->isolate()->counters()->elements_to_dictionary()->
Increment();
#ifdef DEBUG
if (FLAG_trace_normalization) {
PrintF("Object elements have been normalized:\n");
Print();
}
#endif
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
return dictionary;
}
Smi* JSReceiver::GenerateIdentityHash() {
Isolate* isolate = GetIsolate();
int hash_value;
int attempts = 0;
do {
// Generate a random 32-bit hash value but limit range to fit
// within a smi.
hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue;
attempts++;
} while (hash_value == 0 && attempts < 30);
hash_value = hash_value != 0 ? hash_value : 1; // never return 0
return Smi::FromInt(hash_value);
}
void JSObject::SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash) {
Isolate* isolate = object->GetIsolate();
SetHiddenProperty(object, isolate->factory()->identity_hash_string(), hash);
}
Object* JSObject::GetIdentityHash() {
Object* stored_value = GetHiddenProperty(GetHeap()->identity_hash_string());
return stored_value->IsSmi() ? stored_value : GetHeap()->undefined_value();
}
Handle<Object> JSObject::GetOrCreateIdentityHash(Handle<JSObject> object) {
Handle<Object> hash(object->GetIdentityHash(), object->GetIsolate());
if (hash->IsSmi())
return hash;
Isolate* isolate = object->GetIsolate();
hash = handle(object->GenerateIdentityHash(), isolate);
Handle<Object> result = SetHiddenProperty(object,
isolate->factory()->identity_hash_string(), hash);
if (result->IsUndefined()) {
// Trying to get hash of detached proxy.
return handle(Smi::FromInt(0), isolate);
}
return hash;
}
Object* JSProxy::GetIdentityHash() {
return this->hash();
}
Handle<Object> JSProxy::GetOrCreateIdentityHash(Handle<JSProxy> proxy) {
Isolate* isolate = proxy->GetIsolate();
Handle<Object> hash(proxy->GetIdentityHash(), isolate);
if (hash->IsSmi())
return hash;
hash = handle(proxy->GenerateIdentityHash(), isolate);
proxy->set_hash(*hash);
return hash;
}
Object* JSObject::GetHiddenProperty(Name* key) {
ASSERT(key->IsUniqueName());
if (IsJSGlobalProxy()) {
// For a proxy, use the prototype as target object.
Object* proxy_parent = GetPrototype();
// If the proxy is detached, return undefined.
if (proxy_parent->IsNull()) return GetHeap()->the_hole_value();
ASSERT(proxy_parent->IsJSGlobalObject());
return JSObject::cast(proxy_parent)->GetHiddenProperty(key);
}
ASSERT(!IsJSGlobalProxy());
Object* inline_value = GetHiddenPropertiesHashTable();
if (inline_value->IsSmi()) {
// Handle inline-stored identity hash.
if (key == GetHeap()->identity_hash_string()) {
return inline_value;
} else {
return GetHeap()->the_hole_value();
}
}
if (inline_value->IsUndefined()) return GetHeap()->the_hole_value();
ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value);
Object* entry = hashtable->Lookup(key);
return entry;
}
Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> object,
Handle<Name> key,
Handle<Object> value) {
Isolate* isolate = object->GetIsolate();
ASSERT(key->IsUniqueName());
if (object->IsJSGlobalProxy()) {
// For a proxy, use the prototype as target object.
Handle<Object> proxy_parent(object->GetPrototype(), isolate);
// If the proxy is detached, return undefined.
if (proxy_parent->IsNull()) return isolate->factory()->undefined_value();
ASSERT(proxy_parent->IsJSGlobalObject());
return SetHiddenProperty(Handle<JSObject>::cast(proxy_parent), key, value);
}
ASSERT(!object->IsJSGlobalProxy());
Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate);
// If there is no backing store yet, store the identity hash inline.
if (value->IsSmi() &&
*key == *isolate->factory()->identity_hash_string() &&
(inline_value->IsUndefined() || inline_value->IsSmi())) {
return JSObject::SetHiddenPropertiesHashTable(object, value);
}
Handle<ObjectHashTable> hashtable =
GetOrCreateHiddenPropertiesHashtable(object);
// If it was found, check if the key is already in the dictionary.
Handle<ObjectHashTable> new_table = ObjectHashTable::Put(hashtable, key,
value);
if (*new_table != *hashtable) {
// If adding the key expanded the dictionary (i.e., Add returned a new
// dictionary), store it back to the object.
SetHiddenPropertiesHashTable(object, new_table);
}
// Return this to mark success.
return object;
}
void JSObject::DeleteHiddenProperty(Handle<JSObject> object, Handle<Name> key) {
Isolate* isolate = object->GetIsolate();
ASSERT(key->IsUniqueName());
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return;
ASSERT(proto->IsJSGlobalObject());
return DeleteHiddenProperty(Handle<JSObject>::cast(proto), key);
}
Object* inline_value = object->GetHiddenPropertiesHashTable();
// We never delete (inline-stored) identity hashes.
ASSERT(*key != *isolate->factory()->identity_hash_string());
if (inline_value->IsUndefined() || inline_value->IsSmi()) return;
Handle<ObjectHashTable> hashtable(ObjectHashTable::cast(inline_value));
ObjectHashTable::Put(hashtable, key, isolate->factory()->the_hole_value());
}
bool JSObject::HasHiddenProperties() {
return GetPropertyAttributePostInterceptor(this,
GetHeap()->hidden_string(),
false) != ABSENT;
}
Object* JSObject::GetHiddenPropertiesHashTable() {
ASSERT(!IsJSGlobalProxy());
if (HasFastProperties()) {
// If the object has fast properties, check whether the first slot
// in the descriptor array matches the hidden string. Since the
// hidden strings hash code is zero (and no other name has hash
// code zero) it will always occupy the first entry if present.
DescriptorArray* descriptors = this->map()->instance_descriptors();
if (descriptors->number_of_descriptors() > 0) {
int sorted_index = descriptors->GetSortedKeyIndex(0);
if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() &&
sorted_index < map()->NumberOfOwnDescriptors()) {
ASSERT(descriptors->GetType(sorted_index) == FIELD);
ASSERT(descriptors->GetDetails(sorted_index).representation().
IsCompatibleForLoad(Representation::Tagged()));
return this->RawFastPropertyAt(
descriptors->GetFieldIndex(sorted_index));
} else {
return GetHeap()->undefined_value();
}
} else {
return GetHeap()->undefined_value();
}
} else {
PropertyAttributes attributes;
// You can't install a getter on a property indexed by the hidden string,
// so we can be sure that GetLocalPropertyPostInterceptor returns a real
// object.
return GetLocalPropertyPostInterceptor(this,
GetHeap()->hidden_string(),
&attributes)->ToObjectUnchecked();
}
}
Handle<ObjectHashTable> JSObject::GetOrCreateHiddenPropertiesHashtable(
Handle<JSObject> object) {
Isolate* isolate = object->GetIsolate();
static const int kInitialCapacity = 4;
Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate);
if (inline_value->IsHashTable()) {
return Handle<ObjectHashTable>::cast(inline_value);
}
Handle<ObjectHashTable> hashtable = isolate->factory()->NewObjectHashTable(
kInitialCapacity,
USE_CUSTOM_MINIMUM_CAPACITY);
if (inline_value->IsSmi()) {
// We were storing the identity hash inline and now allocated an actual
// dictionary. Put the identity hash into the new dictionary.
hashtable = ObjectHashTable::Put(hashtable,
isolate->factory()->identity_hash_string(),
inline_value);
}
JSObject::SetLocalPropertyIgnoreAttributes(
object,
isolate->factory()->hidden_string(),
hashtable,
DONT_ENUM,
OPTIMAL_REPRESENTATION,
ALLOW_AS_CONSTANT,
OMIT_EXTENSIBILITY_CHECK);
return hashtable;
}
Handle<Object> JSObject::SetHiddenPropertiesHashTable(Handle<JSObject> object,
Handle<Object> value) {
ASSERT(!object->IsJSGlobalProxy());
Isolate* isolate = object->GetIsolate();
// We can store the identity hash inline iff there is no backing store
// for hidden properties yet.
ASSERT(object->HasHiddenProperties() != value->IsSmi());
if (object->HasFastProperties()) {
// If the object has fast properties, check whether the first slot
// in the descriptor array matches the hidden string. Since the
// hidden strings hash code is zero (and no other name has hash
// code zero) it will always occupy the first entry if present.
DescriptorArray* descriptors = object->map()->instance_descriptors();
if (descriptors->number_of_descriptors() > 0) {
int sorted_index = descriptors->GetSortedKeyIndex(0);
if (descriptors->GetKey(sorted_index) == isolate->heap()->hidden_string()
&& sorted_index < object->map()->NumberOfOwnDescriptors()) {
ASSERT(descriptors->GetType(sorted_index) == FIELD);
object->FastPropertyAtPut(descriptors->GetFieldIndex(sorted_index),
*value);
return object;
}
}
}
SetLocalPropertyIgnoreAttributes(object,
isolate->factory()->hidden_string(),
value,
DONT_ENUM,
OPTIMAL_REPRESENTATION,
ALLOW_AS_CONSTANT,
OMIT_EXTENSIBILITY_CHECK);
return object;
}
Handle<Object> JSObject::DeletePropertyPostInterceptor(Handle<JSObject> object,
Handle<Name> name,
DeleteMode mode) {
// Check local property, ignore interceptor.
Isolate* isolate = object->GetIsolate();
LookupResult result(isolate);
object->LocalLookupRealNamedProperty(*name, &result);
if (!result.IsFound()) return isolate->factory()->true_value();
// Normalize object if needed.
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
return DeleteNormalizedProperty(object, name, mode);
}
Handle<Object> JSObject::DeletePropertyWithInterceptor(Handle<JSObject> object,
Handle<Name> name) {
Isolate* isolate = object->GetIsolate();
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return isolate->factory()->false_value();
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
if (!interceptor->deleter()->IsUndefined()) {
v8::NamedPropertyDeleterCallback deleter =
v8::ToCData<v8::NamedPropertyDeleterCallback>(interceptor->deleter());
LOG(isolate,
ApiNamedPropertyAccess("interceptor-named-delete", *object, *name));
PropertyCallbackArguments args(
isolate, interceptor->data(), *object, *object);
v8::Handle<v8::Boolean> result =
args.Call(deleter, v8::Utils::ToLocal(Handle<String>::cast(name)));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!result.IsEmpty()) {
ASSERT(result->IsBoolean());
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
result_internal->VerifyApiCallResultType();
// Rebox CustomArguments::kReturnValueOffset before returning.
return handle(*result_internal, isolate);
}
}
Handle<Object> result =
DeletePropertyPostInterceptor(object, name, NORMAL_DELETION);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return result;
}
// TODO(mstarzinger): Temporary wrapper until handlified.
static Handle<Object> AccessorDelete(Handle<JSObject> object,
uint32_t index,
JSObject::DeleteMode mode) {
CALL_HEAP_FUNCTION(object->GetIsolate(),
object->GetElementsAccessor()->Delete(*object,
index,
mode),
Object);
}
Handle<Object> JSObject::DeleteElementWithInterceptor(Handle<JSObject> object,
uint32_t index) {
Isolate* isolate = object->GetIsolate();
Factory* factory = isolate->factory();
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
if (interceptor->deleter()->IsUndefined()) return factory->false_value();
v8::IndexedPropertyDeleterCallback deleter =
v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter());
LOG(isolate,
ApiIndexedPropertyAccess("interceptor-indexed-delete", *object, index));
PropertyCallbackArguments args(
isolate, interceptor->data(), *object, *object);
v8::Handle<v8::Boolean> result = args.Call(deleter, index);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!result.IsEmpty()) {
ASSERT(result->IsBoolean());
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
result_internal->VerifyApiCallResultType();
// Rebox CustomArguments::kReturnValueOffset before returning.
return handle(*result_internal, isolate);
}
Handle<Object> delete_result = AccessorDelete(object, index, NORMAL_DELETION);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return delete_result;
}
Handle<Object> JSObject::DeleteElement(Handle<JSObject> object,
uint32_t index,
DeleteMode mode) {
Isolate* isolate = object->GetIsolate();
Factory* factory = isolate->factory();
// Check access rights if needed.
if (object->IsAccessCheckNeeded() &&
!isolate->MayIndexedAccess(*object, index, v8::ACCESS_DELETE)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_DELETE);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return factory->false_value();
}
if (object->IsStringObjectWithCharacterAt(index)) {
if (mode == STRICT_DELETION) {
// Deleting a non-configurable property in strict mode.
Handle<Object> name = factory->NewNumberFromUint(index);
Handle<Object> args[2] = { name, object };
Handle<Object> error =
factory->NewTypeError("strict_delete_property",
HandleVector(args, 2));
isolate->Throw(*error);
return Handle<Object>();
}
return factory->false_value();
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return factory->false_value();
ASSERT(proto->IsJSGlobalObject());
return DeleteElement(Handle<JSObject>::cast(proto), index, mode);
}
Handle<Object> old_value;
bool should_enqueue_change_record = false;
if (FLAG_harmony_observation && object->map()->is_observed()) {
should_enqueue_change_record = HasLocalElement(object, index);
if (should_enqueue_change_record) {
old_value = object->GetLocalElementAccessorPair(index) != NULL
? Handle<Object>::cast(factory->the_hole_value())
: Object::GetElement(isolate, object, index);
}
}
// Skip interceptor if forcing deletion.
Handle<Object> result;
if (object->HasIndexedInterceptor() && mode != FORCE_DELETION) {
result = DeleteElementWithInterceptor(object, index);
} else {
result = AccessorDelete(object, index, mode);
}
if (should_enqueue_change_record && !HasLocalElement(object, index)) {
Handle<String> name = factory->Uint32ToString(index);
EnqueueChangeRecord(object, "delete", name, old_value);
}
return result;
}
Handle<Object> JSObject::DeleteProperty(Handle<JSObject> object,
Handle<Name> name,
DeleteMode mode) {
Isolate* isolate = object->GetIsolate();
// ECMA-262, 3rd, 8.6.2.5
ASSERT(name->IsName());
// Check access rights if needed.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object, *name, v8::ACCESS_DELETE)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_DELETE);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return isolate->factory()->false_value();
}
if (object->IsJSGlobalProxy()) {
Object* proto = object->GetPrototype();
if (proto->IsNull()) return isolate->factory()->false_value();
ASSERT(proto->IsJSGlobalObject());
return JSGlobalObject::DeleteProperty(
handle(JSGlobalObject::cast(proto)), name, mode);
}
uint32_t index = 0;
if (name->AsArrayIndex(&index)) {
return DeleteElement(object, index, mode);
}
LookupResult lookup(isolate);
object->LocalLookup(*name, &lookup, true);
if (!lookup.IsFound()) return isolate->factory()->true_value();
// Ignore attributes if forcing a deletion.
if (lookup.IsDontDelete() && mode != FORCE_DELETION) {
if (mode == STRICT_DELETION) {
// Deleting a non-configurable property in strict mode.
Handle<Object> args[2] = { name, object };
Handle<Object> error = isolate->factory()->NewTypeError(
"strict_delete_property", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
return isolate->factory()->false_value();
}
Handle<Object> old_value = isolate->factory()->the_hole_value();
bool is_observed = FLAG_harmony_observation &&
object->map()->is_observed() &&
*name != isolate->heap()->hidden_string();
if (is_observed && lookup.IsDataProperty()) {
old_value = Object::GetProperty(object, name);
}
Handle<Object> result;
// Check for interceptor.
if (lookup.IsInterceptor()) {
// Skip interceptor if forcing a deletion.
if (mode == FORCE_DELETION) {
result = DeletePropertyPostInterceptor(object, name, mode);
} else {
result = DeletePropertyWithInterceptor(object, name);
}
} else {
// Normalize object if needed.
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
// Make sure the properties are normalized before removing the entry.
result = DeleteNormalizedProperty(object, name, mode);
}
if (is_observed && !HasLocalProperty(object, name)) {
EnqueueChangeRecord(object, "delete", name, old_value);
}
return result;
}
Handle<Object> JSReceiver::DeleteElement(Handle<JSReceiver> object,
uint32_t index,
DeleteMode mode) {
if (object->IsJSProxy()) {
return JSProxy::DeleteElementWithHandler(
Handle<JSProxy>::cast(object), index, mode);
}
return JSObject::DeleteElement(Handle<JSObject>::cast(object), index, mode);
}
Handle<Object> JSReceiver::DeleteProperty(Handle<JSReceiver> object,
Handle<Name> name,
DeleteMode mode) {
if (object->IsJSProxy()) {
return JSProxy::DeletePropertyWithHandler(
Handle<JSProxy>::cast(object), name, mode);
}
return JSObject::DeleteProperty(Handle<JSObject>::cast(object), name, mode);
}
bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
ElementsKind kind,
Object* object) {
ASSERT(IsFastObjectElementsKind(kind) ||
kind == DICTIONARY_ELEMENTS);
if (IsFastObjectElementsKind(kind)) {
int length = IsJSArray()
? Smi::cast(JSArray::cast(this)->length())->value()
: elements->length();
for (int i = 0; i < length; ++i) {
Object* element = elements->get(i);
if (!element->IsTheHole() && element == object) return true;
}
} else {
Object* key =
SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
if (!key->IsUndefined()) return true;
}
return false;
}
// Check whether this object references another object.
bool JSObject::ReferencesObject(Object* obj) {
Map* map_of_this = map();
Heap* heap = GetHeap();
DisallowHeapAllocation no_allocation;
// Is the object the constructor for this object?
if (map_of_this->constructor() == obj) {
return true;
}
// Is the object the prototype for this object?
if (map_of_this->prototype() == obj) {
return true;
}
// Check if the object is among the named properties.
Object* key = SlowReverseLookup(obj);
if (!key->IsUndefined()) {
return true;
}
// Check if the object is among the indexed properties.
ElementsKind kind = GetElementsKind();
switch (kind) {
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
// Raw pixels and external arrays do not reference other
// objects.
break;
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
break;
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case DICTIONARY_ELEMENTS: {
FixedArray* elements = FixedArray::cast(this->elements());
if (ReferencesObjectFromElements(elements, kind, obj)) return true;
break;
}
case NON_STRICT_ARGUMENTS_ELEMENTS: {
FixedArray* parameter_map = FixedArray::cast(elements());
// Check the mapped parameters.
int length = parameter_map->length();
for (int i = 2; i < length; ++i) {
Object* value = parameter_map->get(i);
if (!value->IsTheHole() && value == obj) return true;
}
// Check the arguments.
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
FAST_HOLEY_ELEMENTS;
if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
break;
}
}
// For functions check the context.
if (IsJSFunction()) {
// Get the constructor function for arguments array.
JSObject* arguments_boilerplate =
heap->isolate()->context()->native_context()->
arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
// Get the context and don't check if it is the native context.
JSFunction* f = JSFunction::cast(this);
Context* context = f->context();
if (context->IsNativeContext()) {
return false;
}
// Check the non-special context slots.
for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
// Only check JS objects.
if (context->get(i)->IsJSObject()) {
JSObject* ctxobj = JSObject::cast(context->get(i));
// If it is an arguments array check the content.
if (ctxobj->map()->constructor() == arguments_function) {
if (ctxobj->ReferencesObject(obj)) {
return true;
}
} else if (ctxobj == obj) {
return true;
}
}
}
// Check the context extension (if any) if it can have references.
if (context->has_extension() && !context->IsCatchContext()) {
return JSObject::cast(context->extension())->ReferencesObject(obj);
}
}
// No references to object.
return false;
}
Handle<Object> JSObject::PreventExtensions(Handle<JSObject> object) {
Isolate* isolate = object->GetIsolate();
if (!object->map()->is_extensible()) return object;
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object,
isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return isolate->factory()->false_value();
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return object;
ASSERT(proto->IsJSGlobalObject());
return PreventExtensions(Handle<JSObject>::cast(proto));
}
// It's not possible to seal objects with external array elements
if (object->HasExternalArrayElements()) {
Handle<Object> error =
isolate->factory()->NewTypeError(
"cant_prevent_ext_external_array_elements",
HandleVector(&object, 1));
isolate->Throw(*error);
return Handle<Object>();
}
// If there are fast elements we normalize.
Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
ASSERT(object->HasDictionaryElements() ||
object->HasDictionaryArgumentsElements());
// Make sure that we never go back to fast case.
dictionary->set_requires_slow_elements();
// Do a map transition, other objects with this map may still
// be extensible.
// TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
Handle<Map> new_map = Map::Copy(handle(object->map()));
new_map->set_is_extensible(false);
object->set_map(*new_map);
ASSERT(!object->map()->is_extensible());
if (FLAG_harmony_observation && object->map()->is_observed()) {
EnqueueChangeRecord(object, "preventExtensions", Handle<Name>(),
isolate->factory()->the_hole_value());
}
return object;
}
template<typename Dictionary>
static void FreezeDictionary(Dictionary* dictionary) {
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = dictionary->KeyAt(i);
if (dictionary->IsKey(k)) {
PropertyDetails details = dictionary->DetailsAt(i);
int attrs = DONT_DELETE;
// READ_ONLY is an invalid attribute for JS setters/getters.
if (details.type() != CALLBACKS ||
!dictionary->ValueAt(i)->IsAccessorPair()) {
attrs |= READ_ONLY;
}
details = details.CopyAddAttributes(
static_cast<PropertyAttributes>(attrs));
dictionary->DetailsAtPut(i, details);
}
}
}
Handle<Object> JSObject::Freeze(Handle<JSObject> object) {
// Freezing non-strict arguments should be handled elsewhere.
ASSERT(!object->HasNonStrictArgumentsElements());
ASSERT(!object->map()->is_observed());
if (object->map()->is_frozen()) return object;
Isolate* isolate = object->GetIsolate();
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object,
isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return isolate->factory()->false_value();
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return object;
ASSERT(proto->IsJSGlobalObject());
return Freeze(Handle<JSObject>::cast(proto));
}
// It's not possible to freeze objects with external array elements
if (object->HasExternalArrayElements()) {
Handle<Object> error =
isolate->factory()->NewTypeError(
"cant_prevent_ext_external_array_elements",
HandleVector(&object, 1));
isolate->Throw(*error);
return Handle<Object>();
}
Handle<SeededNumberDictionary> new_element_dictionary;
if (!object->elements()->IsDictionary()) {
int length = object->IsJSArray()
? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
: object->elements()->length();
if (length > 0) {
int capacity = 0;
int used = 0;
object->GetElementsCapacityAndUsage(&capacity, &used);
new_element_dictionary =
isolate->factory()->NewSeededNumberDictionary(used);
// Move elements to a dictionary; avoid calling NormalizeElements to avoid
// unnecessary transitions.
new_element_dictionary = CopyFastElementsToDictionary(
handle(object->elements()), length, new_element_dictionary);
} else {
// No existing elements, use a pre-allocated empty backing store
new_element_dictionary =
isolate->factory()->empty_slow_element_dictionary();
}
}
LookupResult result(isolate);
Handle<Map> old_map(object->map());
old_map->LookupTransition(*object, isolate->heap()->frozen_symbol(), &result);
if (result.IsTransition()) {
Map* transition_map = result.GetTransitionTarget();
ASSERT(transition_map->has_dictionary_elements());
ASSERT(transition_map->is_frozen());
ASSERT(!transition_map->is_extensible());
object->set_map(transition_map);
} else if (object->HasFastProperties() && old_map->CanHaveMoreTransitions()) {
// Create a new descriptor array with fully-frozen properties
int num_descriptors = old_map->NumberOfOwnDescriptors();
Handle<DescriptorArray> new_descriptors =
DescriptorArray::CopyUpToAddAttributes(
handle(old_map->instance_descriptors()), num_descriptors, FROZEN);
Handle<Map> new_map = Map::CopyReplaceDescriptors(
old_map, new_descriptors, INSERT_TRANSITION,
isolate->factory()->frozen_symbol());
new_map->freeze();
new_map->set_is_extensible(false);
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
object->set_map(*new_map);
} else {
// Slow path: need to normalize properties for safety
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
// Create a new map, since other objects with this map may be extensible.
// TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
Handle<Map> new_map = Map::Copy(handle(object->map()));
new_map->freeze();
new_map->set_is_extensible(false);
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
object->set_map(*new_map);
// Freeze dictionary-mode properties
FreezeDictionary(object->property_dictionary());
}
ASSERT(object->map()->has_dictionary_elements());
if (!new_element_dictionary.is_null()) {
object->set_elements(*new_element_dictionary);
}
if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
SeededNumberDictionary* dictionary = object->element_dictionary();
// Make sure we never go back to the fast case
dictionary->set_requires_slow_elements();
// Freeze all elements in the dictionary
FreezeDictionary(dictionary);
}
return object;
}
void JSObject::SetObserved(Handle<JSObject> object) {
Isolate* isolate = object->GetIsolate();
if (object->map()->is_observed())
return;
if (!object->HasExternalArrayElements()) {
// Go to dictionary mode, so that we don't skip map checks.
NormalizeElements(object);
ASSERT(!object->HasFastElements());
}
LookupResult result(isolate);
object->map()->LookupTransition(*object,
isolate->heap()->observed_symbol(),
&result);
Handle<Map> new_map;
if (result.IsTransition()) {
new_map = handle(result.GetTransitionTarget());
ASSERT(new_map->is_observed());
} else if (object->map()->CanHaveMoreTransitions()) {
new_map = Map::CopyForObserved(handle(object->map()));
} else {
new_map = Map::Copy(handle(object->map()));
new_map->set_is_observed(true);
}
object->set_map(*new_map);
}
Handle<JSObject> JSObject::Copy(Handle<JSObject> object,
Handle<AllocationSite> site) {
Isolate* isolate = object->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
isolate->heap()->CopyJSObject(*object, *site), JSObject);
}
Handle<JSObject> JSObject::Copy(Handle<JSObject> object) {
Isolate* isolate = object->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
isolate->heap()->CopyJSObject(*object), JSObject);
}
class JSObjectWalkVisitor {
public:
explicit JSObjectWalkVisitor(AllocationSiteContext* site_context) :
site_context_(site_context) {}
virtual ~JSObjectWalkVisitor() {}
Handle<JSObject> Visit(Handle<JSObject> object) {
return StructureWalk(object);
}
virtual bool is_copying() = 0;
protected:
Handle<JSObject> StructureWalk(Handle<JSObject> object);
// The returned handle will be used for the object in all subsequent usages.
// This allows VisitObject to make a copy of the object if desired.
virtual Handle<JSObject> VisitObject(Handle<JSObject> object) = 0;
virtual Handle<JSObject> VisitElementOrProperty(Handle<JSObject> object,
Handle<JSObject> value) = 0;
AllocationSiteContext* site_context() { return site_context_; }
private:
AllocationSiteContext* site_context_;
};
class JSObjectCopyVisitor: public JSObjectWalkVisitor {
public:
explicit JSObjectCopyVisitor(AllocationSiteContext* site_context)
: JSObjectWalkVisitor(site_context) {}
virtual bool is_copying() V8_OVERRIDE { return true; }
// The returned handle will be used for the object in all
// subsequent usages. This allows VisitObject to make a copy
// of the object if desired.
virtual Handle<JSObject> VisitObject(Handle<JSObject> object) V8_OVERRIDE {
// Only create a memento if
// 1) we have a JSArray, and
// 2) the elements kind is palatable
// 3) allow_mementos is true
Handle<JSObject> copy;
if (site_context()->activated() &&
AllocationSite::CanTrack(object->map()->instance_type()) &&
AllocationSite::GetMode(object->GetElementsKind()) ==
TRACK_ALLOCATION_SITE) {
copy = JSObject::Copy(object, site_context()->current());
} else {
copy = JSObject::Copy(object);
}
return copy;
}
virtual Handle<JSObject> VisitElementOrProperty(
Handle<JSObject> object,
Handle<JSObject> value) V8_OVERRIDE {
Handle<AllocationSite> current_site = site_context()->EnterNewScope();
Handle<JSObject> copy_of_value = StructureWalk(value);
site_context()->ExitScope(current_site, value);
return copy_of_value;
}
};
class JSObjectCreateAllocationSitesVisitor: public JSObjectWalkVisitor {
public:
explicit JSObjectCreateAllocationSitesVisitor(
AllocationSiteContext* site_context)
: JSObjectWalkVisitor(site_context) {}
virtual bool is_copying() V8_OVERRIDE { return false; }
// The returned handle will be used for the object in all
// subsequent usages. This allows VisitObject to make a copy
// of the object if desired.
virtual Handle<JSObject> VisitObject(Handle<JSObject> object) V8_OVERRIDE {
return object;
}
virtual Handle<JSObject> VisitElementOrProperty(
Handle<JSObject> object,
Handle<JSObject> value) V8_OVERRIDE {
Handle<AllocationSite> current_site = site_context()->EnterNewScope();
value = StructureWalk(value);
site_context()->ExitScope(current_site, value);
return value;
}
};
Handle<JSObject> JSObjectWalkVisitor::StructureWalk(Handle<JSObject> object) {
bool copying = is_copying();
Isolate* isolate = object->GetIsolate();
StackLimitCheck check(isolate);
if (check.HasOverflowed()) {
isolate->StackOverflow();
return Handle<JSObject>::null();
}
if (object->map()->is_deprecated()) {
JSObject::MigrateInstance(object);
}
Handle<JSObject> copy = VisitObject(object);
ASSERT(copying || copy.is_identical_to(object));
HandleScope scope(isolate);
// Deep copy local properties.
if (copy->HasFastProperties()) {
Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors());
int limit = copy->map()->NumberOfOwnDescriptors();
for (int i = 0; i < limit; i++) {
PropertyDetails details = descriptors->GetDetails(i);
if (details.type() != FIELD) continue;
int index = descriptors->GetFieldIndex(i);
Handle<Object> value(object->RawFastPropertyAt(index), isolate);
if (value->IsJSObject()) {
value = VisitElementOrProperty(copy, Handle<JSObject>::cast(value));
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, value, Handle<JSObject>());
} else {
Representation representation = details.representation();
value = NewStorageFor(isolate, value, representation);
}
if (copying) {
copy->FastPropertyAtPut(index, *value);
}
}
} else {
Handle<FixedArray> names =
isolate->factory()->NewFixedArray(copy->NumberOfLocalProperties());
copy->GetLocalPropertyNames(*names, 0);
for (int i = 0; i < names->length(); i++) {
ASSERT(names->get(i)->IsString());
Handle<String> key_string(String::cast(names->get(i)));
PropertyAttributes attributes =
copy->GetLocalPropertyAttribute(*key_string);
// Only deep copy fields from the object literal expression.
// In particular, don't try to copy the length attribute of
// an array.
if (attributes != NONE) continue;
Handle<Object> value(
copy->GetProperty(*key_string, &attributes)->ToObjectUnchecked(),
isolate);
if (value->IsJSObject()) {
Handle<JSObject> result = VisitElementOrProperty(
copy, Handle<JSObject>::cast(value));
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, result, Handle<JSObject>());
if (copying) {
// Creating object copy for literals. No strict mode needed.
CHECK_NOT_EMPTY_HANDLE(isolate, JSObject::SetProperty(
copy, key_string, result, NONE, kNonStrictMode));
}
}
}
}
// Deep copy local elements.
// Pixel elements cannot be created using an object literal.
ASSERT(!copy->HasExternalArrayElements());
switch (copy->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(copy->elements()));
if (elements->map() == isolate->heap()->fixed_cow_array_map()) {
if (copying) {
isolate->counters()->cow_arrays_created_runtime()->Increment();
}
#ifdef DEBUG
for (int i = 0; i < elements->length(); i++) {
ASSERT(!elements->get(i)->IsJSObject());
}
#endif
} else {
for (int i = 0; i < elements->length(); i++) {
Handle<Object> value(elements->get(i), isolate);
ASSERT(value->IsSmi() ||
value->IsTheHole() ||
(IsFastObjectElementsKind(copy->GetElementsKind())));
if (value->IsJSObject()) {
Handle<JSObject> result = VisitElementOrProperty(
copy, Handle<JSObject>::cast(value));
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, result, Handle<JSObject>());
if (copying) {
elements->set(i, *result);
}
}
}
}
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> element_dictionary(
copy->element_dictionary());
int capacity = element_dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = element_dictionary->KeyAt(i);
if (element_dictionary->IsKey(k)) {
Handle<Object> value(element_dictionary->ValueAt(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> result = VisitElementOrProperty(
copy, Handle<JSObject>::cast(value));
RETURN_IF_EMPTY_HANDLE_VALUE(isolate, result, Handle<JSObject>());
if (copying) {
element_dictionary->ValueAtPut(i, *result);
}
}
}
}
break;
}
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNIMPLEMENTED();
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
// No contained objects, nothing to do.
break;
}
return copy;
}
Handle<JSObject> JSObject::DeepWalk(Handle<JSObject> object,
AllocationSiteContext* site_context) {
JSObjectCreateAllocationSitesVisitor v(site_context);
Handle<JSObject> result = v.Visit(object);
ASSERT(!v.is_copying() &&
(result.is_null() || result.is_identical_to(object)));
return result;
}
Handle<JSObject> JSObject::DeepCopy(Handle<JSObject> object,
AllocationSiteContext* site_context) {
JSObjectCopyVisitor v(site_context);
Handle<JSObject> copy = v.Visit(object);
ASSERT(v.is_copying() && !copy.is_identical_to(object));
return copy;
}
// Tests for the fast common case for property enumeration:
// - This object and all prototypes has an enum cache (which means that
// it is no proxy, has no interceptors and needs no access checks).
// - This object has no elements.
// - No prototype has enumerable properties/elements.
bool JSReceiver::IsSimpleEnum() {
Heap* heap = GetHeap();
for (Object* o = this;
o != heap->null_value();
o = JSObject::cast(o)->GetPrototype()) {
if (!o->IsJSObject()) return false;
JSObject* curr = JSObject::cast(o);
int enum_length = curr->map()->EnumLength();
if (enum_length == Map::kInvalidEnumCache) return false;
ASSERT(!curr->HasNamedInterceptor());
ASSERT(!curr->HasIndexedInterceptor());
ASSERT(!curr->IsAccessCheckNeeded());
if (curr->NumberOfEnumElements() > 0) return false;
if (curr != this && enum_length != 0) return false;
}
return true;
}
int Map::NumberOfDescribedProperties(DescriptorFlag which,
PropertyAttributes filter) {
int result = 0;
DescriptorArray* descs = instance_descriptors();
int limit = which == ALL_DESCRIPTORS
? descs->number_of_descriptors()
: NumberOfOwnDescriptors();
for (int i = 0; i < limit; i++) {
if ((descs->GetDetails(i).attributes() & filter) == 0 &&
((filter & SYMBOLIC) == 0 || !descs->GetKey(i)->IsSymbol())) {
result++;
}
}
return result;
}
int Map::NextFreePropertyIndex() {
int max_index = -1;
int number_of_own_descriptors = NumberOfOwnDescriptors();
DescriptorArray* descs = instance_descriptors();
for (int i = 0; i < number_of_own_descriptors; i++) {
if (descs->GetType(i) == FIELD) {
int current_index = descs->GetFieldIndex(i);
if (current_index > max_index) max_index = current_index;
}
}
return max_index + 1;
}
AccessorDescriptor* Map::FindAccessor(Name* name) {
DescriptorArray* descs = instance_descriptors();
int number_of_own_descriptors = NumberOfOwnDescriptors();
for (int i = 0; i < number_of_own_descriptors; i++) {
if (descs->GetType(i) == CALLBACKS && name->Equals(descs->GetKey(i))) {
return descs->GetCallbacks(i);
}
}
return NULL;
}
void JSReceiver::LocalLookup(
Name* name, LookupResult* result, bool search_hidden_prototypes) {
ASSERT(name->IsName());
Heap* heap = GetHeap();
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return result->NotFound();
ASSERT(proto->IsJSGlobalObject());
return JSReceiver::cast(proto)->LocalLookup(
name, result, search_hidden_prototypes);
}
if (IsJSProxy()) {
result->HandlerResult(JSProxy::cast(this));
return;
}
// Do not use inline caching if the object is a non-global object
// that requires access checks.
if (IsAccessCheckNeeded()) {
result->DisallowCaching();
}
JSObject* js_object = JSObject::cast(this);
// Check for lookup interceptor except when bootstrapping.
if (js_object->HasNamedInterceptor() &&
!heap->isolate()->bootstrapper()->IsActive()) {
result->InterceptorResult(js_object);
return;
}
js_object->LocalLookupRealNamedProperty(name, result);
if (result->IsFound() || !search_hidden_prototypes) return;
Object* proto = js_object->GetPrototype();
if (!proto->IsJSReceiver()) return;
JSReceiver* receiver = JSReceiver::cast(proto);
if (receiver->map()->is_hidden_prototype()) {
receiver->LocalLookup(name, result, search_hidden_prototypes);
}
}
void JSReceiver::Lookup(Name* name, LookupResult* result) {
// Ecma-262 3rd 8.6.2.4
Heap* heap = GetHeap();
for (Object* current = this;
current != heap->null_value();
current = JSObject::cast(current)->GetPrototype()) {
JSReceiver::cast(current)->LocalLookup(name, result, false);
if (result->IsFound()) return;
}
result->NotFound();
}
// Search object and its prototype chain for callback properties.
void JSObject::LookupCallbackProperty(Name* name, LookupResult* result) {
Heap* heap = GetHeap();
for (Object* current = this;
current != heap->null_value() && current->IsJSObject();
current = JSObject::cast(current)->GetPrototype()) {
JSObject::cast(current)->LocalLookupRealNamedProperty(name, result);
if (result->IsPropertyCallbacks()) return;
}
result->NotFound();
}
// Try to update an accessor in an elements dictionary. Return true if the
// update succeeded, and false otherwise.
static bool UpdateGetterSetterInDictionary(
SeededNumberDictionary* dictionary,
uint32_t index,
Object* getter,
Object* setter,
PropertyAttributes attributes) {
int entry = dictionary->FindEntry(index);
if (entry != SeededNumberDictionary::kNotFound) {
Object* result = dictionary->ValueAt(entry);
PropertyDetails details = dictionary->DetailsAt(entry);
if (details.type() == CALLBACKS && result->IsAccessorPair()) {
ASSERT(!details.IsDontDelete());
if (details.attributes() != attributes) {
dictionary->DetailsAtPut(
entry,
PropertyDetails(attributes, CALLBACKS, index));
}
AccessorPair::cast(result)->SetComponents(getter, setter);
return true;
}
}
return false;
}
void JSObject::DefineElementAccessor(Handle<JSObject> object,
uint32_t index,
Handle<Object> getter,
Handle<Object> setter,
PropertyAttributes attributes,
v8::AccessControl access_control) {
switch (object->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
// Ignore getters and setters on pixel and external array elements.
return;
case DICTIONARY_ELEMENTS:
if (UpdateGetterSetterInDictionary(object->element_dictionary(),
index,
*getter,
*setter,
attributes)) {
return;
}
break;
case NON_STRICT_ARGUMENTS_ELEMENTS: {
// Ascertain whether we have read-only properties or an existing
// getter/setter pair in an arguments elements dictionary backing
// store.
FixedArray* parameter_map = FixedArray::cast(object->elements());
uint32_t length = parameter_map->length();
Object* probe =
index < (length - 2) ? parameter_map->get(index + 2) : NULL;
if (probe == NULL || probe->IsTheHole()) {
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
if (arguments->IsDictionary()) {
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(arguments);
if (UpdateGetterSetterInDictionary(dictionary,
index,
*getter,
*setter,
attributes)) {
return;
}
}
}
break;
}
}
Isolate* isolate = object->GetIsolate();
Handle<AccessorPair> accessors = isolate->factory()->NewAccessorPair();
accessors->SetComponents(*getter, *setter);
accessors->set_access_flags(access_control);
SetElementCallback(object, index, accessors, attributes);
}
Handle<AccessorPair> JSObject::CreateAccessorPairFor(Handle<JSObject> object,
Handle<Name> name) {
Isolate* isolate = object->GetIsolate();
LookupResult result(isolate);
object->LocalLookupRealNamedProperty(*name, &result);
if (result.IsPropertyCallbacks()) {
// Note that the result can actually have IsDontDelete() == true when we
// e.g. have to fall back to the slow case while adding a setter after
// successfully reusing a map transition for a getter. Nevertheless, this is
// OK, because the assertion only holds for the whole addition of both
// accessors, not for the addition of each part. See first comment in
// DefinePropertyAccessor below.
Object* obj = result.GetCallbackObject();
if (obj->IsAccessorPair()) {
return AccessorPair::Copy(handle(AccessorPair::cast(obj), isolate));
}
}
return isolate->factory()->NewAccessorPair();
}
void JSObject::DefinePropertyAccessor(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> getter,
Handle<Object> setter,
PropertyAttributes attributes,
v8::AccessControl access_control) {
// We could assert that the property is configurable here, but we would need
// to do a lookup, which seems to be a bit of overkill.
bool only_attribute_changes = getter->IsNull() && setter->IsNull();
if (object->HasFastProperties() && !only_attribute_changes &&
access_control == v8::DEFAULT &&
(object->map()->NumberOfOwnDescriptors() <
DescriptorArray::kMaxNumberOfDescriptors)) {
bool getterOk = getter->IsNull() ||
DefineFastAccessor(object, name, ACCESSOR_GETTER, getter, attributes);
bool setterOk = !getterOk || setter->IsNull() ||
DefineFastAccessor(object, name, ACCESSOR_SETTER, setter, attributes);
if (getterOk && setterOk) return;
}
Handle<AccessorPair> accessors = CreateAccessorPairFor(object, name);
accessors->SetComponents(*getter, *setter);
accessors->set_access_flags(access_control);
SetPropertyCallback(object, name, accessors, attributes);
}
bool JSObject::CanSetCallback(Name* name) {
ASSERT(!IsAccessCheckNeeded() ||
GetIsolate()->MayNamedAccess(this, name, v8::ACCESS_SET));
// Check if there is an API defined callback object which prohibits
// callback overwriting in this object or its prototype chain.
// This mechanism is needed for instance in a browser setting, where
// certain accessors such as window.location should not be allowed
// to be overwritten because allowing overwriting could potentially
// cause security problems.
LookupResult callback_result(GetIsolate());
LookupCallbackProperty(name, &callback_result);
if (callback_result.IsFound()) {
Object* obj = callback_result.GetCallbackObject();
if (obj->IsAccessorInfo()) {
return !AccessorInfo::cast(obj)->prohibits_overwriting();
}
if (obj->IsAccessorPair()) {
return !AccessorPair::cast(obj)->prohibits_overwriting();
}
}
return true;
}
bool Map::DictionaryElementsInPrototypeChainOnly() {
Heap* heap = GetHeap();
if (IsDictionaryElementsKind(elements_kind())) {
return false;
}
for (Object* prototype = this->prototype();
prototype != heap->null_value();
prototype = prototype->GetPrototype(GetIsolate())) {
if (prototype->IsJSProxy()) {
// Be conservative, don't walk into proxies.
return true;
}
if (IsDictionaryElementsKind(
JSObject::cast(prototype)->map()->elements_kind())) {
return true;
}
}
return false;
}
void JSObject::SetElementCallback(Handle<JSObject> object,
uint32_t index,
Handle<Object> structure,
PropertyAttributes attributes) {
Heap* heap = object->GetHeap();
PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0);
// Normalize elements to make this operation simple.
bool had_dictionary_elements = object->HasDictionaryElements();
Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
ASSERT(object->HasDictionaryElements() ||
object->HasDictionaryArgumentsElements());
// Update the dictionary with the new CALLBACKS property.
dictionary = SeededNumberDictionary::Set(dictionary, index, structure,
details);
dictionary->set_requires_slow_elements();
// Update the dictionary backing store on the object.
if (object->elements()->map() == heap->non_strict_arguments_elements_map()) {
// Also delete any parameter alias.
//
// TODO(kmillikin): when deleting the last parameter alias we could
// switch to a direct backing store without the parameter map. This
// would allow GC of the context.
FixedArray* parameter_map = FixedArray::cast(object->elements());
if (index < static_cast<uint32_t>(parameter_map->length()) - 2) {
parameter_map->set(index + 2, heap->the_hole_value());
}
parameter_map->set(1, *dictionary);
} else {
object->set_elements(*dictionary);
if (!had_dictionary_elements) {
// KeyedStoreICs (at least the non-generic ones) need a reset.
heap->ClearAllICsByKind(Code::KEYED_STORE_IC);
}
}
}
void JSObject::SetPropertyCallback(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> structure,
PropertyAttributes attributes) {
// Normalize object to make this operation simple.
NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0);
// For the global object allocate a new map to invalidate the global inline
// caches which have a global property cell reference directly in the code.
if (object->IsGlobalObject()) {
Handle<Map> new_map = Map::CopyDropDescriptors(handle(object->map()));
ASSERT(new_map->is_dictionary_map());
object->set_map(*new_map);
// When running crankshaft, changing the map is not enough. We
// need to deoptimize all functions that rely on this global
// object.
Deoptimizer::DeoptimizeGlobalObject(*object);
}
// Update the dictionary with the new CALLBACKS property.
PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0);
SetNormalizedProperty(object, name, structure, details);
}
void JSObject::DefineAccessor(Handle<JSObject> object,
Handle<Name> name,
Handle<Object> getter,
Handle<Object> setter,
PropertyAttributes attributes,
v8::AccessControl access_control) {
Isolate* isolate = object->GetIsolate();
// Check access rights if needed.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object, *name, v8::ACCESS_SET)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_SET);
return;
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return;
ASSERT(proto->IsJSGlobalObject());
DefineAccessor(Handle<JSObject>::cast(proto),
name,
getter,
setter,
attributes,
access_control);
return;
}
// Make sure that the top context does not change when doing callbacks or
// interceptor calls.
AssertNoContextChange ncc(isolate);
// Try to flatten before operating on the string.
if (name->IsString()) String::cast(*name)->TryFlatten();
if (!object->CanSetCallback(*name)) return;
uint32_t index = 0;
bool is_element = name->AsArrayIndex(&index);
Handle<Object> old_value = isolate->factory()->the_hole_value();
bool is_observed = FLAG_harmony_observation &&
object->map()->is_observed() &&
*name != isolate->heap()->hidden_string();
bool preexists = false;
if (is_observed) {
if (is_element) {
preexists = HasLocalElement(object, index);
if (preexists && object->GetLocalElementAccessorPair(index) == NULL) {
old_value = Object::GetElement(isolate, object, index);
}
} else {
LookupResult lookup(isolate);
object->LocalLookup(*name, &lookup, true);
preexists = lookup.IsProperty();
if (preexists && lookup.IsDataProperty()) {
old_value = Object::GetProperty(object, name);
}
}
}
if (is_element) {
DefineElementAccessor(
object, index, getter, setter, attributes, access_control);
} else {
DefinePropertyAccessor(
object, name, getter, setter, attributes, access_control);
}
if (is_observed) {
const char* type = preexists ? "reconfigure" : "add";
EnqueueChangeRecord(object, type, name, old_value);
}
}
static bool TryAccessorTransition(JSObject* self,
Map* transitioned_map,
int target_descriptor,
AccessorComponent component,
Object* accessor,
PropertyAttributes attributes) {
DescriptorArray* descs = transitioned_map->instance_descriptors();
PropertyDetails details = descs->GetDetails(target_descriptor);
// If the transition target was not callbacks, fall back to the slow case.
if (details.type() != CALLBACKS) return false;
Object* descriptor = descs->GetCallbacksObject(target_descriptor);
if (!descriptor->IsAccessorPair()) return false;
Object* target_accessor = AccessorPair::cast(descriptor)->get(component);
PropertyAttributes target_attributes = details.attributes();
// Reuse transition if adding same accessor with same attributes.
if (target_accessor == accessor && target_attributes == attributes) {
self->set_map(transitioned_map);
return true;
}
// If either not the same accessor, or not the same attributes, fall back to
// the slow case.
return false;
}
static MaybeObject* CopyInsertDescriptor(Map* map,
Name* name,
AccessorPair* accessors,
PropertyAttributes attributes) {
CallbacksDescriptor new_accessors_desc(name, accessors, attributes);
return map->CopyInsertDescriptor(&new_accessors_desc, INSERT_TRANSITION);
}
static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
Handle<Name> name,
Handle<AccessorPair> accessors,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
CopyInsertDescriptor(*map, *name, *accessors, attributes),
Map);
}
bool JSObject::DefineFastAccessor(Handle<JSObject> object,
Handle<Name> name,
AccessorComponent component,
Handle<Object> accessor,
PropertyAttributes attributes) {
ASSERT(accessor->IsSpecFunction() || accessor->IsUndefined());
Isolate* isolate = object->GetIsolate();
LookupResult result(isolate);
object->LocalLookup(*name, &result);
if (result.IsFound() && !result.IsPropertyCallbacks()) {
return false;
}
// Return success if the same accessor with the same attributes already exist.
AccessorPair* source_accessors = NULL;
if (result.IsPropertyCallbacks()) {
Object* callback_value = result.GetCallbackObject();
if (callback_value->IsAccessorPair()) {
source_accessors = AccessorPair::cast(callback_value);
Object* entry = source_accessors->get(component);
if (entry == *accessor && result.GetAttributes() == attributes) {
return true;
}
} else {
return false;
}
int descriptor_number = result.GetDescriptorIndex();
object->map()->LookupTransition(*object, *name, &result);
if (result.IsFound()) {
Map* target = result.GetTransitionTarget();
ASSERT(target->NumberOfOwnDescriptors() ==
object->map()->NumberOfOwnDescriptors());
// This works since descriptors are sorted in order of addition.
ASSERT(object->map()->instance_descriptors()->
GetKey(descriptor_number) == *name);
return TryAccessorTransition(*object, target, descriptor_number,
component, *accessor, attributes);
}
} else {
// If not, lookup a transition.
object->map()->LookupTransition(*object, *name, &result);
// If there is a transition, try to follow it.
if (result.IsFound()) {
Map* target = result.GetTransitionTarget();
int descriptor_number = target->LastAdded();
ASSERT(target->instance_descriptors()->GetKey(descriptor_number)
->Equals(*name));
return TryAccessorTransition(*object, target, descriptor_number,
component, *accessor, attributes);
}
}
// If there is no transition yet, add a transition to the a new accessor pair
// containing the accessor. Allocate a new pair if there were no source
// accessors. Otherwise, copy the pair and modify the accessor.
Handle<AccessorPair> accessors = source_accessors != NULL
? AccessorPair::Copy(Handle<AccessorPair>(source_accessors))
: isolate->factory()->NewAccessorPair();
accessors->set(component, *accessor);
Handle<Map> new_map = CopyInsertDescriptor(Handle<Map>(object->map()),
name, accessors, attributes);
object->set_map(*new_map);
return true;
}
Handle<Object> JSObject::SetAccessor(Handle<JSObject> object,
Handle<AccessorInfo> info) {
Isolate* isolate = object->GetIsolate();
Factory* factory = isolate->factory();
Handle<Name> name(Name::cast(info->name()));
// Check access rights if needed.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object, *name, v8::ACCESS_SET)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_SET);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return factory->undefined_value();
}
if (object->IsJSGlobalProxy()) {
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return object;
ASSERT(proto->IsJSGlobalObject());
return SetAccessor(Handle<JSObject>::cast(proto), info);
}
// Make sure that the top context does not change when doing callbacks or
// interceptor calls.
AssertNoContextChange ncc(isolate);
// Try to flatten before operating on the string.
if (name->IsString()) FlattenString(Handle<String>::cast(name));
if (!object->CanSetCallback(*name)) return factory->undefined_value();
uint32_t index = 0;
bool is_element = name->AsArrayIndex(&index);
if (is_element) {
if (object->IsJSArray()) return factory->undefined_value();
// Accessors overwrite previous callbacks (cf. with getters/setters).
switch (object->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
// Ignore getters and setters on pixel and external array
// elements.
return factory->undefined_value();
case DICTIONARY_ELEMENTS:
break;
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNIMPLEMENTED();
break;
}
SetElementCallback(object, index, info, info->property_attributes());
} else {
// Lookup the name.
LookupResult result(isolate);
object->LocalLookup(*name, &result, true);
// ES5 forbids turning a property into an accessor if it's not
// configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5).
if (result.IsFound() && (result.IsReadOnly() || result.IsDontDelete())) {
return factory->undefined_value();
}
SetPropertyCallback(object, name, info, info->property_attributes());
}
return object;
}
Handle<Object> JSObject::GetAccessor(Handle<JSObject> object,
Handle<Name> name,
AccessorComponent component) {
Isolate* isolate = object->GetIsolate();
// Make sure that the top context does not change when doing callbacks or
// interceptor calls.
AssertNoContextChange ncc(isolate);
// Check access rights if needed.
if (object->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*object, *name, v8::ACCESS_HAS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_HAS);
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return isolate->factory()->undefined_value();
}
// Make the lookup and include prototypes.
uint32_t index = 0;
if (name->AsArrayIndex(&index)) {
for (Handle<Object> obj = object;
!obj->IsNull();
obj = handle(JSReceiver::cast(*obj)->GetPrototype(), isolate)) {
if (obj->IsJSObject() && JSObject::cast(*obj)->HasDictionaryElements()) {
JSObject* js_object = JSObject::cast(*obj);
SeededNumberDictionary* dictionary = js_object->element_dictionary();
int entry = dictionary->FindEntry(index);
if (entry != SeededNumberDictionary::kNotFound) {
Object* element = dictionary->ValueAt(entry);
if (dictionary->DetailsAt(entry).type() == CALLBACKS &&
element->IsAccessorPair()) {
return handle(AccessorPair::cast(element)->GetComponent(component),
isolate);
}
}
}
}
} else {
for (Handle<Object> obj = object;
!obj->IsNull();
obj = handle(JSReceiver::cast(*obj)->GetPrototype(), isolate)) {
LookupResult result(isolate);
JSReceiver::cast(*obj)->LocalLookup(*name, &result);
if (result.IsFound()) {
if (result.IsReadOnly()) return isolate->factory()->undefined_value();
if (result.IsPropertyCallbacks()) {
Object* obj = result.GetCallbackObject();
if (obj->IsAccessorPair()) {
return handle(AccessorPair::cast(obj)->GetComponent(component),
isolate);
}
}
}
}
}
return isolate->factory()->undefined_value();
}
Object* JSObject::SlowReverseLookup(Object* value) {
if (HasFastProperties()) {
int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
DescriptorArray* descs = map()->instance_descriptors();
for (int i = 0; i < number_of_own_descriptors; i++) {
if (descs->GetType(i) == FIELD) {
Object* property = RawFastPropertyAt(descs->GetFieldIndex(i));
if (FLAG_track_double_fields &&
descs->GetDetails(i).representation().IsDouble()) {
ASSERT(property->IsHeapNumber());
if (value->IsNumber() && property->Number() == value->Number()) {
return descs->GetKey(i);
}
} else if (property == value) {
return descs->GetKey(i);
}
} else if (descs->GetType(i) == CONSTANT) {
if (descs->GetConstant(i) == value) {
return descs->GetKey(i);
}
}
}
return GetHeap()->undefined_value();
} else {
return property_dictionary()->SlowReverseLookup(value);
}
}
Handle<Map> Map::RawCopy(Handle<Map> map,
int instance_size) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
map->RawCopy(instance_size),
Map);
}
MaybeObject* Map::RawCopy(int instance_size) {
Map* result;
MaybeObject* maybe_result =
GetHeap()->AllocateMap(instance_type(), instance_size);
if (!maybe_result->To(&result)) return maybe_result;
result->set_prototype(prototype());
result->set_constructor(constructor());
result->set_bit_field(bit_field());
result->set_bit_field2(bit_field2());
int new_bit_field3 = bit_field3();
new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCache);
new_bit_field3 = Deprecated::update(new_bit_field3, false);
new_bit_field3 = IsUnstable::update(new_bit_field3, false);
result->set_bit_field3(new_bit_field3);
return result;
}
Handle<Map> Map::CopyNormalized(Handle<Map> map,
PropertyNormalizationMode mode,
NormalizedMapSharingMode sharing) {
int new_instance_size = map->instance_size();
if (mode == CLEAR_INOBJECT_PROPERTIES) {
new_instance_size -= map->inobject_properties() * kPointerSize;
}
Handle<Map> result = Map::RawCopy(map, new_instance_size);
if (mode != CLEAR_INOBJECT_PROPERTIES) {
result->set_inobject_properties(map->inobject_properties());
}
result->set_is_shared(sharing == SHARED_NORMALIZED_MAP);
result->set_dictionary_map(true);
result->set_migration_target(false);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap && result->is_shared()) {
result->SharedMapVerify();
}
#endif
return result;
}
Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) {
CALL_HEAP_FUNCTION(map->GetIsolate(), map->CopyDropDescriptors(), Map);
}
MaybeObject* Map::CopyDropDescriptors() {
Map* result;
MaybeObject* maybe_result = RawCopy(instance_size());
if (!maybe_result->To(&result)) return maybe_result;
// Please note instance_type and instance_size are set when allocated.
result->set_inobject_properties(inobject_properties());
result->set_unused_property_fields(unused_property_fields());
result->set_pre_allocated_property_fields(pre_allocated_property_fields());
result->set_is_shared(false);
result->ClearCodeCache(GetHeap());
NotifyLeafMapLayoutChange();
return result;
}
MaybeObject* Map::ShareDescriptor(DescriptorArray* descriptors,
Descriptor* descriptor) {
// Sanity check. This path is only to be taken if the map owns its descriptor
// array, implying that its NumberOfOwnDescriptors equals the number of
// descriptors in the descriptor array.
ASSERT(NumberOfOwnDescriptors() ==
instance_descriptors()->number_of_descriptors());
Map* result;
MaybeObject* maybe_result = CopyDropDescriptors();
if (!maybe_result->To(&result)) return maybe_result;
Name* name = descriptor->GetKey();
TransitionArray* transitions;
MaybeObject* maybe_transitions =
AddTransition(name, result, SIMPLE_TRANSITION);
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
int old_size = descriptors->number_of_descriptors();
DescriptorArray* new_descriptors;
if (descriptors->NumberOfSlackDescriptors() > 0) {
new_descriptors = descriptors;
new_descriptors->Append(descriptor);
} else {
// Descriptor arrays grow by 50%.
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(
GetIsolate(), old_size, old_size < 4 ? 1 : old_size / 2);
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
DescriptorArray::WhitenessWitness witness(new_descriptors);
// Copy the descriptors, inserting a descriptor.
for (int i = 0; i < old_size; ++i) {
new_descriptors->CopyFrom(i, descriptors, i, witness);
}
new_descriptors->Append(descriptor, witness);
if (old_size > 0) {
// If the source descriptors had an enum cache we copy it. This ensures
// that the maps to which we push the new descriptor array back can rely
// on a cache always being available once it is set. If the map has more
// enumerated descriptors than available in the original cache, the cache
// will be lazily replaced by the extended cache when needed.
if (descriptors->HasEnumCache()) {
new_descriptors->CopyEnumCacheFrom(descriptors);
}
Map* map;
// Replace descriptors by new_descriptors in all maps that share it.
for (Object* current = GetBackPointer();
!current->IsUndefined();
current = map->GetBackPointer()) {
map = Map::cast(current);
if (map->instance_descriptors() != descriptors) break;
map->set_instance_descriptors(new_descriptors);
}
set_instance_descriptors(new_descriptors);
}
}
result->SetBackPointer(this);
result->InitializeDescriptors(new_descriptors);
ASSERT(result->NumberOfOwnDescriptors() == NumberOfOwnDescriptors() + 1);
set_transitions(transitions);
set_owns_descriptors(false);
return result;
}
Handle<Map> Map::CopyReplaceDescriptors(Handle<Map> map,
Handle<DescriptorArray> descriptors,
TransitionFlag flag,
Handle<Name> name) {
CALL_HEAP_FUNCTION(map->GetIsolate(),
map->CopyReplaceDescriptors(*descriptors, flag, *name),
Map);
}
MaybeObject* Map::CopyReplaceDescriptors(DescriptorArray* descriptors,
TransitionFlag flag,
Name* name,
SimpleTransitionFlag simple_flag) {
ASSERT(descriptors->IsSortedNoDuplicates());
Map* result;
MaybeObject* maybe_result = CopyDropDescriptors();
if (!maybe_result->To(&result)) return maybe_result;
result->InitializeDescriptors(descriptors);
if (flag == INSERT_TRANSITION && CanHaveMoreTransitions()) {
TransitionArray* transitions;
MaybeObject* maybe_transitions = AddTransition(name, result, simple_flag);
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
set_transitions(transitions);
result->SetBackPointer(this);
} else {
descriptors->InitializeRepresentations(Representation::Tagged());
}
return result;
}
// Since this method is used to rewrite an existing transition tree, it can
// always insert transitions without checking.
Handle<Map> Map::CopyInstallDescriptors(Handle<Map> map,
int new_descriptor,
Handle<DescriptorArray> descriptors) {
ASSERT(descriptors->IsSortedNoDuplicates());
Handle<Map> result = Map::CopyDropDescriptors(map);
result->InitializeDescriptors(*descriptors);
result->SetNumberOfOwnDescriptors(new_descriptor + 1);
int unused_property_fields = map->unused_property_fields();
if (descriptors->GetDetails(new_descriptor).type() == FIELD) {
unused_property_fields = map->unused_property_fields() - 1;
if (unused_property_fields < 0) {
unused_property_fields += JSObject::kFieldsAdded;
}
}
result->set_unused_property_fields(unused_property_fields);
result->set_owns_descriptors(false);
Handle<Name> name = handle(descriptors->GetKey(new_descriptor));
Handle<TransitionArray> transitions = Map::AddTransition(map, name, result,
SIMPLE_TRANSITION);
map->set_transitions(*transitions);
result->SetBackPointer(*map);
return result;
}
MaybeObject* Map::CopyAsElementsKind(ElementsKind kind, TransitionFlag flag) {
if (flag == INSERT_TRANSITION) {
ASSERT(!HasElementsTransition() ||
((elements_transition_map()->elements_kind() == DICTIONARY_ELEMENTS ||
IsExternalArrayElementsKind(
elements_transition_map()->elements_kind())) &&
(kind == DICTIONARY_ELEMENTS ||
IsExternalArrayElementsKind(kind))));
ASSERT(!IsFastElementsKind(kind) ||
IsMoreGeneralElementsKindTransition(elements_kind(), kind));
ASSERT(kind != elements_kind());
}
bool insert_transition =
flag == INSERT_TRANSITION && !HasElementsTransition();
if (insert_transition && owns_descriptors()) {
// In case the map owned its own descriptors, share the descriptors and
// transfer ownership to the new map.
Map* new_map;
MaybeObject* maybe_new_map = CopyDropDescriptors();
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
MaybeObject* added_elements = set_elements_transition_map(new_map);
if (added_elements->IsFailure()) return added_elements;
new_map->set_elements_kind(kind);
new_map->InitializeDescriptors(instance_descriptors());
new_map->SetBackPointer(this);
set_owns_descriptors(false);
return new_map;
}
// In case the map did not own its own descriptors, a split is forced by
// copying the map; creating a new descriptor array cell.
// Create a new free-floating map only if we are not allowed to store it.
Map* new_map;
MaybeObject* maybe_new_map = Copy();
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
new_map->set_elements_kind(kind);
if (insert_transition) {
MaybeObject* added_elements = set_elements_transition_map(new_map);
if (added_elements->IsFailure()) return added_elements;
new_map->SetBackPointer(this);
}
return new_map;
}
Handle<Map> Map::CopyForObserved(Handle<Map> map) {
ASSERT(!map->is_observed());
Isolate* isolate = map->GetIsolate();
// In case the map owned its own descriptors, share the descriptors and
// transfer ownership to the new map.
Handle<Map> new_map;
if (map->owns_descriptors()) {
new_map = Map::CopyDropDescriptors(map);
} else {
new_map = Map::Copy(map);
}
Handle<TransitionArray> transitions =
Map::AddTransition(map, isolate->factory()->observed_symbol(), new_map,
FULL_TRANSITION);
map->set_transitions(*transitions);
new_map->set_is_observed(true);
if (map->owns_descriptors()) {
new_map->InitializeDescriptors(map->instance_descriptors());
map->set_owns_descriptors(false);
}
new_map->SetBackPointer(*map);
return new_map;
}
MaybeObject* Map::CopyWithPreallocatedFieldDescriptors() {
if (pre_allocated_property_fields() == 0) return CopyDropDescriptors();
// If the map has pre-allocated properties always start out with a descriptor
// array describing these properties.
ASSERT(constructor()->IsJSFunction());
JSFunction* ctor = JSFunction::cast(constructor());
Map* map = ctor->initial_map();
DescriptorArray* descriptors = map->instance_descriptors();
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
DescriptorArray* new_descriptors;
MaybeObject* maybe_descriptors =
descriptors->CopyUpTo(number_of_own_descriptors);
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
return CopyReplaceDescriptors(new_descriptors, OMIT_TRANSITION);
}
Handle<Map> Map::Copy(Handle<Map> map) {
CALL_HEAP_FUNCTION(map->GetIsolate(), map->Copy(), Map);
}
MaybeObject* Map::Copy() {
DescriptorArray* descriptors = instance_descriptors();
DescriptorArray* new_descriptors;
int number_of_own_descriptors = NumberOfOwnDescriptors();
MaybeObject* maybe_descriptors =
descriptors->CopyUpTo(number_of_own_descriptors);
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
return CopyReplaceDescriptors(new_descriptors, OMIT_TRANSITION);
}
MaybeObject* Map::CopyAddDescriptor(Descriptor* descriptor,
TransitionFlag flag) {
DescriptorArray* descriptors = instance_descriptors();
// Ensure the key is unique.
MaybeObject* maybe_failure = descriptor->KeyToUniqueName();
if (maybe_failure->IsFailure()) return maybe_failure;
int old_size = NumberOfOwnDescriptors();
int new_size = old_size + 1;
if (flag == INSERT_TRANSITION &&
owns_descriptors() &&
CanHaveMoreTransitions()) {
return ShareDescriptor(descriptors, descriptor);
}
DescriptorArray* new_descriptors;
MaybeObject* maybe_descriptors =
DescriptorArray::Allocate(GetIsolate(), old_size, 1);
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
DescriptorArray::WhitenessWitness witness(new_descriptors);
// Copy the descriptors, inserting a descriptor.
for (int i = 0; i < old_size; ++i) {
new_descriptors->CopyFrom(i, descriptors, i, witness);
}
if (old_size != descriptors->number_of_descriptors()) {
new_descriptors->SetNumberOfDescriptors(new_size);
new_descriptors->Set(old_size, descriptor, witness);
new_descriptors->Sort();
} else {
new_descriptors->Append(descriptor, witness);
}
Name* key = descriptor->GetKey();
return CopyReplaceDescriptors(new_descriptors, flag, key, SIMPLE_TRANSITION);
}
MaybeObject* Map::CopyInsertDescriptor(Descriptor* descriptor,
TransitionFlag flag) {
DescriptorArray* old_descriptors = instance_descriptors();
// Ensure the key is unique.
MaybeObject* maybe_result = descriptor->KeyToUniqueName();
if (maybe_result->IsFailure()) return maybe_result;
// We replace the key if it is already present.
int index = old_descriptors->SearchWithCache(descriptor->GetKey(), this);
if (index != DescriptorArray::kNotFound) {
return CopyReplaceDescriptor(old_descriptors, descriptor, index, flag);
}
return CopyAddDescriptor(descriptor, flag);
}
Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes(
Handle<DescriptorArray> desc,
int enumeration_index,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(desc->GetIsolate(),
desc->CopyUpToAddAttributes(enumeration_index, attributes),
DescriptorArray);
}
MaybeObject* DescriptorArray::CopyUpToAddAttributes(
int enumeration_index, PropertyAttributes attributes) {
if (enumeration_index == 0) return GetHeap()->empty_descriptor_array();
int size = enumeration_index;
DescriptorArray* descriptors;
MaybeObject* maybe_descriptors = Allocate(GetIsolate(), size);
if (!maybe_descriptors->To(&descriptors)) return maybe_descriptors;
DescriptorArray::WhitenessWitness witness(descriptors);
if (attributes != NONE) {
for (int i = 0; i < size; ++i) {
Object* value = GetValue(i);
PropertyDetails details = GetDetails(i);
int mask = DONT_DELETE | DONT_ENUM;
// READ_ONLY is an invalid attribute for JS setters/getters.
if (details.type() != CALLBACKS || !value->IsAccessorPair()) {
mask |= READ_ONLY;
}
details = details.CopyAddAttributes(
static_cast<PropertyAttributes>(attributes & mask));
Descriptor desc(GetKey(i), value, details);
descriptors->Set(i, &desc, witness);
}
} else {
for (int i = 0; i < size; ++i) {
descriptors->CopyFrom(i, this, i, witness);
}
}
if (number_of_descriptors() != enumeration_index) descriptors->Sort();
return descriptors;
}
MaybeObject* Map::CopyReplaceDescriptor(DescriptorArray* descriptors,
Descriptor* descriptor,
int insertion_index,
TransitionFlag flag) {
// Ensure the key is unique.
MaybeObject* maybe_failure = descriptor->KeyToUniqueName();
if (maybe_failure->IsFailure()) return maybe_failure;
Name* key = descriptor->GetKey();
ASSERT(key == descriptors->GetKey(insertion_index));
int new_size = NumberOfOwnDescriptors();
ASSERT(0 <= insertion_index && insertion_index < new_size);
ASSERT_LT(insertion_index, new_size);
DescriptorArray* new_descriptors;
MaybeObject* maybe_descriptors =
DescriptorArray::Allocate(GetIsolate(), new_size);
if (!maybe_descriptors->To(&new_descriptors)) return maybe_descriptors;
DescriptorArray::WhitenessWitness witness(new_descriptors);
for (int i = 0; i < new_size; ++i) {
if (i == insertion_index) {
new_descriptors->Set(i, descriptor, witness);
} else {
new_descriptors->CopyFrom(i, descriptors, i, witness);
}
}
// Re-sort if descriptors were removed.
if (new_size != descriptors->length()) new_descriptors->Sort();
SimpleTransitionFlag simple_flag =
(insertion_index == descriptors->number_of_descriptors() - 1)
? SIMPLE_TRANSITION
: FULL_TRANSITION;
return CopyReplaceDescriptors(new_descriptors, flag, key, simple_flag);
}
void Map::UpdateCodeCache(Handle<Map> map,
Handle<Name> name,
Handle<Code> code) {
Isolate* isolate = map->GetIsolate();
CALL_HEAP_FUNCTION_VOID(isolate,
map->UpdateCodeCache(*name, *code));
}
MaybeObject* Map::UpdateCodeCache(Name* name, Code* code) {
// Allocate the code cache if not present.
if (code_cache()->IsFixedArray()) {
Object* result;
{ MaybeObject* maybe_result = GetHeap()->AllocateCodeCache();
if (!maybe_result->ToObject(&result)) return maybe_result;
}
set_code_cache(result);
}
// Update the code cache.
return CodeCache::cast(code_cache())->Update(name, code);
}
Object* Map::FindInCodeCache(Name* name, Code::Flags flags) {
// Do a lookup if a code cache exists.
if (!code_cache()->IsFixedArray()) {
return CodeCache::cast(code_cache())->Lookup(name, flags);
} else {
return GetHeap()->undefined_value();
}
}
int Map::IndexInCodeCache(Object* name, Code* code) {
// Get the internal index if a code cache exists.
if (!code_cache()->IsFixedArray()) {
return CodeCache::cast(code_cache())->GetIndex(name, code);
}
return -1;
}
void Map::RemoveFromCodeCache(Name* name, Code* code, int index) {
// No GC is supposed to happen between a call to IndexInCodeCache and
// RemoveFromCodeCache so the code cache must be there.
ASSERT(!code_cache()->IsFixedArray());
CodeCache::cast(code_cache())->RemoveByIndex(name, code, index);
}
// An iterator over all map transitions in an descriptor array, reusing the map
// field of the contens array while it is running.
class IntrusiveMapTransitionIterator {
public:
explicit IntrusiveMapTransitionIterator(TransitionArray* transition_array)
: transition_array_(transition_array) { }
void Start() {
ASSERT(!IsIterating());
*TransitionArrayHeader() = Smi::FromInt(0);
}
bool IsIterating() {
return (*TransitionArrayHeader())->IsSmi();
}
Map* Next() {
ASSERT(IsIterating());
int index = Smi::cast(*TransitionArrayHeader())->value();
int number_of_transitions = transition_array_->number_of_transitions();
while (index < number_of_transitions) {
*TransitionArrayHeader() = Smi::FromInt(index + 1);
return transition_array_->GetTarget(index);
}
*TransitionArrayHeader() = transition_array_->GetHeap()->fixed_array_map();
return NULL;
}
private:
Object** TransitionArrayHeader() {
return HeapObject::RawField(transition_array_, TransitionArray::kMapOffset);
}
TransitionArray* transition_array_;
};
// An iterator over all prototype transitions, reusing the map field of the
// underlying array while it is running.
class IntrusivePrototypeTransitionIterator {
public:
explicit IntrusivePrototypeTransitionIterator(HeapObject* proto_trans)
: proto_trans_(proto_trans) { }
void Start() {
ASSERT(!IsIterating());
*Header() = Smi::FromInt(0);
}
bool IsIterating() {
return (*Header())->IsSmi();
}
Map* Next() {
ASSERT(IsIterating());
int transitionNumber = Smi::cast(*Header())->value();
if (transitionNumber < NumberOfTransitions()) {
*Header() = Smi::FromInt(transitionNumber + 1);
return GetTransition(transitionNumber);
}
*Header() = proto_trans_->GetHeap()->fixed_array_map();
return NULL;
}
private:
Object** Header() {
return HeapObject::RawField(proto_trans_, FixedArray::kMapOffset);
}
int NumberOfTransitions() {
FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_);
Object* num = proto_trans->get(Map::kProtoTransitionNumberOfEntriesOffset);
return Smi::cast(num)->value();
}
Map* GetTransition(int transitionNumber) {
FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_);
return Map::cast(proto_trans->get(IndexFor(transitionNumber)));
}
int IndexFor(int transitionNumber) {
return Map::kProtoTransitionHeaderSize +
Map::kProtoTransitionMapOffset +
transitionNumber * Map::kProtoTransitionElementsPerEntry;
}
HeapObject* proto_trans_;
};
// To traverse the transition tree iteratively, we have to store two kinds of
// information in a map: The parent map in the traversal and which children of a
// node have already been visited. To do this without additional memory, we
// temporarily reuse two maps with known values:
//
// (1) The map of the map temporarily holds the parent, and is restored to the
// meta map afterwards.
//
// (2) The info which children have already been visited depends on which part
// of the map we currently iterate:
//
// (a) If we currently follow normal map transitions, we temporarily store
// the current index in the map of the FixedArray of the desciptor
// array's contents, and restore it to the fixed array map afterwards.
// Note that a single descriptor can have 0, 1, or 2 transitions.
//
// (b) If we currently follow prototype transitions, we temporarily store
// the current index in the map of the FixedArray holding the prototype
// transitions, and restore it to the fixed array map afterwards.
//
// Note that the child iterator is just a concatenation of two iterators: One
// iterating over map transitions and one iterating over prototype transisitons.
class TraversableMap : public Map {
public:
// Record the parent in the traversal within this map. Note that this destroys
// this map's map!
void SetParent(TraversableMap* parent) { set_map_no_write_barrier(parent); }
// Reset the current map's map, returning the parent previously stored in it.
TraversableMap* GetAndResetParent() {
TraversableMap* old_parent = static_cast<TraversableMap*>(map());
set_map_no_write_barrier(GetHeap()->meta_map());
return old_parent;
}
// Start iterating over this map's children, possibly destroying a FixedArray
// map (see explanation above).
void ChildIteratorStart() {
if (HasTransitionArray()) {
if (HasPrototypeTransitions()) {
IntrusivePrototypeTransitionIterator(GetPrototypeTransitions()).Start();
}
IntrusiveMapTransitionIterator(transitions()).Start();
}
}
// If we have an unvisited child map, return that one and advance. If we have
// none, return NULL and reset any destroyed FixedArray maps.
TraversableMap* ChildIteratorNext() {
TransitionArray* transition_array = unchecked_transition_array();
if (!transition_array->map()->IsSmi() &&
!transition_array->IsTransitionArray()) {
return NULL;
}
if (transition_array->HasPrototypeTransitions()) {
HeapObject* proto_transitions =
transition_array->UncheckedPrototypeTransitions();
IntrusivePrototypeTransitionIterator proto_iterator(proto_transitions);
if (proto_iterator.IsIterating()) {
Map* next = proto_iterator.Next();
if (next != NULL) return static_cast<TraversableMap*>(next);
}
}
IntrusiveMapTransitionIterator transition_iterator(transition_array);
if (transition_iterator.IsIterating()) {
Map* next = transition_iterator.Next();
if (next != NULL) return static_cast<TraversableMap*>(next);
}
return NULL;
}
};
// Traverse the transition tree in postorder without using the C++ stack by
// doing pointer reversal.
void Map::TraverseTransitionTree(TraverseCallback callback, void* data) {
TraversableMap* current = static_cast<TraversableMap*>(this);
current->ChildIteratorStart();
while (true) {
TraversableMap* child = current->ChildIteratorNext();
if (child != NULL) {
child->ChildIteratorStart();
child->SetParent(current);
current = child;
} else {
TraversableMap* parent = current->GetAndResetParent();
callback(current, data);
if (current == this) break;
current = parent;
}
}
}
MaybeObject* CodeCache::Update(Name* name, Code* code) {
// The number of monomorphic stubs for normal load/store/call IC's can grow to
// a large number and therefore they need to go into a hash table. They are
// used to load global properties from cells.
if (code->type() == Code::NORMAL) {
// Make sure that a hash table is allocated for the normal load code cache.
if (normal_type_cache()->IsUndefined()) {
Object* result;
{ MaybeObject* maybe_result =
CodeCacheHashTable::Allocate(GetHeap(),
CodeCacheHashTable::kInitialSize);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
set_normal_type_cache(result);
}
return UpdateNormalTypeCache(name, code);
} else {
ASSERT(default_cache()->IsFixedArray());
return UpdateDefaultCache(name, code);
}
}
MaybeObject* CodeCache::UpdateDefaultCache(Name* name, Code* code) {
// When updating the default code cache we disregard the type encoded in the
// flags. This allows call constant stubs to overwrite call field
// stubs, etc.
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
// First check whether we can update existing code cache without
// extending it.
FixedArray* cache = default_cache();
int length = cache->length();
int deleted_index = -1;
for (int i = 0; i < length; i += kCodeCacheEntrySize) {
Object* key = cache->get(i);
if (key->IsNull()) {
if (deleted_index < 0) deleted_index = i;
continue;
}
if (key->IsUndefined()) {
if (deleted_index >= 0) i = deleted_index;
cache->set(i + kCodeCacheEntryNameOffset, name);
cache->set(i + kCodeCacheEntryCodeOffset, code);
return this;
}
if (name->Equals(Name::cast(key))) {
Code::Flags found =
Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags();
if (Code::RemoveTypeFromFlags(found) == flags) {
cache->set(i + kCodeCacheEntryCodeOffset, code);
return this;
}
}
}
// Reached the end of the code cache. If there were deleted
// elements, reuse the space for the first of them.
if (deleted_index >= 0) {
cache->set(deleted_index + kCodeCacheEntryNameOffset, name);
cache->set(deleted_index + kCodeCacheEntryCodeOffset, code);
return this;
}
// Extend the code cache with some new entries (at least one). Must be a
// multiple of the entry size.
int new_length = length + ((length >> 1)) + kCodeCacheEntrySize;
new_length = new_length - new_length % kCodeCacheEntrySize;
ASSERT((new_length % kCodeCacheEntrySize) == 0);
Object* result;
{ MaybeObject* maybe_result = cache->CopySize(new_length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Add the (name, code) pair to the new cache.
cache = FixedArray::cast(result);
cache->set(length + kCodeCacheEntryNameOffset, name);
cache->set(length + kCodeCacheEntryCodeOffset, code);
set_default_cache(cache);
return this;
}
MaybeObject* CodeCache::UpdateNormalTypeCache(Name* name, Code* code) {
// Adding a new entry can cause a new cache to be allocated.
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
Object* new_cache;
{ MaybeObject* maybe_new_cache = cache->Put(name, code);
if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache;
}
set_normal_type_cache(new_cache);
return this;
}
Object* CodeCache::Lookup(Name* name, Code::Flags flags) {
flags = Code::RemoveTypeFromFlags(flags);
Object* result = LookupDefaultCache(name, flags);
if (result->IsCode()) return result;
return LookupNormalTypeCache(name, flags);
}
Object* CodeCache::LookupDefaultCache(Name* name, Code::Flags flags) {
FixedArray* cache = default_cache();
int length = cache->length();
for (int i = 0; i < length; i += kCodeCacheEntrySize) {
Object* key = cache->get(i + kCodeCacheEntryNameOffset);
// Skip deleted elements.
if (key->IsNull()) continue;
if (key->IsUndefined()) return key;
if (name->Equals(Name::cast(key))) {
Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset));
if (Code::RemoveTypeFromFlags(code->flags()) == flags) {
return code;
}
}
}
return GetHeap()->undefined_value();
}
Object* CodeCache::LookupNormalTypeCache(Name* name, Code::Flags flags) {
if (!normal_type_cache()->IsUndefined()) {
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
return cache->Lookup(name, flags);
} else {
return GetHeap()->undefined_value();
}
}
int CodeCache::GetIndex(Object* name, Code* code) {
if (code->type() == Code::NORMAL) {
if (normal_type_cache()->IsUndefined()) return -1;
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
return cache->GetIndex(Name::cast(name), code->flags());
}
FixedArray* array = default_cache();
int len = array->length();
for (int i = 0; i < len; i += kCodeCacheEntrySize) {
if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1;
}
return -1;
}
void CodeCache::RemoveByIndex(Object* name, Code* code, int index) {
if (code->type() == Code::NORMAL) {
ASSERT(!normal_type_cache()->IsUndefined());
CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
ASSERT(cache->GetIndex(Name::cast(name), code->flags()) == index);
cache->RemoveByIndex(index);
} else {
FixedArray* array = default_cache();
ASSERT(array->length() >= index && array->get(index)->IsCode());
// Use null instead of undefined for deleted elements to distinguish
// deleted elements from unused elements. This distinction is used
// when looking up in the cache and when updating the cache.
ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset);
array->set_null(index - 1); // Name.
array->set_null(index); // Code.
}
}
// The key in the code cache hash table consists of the property name and the
// code object. The actual match is on the name and the code flags. If a key
// is created using the flags and not a code object it can only be used for
// lookup not to create a new entry.
class CodeCacheHashTableKey : public HashTableKey {
public:
CodeCacheHashTableKey(Name* name, Code::Flags flags)
: name_(name), flags_(flags), code_(NULL) { }
CodeCacheHashTableKey(Name* name, Code* code)
: name_(name), flags_(code->flags()), code_(code) { }
bool IsMatch(Object* other) {
if (!other->IsFixedArray()) return false;
FixedArray* pair = FixedArray::cast(other);
Name* name = Name::cast(pair->get(0));
Code::Flags flags = Code::cast(pair->get(1))->flags();
if (flags != flags_) {
return false;
}
return name_->Equals(name);
}
static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
return name->Hash() ^ flags;
}
uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); }
uint32_t HashForObject(Object* obj) {
FixedArray* pair = FixedArray::cast(obj);
Name* name = Name::cast(pair->get(0));
Code* code = Code::cast(pair->get(1));
return NameFlagsHashHelper(name, code->flags());
}
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
ASSERT(code_ != NULL);
Object* obj;
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(2);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* pair = FixedArray::cast(obj);
pair->set(0, name_);
pair->set(1, code_);
return pair;
}
private:
Name* name_;
Code::Flags flags_;
// TODO(jkummerow): We should be able to get by without this.
Code* code_;
};
Object* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
CodeCacheHashTableKey key(name, flags);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
MaybeObject* CodeCacheHashTable::Put(Name* name, Code* code) {
CodeCacheHashTableKey key(name, code);
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Don't use |this|, as the table might have grown.
CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj);
int entry = cache->FindInsertionEntry(key.Hash());
Object* k;
{ MaybeObject* maybe_k = key.AsObject(GetHeap());
if (!maybe_k->ToObject(&k)) return maybe_k;
}
cache->set(EntryToIndex(entry), k);
cache->set(EntryToIndex(entry) + 1, code);
cache->ElementAdded();
return cache;
}
int CodeCacheHashTable::GetIndex(Name* name, Code::Flags flags) {
CodeCacheHashTableKey key(name, flags);
int entry = FindEntry(&key);
return (entry == kNotFound) ? -1 : entry;
}
void CodeCacheHashTable::RemoveByIndex(int index) {
ASSERT(index >= 0);
Heap* heap = GetHeap();
set(EntryToIndex(index), heap->the_hole_value());
set(EntryToIndex(index) + 1, heap->the_hole_value());
ElementRemoved();
}
void PolymorphicCodeCache::Update(Handle<PolymorphicCodeCache> cache,
MapHandleList* maps,
Code::Flags flags,
Handle<Code> code) {
Isolate* isolate = cache->GetIsolate();
CALL_HEAP_FUNCTION_VOID(isolate, cache->Update(maps, flags, *code));
}
MaybeObject* PolymorphicCodeCache::Update(MapHandleList* maps,
Code::Flags flags,
Code* code) {
// Initialize cache if necessary.
if (cache()->IsUndefined()) {
Object* result;
{ MaybeObject* maybe_result =
PolymorphicCodeCacheHashTable::Allocate(
GetHeap(),
PolymorphicCodeCacheHashTable::kInitialSize);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
set_cache(result);
} else {
// This entry shouldn't be contained in the cache yet.
ASSERT(PolymorphicCodeCacheHashTable::cast(cache())
->Lookup(maps, flags)->IsUndefined());
}
PolymorphicCodeCacheHashTable* hash_table =
PolymorphicCodeCacheHashTable::cast(cache());
Object* new_cache;
{ MaybeObject* maybe_new_cache = hash_table->Put(maps, flags, code);
if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache;
}
set_cache(new_cache);
return this;
}
Handle<Object> PolymorphicCodeCache::Lookup(MapHandleList* maps,
Code::Flags flags) {
if (!cache()->IsUndefined()) {
PolymorphicCodeCacheHashTable* hash_table =
PolymorphicCodeCacheHashTable::cast(cache());
return Handle<Object>(hash_table->Lookup(maps, flags), GetIsolate());
} else {
return GetIsolate()->factory()->undefined_value();
}
}
// Despite their name, object of this class are not stored in the actual
// hash table; instead they're temporarily used for lookups. It is therefore
// safe to have a weak (non-owning) pointer to a MapList as a member field.
class PolymorphicCodeCacheHashTableKey : public HashTableKey {
public:
// Callers must ensure that |maps| outlives the newly constructed object.
PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags)
: maps_(maps),
code_flags_(code_flags) {}
bool IsMatch(Object* other) {
MapHandleList other_maps(kDefaultListAllocationSize);
int other_flags;
FromObject(other, &other_flags, &other_maps);
if (code_flags_ != other_flags) return false;
if (maps_->length() != other_maps.length()) return false;
// Compare just the hashes first because it's faster.
int this_hash = MapsHashHelper(maps_, code_flags_);
int other_hash = MapsHashHelper(&other_maps, other_flags);
if (this_hash != other_hash) return false;
// Full comparison: for each map in maps_, look for an equivalent map in
// other_maps. This implementation is slow, but probably good enough for
// now because the lists are short (<= 4 elements currently).
for (int i = 0; i < maps_->length(); ++i) {
bool match_found = false;
for (int j = 0; j < other_maps.length(); ++j) {
if (*(maps_->at(i)) == *(other_maps.at(j))) {
match_found = true;
break;
}
}
if (!match_found) return false;
}
return true;
}
static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) {
uint32_t hash = code_flags;
for (int i = 0; i < maps->length(); ++i) {
hash ^= maps->at(i)->Hash();
}
return hash;
}
uint32_t Hash() {
return MapsHashHelper(maps_, code_flags_);
}
uint32_t HashForObject(Object* obj) {
MapHandleList other_maps(kDefaultListAllocationSize);
int other_flags;
FromObject(obj, &other_flags, &other_maps);
return MapsHashHelper(&other_maps, other_flags);
}
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
Object* obj;
// The maps in |maps_| must be copied to a newly allocated FixedArray,
// both because the referenced MapList is short-lived, and because C++
// objects can't be stored in the heap anyway.
{ MaybeObject* maybe_obj =
heap->AllocateUninitializedFixedArray(maps_->length() + 1);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* list = FixedArray::cast(obj);
list->set(0, Smi::FromInt(code_flags_));
for (int i = 0; i < maps_->length(); ++i) {
list->set(i + 1, *maps_->at(i));
}
return list;
}
private:
static MapHandleList* FromObject(Object* obj,
int* code_flags,
MapHandleList* maps) {
FixedArray* list = FixedArray::cast(obj);
maps->Rewind(0);
*code_flags = Smi::cast(list->get(0))->value();
for (int i = 1; i < list->length(); ++i) {
maps->Add(Handle<Map>(Map::cast(list->get(i))));
}
return maps;
}
MapHandleList* maps_; // weak.
int code_flags_;
static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1;
};
Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps,
int code_flags) {
PolymorphicCodeCacheHashTableKey key(maps, code_flags);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
MaybeObject* PolymorphicCodeCacheHashTable::Put(MapHandleList* maps,
int code_flags,
Code* code) {
PolymorphicCodeCacheHashTableKey key(maps, code_flags);
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
PolymorphicCodeCacheHashTable* cache =
reinterpret_cast<PolymorphicCodeCacheHashTable*>(obj);
int entry = cache->FindInsertionEntry(key.Hash());
{ MaybeObject* maybe_obj = key.AsObject(GetHeap());
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
cache->set(EntryToIndex(entry), obj);
cache->set(EntryToIndex(entry) + 1, code);
cache->ElementAdded();
return cache;
}
MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) {
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_result =
accessor->AddElementsToFixedArray(array, array, this);
FixedArray* result;
if (!maybe_result->To<FixedArray>(&result)) return maybe_result;
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < result->length(); i++) {
Object* current = result->get(i);
ASSERT(current->IsNumber() || current->IsName());
}
}
#endif
return result;
}
MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) {
ElementsAccessor* accessor = ElementsAccessor::ForArray(other);
MaybeObject* maybe_result =
accessor->AddElementsToFixedArray(NULL, NULL, this, other);
FixedArray* result;
if (!maybe_result->To(&result)) return maybe_result;
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < result->length(); i++) {
Object* current = result->get(i);
ASSERT(current->IsNumber() || current->IsName());
}
}
#endif
return result;
}
MaybeObject* FixedArray::CopySize(int new_length, PretenureFlag pretenure) {
Heap* heap = GetHeap();
if (new_length == 0) return heap->empty_fixed_array();
Object* obj;
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length, pretenure);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* result = FixedArray::cast(obj);
// Copy the content
DisallowHeapAllocation no_gc;
int len = length();
if (new_length < len) len = new_length;
// We are taking the map from the old fixed array so the map is sure to
// be an immortal immutable object.
result->set_map_no_write_barrier(map());
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len; i++) {
result->set(i, get(i), mode);
}
return result;
}
void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
for (int index = 0; index < len; index++) {
dest->set(dest_pos+index, get(pos+index), mode);
}
}
#ifdef DEBUG
bool FixedArray::IsEqualTo(FixedArray* other) {
if (length() != other->length()) return false;
for (int i = 0 ; i < length(); ++i) {
if (get(i) != other->get(i)) return false;
}
return true;
}
#endif
MaybeObject* DescriptorArray::Allocate(Isolate* isolate,
int number_of_descriptors,
int slack) {
Heap* heap = isolate->heap();
// Do not use DescriptorArray::cast on incomplete object.
int size = number_of_descriptors + slack;
if (size == 0) return heap->empty_descriptor_array();
FixedArray* result;
// Allocate the array of keys.
MaybeObject* maybe_array = heap->AllocateFixedArray(LengthFor(size));
if (!maybe_array->To(&result)) return maybe_array;
result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
result->set(kEnumCacheIndex, Smi::FromInt(0));
return result;
}
void DescriptorArray::ClearEnumCache() {
set(kEnumCacheIndex, Smi::FromInt(0));
}
void DescriptorArray::SetEnumCache(FixedArray* bridge_storage,
FixedArray* new_cache,
Object* new_index_cache) {
ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength);
ASSERT(new_index_cache->IsSmi() || new_index_cache->IsFixedArray());
ASSERT(!IsEmpty());
ASSERT(!HasEnumCache() || new_cache->length() > GetEnumCache()->length());
FixedArray::cast(bridge_storage)->
set(kEnumCacheBridgeCacheIndex, new_cache);
FixedArray::cast(bridge_storage)->
set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache);
set(kEnumCacheIndex, bridge_storage);
}
void DescriptorArray::CopyFrom(int dst_index,
DescriptorArray* src,
int src_index,
const WhitenessWitness& witness) {
Object* value = src->GetValue(src_index);
PropertyDetails details = src->GetDetails(src_index);
Descriptor desc(src->GetKey(src_index), value, details);
Set(dst_index, &desc, witness);
}
Handle<DescriptorArray> DescriptorArray::Merge(Handle<DescriptorArray> desc,
int verbatim,
int valid,
int new_size,
int modify_index,
StoreMode store_mode,
Handle<DescriptorArray> other) {
CALL_HEAP_FUNCTION(desc->GetIsolate(),
desc->Merge(verbatim, valid, new_size, modify_index,
store_mode, *other),
DescriptorArray);
}
// Generalize the |other| descriptor array by merging it into the (at least
// partly) updated |this| descriptor array.
// The method merges two descriptor array in three parts. Both descriptor arrays
// are identical up to |verbatim|. They also overlap in keys up to |valid|.
// Between |verbatim| and |valid|, the resulting descriptor type as well as the
// representation are generalized from both |this| and |other|. Beyond |valid|,
// the descriptors are copied verbatim from |other| up to |new_size|.
// In case of incompatible types, the type and representation of |other| is
// used.
MaybeObject* DescriptorArray::Merge(int verbatim,
int valid,
int new_size,
int modify_index,
StoreMode store_mode,
DescriptorArray* other) {
ASSERT(verbatim <= valid);
ASSERT(valid <= new_size);
DescriptorArray* result;
// Allocate a new descriptor array large enough to hold the required
// descriptors, with minimally the exact same size as this descriptor array.
MaybeObject* maybe_descriptors = DescriptorArray::Allocate(
GetIsolate(), new_size,
Max(new_size, other->number_of_descriptors()) - new_size);
if (!maybe_descriptors->To(&result)) return maybe_descriptors;
ASSERT(result->length() > length() ||
result->NumberOfSlackDescriptors() > 0 ||
result->number_of_descriptors() == other->number_of_descriptors());
ASSERT(result->number_of_descriptors() == new_size);
DescriptorArray::WhitenessWitness witness(result);
int descriptor;
// 0 -> |verbatim|
int current_offset = 0;
for (descriptor = 0; descriptor < verbatim; descriptor++) {
if (GetDetails(descriptor).type() == FIELD) current_offset++;
result->CopyFrom(descriptor, other, descriptor, witness);
}
// |verbatim| -> |valid|
for (; descriptor < valid; descriptor++) {
Name* key = GetKey(descriptor);
PropertyDetails details = GetDetails(descriptor);
PropertyDetails other_details = other->GetDetails(descriptor);
if (details.type() == FIELD || other_details.type() == FIELD ||
(store_mode == FORCE_FIELD && descriptor == modify_index) ||
(details.type() == CONSTANT &&
other_details.type() == CONSTANT &&
GetValue(descriptor) != other->GetValue(descriptor))) {
Representation representation =
details.representation().generalize(other_details.representation());
FieldDescriptor d(key,
current_offset++,
other_details.attributes(),
representation);
result->Set(descriptor, &d, witness);
} else {
result->CopyFrom(descriptor, other, descriptor, witness);
}
}
// |valid| -> |new_size|
for (; descriptor < new_size; descriptor++) {
PropertyDetails details = other->GetDetails(descriptor);
if (details.type() == FIELD ||
(store_mode == FORCE_FIELD && descriptor == modify_index)) {
Name* key = other->GetKey(descriptor);
FieldDescriptor d(key,
current_offset++,
details.attributes(),
details.representation());
result->Set(descriptor, &d, witness);
} else {
result->CopyFrom(descriptor, other, descriptor, witness);
}
}
result->Sort();
return result;
}
// Checks whether a merge of |other| into |this| would return a copy of |this|.
bool DescriptorArray::IsMoreGeneralThan(int verbatim,
int valid,
int new_size,
DescriptorArray* other) {
ASSERT(verbatim <= valid);
ASSERT(valid <= new_size);
if (valid != new_size) return false;
for (int descriptor = verbatim; descriptor < valid; descriptor++) {
PropertyDetails details = GetDetails(descriptor);
PropertyDetails other_details = other->GetDetails(descriptor);
if (!other_details.representation().fits_into(details.representation())) {
return false;
}
if (details.type() == CONSTANT) {
if (other_details.type() != CONSTANT) return false;
if (GetValue(descriptor) != other->GetValue(descriptor)) return false;
}
}
return true;
}
// We need the whiteness witness since sort will reshuffle the entries in the
// descriptor array. If the descriptor array were to be black, the shuffling
// would move a slot that was already recorded as pointing into an evacuation
// candidate. This would result in missing updates upon evacuation.
void DescriptorArray::Sort() {
// In-place heap sort.
int len = number_of_descriptors();
// Reset sorting since the descriptor array might contain invalid pointers.
for (int i = 0; i < len; ++i) SetSortedKey(i, i);
// Bottom-up max-heap construction.
// Index of the last node with children
const int max_parent_index = (len / 2) - 1;
for (int i = max_parent_index; i >= 0; --i) {
int parent_index = i;
const uint32_t parent_hash = GetSortedKey(i)->Hash();
while (parent_index <= max_parent_index) {
int child_index = 2 * parent_index + 1;
uint32_t child_hash = GetSortedKey(child_index)->Hash();
if (child_index + 1 < len) {
uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
if (right_child_hash > child_hash) {
child_index++;
child_hash = right_child_hash;
}
}
if (child_hash <= parent_hash) break;
SwapSortedKeys(parent_index, child_index);
// Now element at child_index could be < its children.
parent_index = child_index; // parent_hash remains correct.
}
}
// Extract elements and create sorted array.
for (int i = len - 1; i > 0; --i) {
// Put max element at the back of the array.
SwapSortedKeys(0, i);
// Shift down the new top element.
int parent_index = 0;
const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
const int max_parent_index = (i / 2) - 1;
while (parent_index <= max_parent_index) {
int child_index = parent_index * 2 + 1;
uint32_t child_hash = GetSortedKey(child_index)->Hash();
if (child_index + 1 < i) {
uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
if (right_child_hash > child_hash) {
child_index++;
child_hash = right_child_hash;
}
}
if (child_hash <= parent_hash) break;
SwapSortedKeys(parent_index, child_index);
parent_index = child_index;
}
}
ASSERT(IsSortedNoDuplicates());
}
Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
copy->set_getter(pair->getter());
copy->set_setter(pair->setter());
return copy;
}
Object* AccessorPair::GetComponent(AccessorComponent component) {
Object* accessor = get(component);
return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor;
}
MaybeObject* DeoptimizationInputData::Allocate(Isolate* isolate,
int deopt_entry_count,
PretenureFlag pretenure) {
ASSERT(deopt_entry_count > 0);
return isolate->heap()->AllocateFixedArray(LengthFor(deopt_entry_count),
pretenure);
}
MaybeObject* DeoptimizationOutputData::Allocate(Isolate* isolate,
int number_of_deopt_points,
PretenureFlag pretenure) {
if (number_of_deopt_points == 0) return isolate->heap()->empty_fixed_array();
return isolate->heap()->AllocateFixedArray(
LengthOfFixedArray(number_of_deopt_points), pretenure);
}
#ifdef DEBUG
bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
if (IsEmpty()) return other->IsEmpty();
if (other->IsEmpty()) return false;
if (length() != other->length()) return false;
for (int i = 0; i < length(); ++i) {
if (get(i) != other->get(i)) return false;
}
return true;
}
#endif
static bool IsIdentifier(UnicodeCache* cache, Name* name) {
// Checks whether the buffer contains an identifier (no escape).
if (!name->IsString()) return false;
String* string = String::cast(name);
if (string->length() == 0) return false;
ConsStringIteratorOp op;
StringCharacterStream stream(string, &op);
if (!cache->IsIdentifierStart(stream.GetNext())) {
return false;
}
while (stream.HasMore()) {
if (!cache->IsIdentifierPart(stream.GetNext())) {
return false;
}
}
return true;
}
bool Name::IsCacheable(Isolate* isolate) {
return IsSymbol() ||
IsIdentifier(isolate->unicode_cache(), this) ||
this == isolate->heap()->hidden_string();
}
bool String::LooksValid() {
if (!GetIsolate()->heap()->Contains(this)) return false;
return true;
}
String::FlatContent String::GetFlatContent() {
ASSERT(!AllowHeapAllocation::IsAllowed());
int length = this->length();
StringShape shape(this);
String* string = this;
int offset = 0;
if (shape.representation_tag() == kConsStringTag) {
ConsString* cons = ConsString::cast(string);
if (cons->second()->length() != 0) {
return FlatContent();
}
string = cons->first();
shape = StringShape(string);
}
if (shape.representation_tag() == kSlicedStringTag) {
SlicedString* slice = SlicedString::cast(string);
offset = slice->offset();
string = slice->parent();
shape = StringShape(string);
ASSERT(shape.representation_tag() != kConsStringTag &&
shape.representation_tag() != kSlicedStringTag);
}
if (shape.encoding_tag() == kOneByteStringTag) {
const uint8_t* start;
if (shape.representation_tag() == kSeqStringTag) {
start = SeqOneByteString::cast(string)->GetChars();
} else {
start = ExternalAsciiString::cast(string)->GetChars();
}
return FlatContent(Vector<const uint8_t>(start + offset, length));
} else {
ASSERT(shape.encoding_tag() == kTwoByteStringTag);
const uc16* start;
if (shape.representation_tag() == kSeqStringTag) {
start = SeqTwoByteString::cast(string)->GetChars();
} else {
start = ExternalTwoByteString::cast(string)->GetChars();
}
return FlatContent(Vector<const uc16>(start + offset, length));
}
}
SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
RobustnessFlag robust_flag,
int offset,
int length,
int* length_return) {
if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
return SmartArrayPointer<char>(NULL);
}
Heap* heap = GetHeap();
// Negative length means the to the end of the string.
if (length < 0) length = kMaxInt - offset;
// Compute the size of the UTF-8 string. Start at the specified offset.
Access<ConsStringIteratorOp> op(
heap->isolate()->objects_string_iterator());
StringCharacterStream stream(this, op.value(), offset);
int character_position = offset;
int utf8_bytes = 0;
int last = unibrow::Utf16::kNoPreviousCharacter;
while (stream.HasMore() && character_position++ < offset + length) {
uint16_t character = stream.GetNext();
utf8_bytes += unibrow::Utf8::Length(character, last);
last = character;
}
if (length_return) {
*length_return = utf8_bytes;
}
char* result = NewArray<char>(utf8_bytes + 1);
// Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
stream.Reset(this, offset);
character_position = offset;
int utf8_byte_position = 0;
last = unibrow::Utf16::kNoPreviousCharacter;
while (stream.HasMore() && character_position++ < offset + length) {
uint16_t character = stream.GetNext();
if (allow_nulls == DISALLOW_NULLS && character == 0) {
character = ' ';
}
utf8_byte_position +=
unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
last = character;
}
result[utf8_byte_position] = 0;
return SmartArrayPointer<char>(result);
}
SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
RobustnessFlag robust_flag,
int* length_return) {
return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
}
const uc16* String::GetTwoByteData(unsigned start) {
ASSERT(!IsOneByteRepresentationUnderneath());
switch (StringShape(this).representation_tag()) {
case kSeqStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
case kExternalStringTag:
return ExternalTwoByteString::cast(this)->
ExternalTwoByteStringGetData(start);
case kSlicedStringTag: {
SlicedString* slice = SlicedString::cast(this);
return slice->parent()->GetTwoByteData(start + slice->offset());
}
case kConsStringTag:
UNREACHABLE();
return NULL;
}
UNREACHABLE();
return NULL;
}
SmartArrayPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) {
if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
return SmartArrayPointer<uc16>();
}
Heap* heap = GetHeap();
Access<ConsStringIteratorOp> op(
heap->isolate()->objects_string_iterator());
StringCharacterStream stream(this, op.value());
uc16* result = NewArray<uc16>(length() + 1);
int i = 0;
while (stream.HasMore()) {
uint16_t character = stream.GetNext();
result[i++] = character;
}
result[i] = 0;
return SmartArrayPointer<uc16>(result);
}
const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
return reinterpret_cast<uc16*>(
reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
}
void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) {
Relocatable* current = isolate->relocatable_top();
while (current != NULL) {
current->PostGarbageCollection();
current = current->prev_;
}
}
// Reserve space for statics needing saving and restoring.
int Relocatable::ArchiveSpacePerThread() {
return sizeof(Relocatable*); // NOLINT
}
// Archive statics that are thread local.
char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
*reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
isolate->set_relocatable_top(NULL);
return to + ArchiveSpacePerThread();
}
// Restore statics that are thread local.
char* Relocatable::RestoreState(Isolate* isolate, char* from) {
isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
return from + ArchiveSpacePerThread();
}
char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
Iterate(v, top);
return thread_storage + ArchiveSpacePerThread();
}
void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) {
Iterate(v, isolate->relocatable_top());
}
void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
Relocatable* current = top;
while (current != NULL) {
current->IterateInstance(v);
current = current->prev_;
}
}
FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
: Relocatable(isolate),
str_(str.location()),
length_(str->length()) {
PostGarbageCollection();
}
FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
: Relocatable(isolate),
str_(0),
is_ascii_(true),
length_(input.length()),
start_(input.start()) { }
void FlatStringReader::PostGarbageCollection() {
if (str_ == NULL) return;
Handle<String> str(str_);
ASSERT(str->IsFlat());
DisallowHeapAllocation no_gc;
// This does not actually prevent the vector from being relocated later.
String::FlatContent content = str->GetFlatContent();
ASSERT(content.IsFlat());
is_ascii_ = content.IsAscii();
if (is_ascii_) {
start_ = content.ToOneByteVector().start();
} else {
start_ = content.ToUC16Vector().start();
}
}
String* ConsStringIteratorOp::Operate(String* string,
unsigned* offset_out,
int32_t* type_out,
unsigned* length_out) {
ASSERT(string->IsConsString());
ConsString* cons_string = ConsString::cast(string);
// Set up search data.
root_ = cons_string;
consumed_ = *offset_out;
// Now search.
return Search(offset_out, type_out, length_out);
}
String* ConsStringIteratorOp::Search(unsigned* offset_out,
int32_t* type_out,
unsigned* length_out) {
ConsString* cons_string = root_;
// Reset the stack, pushing the root string.
depth_ = 1;
maximum_depth_ = 1;
frames_[0] = cons_string;
const unsigned consumed = consumed_;
unsigned offset = 0;
while (true) {
// Loop until the string is found which contains the target offset.
String* string = cons_string->first();
unsigned length = string->length();
int32_t type;
if (consumed < offset + length) {
// Target offset is in the left branch.
// Keep going if we're still in a ConString.
type = string->map()->instance_type();
if ((type & kStringRepresentationMask) == kConsStringTag) {
cons_string = ConsString::cast(string);
PushLeft(cons_string);
continue;
}
// Tell the stack we're done decending.
AdjustMaximumDepth();
} else {
// Descend right.
// Update progress through the string.
offset += length;
// Keep going if we're still in a ConString.
string = cons_string->second();
type = string->map()->instance_type();
if ((type & kStringRepresentationMask) == kConsStringTag) {
cons_string = ConsString::cast(string);
PushRight(cons_string);
// TODO(dcarney) Add back root optimization.
continue;
}
// Need this to be updated for the current string.
length = string->length();
// Account for the possibility of an empty right leaf.
// This happens only if we have asked for an offset outside the string.
if (length == 0) {
// Reset depth so future operations will return null immediately.
Reset();
return NULL;
}
// Tell the stack we're done decending.
AdjustMaximumDepth();
// Pop stack so next iteration is in correct place.
Pop();
}
ASSERT(length != 0);
// Adjust return values and exit.
consumed_ = offset + length;
*offset_out = consumed - offset;
*type_out = type;
*length_out = length;
return string;
}
UNREACHABLE();
return NULL;
}
String* ConsStringIteratorOp::NextLeaf(bool* blew_stack,
int32_t* type_out,
unsigned* length_out) {
while (true) {
// Tree traversal complete.
if (depth_ == 0) {
*blew_stack = false;
return NULL;
}
// We've lost track of higher nodes.
if (maximum_depth_ - depth_ == kStackSize) {
*blew_stack = true;
return NULL;
}
// Go right.
ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
String* string = cons_string->second();
int32_t type = string->map()->instance_type();
if ((type & kStringRepresentationMask) != kConsStringTag) {
// Pop stack so next iteration is in correct place.
Pop();
unsigned length = static_cast<unsigned>(string->length());
// Could be a flattened ConsString.
if (length == 0) continue;
*length_out = length;
*type_out = type;
consumed_ += length;
return string;
}
cons_string = ConsString::cast(string);
// TODO(dcarney) Add back root optimization.
PushRight(cons_string);
// Need to traverse all the way left.
while (true) {
// Continue left.
string = cons_string->first();
type = string->map()->instance_type();
if ((type & kStringRepresentationMask) != kConsStringTag) {
AdjustMaximumDepth();
unsigned length = static_cast<unsigned>(string->length());
ASSERT(length != 0);
*length_out = length;
*type_out = type;
consumed_ += length;
return string;
}
cons_string = ConsString::cast(string);
PushLeft(cons_string);
}
}
UNREACHABLE();
return NULL;
}
uint16_t ConsString::ConsStringGet(int index) {
ASSERT(index >= 0 && index < this->length());
// Check for a flattened cons string
if (second()->length() == 0) {
String* left = first();
return left->Get(index);
}
String* string = String::cast(this);
while (true) {
if (StringShape(string).IsCons()) {
ConsString* cons_string = ConsString::cast(string);
String* left = cons_string->first();
if (left->length() > index) {
string = left;
} else {
index -= left->length();
string = cons_string->second();
}
} else {
return string->Get(index);
}
}
UNREACHABLE();
return 0;
}
uint16_t SlicedString::SlicedStringGet(int index) {
return parent()->Get(offset() + index);
}
template <typename sinkchar>
void String::WriteToFlat(String* src,
sinkchar* sink,
int f,
int t) {
String* source = src;
int from = f;
int to = t;
while (true) {
ASSERT(0 <= from && from <= to && to <= source->length());
switch (StringShape(source).full_representation_tag()) {
case kOneByteStringTag | kExternalStringTag: {
CopyChars(sink,
ExternalAsciiString::cast(source)->GetChars() + from,
to - from);
return;
}
case kTwoByteStringTag | kExternalStringTag: {
const uc16* data =
ExternalTwoByteString::cast(source)->GetChars();
CopyChars(sink,
data + from,
to - from);
return;
}
case kOneByteStringTag | kSeqStringTag: {
CopyChars(sink,
SeqOneByteString::cast(source)->GetChars() + from,
to - from);
return;
}
case kTwoByteStringTag | kSeqStringTag: {
CopyChars(sink,
SeqTwoByteString::cast(source)->GetChars() + from,
to - from);
return;
}
case kOneByteStringTag | kConsStringTag:
case kTwoByteStringTag | kConsStringTag: {
ConsString* cons_string = ConsString::cast(source);
String* first = cons_string->first();
int boundary = first->length();
if (to - boundary >= boundary - from) {
// Right hand side is longer. Recurse over left.
if (from < boundary) {
WriteToFlat(first, sink, from, boundary);
sink += boundary - from;
from = 0;
} else {
from -= boundary;
}
to -= boundary;
source = cons_string->second();
} else {
// Left hand side is longer. Recurse over right.
if (to > boundary) {
String* second = cons_string->second();
// When repeatedly appending to a string, we get a cons string that
// is unbalanced to the left, a list, essentially. We inline the
// common case of sequential ascii right child.
if (to - boundary == 1) {
sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
} else if (second->IsSeqOneByteString()) {
CopyChars(sink + boundary - from,
SeqOneByteString::cast(second)->GetChars(),
to - boundary);
} else {
WriteToFlat(second,
sink + boundary - from,
0,
to - boundary);
}
to = boundary;
}
source = first;
}
break;
}
case kOneByteStringTag | kSlicedStringTag:
case kTwoByteStringTag | kSlicedStringTag: {
SlicedString* slice = SlicedString::cast(source);
unsigned offset = slice->offset();
WriteToFlat(slice->parent(), sink, from + offset, to + offset);
return;
}
}
}
}
// Compares the contents of two strings by reading and comparing
// int-sized blocks of characters.
template <typename Char>
static inline bool CompareRawStringContents(const Char* const a,
const Char* const b,
int length) {
int i = 0;
#ifndef V8_HOST_CAN_READ_UNALIGNED
// If this architecture isn't comfortable reading unaligned ints
// then we have to check that the strings are aligned before
// comparing them blockwise.
const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT
uint32_t pa_addr = reinterpret_cast<uint32_t>(a);
uint32_t pb_addr = reinterpret_cast<uint32_t>(b);
if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) {
#endif
const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT
int endpoint = length - kStepSize;
// Compare blocks until we reach near the end of the string.
for (; i <= endpoint; i += kStepSize) {
uint32_t wa = *reinterpret_cast<const uint32_t*>(a + i);
uint32_t wb = *reinterpret_cast<const uint32_t*>(b + i);
if (wa != wb) {
return false;
}
}
#ifndef V8_HOST_CAN_READ_UNALIGNED
}
#endif
// Compare the remaining characters that didn't fit into a block.
for (; i < length; i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
template<typename Chars1, typename Chars2>
class RawStringComparator : public AllStatic {
public:
static inline bool compare(const Chars1* a, const Chars2* b, int len) {
ASSERT(sizeof(Chars1) != sizeof(Chars2));
for (int i = 0; i < len; i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
};
template<>
class RawStringComparator<uint16_t, uint16_t> {
public:
static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
return CompareRawStringContents(a, b, len);
}
};
template<>
class RawStringComparator<uint8_t, uint8_t> {
public:
static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
return CompareRawStringContents(a, b, len);
}
};
class StringComparator {
class State {
public:
explicit inline State(ConsStringIteratorOp* op)
: op_(op), is_one_byte_(true), length_(0), buffer8_(NULL) {}
inline void Init(String* string, unsigned len) {
op_->Reset();
int32_t type = string->map()->instance_type();
String::Visit(string, 0, *this, *op_, type, len);
}
inline void VisitOneByteString(const uint8_t* chars, unsigned length) {
is_one_byte_ = true;
buffer8_ = chars;
length_ = length;
}
inline void VisitTwoByteString(const uint16_t* chars, unsigned length) {
is_one_byte_ = false;
buffer16_ = chars;
length_ = length;
}
void Advance(unsigned consumed) {
ASSERT(consumed <= length_);
// Still in buffer.
if (length_ != consumed) {
if (is_one_byte_) {
buffer8_ += consumed;
} else {
buffer16_ += consumed;
}
length_ -= consumed;
return;
}
// Advance state.
ASSERT(op_->HasMore());
int32_t type = 0;
unsigned length = 0;
String* next = op_->ContinueOperation(&type, &length);
ASSERT(next != NULL);
ConsStringNullOp null_op;
String::Visit(next, 0, *this, null_op, type, length);
}
ConsStringIteratorOp* const op_;
bool is_one_byte_;
unsigned length_;
union {
const uint8_t* buffer8_;
const uint16_t* buffer16_;
};
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(State);
};
public:
inline StringComparator(ConsStringIteratorOp* op_1,
ConsStringIteratorOp* op_2)
: state_1_(op_1),
state_2_(op_2) {
}
template<typename Chars1, typename Chars2>
static inline bool Equals(State* state_1, State* state_2, unsigned to_check) {
const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
}
bool Equals(unsigned length, String* string_1, String* string_2) {
ASSERT(length != 0);
state_1_.Init(string_1, length);
state_2_.Init(string_2, length);
while (true) {
unsigned to_check = Min(state_1_.length_, state_2_.length_);
ASSERT(to_check > 0 && to_check <= length);
bool is_equal;
if (state_1_.is_one_byte_) {
if (state_2_.is_one_byte_) {
is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
} else {
is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
}
} else {
if (state_2_.is_one_byte_) {
is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
} else {
is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
}
}
// Looping done.
if (!is_equal) return false;
length -= to_check;
// Exit condition. Strings are equal.
if (length == 0) return true;
state_1_.Advance(to_check);
state_2_.Advance(to_check);
}
}
private:
State state_1_;
State state_2_;
DISALLOW_IMPLICIT_CONSTRUCTORS(StringComparator);
};
bool String::SlowEquals(String* other) {
// Fast check: negative check with lengths.
int len = length();
if (len != other->length()) return false;
if (len == 0) return true;
// Fast check: if hash code is computed for both strings
// a fast negative check can be performed.
if (HasHashCode() && other->HasHashCode()) {
#ifdef ENABLE_SLOW_ASSERTS
if (FLAG_enable_slow_asserts) {
if (Hash() != other->Hash()) {
bool found_difference = false;
for (int i = 0; i < len; i++) {
if (Get(i) != other->Get(i)) {
found_difference = true;
break;
}
}
ASSERT(found_difference);
}
}
#endif
if (Hash() != other->Hash()) return false;
}
// We know the strings are both non-empty. Compare the first chars
// before we try to flatten the strings.
if (this->Get(0) != other->Get(0)) return false;
String* lhs = this->TryFlattenGetString();
String* rhs = other->TryFlattenGetString();
// TODO(dcarney): Compare all types of flat strings with a Visitor.
if (StringShape(lhs).IsSequentialAscii() &&
StringShape(rhs).IsSequentialAscii()) {
const uint8_t* str1 = SeqOneByteString::cast(lhs)->GetChars();
const uint8_t* str2 = SeqOneByteString::cast(rhs)->GetChars();
return CompareRawStringContents(str1, str2, len);
}
Isolate* isolate = GetIsolate();
StringComparator comparator(isolate->objects_string_compare_iterator_a(),
isolate->objects_string_compare_iterator_b());
return comparator.Equals(static_cast<unsigned>(len), lhs, rhs);
}
bool String::MarkAsUndetectable() {
if (StringShape(this).IsInternalized()) return false;
Map* map = this->map();
Heap* heap = GetHeap();
if (map == heap->string_map()) {
this->set_map(heap->undetectable_string_map());
return true;
} else if (map == heap->ascii_string_map()) {
this->set_map(heap->undetectable_ascii_string_map());
return true;
}
// Rest cannot be marked as undetectable
return false;
}
bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
int slen = length();
// Can't check exact length equality, but we can check bounds.
int str_len = str.length();
if (!allow_prefix_match &&
(str_len < slen ||
str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
return false;
}
int i;
unsigned remaining_in_str = static_cast<unsigned>(str_len);
const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
for (i = 0; i < slen && remaining_in_str > 0; i++) {
unsigned cursor = 0;
uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
ASSERT(cursor > 0 && cursor <= remaining_in_str);
if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
if (i > slen - 1) return false;
if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
} else {
if (Get(i) != r) return false;
}
utf8_data += cursor;
remaining_in_str -= cursor;
}
return (allow_prefix_match || i == slen) && remaining_in_str == 0;
}
bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
int slen = length();
if (str.length() != slen) return false;
DisallowHeapAllocation no_gc;
FlatContent content = GetFlatContent();
if (content.IsAscii()) {
return CompareChars(content.ToOneByteVector().start(),
str.start(), slen) == 0;
}
for (int i = 0; i < slen; i++) {
if (Get(i) != static_cast<uint16_t>(str[i])) return false;
}
return true;
}
bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
int slen = length();
if (str.length() != slen) return false;
DisallowHeapAllocation no_gc;
FlatContent content = GetFlatContent();
if (content.IsTwoByte()) {
return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
}
for (int i = 0; i < slen; i++) {
if (Get(i) != str[i]) return false;
}
return true;
}
class IteratingStringHasher: public StringHasher {
public:
static inline uint32_t Hash(String* string, uint32_t seed) {
const unsigned len = static_cast<unsigned>(string->length());
IteratingStringHasher hasher(len, seed);
if (hasher.has_trivial_hash()) {
return hasher.GetHashField();
}
int32_t type = string->map()->instance_type();
ConsStringNullOp null_op;
String::Visit(string, 0, hasher, null_op, type, len);
// Flat strings terminate immediately.
if (hasher.consumed_ == len) {
ASSERT(!string->IsConsString());
return hasher.GetHashField();
}
ASSERT(string->IsConsString());
// This is a ConsString, iterate across it.
ConsStringIteratorOp op;
unsigned offset = 0;
unsigned leaf_length = len;
string = op.Operate(string, &offset, &type, &leaf_length);
while (true) {
ASSERT(hasher.consumed_ < len);
String::Visit(string, 0, hasher, null_op, type, leaf_length);
if (hasher.consumed_ == len) break;
string = op.ContinueOperation(&type, &leaf_length);
// This should be taken care of by the length check.
ASSERT(string != NULL);
}
return hasher.GetHashField();
}
inline void VisitOneByteString(const uint8_t* chars, unsigned length) {
AddCharacters(chars, static_cast<int>(length));
consumed_ += length;
}
inline void VisitTwoByteString(const uint16_t* chars, unsigned length) {
AddCharacters(chars, static_cast<int>(length));
consumed_ += length;
}
private:
inline IteratingStringHasher(int len, uint32_t seed)
: StringHasher(len, seed),
consumed_(0) {}
unsigned consumed_;
DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
};
uint32_t String::ComputeAndSetHash() {
// Should only be called if hash code has not yet been computed.
ASSERT(!HasHashCode());
// Store the hash code in the object.
uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
set_hash_field(field);
// Check the hash code is there.
ASSERT(HasHashCode());
uint32_t result = field >> kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
bool String::ComputeArrayIndex(uint32_t* index) {
int length = this->length();
if (length == 0 || length > kMaxArrayIndexSize) return false;
ConsStringIteratorOp op;
StringCharacterStream stream(this, &op);
uint16_t ch = stream.GetNext();
// If the string begins with a '0' character, it must only consist
// of it to be a legal array index.
if (ch == '0') {
*index = 0;
return length == 1;
}
// Convert string to uint32 array index; character by character.
int d = ch - '0';
if (d < 0 || d > 9) return false;
uint32_t result = d;
while (stream.HasMore()) {
d = stream.GetNext() - '0';
if (d < 0 || d > 9) return false;
// Check that the new result is below the 32 bit limit.
if (result > 429496729U - ((d > 5) ? 1 : 0)) return false;
result = (result * 10) + d;
}
*index = result;
return true;
}
bool String::SlowAsArrayIndex(uint32_t* index) {
if (length() <= kMaxCachedArrayIndexLength) {
Hash(); // force computation of hash code
uint32_t field = hash_field();
if ((field & kIsNotArrayIndexMask) != 0) return false;
// Isolate the array index form the full hash field.
*index = (kArrayIndexHashMask & field) >> kHashShift;
return true;
} else {
return ComputeArrayIndex(index);
}
}
Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
int new_size, old_size;
int old_length = string->length();
if (old_length <= new_length) return string;
if (string->IsSeqOneByteString()) {
old_size = SeqOneByteString::SizeFor(old_length);
new_size = SeqOneByteString::SizeFor(new_length);
} else {
ASSERT(string->IsSeqTwoByteString());
old_size = SeqTwoByteString::SizeFor(old_length);
new_size = SeqTwoByteString::SizeFor(new_length);
}
int delta = old_size - new_size;
string->set_length(new_length);
Address start_of_string = string->address();
ASSERT_OBJECT_ALIGNED(start_of_string);
ASSERT_OBJECT_ALIGNED(start_of_string + new_size);
Heap* heap = string->GetHeap();
NewSpace* newspace = heap->new_space();
if (newspace->Contains(start_of_string) &&
newspace->top() == start_of_string + old_size) {
// Last allocated object in new space. Simply lower allocation top.
newspace->set_top(start_of_string + new_size);
} else {
// Sizes are pointer size aligned, so that we can use filler objects
// that are a multiple of pointer size.
heap->CreateFillerObjectAt(start_of_string + new_size, delta);
}
if (Marking::IsBlack(Marking::MarkBitFrom(start_of_string))) {
MemoryChunk::IncrementLiveBytesFromMutator(start_of_string, -delta);
}
if (new_length == 0) return heap->isolate()->factory()->empty_string();
return string;
}
AllocationMemento* AllocationMemento::FindForJSObject(JSObject* object,
bool in_GC) {
// Currently, AllocationMemento objects are only allocated immediately
// after JSArrays in NewSpace, and detecting whether a JSArray has one
// involves carefully checking the object immediately after the JSArray
// (if there is one) to see if it's an AllocationMemento.
if (FLAG_track_allocation_sites && object->GetHeap()->InNewSpace(object)) {
Address ptr_end = (reinterpret_cast<Address>(object) - kHeapObjectTag) +
object->Size();
Address top;
if (in_GC) {
top = object->GetHeap()->new_space()->FromSpacePageHigh();
} else {
top = object->GetHeap()->NewSpaceTop();
}
if ((ptr_end + AllocationMemento::kSize) <= top) {
// There is room in newspace for allocation info. Do we have some?
Map** possible_allocation_memento_map =
reinterpret_cast<Map**>(ptr_end);
if (*possible_allocation_memento_map ==
object->GetHeap()->allocation_memento_map()) {
AllocationMemento* memento = AllocationMemento::cast(
reinterpret_cast<Object*>(ptr_end + kHeapObjectTag));
return memento;
}
}
}
return NULL;
}
uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
// For array indexes mix the length into the hash as an array index could
// be zero.
ASSERT(length > 0);
ASSERT(length <= String::kMaxArrayIndexSize);
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
value <<= String::kHashShift;
value |= length << String::kArrayIndexHashLengthShift;
ASSERT((value & String::kIsNotArrayIndexMask) == 0);
ASSERT((length > String::kMaxCachedArrayIndexLength) ||
(value & String::kContainsCachedArrayIndexMask) == 0);
return value;
}
uint32_t StringHasher::GetHashField() {
if (length_ <= String::kMaxHashCalcLength) {
if (is_array_index_) {
return MakeArrayIndexHash(array_index_, length_);
}
return (GetHashCore(raw_running_hash_) << String::kHashShift) |
String::kIsNotArrayIndexMask;
} else {
return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
}
}
uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
uint32_t seed,
int* utf16_length_out) {
int vector_length = chars.length();
// Handle some edge cases
if (vector_length <= 1) {
ASSERT(vector_length == 0 ||
static_cast<uint8_t>(chars.start()[0]) <=
unibrow::Utf8::kMaxOneByteChar);
*utf16_length_out = vector_length;
return HashSequentialString(chars.start(), vector_length, seed);
}
// Start with a fake length which won't affect computation.
// It will be updated later.
StringHasher hasher(String::kMaxArrayIndexSize, seed);
unsigned remaining = static_cast<unsigned>(vector_length);
const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
int utf16_length = 0;
bool is_index = true;
ASSERT(hasher.is_array_index_);
while (remaining > 0) {
unsigned consumed = 0;
uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
ASSERT(consumed > 0 && consumed <= remaining);
stream += consumed;
remaining -= consumed;
bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
utf16_length += is_two_characters ? 2 : 1;
// No need to keep hashing. But we do need to calculate utf16_length.
if (utf16_length > String::kMaxHashCalcLength) continue;
if (is_two_characters) {
uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
hasher.AddCharacter(c1);
hasher.AddCharacter(c2);
if (is_index) is_index = hasher.UpdateIndex(c1);
if (is_index) is_index = hasher.UpdateIndex(c2);
} else {
hasher.AddCharacter(c);
if (is_index) is_index = hasher.UpdateIndex(c);
}
}
*utf16_length_out = static_cast<int>(utf16_length);
// Must set length here so that hash computation is correct.
hasher.length_ = utf16_length;
return hasher.GetHashField();
}
MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) {
Heap* heap = GetHeap();
if (start == 0 && end == length()) return this;
MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure);
return result;
}
void String::PrintOn(FILE* file) {
int length = this->length();
for (int i = 0; i < length; i++) {
PrintF(file, "%c", Get(i));
}
}
static void TrimEnumCache(Heap* heap, Map* map, DescriptorArray* descriptors) {
int live_enum = map->EnumLength();
if (live_enum == Map::kInvalidEnumCache) {
live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
}
if (live_enum == 0) return descriptors->ClearEnumCache();
FixedArray* enum_cache = descriptors->GetEnumCache();
int to_trim = enum_cache->length() - live_enum;
if (to_trim <= 0) return;
RightTrimFixedArray<FROM_GC>(heap, descriptors->GetEnumCache(), to_trim);
if (!descriptors->HasEnumIndicesCache()) return;
FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
RightTrimFixedArray<FROM_GC>(heap, enum_indices_cache, to_trim);
}
static void TrimDescriptorArray(Heap* heap,
Map* map,
DescriptorArray* descriptors,
int number_of_own_descriptors) {
int number_of_descriptors = descriptors->number_of_descriptors_storage();
int to_trim = number_of_descriptors - number_of_own_descriptors;
if (to_trim == 0) return;
RightTrimFixedArray<FROM_GC>(
heap, descriptors, to_trim * DescriptorArray::kDescriptorSize);
descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
if (descriptors->HasEnumCache()) TrimEnumCache(heap, map, descriptors);
descriptors->Sort();
}
// Clear a possible back pointer in case the transition leads to a dead map.
// Return true in case a back pointer has been cleared and false otherwise.
static bool ClearBackPointer(Heap* heap, Map* target) {
if (Marking::MarkBitFrom(target).Get()) return false;
target->SetBackPointer(heap->undefined_value(), SKIP_WRITE_BARRIER);
return true;
}
// TODO(mstarzinger): This method should be moved into MarkCompactCollector,
// because it cannot be called from outside the GC and we already have methods
// depending on the transitions layout in the GC anyways.
void Map::ClearNonLiveTransitions(Heap* heap) {
// If there are no transitions to be cleared, return.
// TODO(verwaest) Should be an assert, otherwise back pointers are not
// properly cleared.
if (!HasTransitionArray()) return;
TransitionArray* t = transitions();
MarkCompactCollector* collector = heap->mark_compact_collector();
int transition_index = 0;
DescriptorArray* descriptors = instance_descriptors();
bool descriptors_owner_died = false;
// Compact all live descriptors to the left.
for (int i = 0; i < t->number_of_transitions(); ++i) {
Map* target = t->GetTarget(i);
if (ClearBackPointer(heap, target)) {
if (target->instance_descriptors() == descriptors) {
descriptors_owner_died = true;
}
} else {
if (i != transition_index) {
Name* key = t->GetKey(i);
t->SetKey(transition_index, key);
Object** key_slot = t->GetKeySlot(transition_index);
collector->RecordSlot(key_slot, key_slot, key);
// Target slots do not need to be recorded since maps are not compacted.
t->SetTarget(transition_index, t->GetTarget(i));
}
transition_index++;
}
}
// If there are no transitions to be cleared, return.
// TODO(verwaest) Should be an assert, otherwise back pointers are not
// properly cleared.
if (transition_index == t->number_of_transitions()) return;
int number_of_own_descriptors = NumberOfOwnDescriptors();
if (descriptors_owner_died) {
if (number_of_own_descriptors > 0) {
TrimDescriptorArray(heap, this, descriptors, number_of_own_descriptors);
ASSERT(descriptors->number_of_descriptors() == number_of_own_descriptors);
set_owns_descriptors(true);
} else {
ASSERT(descriptors == GetHeap()->empty_descriptor_array());
}
}
int trim = t->number_of_transitions() - transition_index;
if (trim > 0) {
RightTrimFixedArray<FROM_GC>(heap, t, t->IsSimpleTransition()
? trim : trim * TransitionArray::kTransitionSize);
}
}
int Map::Hash() {
// For performance reasons we only hash the 3 most variable fields of a map:
// constructor, prototype and bit_field2.
// Shift away the tag.
int hash = (static_cast<uint32_t>(
reinterpret_cast<uintptr_t>(constructor())) >> 2);
// XOR-ing the prototype and constructor directly yields too many zero bits
// when the two pointers are close (which is fairly common).
// To avoid this we shift the prototype 4 bits relatively to the constructor.
hash ^= (static_cast<uint32_t>(
reinterpret_cast<uintptr_t>(prototype())) << 2);
return hash ^ (hash >> 16) ^ bit_field2();
}
static bool CheckEquivalent(Map* first, Map* second) {
return
first->constructor() == second->constructor() &&
first->prototype() == second->prototype() &&
first->instance_type() == second->instance_type() &&
first->bit_field() == second->bit_field() &&
first->bit_field2() == second->bit_field2() &&
first->is_observed() == second->is_observed() &&
first->function_with_prototype() == second->function_with_prototype();
}
bool Map::EquivalentToForTransition(Map* other) {
return CheckEquivalent(this, other);
}
bool Map::EquivalentToForNormalization(Map* other,
PropertyNormalizationMode mode) {
int properties = mode == CLEAR_INOBJECT_PROPERTIES
? 0 : other->inobject_properties();
return CheckEquivalent(this, other) && inobject_properties() == properties;
}
void ConstantPoolArray::ConstantPoolIterateBody(ObjectVisitor* v) {
int first_ptr_offset = OffsetOfElementAt(first_ptr_index());
int last_ptr_offset =
OffsetOfElementAt(first_ptr_index() + count_of_ptr_entries());
v->VisitPointers(
HeapObject::RawField(this, first_ptr_offset),
HeapObject::RawField(this, last_ptr_offset));
}
void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) {
// Iterate over all fields in the body but take care in dealing with
// the code entry.
IteratePointers(v, kPropertiesOffset, kCodeEntryOffset);
v->VisitCodeEntry(this->address() + kCodeEntryOffset);
IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size);
}
void JSFunction::MarkForLazyRecompilation() {
ASSERT(is_compiled() || GetIsolate()->DebuggerHasBreakPoints());
ASSERT(!IsOptimized());
ASSERT(shared()->allows_lazy_compilation() ||
code()->optimizable());
ASSERT(!shared()->is_generator());
set_code_no_write_barrier(
GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile));
// No write barrier required, since the builtin is part of the root set.
}
void JSFunction::MarkForConcurrentRecompilation() {
ASSERT(is_compiled() || GetIsolate()->DebuggerHasBreakPoints());
ASSERT(!IsOptimized());
ASSERT(shared()->allows_lazy_compilation() || code()->optimizable());
ASSERT(!shared()->is_generator());
ASSERT(FLAG_concurrent_recompilation);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Marking ");
PrintName();
PrintF(" for concurrent recompilation.\n");
}
set_code_no_write_barrier(
GetIsolate()->builtins()->builtin(Builtins::kConcurrentRecompile));
// No write barrier required, since the builtin is part of the root set.
}
void JSFunction::MarkInRecompileQueue() {
// We can only arrive here via the concurrent-recompilation builtin. If
// break points were set, the code would point to the lazy-compile builtin.
ASSERT(!GetIsolate()->DebuggerHasBreakPoints());
ASSERT(IsMarkedForConcurrentRecompilation() && !IsOptimized());
ASSERT(shared()->allows_lazy_compilation() || code()->optimizable());
ASSERT(FLAG_concurrent_recompilation);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Queueing ");
PrintName();
PrintF(" for concurrent recompilation.\n");
}
set_code_no_write_barrier(
GetIsolate()->builtins()->builtin(Builtins::kInRecompileQueue));
// No write barrier required, since the builtin is part of the root set.
}
static bool CompileLazyHelper(CompilationInfo* info,
ClearExceptionFlag flag) {
// Compile the source information to a code object.
ASSERT(info->IsOptimizing() || !info->shared_info()->is_compiled());
ASSERT(!info->isolate()->has_pending_exception());
bool result = Compiler::CompileLazy(info);
ASSERT(result != info->isolate()->has_pending_exception());
if (!result && flag == CLEAR_EXCEPTION) {
info->isolate()->clear_pending_exception();
}
return result;
}
bool SharedFunctionInfo::CompileLazy(Handle<SharedFunctionInfo> shared,
ClearExceptionFlag flag) {
ASSERT(shared->allows_lazy_compilation_without_context());
CompilationInfoWithZone info(shared);
return CompileLazyHelper(&info, flag);
}
void SharedFunctionInfo::AddToOptimizedCodeMap(
Handle<SharedFunctionInfo> shared,
Handle<Context> native_context,
Handle<Code> code,
Handle<FixedArray> literals) {
CALL_HEAP_FUNCTION_VOID(
shared->GetIsolate(),
shared->AddToOptimizedCodeMap(*native_context, *code, *literals));
}
MaybeObject* SharedFunctionInfo::AddToOptimizedCodeMap(Context* native_context,
Code* code,
FixedArray* literals) {
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
ASSERT(native_context->IsNativeContext());
STATIC_ASSERT(kEntryLength == 3);
Heap* heap = GetHeap();
FixedArray* new_code_map;
Object* value = optimized_code_map();
if (value->IsSmi()) {
// No optimized code map.
ASSERT_EQ(0, Smi::cast(value)->value());
// Create 3 entries per context {context, code, literals}.
MaybeObject* maybe = heap->AllocateFixedArray(kInitialLength);
if (!maybe->To(&new_code_map)) return maybe;
new_code_map->set(kEntriesStart + 0, native_context);
new_code_map->set(kEntriesStart + 1, code);
new_code_map->set(kEntriesStart + 2, literals);
} else {
// Copy old map and append one new entry.
FixedArray* old_code_map = FixedArray::cast(value);
ASSERT_EQ(-1, SearchOptimizedCodeMap(native_context));
int old_length = old_code_map->length();
int new_length = old_length + kEntryLength;
MaybeObject* maybe = old_code_map->CopySize(new_length);
if (!maybe->To(&new_code_map)) return maybe;
new_code_map->set(old_length + 0, native_context);
new_code_map->set(old_length + 1, code);
new_code_map->set(old_length + 2, literals);
// Zap the old map for the sake of the heap verifier.
if (Heap::ShouldZapGarbage()) {
Object** data = old_code_map->data_start();
MemsetPointer(data, heap->the_hole_value(), old_length);
}
}
#ifdef DEBUG
for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
ASSERT(new_code_map->get(i)->IsNativeContext());
ASSERT(new_code_map->get(i + 1)->IsCode());
ASSERT(Code::cast(new_code_map->get(i + 1))->kind() ==
Code::OPTIMIZED_FUNCTION);
ASSERT(new_code_map->get(i + 2)->IsFixedArray());
}
#endif
set_optimized_code_map(new_code_map);
return new_code_map;
}
void SharedFunctionInfo::InstallFromOptimizedCodeMap(JSFunction* function,
int index) {
ASSERT(index > kEntriesStart);
FixedArray* code_map = FixedArray::cast(optimized_code_map());
if (!bound()) {
FixedArray* cached_literals = FixedArray::cast(code_map->get(index + 1));
ASSERT(cached_literals != NULL);
function->set_literals(cached_literals);
}
Code* code = Code::cast(code_map->get(index));
ASSERT(code != NULL);
ASSERT(function->context()->native_context() == code_map->get(index - 1));
function->ReplaceCode(code);
}
void SharedFunctionInfo::ClearOptimizedCodeMap() {
FixedArray* code_map = FixedArray::cast(optimized_code_map());
// If the next map link slot is already used then the function was
// enqueued with code flushing and we remove it now.
if (!code_map->get(kNextMapIndex)->IsUndefined()) {
CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher();
flusher->EvictOptimizedCodeMap(this);
}
ASSERT(code_map->get(kNextMapIndex)->IsUndefined());
set_optimized_code_map(Smi::FromInt(0));
}
void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
const char* reason) {
if (optimized_code_map()->IsSmi()) return;
int i;
bool removed_entry = false;
FixedArray* code_map = FixedArray::cast(optimized_code_map());
for (i = kEntriesStart; i < code_map->length(); i += kEntryLength) {
ASSERT(code_map->get(i)->IsNativeContext());
if (Code::cast(code_map->get(i + 1)) == optimized_code) {
if (FLAG_trace_opt) {
PrintF("[evicting entry from optimizing code map (%s) for ", reason);
ShortPrint();
PrintF("]\n");
}
removed_entry = true;
break;
}
}
while (i < (code_map->length() - kEntryLength)) {
code_map->set(i, code_map->get(i + kEntryLength));
code_map->set(i + 1, code_map->get(i + 1 + kEntryLength));
code_map->set(i + 2, code_map->get(i + 2 + kEntryLength));
i += kEntryLength;
}
if (removed_entry) {
// Always trim even when array is cleared because of heap verifier.
RightTrimFixedArray<FROM_MUTATOR>(GetHeap(), code_map, kEntryLength);
if (code_map->length() == kEntriesStart) {
ClearOptimizedCodeMap();
}
}
}
void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
FixedArray* code_map = FixedArray::cast(optimized_code_map());
ASSERT(shrink_by % kEntryLength == 0);
ASSERT(shrink_by <= code_map->length() - kEntriesStart);
// Always trim even when array is cleared because of heap verifier.
RightTrimFixedArray<FROM_GC>(GetHeap(), code_map, shrink_by);
if (code_map->length() == kEntriesStart) {
ClearOptimizedCodeMap();
}
}
bool JSFunction::CompileLazy(Handle<JSFunction> function,
ClearExceptionFlag flag) {
bool result = true;
if (function->shared()->is_compiled()) {
function->ReplaceCode(function->shared()->code());
} else {
ASSERT(function->shared()->allows_lazy_compilation());
CompilationInfoWithZone info(function);
result = CompileLazyHelper(&info, flag);
ASSERT(!result || function->is_compiled());
}
return result;
}
Handle<Code> JSFunction::CompileOsr(Handle<JSFunction> function,
BailoutId osr_ast_id,
ClearExceptionFlag flag) {
CompilationInfoWithZone info(function);
info.SetOptimizing(osr_ast_id);
if (CompileLazyHelper(&info, flag)) {
// TODO(titzer): don't install the OSR code.
// ASSERT(function->code() != *info.code());
return info.code();
} else {
return Handle<Code>::null();
}
}
bool JSFunction::CompileOptimized(Handle<JSFunction> function,
ClearExceptionFlag flag) {
CompilationInfoWithZone info(function);
info.SetOptimizing(BailoutId::None());
return CompileLazyHelper(&info, flag);
}
bool JSFunction::EnsureCompiled(Handle<JSFunction> function,
ClearExceptionFlag flag) {
return function->is_compiled() || CompileLazy(function, flag);
}
bool JSFunction::IsInlineable() {
if (IsBuiltin()) return false;
SharedFunctionInfo* shared_info = shared();
// Check that the function has a script associated with it.
if (!shared_info->script()->IsScript()) return false;
if (shared_info->optimization_disabled()) return false;
Code* code = shared_info->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) return true;
// If we never ran this (unlikely) then lets try to optimize it.
if (code->kind() != Code::FUNCTION) return true;
return code->optimizable();
}
void JSObject::OptimizeAsPrototype(Handle<JSObject> object) {
if (object->IsGlobalObject()) return;
// Make sure prototypes are fast objects and their maps have the bit set
// so they remain fast.
if (!object->HasFastProperties()) {
TransformToFastProperties(object, 0);
}
}
static MUST_USE_RESULT MaybeObject* CacheInitialJSArrayMaps(
Context* native_context, Map* initial_map) {
// Replace all of the cached initial array maps in the native context with
// the appropriate transitioned elements kind maps.
Heap* heap = native_context->GetHeap();
MaybeObject* maybe_maps =
heap->AllocateFixedArrayWithHoles(kElementsKindCount, TENURED);
FixedArray* maps;
if (!maybe_maps->To(&maps)) return maybe_maps;
Map* current_map = initial_map;
ElementsKind kind = current_map->elements_kind();
ASSERT(kind == GetInitialFastElementsKind());
maps->set(kind, current_map);
for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
i < kFastElementsKindCount; ++i) {
Map* new_map;
ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
if (current_map->HasElementsTransition()) {
new_map = current_map->elements_transition_map();
ASSERT(new_map->elements_kind() == next_kind);
} else {
MaybeObject* maybe_new_map =
current_map->CopyAsElementsKind(next_kind, INSERT_TRANSITION);
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
}
maps->set(next_kind, new_map);
current_map = new_map;
}
native_context->set_js_array_maps(maps);
return initial_map;
}
Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
Handle<Map> initial_map) {
CALL_HEAP_FUNCTION(native_context->GetIsolate(),
CacheInitialJSArrayMaps(*native_context, *initial_map),
Object);
}
void JSFunction::SetInstancePrototype(Handle<JSFunction> function,
Handle<Object> value) {
ASSERT(value->IsJSReceiver());
// First some logic for the map of the prototype to make sure it is in fast
// mode.
if (value->IsJSObject()) {
JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value));
}
// Now some logic for the maps of the objects that are created by using this
// function as a constructor.
if (function->has_initial_map()) {
// If the function has allocated the initial map replace it with a
// copy containing the new prototype. Also complete any in-object
// slack tracking that is in progress at this point because it is
// still tracking the old copy.
if (function->shared()->IsInobjectSlackTrackingInProgress()) {
function->shared()->CompleteInobjectSlackTracking();
}
Handle<Map> new_map = Map::Copy(handle(function->initial_map()));
new_map->set_prototype(*value);
// If the function is used as the global Array function, cache the
// initial map (and transitioned versions) in the native context.
Context* native_context = function->context()->native_context();
Object* array_function = native_context->get(Context::ARRAY_FUNCTION_INDEX);
if (array_function->IsJSFunction() &&
*function == JSFunction::cast(array_function)) {
CacheInitialJSArrayMaps(handle(native_context), new_map);
}
function->set_initial_map(*new_map);
} else {
// Put the value in the initial map field until an initial map is
// needed. At that point, a new initial map is created and the
// prototype is put into the initial map where it belongs.
function->set_prototype_or_initial_map(*value);
}
function->GetHeap()->ClearInstanceofCache();
}
void JSFunction::SetPrototype(Handle<JSFunction> function,
Handle<Object> value) {
ASSERT(function->should_have_prototype());
Handle<Object> construct_prototype = value;
// If the value is not a JSReceiver, store the value in the map's
// constructor field so it can be accessed. Also, set the prototype
// used for constructing objects to the original object prototype.
// See ECMA-262 13.2.2.
if (!value->IsJSReceiver()) {
// Copy the map so this does not affect unrelated functions.
// Remove map transitions because they point to maps with a
// different prototype.
Handle<Map> new_map = Map::Copy(handle(function->map()));
function->set_map(*new_map);
new_map->set_constructor(*value);
new_map->set_non_instance_prototype(true);
Isolate* isolate = new_map->GetIsolate();
construct_prototype = handle(
isolate->context()->native_context()->initial_object_prototype(),
isolate);
} else {
function->map()->set_non_instance_prototype(false);
}
return SetInstancePrototype(function, construct_prototype);
}
void JSFunction::RemovePrototype() {
Context* native_context = context()->native_context();
Map* no_prototype_map = shared()->is_classic_mode()
? native_context->function_without_prototype_map()
: native_context->strict_mode_function_without_prototype_map();
if (map() == no_prototype_map) return;
ASSERT(map() == (shared()->is_classic_mode()
? native_context->function_map()
: native_context->strict_mode_function_map()));
set_map(no_prototype_map);
set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
}
void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) {
if (function->has_initial_map()) return;
Isolate* isolate = function->GetIsolate();
// First create a new map with the size and number of in-object properties
// suggested by the function.
InstanceType instance_type;
int instance_size;
int in_object_properties;
if (function->shared()->is_generator()) {
instance_type = JS_GENERATOR_OBJECT_TYPE;
instance_size = JSGeneratorObject::kSize;
in_object_properties = 0;
} else {
instance_type = JS_OBJECT_TYPE;
instance_size = function->shared()->CalculateInstanceSize();
in_object_properties = function->shared()->CalculateInObjectProperties();
}
Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size);
// Fetch or allocate prototype.
Handle<Object> prototype;
if (function->has_instance_prototype()) {
prototype = handle(function->instance_prototype(), isolate);
} else {
prototype = isolate->factory()->NewFunctionPrototype(function);
}
map->set_inobject_properties(in_object_properties);
map->set_unused_property_fields(in_object_properties);
map->set_prototype(*prototype);
ASSERT(map->has_fast_object_elements());
if (!function->shared()->is_generator()) {
function->shared()->StartInobjectSlackTracking(*map);
}
// Finally link initial map and constructor function.
function->set_initial_map(*map);
map->set_constructor(*function);
}
void JSFunction::SetInstanceClassName(String* name) {
shared()->set_instance_class_name(name);
}
void JSFunction::PrintName(FILE* out) {
SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
PrintF(out, "%s", *name);
}
Context* JSFunction::NativeContextFromLiterals(FixedArray* literals) {
return Context::cast(literals->get(JSFunction::kLiteralNativeContextIndex));
}
// The filter is a pattern that matches function names in this way:
// "*" all; the default
// "-" all but the top-level function
// "-name" all but the function "name"
// "" only the top-level function
// "name" only the function "name"
// "name*" only functions starting with "name"
bool JSFunction::PassesFilter(const char* raw_filter) {
if (*raw_filter == '*') return true;
String* name = shared()->DebugName();
Vector<const char> filter = CStrVector(raw_filter);
if (filter.length() == 0) return name->length() == 0;
if (filter[0] == '-') {
if (filter.length() == 1) {
return (name->length() != 0);
} else if (!name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
return true;
}
} else if (name->IsUtf8EqualTo(filter)) {
return true;
}
if (filter[filter.length() - 1] == '*' &&
name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
return true;
}
return false;
}
MaybeObject* Oddball::Initialize(Heap* heap,
const char* to_string,
Object* to_number,
byte kind) {
String* internalized_to_string;
{ MaybeObject* maybe_string =
heap->InternalizeUtf8String(
CStrVector(to_string));
if (!maybe_string->To(&internalized_to_string)) return maybe_string;
}
set_to_string(internalized_to_string);
set_to_number(to_number);
set_kind(kind);
return this;
}
String* SharedFunctionInfo::DebugName() {
Object* n = name();
if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
return String::cast(n);
}
bool SharedFunctionInfo::HasSourceCode() {
return !script()->IsUndefined() &&
!reinterpret_cast<Script*>(script())->source()->IsUndefined();
}
Handle<Object> SharedFunctionInfo::GetSourceCode() {
if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
Handle<String> source(String::cast(Script::cast(script())->source()));
return GetIsolate()->factory()->NewSubString(
source, start_position(), end_position());
}
int SharedFunctionInfo::SourceSize() {
return end_position() - start_position();
}
int SharedFunctionInfo::CalculateInstanceSize() {
int instance_size =
JSObject::kHeaderSize +
expected_nof_properties() * kPointerSize;
if (instance_size > JSObject::kMaxInstanceSize) {
instance_size = JSObject::kMaxInstanceSize;
}
return instance_size;
}
int SharedFunctionInfo::CalculateInObjectProperties() {
return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize;
}
// Support function for printing the source code to a StringStream
// without any allocation in the heap.
void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator,
int max_length) {
// For some native functions there is no source.
if (!HasSourceCode()) {
accumulator->Add("<No Source>");
return;
}
// Get the source for the script which this function came from.
// Don't use String::cast because we don't want more assertion errors while
// we are already creating a stack dump.
String* script_source =
reinterpret_cast<String*>(Script::cast(script())->source());
if (!script_source->LooksValid()) {
accumulator->Add("<Invalid Source>");
return;
}
if (!is_toplevel()) {
accumulator->Add("function ");
Object* name = this->name();
if (name->IsString() && String::cast(name)->length() > 0) {
accumulator->PrintName(name);
}
}
int len = end_position() - start_position();
if (len <= max_length || max_length < 0) {
accumulator->Put(script_source, start_position(), end_position());
} else {
accumulator->Put(script_source,
start_position(),
start_position() + max_length);
accumulator->Add("...\n");
}
}
static bool IsCodeEquivalent(Code* code, Code* recompiled) {
if (code->instruction_size() != recompiled->instruction_size()) return false;
ByteArray* code_relocation = code->relocation_info();
ByteArray* recompiled_relocation = recompiled->relocation_info();
int length = code_relocation->length();
if (length != recompiled_relocation->length()) return false;
int compare = memcmp(code_relocation->GetDataStartAddress(),
recompiled_relocation->GetDataStartAddress(),
length);
return compare == 0;
}
void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
ASSERT(!has_deoptimization_support());
DisallowHeapAllocation no_allocation;
Code* code = this->code();
if (IsCodeEquivalent(code, recompiled)) {
// Copy the deoptimization data from the recompiled code.
code->set_deoptimization_data(recompiled->deoptimization_data());
code->set_has_deoptimization_support(true);
} else {
// TODO(3025757): In case the recompiled isn't equivalent to the
// old code, we have to replace it. We should try to avoid this
// altogether because it flushes valuable type feedback by
// effectively resetting all IC state.
ReplaceCode(recompiled);
}
ASSERT(has_deoptimization_support());
}
void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
// Disable optimization for the shared function info and mark the
// code as non-optimizable. The marker on the shared function info
// is there because we flush non-optimized code thereby loosing the
// non-optimizable information for the code. When the code is
// regenerated and set on the shared function info it is marked as
// non-optimizable if optimization is disabled for the shared
// function info.
set_optimization_disabled(true);
set_bailout_reason(reason);
// Code should be the lazy compilation stub or else unoptimized. If the
// latter, disable optimization for the code too.
ASSERT(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN);
if (code()->kind() == Code::FUNCTION) {
code()->set_optimizable(false);
}
PROFILE(GetIsolate(),
LogExistingFunction(Handle<SharedFunctionInfo>(this),
Handle<Code>(code())));
if (FLAG_trace_opt) {
PrintF("[disabled optimization for ");
ShortPrint();
PrintF(", reason: %s]\n", GetBailoutReason(reason));
}
}
bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
ASSERT(!id.IsNone());
Code* unoptimized = code();
DeoptimizationOutputData* data =
DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
USE(ignore);
return true; // Return true if there was no ASSERT.
}
void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) {
ASSERT(!IsInobjectSlackTrackingInProgress());
if (!FLAG_clever_optimizations) return;
// Only initiate the tracking the first time.
if (live_objects_may_exist()) return;
set_live_objects_may_exist(true);
// No tracking during the snapshot construction phase.
if (Serializer::enabled()) return;
if (map->unused_property_fields() == 0) return;
// Nonzero counter is a leftover from the previous attempt interrupted
// by GC, keep it.
if (construction_count() == 0) {
set_construction_count(kGenerousAllocationCount);
}
set_initial_map(map);
Builtins* builtins = map->GetHeap()->isolate()->builtins();
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
construct_stub());
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
}
// Called from GC, hence reinterpret_cast and unchecked accessors.
void SharedFunctionInfo::DetachInitialMap() {
Map* map = reinterpret_cast<Map*>(initial_map());
// Make the map remember to restore the link if it survives the GC.
map->set_bit_field2(
map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo));
// Undo state changes made by StartInobjectTracking (except the
// construction_count). This way if the initial map does not survive the GC
// then StartInobjectTracking will be called again the next time the
// constructor is called. The countdown will continue and (possibly after
// several more GCs) CompleteInobjectSlackTracking will eventually be called.
Heap* heap = map->GetHeap();
set_initial_map(heap->undefined_value());
Builtins* builtins = heap->isolate()->builtins();
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
*RawField(this, kConstructStubOffset));
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
// It is safe to clear the flag: it will be set again if the map is live.
set_live_objects_may_exist(false);
}
// Called from GC, hence reinterpret_cast and unchecked accessors.
void SharedFunctionInfo::AttachInitialMap(Map* map) {
map->set_bit_field2(
map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo));
// Resume inobject slack tracking.
set_initial_map(map);
Builtins* builtins = map->GetHeap()->isolate()->builtins();
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
*RawField(this, kConstructStubOffset));
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
// The map survived the gc, so there may be objects referencing it.
set_live_objects_may_exist(true);
}
void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
code()->ClearInlineCaches();
set_ic_age(new_ic_age);
if (code()->kind() == Code::FUNCTION) {
code()->set_profiler_ticks(0);
if (optimization_disabled() &&
opt_count() >= FLAG_max_opt_count) {
// Re-enable optimizations if they were disabled due to opt_count limit.
set_optimization_disabled(false);
code()->set_optimizable(true);
}
set_opt_count(0);
set_deopt_count(0);
}
}
static void GetMinInobjectSlack(Map* map, void* data) {
int slack = map->unused_property_fields();
if (*reinterpret_cast<int*>(data) > slack) {
*reinterpret_cast<int*>(data) = slack;
}
}
static void ShrinkInstanceSize(Map* map, void* data) {
int slack = *reinterpret_cast<int*>(data);
map->set_inobject_properties(map->inobject_properties() - slack);
map->set_unused_property_fields(map->unused_property_fields() - slack);
map->set_instance_size(map->instance_size() - slack * kPointerSize);
// Visitor id might depend on the instance size, recalculate it.
map->set_visitor_id(StaticVisitorBase::GetVisitorId(map));
}
void SharedFunctionInfo::CompleteInobjectSlackTracking() {
ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress());
Map* map = Map::cast(initial_map());
Heap* heap = map->GetHeap();
set_initial_map(heap->undefined_value());
Builtins* builtins = heap->isolate()->builtins();
ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
construct_stub());
set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
int slack = map->unused_property_fields();
map->TraverseTransitionTree(&GetMinInobjectSlack, &slack);
if (slack != 0) {
// Resize the initial map and all maps in its transition tree.
map->TraverseTransitionTree(&ShrinkInstanceSize, &slack);
// Give the correct expected_nof_properties to initial maps created later.
ASSERT(expected_nof_properties() >= slack);
set_expected_nof_properties(expected_nof_properties() - slack);
}
}
int SharedFunctionInfo::SearchOptimizedCodeMap(Context* native_context) {
ASSERT(native_context->IsNativeContext());
if (!FLAG_cache_optimized_code) return -1;
Object* value = optimized_code_map();
if (!value->IsSmi()) {
FixedArray* optimized_code_map = FixedArray::cast(value);
int length = optimized_code_map->length();
for (int i = kEntriesStart; i < length; i += kEntryLength) {
if (optimized_code_map->get(i) == native_context) {
return i + 1;
}
}
if (FLAG_trace_opt) {
PrintF("[didn't find optimized code in optimized code map for ");
ShortPrint();
PrintF("]\n");
}
}
return -1;
}
#define DECLARE_TAG(ignore1, name, ignore2) name,
const char* const VisitorSynchronization::kTags[
VisitorSynchronization::kNumberOfSyncTags] = {
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
};
#undef DECLARE_TAG
#define DECLARE_TAG(ignore1, ignore2, name) name,
const char* const VisitorSynchronization::kTagNames[
VisitorSynchronization::kNumberOfSyncTags] = {
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
};
#undef DECLARE_TAG
void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
Object* old_target = target;
VisitPointer(&target);
CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target.
}
void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
Object* stub = rinfo->code_age_stub();
if (stub) {
VisitPointer(&stub);
}
}
void ObjectVisitor::VisitCodeEntry(Address entry_address) {
Object* code = Code::GetObjectFromEntryAddress(entry_address);
Object* old_code = code;
VisitPointer(&code);
if (code != old_code) {
Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry();
}
}
void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
ASSERT(rinfo->rmode() == RelocInfo::CELL);
Object* cell = rinfo->target_cell();
Object* old_cell = cell;
VisitPointer(&cell);
if (cell != old_cell) {
rinfo->set_target_cell(reinterpret_cast<Cell*>(cell));
}
}
void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
rinfo->IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
rinfo->IsPatchedDebugBreakSlotSequence()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
Object* old_target = target;
VisitPointer(&target);
CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target.
}
void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
Object* p = rinfo->target_object();
VisitPointer(&p);
}
void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
Address p = rinfo->target_reference();
VisitExternalReference(&p);
}
void Code::InvalidateRelocation() {
set_relocation_info(GetHeap()->empty_byte_array());
}
void Code::Relocate(intptr_t delta) {
for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
it.rinfo()->apply(delta);
}
CPU::FlushICache(instruction_start(), instruction_size());
}
void Code::CopyFrom(const CodeDesc& desc) {
ASSERT(Marking::Color(this) == Marking::WHITE_OBJECT);
// copy code
CopyBytes(instruction_start(), desc.buffer,
static_cast<size_t>(desc.instr_size));
// copy reloc info
CopyBytes(relocation_start(),
desc.buffer + desc.buffer_size - desc.reloc_size,
static_cast<size_t>(desc.reloc_size));
// unbox handles and relocate
intptr_t delta = instruction_start() - desc.buffer;
int mode_mask = RelocInfo::kCodeTargetMask |
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::CELL) |
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
RelocInfo::kApplyMask;
// Needed to find target_object and runtime_entry on X64
Assembler* origin = desc.origin;
AllowDeferredHandleDereference embedding_raw_address;
for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
Handle<Object> p = it.rinfo()->target_object_handle(origin);
it.rinfo()->set_target_object(*p, SKIP_WRITE_BARRIER);
} else if (mode == RelocInfo::CELL) {
Handle<Cell> cell = it.rinfo()->target_cell_handle();
it.rinfo()->set_target_cell(*cell, SKIP_WRITE_BARRIER);
} else if (RelocInfo::IsCodeTarget(mode)) {
// rewrite code handles in inline cache targets to direct
// pointers to the first instruction in the code object
Handle<Object> p = it.rinfo()->target_object_handle(origin);
Code* code = Code::cast(*p);
it.rinfo()->set_target_address(code->instruction_start(),
SKIP_WRITE_BARRIER);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
Address p = it.rinfo()->target_runtime_entry(origin);
it.rinfo()->set_target_runtime_entry(p, SKIP_WRITE_BARRIER);
} else if (mode == RelocInfo::CODE_AGE_SEQUENCE) {
Handle<Object> p = it.rinfo()->code_age_stub_handle(origin);
Code* code = Code::cast(*p);
it.rinfo()->set_code_age_stub(code);
} else {
it.rinfo()->apply(delta);
}
}
CPU::FlushICache(instruction_start(), instruction_size());
}
// Locate the source position which is closest to the address in the code. This
// is using the source position information embedded in the relocation info.
// The position returned is relative to the beginning of the script where the
// source for this function is found.
int Code::SourcePosition(Address pc) {
int distance = kMaxInt;
int position = RelocInfo::kNoPosition; // Initially no position found.
// Run through all the relocation info to find the best matching source
// position. All the code needs to be considered as the sequence of the
// instructions in the code does not necessarily follow the same order as the
// source.
RelocIterator it(this, RelocInfo::kPositionMask);
while (!it.done()) {
// Only look at positions after the current pc.
if (it.rinfo()->pc() < pc) {
// Get position and distance.
int dist = static_cast<int>(pc - it.rinfo()->pc());
int pos = static_cast<int>(it.rinfo()->data());
// If this position is closer than the current candidate or if it has the
// same distance as the current candidate and the position is higher then
// this position is the new candidate.
if ((dist < distance) ||
(dist == distance && pos > position)) {
position = pos;
distance = dist;
}
}
it.next();
}
return position;
}
// Same as Code::SourcePosition above except it only looks for statement
// positions.
int Code::SourceStatementPosition(Address pc) {
// First find the position as close as possible using all position
// information.
int position = SourcePosition(pc);
// Now find the closest statement position before the position.
int statement_position = 0;
RelocIterator it(this, RelocInfo::kPositionMask);
while (!it.done()) {
if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
int p = static_cast<int>(it.rinfo()->data());
if (statement_position < p && p <= position) {
statement_position = p;
}
}
it.next();
}
return statement_position;
}
SafepointEntry Code::GetSafepointEntry(Address pc) {
SafepointTable table(this);
return table.FindEntry(pc);
}
Object* Code::FindNthObject(int n, Map* match_map) {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Object* object = info->target_object();
if (object->IsHeapObject()) {
if (HeapObject::cast(object)->map() == match_map) {
if (--n == 0) return object;
}
}
}
return NULL;
}
Map* Code::FindFirstMap() {
Object* result = FindNthObject(1, GetHeap()->meta_map());
return (result != NULL) ? Map::cast(result) : NULL;
}
void Code::ReplaceNthObject(int n,
Map* match_map,
Object* replace_with) {
ASSERT(is_inline_cache_stub() || is_handler());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Object* object = info->target_object();
if (object->IsHeapObject()) {
if (HeapObject::cast(object)->map() == match_map) {
if (--n == 0) {
info->set_target_object(replace_with);
return;
}
}
}
}
UNREACHABLE();
}
void Code::FindAllMaps(MapHandleList* maps) {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Object* object = info->target_object();
if (object->IsMap()) maps->Add(Handle<Map>(Map::cast(object)));
}
}
void Code::ReplaceFirstMap(Map* replace_with) {
ReplaceNthObject(1, GetHeap()->meta_map(), replace_with);
}
Code* Code::FindFirstHandler() {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Code* code = Code::GetCodeFromTargetAddress(info->target_address());
if (code->kind() == Code::HANDLER) return code;
}
return NULL;
}
bool Code::FindHandlers(CodeHandleList* code_list, int length) {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET);
int i = 0;
for (RelocIterator it(this, mask); !it.done(); it.next()) {
if (i == length) return true;
RelocInfo* info = it.rinfo();
Code* code = Code::GetCodeFromTargetAddress(info->target_address());
// IC stubs with handlers never contain non-handler code objects before
// handler targets.
if (code->kind() != Code::HANDLER) break;
code_list->Add(Handle<Code>(code));
i++;
}
return i == length;
}
Name* Code::FindFirstName() {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Object* object = info->target_object();
if (object->IsName()) return Name::cast(object);
}
return NULL;
}
void Code::ReplaceNthCell(int n, Cell* replace_with) {
ASSERT(is_inline_cache_stub());
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::CELL);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (--n == 0) {
info->set_target_cell(replace_with);
return;
}
}
UNREACHABLE();
}
void Code::ClearInlineCaches() {
ClearInlineCaches(NULL);
}
void Code::ClearInlineCaches(Code::Kind kind) {
ClearInlineCaches(&kind);
}
void Code::ClearInlineCaches(Code::Kind* kind) {
int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) |
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID) |
RelocInfo::ModeMask(RelocInfo::CODE_TARGET_CONTEXT);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
if (target->is_inline_cache_stub()) {
if (kind == NULL || *kind == target->kind()) {
IC::Clear(this->GetIsolate(), info->pc());
}
}
}
}
void Code::ClearTypeFeedbackCells(Heap* heap) {
if (kind() != FUNCTION) return;
Object* raw_info = type_feedback_info();
if (raw_info->IsTypeFeedbackInfo()) {
TypeFeedbackCells* type_feedback_cells =
TypeFeedbackInfo::cast(raw_info)->type_feedback_cells();
for (int i = 0; i < type_feedback_cells->CellCount(); i++) {
Cell* cell = type_feedback_cells->GetCell(i);
// Don't clear AllocationSites
Object* value = cell->value();
if (value == NULL || !value->IsAllocationSite()) {
cell->set_value(TypeFeedbackCells::RawUninitializedSentinel(heap));
}
}
}
}
BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) {
DisallowHeapAllocation no_gc;
ASSERT(kind() == FUNCTION);
BackEdgeTable back_edges(this, &no_gc);
for (uint32_t i = 0; i < back_edges.length(); i++) {
if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i);
}
return BailoutId::None();
}
void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) {
PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY);
}
void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) {
PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge,
NO_MARKING_PARITY);
}
static Code::Age EffectiveAge(Code::Age age) {
if (age == Code::kNotExecutedCodeAge) {
// Treat that's never been executed as old immediately.
age = Code::kIsOldCodeAge;
} else if (age == Code::kExecutedOnceCodeAge) {
// Pre-age code that has only been executed once.
age = Code::kPreAgedCodeAge;
}
return age;
}
void Code::MakeOlder(MarkingParity current_parity) {
byte* sequence = FindCodeAgeSequence();
if (sequence != NULL) {
Age age;
MarkingParity code_parity;
GetCodeAgeAndParity(sequence, &age, &code_parity);
age = EffectiveAge(age);
if (age != kLastCodeAge && code_parity != current_parity) {
PatchPlatformCodeAge(GetIsolate(),
sequence,
static_cast<Age>(age + 1),
current_parity);
}
}
}
bool Code::IsOld() {
return GetAge() >= kIsOldCodeAge;
}
byte* Code::FindCodeAgeSequence() {
return FLAG_age_code &&
prologue_offset() != Code::kPrologueOffsetNotSet &&
(kind() == OPTIMIZED_FUNCTION ||
(kind() == FUNCTION && !has_debug_break_slots()))
? instruction_start() + prologue_offset()
: NULL;
}
Code::Age Code::GetAge() {
return EffectiveAge(GetRawAge());
}
Code::Age Code::GetRawAge() {
byte* sequence = FindCodeAgeSequence();
if (sequence == NULL) {
return kNoAgeCodeAge;
}
Age age;
MarkingParity parity;
GetCodeAgeAndParity(sequence, &age, &parity);
return age;
}
void Code::GetCodeAgeAndParity(Code* code, Age* age,
MarkingParity* parity) {
Isolate* isolate = code->GetIsolate();
Builtins* builtins = isolate->builtins();
Code* stub = NULL;
#define HANDLE_CODE_AGE(AGE) \
stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking(); \
if (code == stub) { \
*age = k##AGE##CodeAge; \
*parity = EVEN_MARKING_PARITY; \
return; \
} \
stub = *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
if (code == stub) { \
*age = k##AGE##CodeAge; \
*parity = ODD_MARKING_PARITY; \
return; \
}
CODE_AGE_LIST(HANDLE_CODE_AGE)
#undef HANDLE_CODE_AGE
stub = *builtins->MarkCodeAsExecutedOnce();
if (code == stub) {
*age = kNotExecutedCodeAge;
*parity = NO_MARKING_PARITY;
return;
}
stub = *builtins->MarkCodeAsExecutedTwice();
if (code == stub) {
*age = kExecutedOnceCodeAge;
*parity = NO_MARKING_PARITY;
return;
}
UNREACHABLE();
}
Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) {
Builtins* builtins = isolate->builtins();
switch (age) {
#define HANDLE_CODE_AGE(AGE) \
case k##AGE##CodeAge: { \
Code* stub = parity == EVEN_MARKING_PARITY \
? *builtins->Make##AGE##CodeYoungAgainEvenMarking() \
: *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
return stub; \
}
CODE_AGE_LIST(HANDLE_CODE_AGE)
#undef HANDLE_CODE_AGE
case kNotExecutedCodeAge: {
ASSERT(parity == NO_MARKING_PARITY);
return *builtins->MarkCodeAsExecutedOnce();
}
case kExecutedOnceCodeAge: {
ASSERT(parity == NO_MARKING_PARITY);
return *builtins->MarkCodeAsExecutedTwice();
}
default:
UNREACHABLE();
break;
}
return NULL;
}
void Code::PrintDeoptLocation(FILE* out, int bailout_id) {
const char* last_comment = NULL;
int mask = RelocInfo::ModeMask(RelocInfo::COMMENT)
| RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
for (RelocIterator it(this, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->rmode() == RelocInfo::COMMENT) {
last_comment = reinterpret_cast<const char*>(info->data());
} else if (last_comment != NULL) {
if ((bailout_id == Deoptimizer::GetDeoptimizationId(
GetIsolate(), info->target_address(), Deoptimizer::EAGER)) ||
(bailout_id == Deoptimizer::GetDeoptimizationId(
GetIsolate(), info->target_address(), Deoptimizer::SOFT))) {
CHECK(RelocInfo::IsRuntimeEntry(info->rmode()));
PrintF(out, " %s\n", last_comment);
return;
}
}
}
}
bool Code::CanDeoptAt(Address pc) {
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(deoptimization_data());
Address code_start_address = instruction_start();
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
if (deopt_data->Pc(i)->value() == -1) continue;
Address address = code_start_address + deopt_data->Pc(i)->value();
if (address == pc) return true;
}
return false;
}
// Identify kind of code.
const char* Code::Kind2String(Kind kind) {
switch (kind) {
#define CASE(name) case name: return #name;
CODE_KIND_LIST(CASE)
#undef CASE
case NUMBER_OF_KINDS: break;
}
UNREACHABLE();
return NULL;
}
#ifdef ENABLE_DISASSEMBLER
void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) {
disasm::NameConverter converter;
int deopt_count = DeoptCount();
PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count);
if (0 == deopt_count) return;
PrintF(out, "%6s %6s %6s %6s %12s\n", "index", "ast id", "argc", "pc",
FLAG_print_code_verbose ? "commands" : "");
for (int i = 0; i < deopt_count; i++) {
PrintF(out, "%6d %6d %6d %6d",
i,
AstId(i).ToInt(),
ArgumentsStackHeight(i)->value(),
Pc(i)->value());
if (!FLAG_print_code_verbose) {
PrintF(out, "\n");
continue;
}
// Print details of the frame translation.
int translation_index = TranslationIndex(i)->value();
TranslationIterator iterator(TranslationByteArray(), translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
int frame_count = iterator.Next();
int jsframe_count = iterator.Next();
PrintF(out, " %s {frame count=%d, js frame count=%d}\n",
Translation::StringFor(opcode),
frame_count,
jsframe_count);
while (iterator.HasNext() &&
Translation::BEGIN !=
(opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
PrintF(out, "%24s %s ", "", Translation::StringFor(opcode));
switch (opcode) {
case Translation::BEGIN:
UNREACHABLE();
break;
case Translation::JS_FRAME: {
int ast_id = iterator.Next();
int function_id = iterator.Next();
unsigned height = iterator.Next();
PrintF(out, "{ast_id=%d, function=", ast_id);
if (function_id != Translation::kSelfLiteralId) {
Object* function = LiteralArray()->get(function_id);
JSFunction::cast(function)->PrintName(out);
} else {
PrintF(out, "<self>");
}
PrintF(out, ", height=%u}", height);
break;
}
case Translation::COMPILED_STUB_FRAME: {
Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
PrintF(out, "{kind=%d}", stub_kind);
break;
}
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME: {
int function_id = iterator.Next();
JSFunction* function =
JSFunction::cast(LiteralArray()->get(function_id));
unsigned height = iterator.Next();
PrintF(out, "{function=");
function->PrintName(out);
PrintF(out, ", height=%u}", height);
break;
}
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME: {
int function_id = iterator.Next();
JSFunction* function =
JSFunction::cast(LiteralArray()->get(function_id));
PrintF(out, "{function=");
function->PrintName(out);
PrintF(out, "}");
break;
}
case Translation::REGISTER: {
int reg_code = iterator.Next();
PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
break;
}
case Translation::INT32_REGISTER: {
int reg_code = iterator.Next();
PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
break;
}
case Translation::UINT32_REGISTER: {
int reg_code = iterator.Next();
PrintF(out, "{input=%s (unsigned)}",
converter.NameOfCPURegister(reg_code));
break;
}
case Translation::DOUBLE_REGISTER: {
int reg_code = iterator.Next();
PrintF(out, "{input=%s}",
DoubleRegister::AllocationIndexToString(reg_code));
break;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator.Next();
PrintF(out, "{input=%d}", input_slot_index);
break;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator.Next();
PrintF(out, "{input=%d}", input_slot_index);
break;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator.Next();
PrintF(out, "{input=%d (unsigned)}", input_slot_index);
break;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator.Next();
PrintF(out, "{input=%d}", input_slot_index);
break;
}
case Translation::LITERAL: {
unsigned literal_index = iterator.Next();
PrintF(out, "{literal_id=%u}", literal_index);
break;
}
case Translation::DUPLICATED_OBJECT: {
int object_index = iterator.Next();
PrintF(out, "{object_index=%d}", object_index);
break;
}
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT: {
int args_length = iterator.Next();
PrintF(out, "{length=%d}", args_length);
break;
}
}
PrintF(out, "\n");
}
}
}
void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) {
PrintF(out, "Deoptimization Output Data (deopt points = %d)\n",
this->DeoptPoints());
if (this->DeoptPoints() == 0) return;
PrintF(out, "%6s %8s %s\n", "ast id", "pc", "state");
for (int i = 0; i < this->DeoptPoints(); i++) {
int pc_and_state = this->PcAndState(i)->value();
PrintF(out, "%6d %8d %s\n",
this->AstId(i).ToInt(),
FullCodeGenerator::PcField::decode(pc_and_state),
FullCodeGenerator::State2String(
FullCodeGenerator::StateField::decode(pc_and_state)));
}
}
const char* Code::ICState2String(InlineCacheState state) {
switch (state) {
case UNINITIALIZED: return "UNINITIALIZED";
case PREMONOMORPHIC: return "PREMONOMORPHIC";
case MONOMORPHIC: return "MONOMORPHIC";
case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE";
case POLYMORPHIC: return "POLYMORPHIC";
case MEGAMORPHIC: return "MEGAMORPHIC";
case GENERIC: return "GENERIC";
case DEBUG_STUB: return "DEBUG_STUB";
}
UNREACHABLE();
return NULL;
}
const char* Code::StubType2String(StubType type) {
switch (type) {
case NORMAL: return "NORMAL";
case FIELD: return "FIELD";
case CONSTANT: return "CONSTANT";
case CALLBACKS: return "CALLBACKS";
case INTERCEPTOR: return "INTERCEPTOR";
case TRANSITION: return "TRANSITION";
case NONEXISTENT: return "NONEXISTENT";
}
UNREACHABLE(); // keep the compiler happy
return NULL;
}
void Code::PrintExtraICState(FILE* out, Kind kind, ExtraICState extra) {
PrintF(out, "extra_ic_state = ");
const char* name = NULL;
switch (kind) {
case CALL_IC:
if (extra == STRING_INDEX_OUT_OF_BOUNDS) {
name = "STRING_INDEX_OUT_OF_BOUNDS";
}
break;
case STORE_IC:
case KEYED_STORE_IC:
if (extra == kStrictMode) {
name = "STRICT";
}
break;
default:
break;
}
if (name != NULL) {
PrintF(out, "%s\n", name);
} else {
PrintF(out, "%d\n", extra);
}
}
void Code::Disassemble(const char* name, FILE* out) {
PrintF(out, "kind = %s\n", Kind2String(kind()));
if (is_inline_cache_stub()) {
PrintF(out, "ic_state = %s\n", ICState2String(ic_state()));
PrintExtraICState(out, kind(), needs_extended_extra_ic_state(kind()) ?
extended_extra_ic_state() : extra_ic_state());
if (ic_state() == MONOMORPHIC) {
PrintF(out, "type = %s\n", StubType2String(type()));
}
if (is_call_stub() || is_keyed_call_stub()) {
PrintF(out, "argc = %d\n", arguments_count());
}
if (is_compare_ic_stub()) {
ASSERT(major_key() == CodeStub::CompareIC);
CompareIC::State left_state, right_state, handler_state;
Token::Value op;
ICCompareStub::DecodeMinorKey(stub_info(), &left_state, &right_state,
&handler_state, &op);
PrintF(out, "compare_state = %s*%s -> %s\n",
CompareIC::GetStateName(left_state),
CompareIC::GetStateName(right_state),
CompareIC::GetStateName(handler_state));
PrintF(out, "compare_operation = %s\n", Token::Name(op));
}
}
if ((name != NULL) && (name[0] != '\0')) {
PrintF(out, "name = %s\n", name);
}
if (kind() == OPTIMIZED_FUNCTION) {
PrintF(out, "stack_slots = %d\n", stack_slots());
}
PrintF(out, "Instructions (size = %d)\n", instruction_size());
Disassembler::Decode(out, this);
PrintF(out, "\n");
if (kind() == FUNCTION) {
DeoptimizationOutputData* data =
DeoptimizationOutputData::cast(this->deoptimization_data());
data->DeoptimizationOutputDataPrint(out);
} else if (kind() == OPTIMIZED_FUNCTION) {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(this->deoptimization_data());
data->DeoptimizationInputDataPrint(out);
}
PrintF(out, "\n");
if (is_crankshafted()) {
SafepointTable table(this);
PrintF(out, "Safepoints (size = %u)\n", table.size());
for (unsigned i = 0; i < table.length(); i++) {
unsigned pc_offset = table.GetPcOffset(i);
PrintF(out, "%p %4d ", (instruction_start() + pc_offset), pc_offset);
table.PrintEntry(i, out);
PrintF(out, " (sp -> fp)");
SafepointEntry entry = table.GetEntry(i);
if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
PrintF(out, " %6d", entry.deoptimization_index());
} else {
PrintF(out, " <none>");
}
if (entry.argument_count() > 0) {
PrintF(out, " argc: %d", entry.argument_count());
}
PrintF(out, "\n");
}
PrintF(out, "\n");
} else if (kind() == FUNCTION) {
unsigned offset = back_edge_table_offset();
// If there is no back edge table, the "table start" will be at or after
// (due to alignment) the end of the instruction stream.
if (static_cast<int>(offset) < instruction_size()) {
DisallowHeapAllocation no_gc;
BackEdgeTable back_edges(this, &no_gc);
PrintF(out, "Back edges (size = %u)\n", back_edges.length());
PrintF(out, "ast_id pc_offset loop_depth\n");
for (uint32_t i = 0; i < back_edges.length(); i++) {
PrintF(out, "%6d %9u %10u\n", back_edges.ast_id(i).ToInt(),
back_edges.pc_offset(i),
back_edges.loop_depth(i));
}
PrintF(out, "\n");
}
#ifdef OBJECT_PRINT
if (!type_feedback_info()->IsUndefined()) {
TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(out);
PrintF(out, "\n");
}
#endif
}
PrintF(out, "RelocInfo (size = %d)\n", relocation_size());
for (RelocIterator it(this); !it.done(); it.next()) {
it.rinfo()->Print(GetIsolate(), out);
}
PrintF(out, "\n");
}
#endif // ENABLE_DISASSEMBLER
MaybeObject* JSObject::SetFastElementsCapacityAndLength(
int capacity,
int length,
SetFastElementsCapacitySmiMode smi_mode) {
Heap* heap = GetHeap();
// We should never end in here with a pixel or external array.
ASSERT(!HasExternalArrayElements());
ASSERT(!map()->is_observed());
// Allocate a new fast elements backing store.
FixedArray* new_elements;
MaybeObject* maybe = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe->To(&new_elements)) return maybe;
ElementsKind elements_kind = GetElementsKind();
ElementsKind new_elements_kind;
// The resized array has FAST_*_SMI_ELEMENTS if the capacity mode forces it,
// or if it's allowed and the old elements array contained only SMIs.
bool has_fast_smi_elements =
(smi_mode == kForceSmiElements) ||
((smi_mode == kAllowSmiElements) && HasFastSmiElements());
if (has_fast_smi_elements) {
if (IsHoleyElementsKind(elements_kind)) {
new_elements_kind = FAST_HOLEY_SMI_ELEMENTS;
} else {
new_elements_kind = FAST_SMI_ELEMENTS;
}
} else {
if (IsHoleyElementsKind(elements_kind)) {
new_elements_kind = FAST_HOLEY_ELEMENTS;
} else {
new_elements_kind = FAST_ELEMENTS;
}
}
FixedArrayBase* old_elements = elements();
ElementsAccessor* accessor = ElementsAccessor::ForKind(new_elements_kind);
MaybeObject* maybe_obj =
accessor->CopyElements(this, new_elements, elements_kind);
if (maybe_obj->IsFailure()) return maybe_obj;
if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) {
Map* new_map = map();
if (new_elements_kind != elements_kind) {
MaybeObject* maybe =
GetElementsTransitionMap(GetIsolate(), new_elements_kind);
if (!maybe->To(&new_map)) return maybe;
}
ValidateElements();
set_map_and_elements(new_map, new_elements);
// Transition through the allocation site as well if present.
maybe_obj = UpdateAllocationSite(new_elements_kind);
if (maybe_obj->IsFailure()) return maybe_obj;
} else {
FixedArray* parameter_map = FixedArray::cast(old_elements);
parameter_map->set(1, new_elements);
}
if (FLAG_trace_elements_transitions) {
PrintElementsTransition(stdout, elements_kind, old_elements,
GetElementsKind(), new_elements);
}
if (IsJSArray()) {
JSArray::cast(this)->set_length(Smi::FromInt(length));
}
return new_elements;
}
bool Code::IsWeakEmbeddedObject(Kind kind, Object* object) {
if (kind != Code::OPTIMIZED_FUNCTION) return false;
if (object->IsMap()) {
return Map::cast(object)->CanTransition() &&
FLAG_collect_maps &&
FLAG_weak_embedded_maps_in_optimized_code;
}
if (object->IsJSObject()) {
return FLAG_weak_embedded_objects_in_optimized_code;
}
return false;
}
MaybeObject* JSObject::SetFastDoubleElementsCapacityAndLength(
int capacity,
int length) {
Heap* heap = GetHeap();
// We should never end in here with a pixel or external array.
ASSERT(!HasExternalArrayElements());
ASSERT(!map()->is_observed());
FixedArrayBase* elems;
{ MaybeObject* maybe_obj =
heap->AllocateUninitializedFixedDoubleArray(capacity);
if (!maybe_obj->To(&elems)) return maybe_obj;
}
ElementsKind elements_kind = GetElementsKind();
ElementsKind new_elements_kind = elements_kind;
if (IsHoleyElementsKind(elements_kind)) {
new_elements_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
} else {
new_elements_kind = FAST_DOUBLE_ELEMENTS;
}
Map* new_map;
{ MaybeObject* maybe_obj =
GetElementsTransitionMap(heap->isolate(), new_elements_kind);
if (!maybe_obj->To(&new_map)) return maybe_obj;
}
FixedArrayBase* old_elements = elements();
ElementsAccessor* accessor = ElementsAccessor::ForKind(FAST_DOUBLE_ELEMENTS);
{ MaybeObject* maybe_obj =
accessor->CopyElements(this, elems, elements_kind);
if (maybe_obj->IsFailure()) return maybe_obj;
}
if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) {
ValidateElements();
set_map_and_elements(new_map, elems);
} else {
FixedArray* parameter_map = FixedArray::cast(old_elements);
parameter_map->set(1, elems);
}
if (FLAG_trace_elements_transitions) {
PrintElementsTransition(stdout, elements_kind, old_elements,
GetElementsKind(), elems);
}
if (IsJSArray()) {
JSArray::cast(this)->set_length(Smi::FromInt(length));
}
return this;
}
MaybeObject* JSArray::Initialize(int capacity, int length) {
ASSERT(capacity >= 0);
return GetHeap()->AllocateJSArrayStorage(this, length, capacity,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
}
void JSArray::Expand(int required_size) {
GetIsolate()->factory()->SetElementsCapacityAndLength(
Handle<JSArray>(this), required_size, required_size);
}
// Returns false if the passed-in index is marked non-configurable,
// which will cause the ES5 truncation operation to halt, and thus
// no further old values need be collected.
static bool GetOldValue(Isolate* isolate,
Handle<JSObject> object,
uint32_t index,
List<Handle<Object> >* old_values,
List<uint32_t>* indices) {
PropertyAttributes attributes = object->GetLocalElementAttribute(index);
ASSERT(attributes != ABSENT);
if (attributes == DONT_DELETE) return false;
old_values->Add(object->GetLocalElementAccessorPair(index) == NULL
? Object::GetElement(isolate, object, index)
: Handle<Object>::cast(isolate->factory()->the_hole_value()));
indices->Add(index);
return true;
}
static void EnqueueSpliceRecord(Handle<JSArray> object,
uint32_t index,
Handle<JSArray> deleted,
uint32_t add_count) {
Isolate* isolate = object->GetIsolate();
HandleScope scope(isolate);
Handle<Object> index_object = isolate->factory()->NewNumberFromUint(index);
Handle<Object> add_count_object =
isolate->factory()->NewNumberFromUint(add_count);
Handle<Object> args[] =
{ object, index_object, deleted, add_count_object };
bool threw;
Execution::Call(isolate,
Handle<JSFunction>(isolate->observers_enqueue_splice()),
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
&threw);
ASSERT(!threw);
}
static void BeginPerformSplice(Handle<JSArray> object) {
Isolate* isolate = object->GetIsolate();
HandleScope scope(isolate);
Handle<Object> args[] = { object };
bool threw;
Execution::Call(isolate,
Handle<JSFunction>(isolate->observers_begin_perform_splice()),
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
&threw);
ASSERT(!threw);
}
static void EndPerformSplice(Handle<JSArray> object) {
Isolate* isolate = object->GetIsolate();
HandleScope scope(isolate);
Handle<Object> args[] = { object };
bool threw;
Execution::Call(isolate,
Handle<JSFunction>(isolate->observers_end_perform_splice()),
isolate->factory()->undefined_value(), ARRAY_SIZE(args), args,
&threw);
ASSERT(!threw);
}
MaybeObject* JSArray::SetElementsLength(Object* len) {
// We should never end in here with a pixel or external array.
ASSERT(AllowsSetElementsLength());
if (!(FLAG_harmony_observation && map()->is_observed()))
return GetElementsAccessor()->SetLength(this, len);
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
Handle<JSArray> self(this);
List<uint32_t> indices;
List<Handle<Object> > old_values;
Handle<Object> old_length_handle(self->length(), isolate);
Handle<Object> new_length_handle(len, isolate);
uint32_t old_length = 0;
CHECK(old_length_handle->ToArrayIndex(&old_length));
uint32_t new_length = 0;
if (!new_length_handle->ToArrayIndex(&new_length))
return Failure::InternalError();
// Observed arrays should always be in dictionary mode;
// if they were in fast mode, the below is slower than necessary
// as it iterates over the array backing store multiple times.
ASSERT(self->HasDictionaryElements());
static const PropertyAttributes kNoAttrFilter = NONE;
int num_elements = self->NumberOfLocalElements(kNoAttrFilter);
if (num_elements > 0) {
if (old_length == static_cast<uint32_t>(num_elements)) {
// Simple case for arrays without holes.
for (uint32_t i = old_length - 1; i + 1 > new_length; --i) {
if (!GetOldValue(isolate, self, i, &old_values, &indices)) break;
}
} else {
// For sparse arrays, only iterate over existing elements.
Handle<FixedArray> keys = isolate->factory()->NewFixedArray(num_elements);
self->GetLocalElementKeys(*keys, kNoAttrFilter);
while (num_elements-- > 0) {
uint32_t index = NumberToUint32(keys->get(num_elements));
if (index < new_length) break;
if (!GetOldValue(isolate, self, index, &old_values, &indices)) break;
}
}
}
MaybeObject* result =
self->GetElementsAccessor()->SetLength(*self, *new_length_handle);
Handle<Object> hresult;
if (!result->ToHandle(&hresult, isolate)) return result;
CHECK(self->length()->ToArrayIndex(&new_length));
if (old_length == new_length) return *hresult;
BeginPerformSplice(self);
for (int i = 0; i < indices.length(); ++i) {
JSObject::EnqueueChangeRecord(
self, "delete", isolate->factory()->Uint32ToString(indices[i]),
old_values[i]);
}
JSObject::EnqueueChangeRecord(
self, "update", isolate->factory()->length_string(),
old_length_handle);
EndPerformSplice(self);
uint32_t index = Min(old_length, new_length);
uint32_t add_count = new_length > old_length ? new_length - old_length : 0;
uint32_t delete_count = new_length < old_length ? old_length - new_length : 0;
Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
if (delete_count > 0) {
for (int i = indices.length() - 1; i >= 0; i--) {
JSObject::SetElement(deleted, indices[i] - index, old_values[i], NONE,
kNonStrictMode);
}
SetProperty(deleted, isolate->factory()->length_string(),
isolate->factory()->NewNumberFromUint(delete_count),
NONE, kNonStrictMode);
}
EnqueueSpliceRecord(self, index, deleted, add_count);
return *hresult;
}
Handle<Map> Map::GetPrototypeTransition(Handle<Map> map,
Handle<Object> prototype) {
FixedArray* cache = map->GetPrototypeTransitions();
int number_of_transitions = map->NumberOfProtoTransitions();
const int proto_offset =
kProtoTransitionHeaderSize + kProtoTransitionPrototypeOffset;
const int map_offset = kProtoTransitionHeaderSize + kProtoTransitionMapOffset;
const int step = kProtoTransitionElementsPerEntry;
for (int i = 0; i < number_of_transitions; i++) {
if (cache->get(proto_offset + i * step) == *prototype) {
Object* result = cache->get(map_offset + i * step);
return Handle<Map>(Map::cast(result));
}
}
return Handle<Map>();
}
Handle<Map> Map::PutPrototypeTransition(Handle<Map> map,
Handle<Object> prototype,
Handle<Map> target_map) {
ASSERT(target_map->IsMap());
ASSERT(HeapObject::cast(*prototype)->map()->IsMap());
// Don't cache prototype transition if this map is shared.
if (map->is_shared() || !FLAG_cache_prototype_transitions) return map;
const int step = kProtoTransitionElementsPerEntry;
const int header = kProtoTransitionHeaderSize;
Handle<FixedArray> cache(map->GetPrototypeTransitions());
int capacity = (cache->length() - header) / step;
int transitions = map->NumberOfProtoTransitions() + 1;
if (transitions > capacity) {
if (capacity > kMaxCachedPrototypeTransitions) return map;
// Grow array by factor 2 over and above what we need.
Factory* factory = map->GetIsolate()->factory();
cache = factory->CopySizeFixedArray(cache, transitions * 2 * step + header);
CALL_AND_RETRY_OR_DIE(map->GetIsolate(),
map->SetPrototypeTransitions(*cache),
break,
return Handle<Map>());
}
// Reload number of transitions as GC might shrink them.
int last = map->NumberOfProtoTransitions();
int entry = header + last * step;
cache->set(entry + kProtoTransitionPrototypeOffset, *prototype);
cache->set(entry + kProtoTransitionMapOffset, *target_map);
map->SetNumberOfProtoTransitions(transitions);
return map;
}
void Map::ZapTransitions() {
TransitionArray* transition_array = transitions();
// TODO(mstarzinger): Temporarily use a slower version instead of the faster
// MemsetPointer to investigate a crasher. Switch back to MemsetPointer.
Object** data = transition_array->data_start();
Object* the_hole = GetHeap()->the_hole_value();
int length = transition_array->length();
for (int i = 0; i < length; i++) {
data[i] = the_hole;
}
}
void Map::ZapPrototypeTransitions() {
FixedArray* proto_transitions = GetPrototypeTransitions();
MemsetPointer(proto_transitions->data_start(),
GetHeap()->the_hole_value(),
proto_transitions->length());
}
void Map::AddDependentCompilationInfo(DependentCode::DependencyGroup group,
CompilationInfo* info) {
Handle<DependentCode> dep(dependent_code());
Handle<DependentCode> codes =
DependentCode::Insert(dep, group, info->object_wrapper());
if (*codes != dependent_code()) set_dependent_code(*codes);
info->dependencies(group)->Add(Handle<HeapObject>(this), info->zone());
}
void Map::AddDependentCode(DependentCode::DependencyGroup group,
Handle<Code> code) {
Handle<DependentCode> codes = DependentCode::Insert(
Handle<DependentCode>(dependent_code()), group, code);
if (*codes != dependent_code()) set_dependent_code(*codes);
}
DependentCode::GroupStartIndexes::GroupStartIndexes(DependentCode* entries) {
Recompute(entries);
}
void DependentCode::GroupStartIndexes::Recompute(DependentCode* entries) {
start_indexes_[0] = 0;
for (int g = 1; g <= kGroupCount; g++) {
int count = entries->number_of_entries(static_cast<DependencyGroup>(g - 1));
start_indexes_[g] = start_indexes_[g - 1] + count;
}
}
DependentCode* DependentCode::ForObject(Handle<HeapObject> object,
DependencyGroup group) {
AllowDeferredHandleDereference dependencies_are_safe;
if (group == DependentCode::kPropertyCellChangedGroup) {
return Handle<PropertyCell>::cast(object)->dependent_code();
}
return Handle<Map>::cast(object)->dependent_code();
}
Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
DependencyGroup group,
Handle<Object> object) {
GroupStartIndexes starts(*entries);
int start = starts.at(group);
int end = starts.at(group + 1);
int number_of_entries = starts.number_of_entries();
if (start < end && entries->object_at(end - 1) == *object) {
// Do not append the compilation info if it is already in the array.
// It is sufficient to just check only the last element because
// we process embedded maps of an optimized code in one batch.
return entries;
}
if (entries->length() < kCodesStartIndex + number_of_entries + 1) {
Factory* factory = entries->GetIsolate()->factory();
int capacity = kCodesStartIndex + number_of_entries + 1;
if (capacity > 5) capacity = capacity * 5 / 4;
Handle<DependentCode> new_entries = Handle<DependentCode>::cast(
factory->CopySizeFixedArray(entries, capacity, TENURED));
// The number of codes can change after GC.
starts.Recompute(*entries);
start = starts.at(group);
end = starts.at(group + 1);
number_of_entries = starts.number_of_entries();
for (int i = 0; i < number_of_entries; i++) {
entries->clear_at(i);
}
// If the old fixed array was empty, we need to reset counters of the
// new array.
if (number_of_entries == 0) {
for (int g = 0; g < kGroupCount; g++) {
new_entries->set_number_of_entries(static_cast<DependencyGroup>(g), 0);
}
}
entries = new_entries;
}
entries->ExtendGroup(group);
entries->set_object_at(end, *object);
entries->set_number_of_entries(group, end + 1 - start);
return entries;
}
void DependentCode::UpdateToFinishedCode(DependencyGroup group,
CompilationInfo* info,
Code* code) {
DisallowHeapAllocation no_gc;
AllowDeferredHandleDereference get_object_wrapper;
Foreign* info_wrapper = *info->object_wrapper();
GroupStartIndexes starts(this);
int start = starts.at(group);
int end = starts.at(group + 1);
for (int i = start; i < end; i++) {
if (object_at(i) == info_wrapper) {
set_object_at(i, code);
break;
}
}
#ifdef DEBUG
for (int i = start; i < end; i++) {
ASSERT(is_code_at(i) || compilation_info_at(i) != info);
}
#endif
}
void DependentCode::RemoveCompilationInfo(DependentCode::DependencyGroup group,
CompilationInfo* info) {
DisallowHeapAllocation no_allocation;
AllowDeferredHandleDereference get_object_wrapper;
Foreign* info_wrapper = *info->object_wrapper();
GroupStartIndexes starts(this);
int start = starts.at(group);
int end = starts.at(group + 1);
// Find compilation info wrapper.
int info_pos = -1;
for (int i = start; i < end; i++) {
if (object_at(i) == info_wrapper) {
info_pos = i;
break;
}
}
if (info_pos == -1) return; // Not found.
int gap = info_pos;
// Use the last of each group to fill the gap in the previous group.
for (int i = group; i < kGroupCount; i++) {
int last_of_group = starts.at(i + 1) - 1;
ASSERT(last_of_group >= gap);
if (last_of_group == gap) continue;
copy(last_of_group, gap);
gap = last_of_group;
}
ASSERT(gap == starts.number_of_entries() - 1);
clear_at(gap); // Clear last gap.
set_number_of_entries(group, end - start - 1);
#ifdef DEBUG
for (int i = start; i < end - 1; i++) {
ASSERT(is_code_at(i) || compilation_info_at(i) != info);
}
#endif
}
bool DependentCode::Contains(DependencyGroup group, Code* code) {
GroupStartIndexes starts(this);
int start = starts.at(group);
int end = starts.at(group + 1);
for (int i = start; i < end; i++) {
if (object_at(i) == code) return true;
}
return false;
}
void DependentCode::DeoptimizeDependentCodeGroup(
Isolate* isolate,
DependentCode::DependencyGroup group) {
ASSERT(AllowCodeDependencyChange::IsAllowed());
DisallowHeapAllocation no_allocation_scope;
DependentCode::GroupStartIndexes starts(this);
int start = starts.at(group);
int end = starts.at(group + 1);
int code_entries = starts.number_of_entries();
if (start == end) return;
// Mark all the code that needs to be deoptimized.
bool marked = false;
for (int i = start; i < end; i++) {
if (is_code_at(i)) {
Code* code = code_at(i);
if (!code->marked_for_deoptimization()) {
code->set_marked_for_deoptimization(true);
marked = true;
}
} else {
CompilationInfo* info = compilation_info_at(i);
info->AbortDueToDependencyChange();
}
}
// Compact the array by moving all subsequent groups to fill in the new holes.
for (int src = end, dst = start; src < code_entries; src++, dst++) {
copy(src, dst);
}
// Now the holes are at the end of the array, zap them for heap-verifier.
int removed = end - start;
for (int i = code_entries - removed; i < code_entries; i++) {
clear_at(i);
}
set_number_of_entries(group, 0);
if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate);
}
Handle<Object> JSObject::SetPrototype(Handle<JSObject> object,
Handle<Object> value,
bool skip_hidden_prototypes) {
#ifdef DEBUG
int size = object->Size();
#endif
Isolate* isolate = object->GetIsolate();
Heap* heap = isolate->heap();
// Silently ignore the change if value is not a JSObject or null.
// SpiderMonkey behaves this way.
if (!value->IsJSReceiver() && !value->IsNull()) return value;
// From 8.6.2 Object Internal Methods
// ...
// In addition, if [[Extensible]] is false the value of the [[Class]] and
// [[Prototype]] internal properties of the object may not be modified.
// ...
// Implementation specific extensions that modify [[Class]], [[Prototype]]
// or [[Extensible]] must not violate the invariants defined in the preceding
// paragraph.
if (!object->map()->is_extensible()) {
Handle<Object> args[] = { object };
Handle<Object> error = isolate->factory()->NewTypeError(
"non_extensible_proto", HandleVector(args, ARRAY_SIZE(args)));
isolate->Throw(*error);
return Handle<Object>();
}
// Before we can set the prototype we need to be sure
// prototype cycles are prevented.
// It is sufficient to validate that the receiver is not in the new prototype
// chain.
for (Object* pt = *value;
pt != heap->null_value();
pt = pt->GetPrototype(isolate)) {
if (JSReceiver::cast(pt) == *object) {
// Cycle detected.
Handle<Object> error = isolate->factory()->NewError(
"cyclic_proto", HandleVector<Object>(NULL, 0));
isolate->Throw(*error);
return Handle<Object>();
}
}
bool dictionary_elements_in_chain =
object->map()->DictionaryElementsInPrototypeChainOnly();
Handle<JSObject> real_receiver = object;
if (skip_hidden_prototypes) {
// Find the first object in the chain whose prototype object is not
// hidden and set the new prototype on that object.
Object* current_proto = real_receiver->GetPrototype();
while (current_proto->IsJSObject() &&
JSObject::cast(current_proto)->map()->is_hidden_prototype()) {
real_receiver = handle(JSObject::cast(current_proto), isolate);
current_proto = current_proto->GetPrototype(isolate);
}
}
// Set the new prototype of the object.
Handle<Map> map(real_receiver->map());
// Nothing to do if prototype is already set.
if (map->prototype() == *value) return value;
if (value->IsJSObject()) {
JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value));
}
Handle<Map> new_map = Map::GetPrototypeTransition(map, value);
if (new_map.is_null()) {
new_map = Map::Copy(map);
Map::PutPrototypeTransition(map, value, new_map);
new_map->set_prototype(*value);
}
ASSERT(new_map->prototype() == *value);
real_receiver->set_map(*new_map);
if (!dictionary_elements_in_chain &&
new_map->DictionaryElementsInPrototypeChainOnly()) {
// If the prototype chain didn't previously have element callbacks, then
// KeyedStoreICs need to be cleared to ensure any that involve this
// map go generic.
object->GetHeap()->ClearAllICsByKind(Code::KEYED_STORE_IC);
}
heap->ClearInstanceofCache();
ASSERT(size == object->Size());
return value;
}
MaybeObject* JSObject::EnsureCanContainElements(Arguments* args,
uint32_t first_arg,
uint32_t arg_count,
EnsureElementsMode mode) {
// Elements in |Arguments| are ordered backwards (because they're on the
// stack), but the method that's called here iterates over them in forward
// direction.
return EnsureCanContainElements(
args->arguments() - first_arg - (arg_count - 1),
arg_count, mode);
}
AccessorPair* JSObject::GetLocalPropertyAccessorPair(Name* name) {
uint32_t index = 0;
if (name->AsArrayIndex(&index)) {
return GetLocalElementAccessorPair(index);
}
LookupResult lookup(GetIsolate());
LocalLookupRealNamedProperty(name, &lookup);
if (lookup.IsPropertyCallbacks() &&
lookup.GetCallbackObject()->IsAccessorPair()) {
return AccessorPair::cast(lookup.GetCallbackObject());
}
return NULL;
}
AccessorPair* JSObject::GetLocalElementAccessorPair(uint32_t index) {
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return NULL;
ASSERT(proto->IsJSGlobalObject());
return JSObject::cast(proto)->GetLocalElementAccessorPair(index);
}
// Check for lookup interceptor.
if (HasIndexedInterceptor()) return NULL;
return GetElementsAccessor()->GetAccessorPair(this, this, index);
}
MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index,
Object* value,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
bool check_prototype,
SetPropertyMode set_mode) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
Handle<JSObject> this_handle(this);
Handle<Object> value_handle(value, isolate);
if (!interceptor->setter()->IsUndefined()) {
v8::IndexedPropertySetterCallback setter =
v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter());
LOG(isolate,
ApiIndexedPropertyAccess("interceptor-indexed-set", this, index));
PropertyCallbackArguments args(isolate, interceptor->data(), this, this);
v8::Handle<v8::Value> result =
args.Call(setter, index, v8::Utils::ToLocal(value_handle));
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!result.IsEmpty()) return *value_handle;
}
MaybeObject* raw_result =
this_handle->SetElementWithoutInterceptor(index,
*value_handle,
attributes,
strict_mode,
check_prototype,
set_mode);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return raw_result;
}
MaybeObject* JSObject::GetElementWithCallback(Object* receiver,
Object* structure,
uint32_t index,
Object* holder) {
Isolate* isolate = GetIsolate();
ASSERT(!structure->IsForeign());
// api style callbacks.
if (structure->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> data(
ExecutableAccessorInfo::cast(structure));
Object* fun_obj = data->getter();
v8::AccessorGetterCallback call_fun =
v8::ToCData<v8::AccessorGetterCallback>(fun_obj);
if (call_fun == NULL) return isolate->heap()->undefined_value();
HandleScope scope(isolate);
Handle<JSObject> self(JSObject::cast(receiver));
Handle<JSObject> holder_handle(JSObject::cast(holder));
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
Handle<String> key = isolate->factory()->NumberToString(number);
LOG(isolate, ApiNamedPropertyAccess("load", *self, *key));
PropertyCallbackArguments
args(isolate, data->data(), *self, *holder_handle);
v8::Handle<v8::Value> result = args.Call(call_fun, v8::Utils::ToLocal(key));
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (result.IsEmpty()) return isolate->heap()->undefined_value();
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
result_internal->VerifyApiCallResultType();
return *result_internal;
}
// __defineGetter__ callback
if (structure->IsAccessorPair()) {
Object* getter = AccessorPair::cast(structure)->getter();
if (getter->IsSpecFunction()) {
// TODO(rossberg): nicer would be to cast to some JSCallable here...
return GetPropertyWithDefinedGetter(receiver, JSReceiver::cast(getter));
}
// Getter is not a function.
return isolate->heap()->undefined_value();
}
if (structure->IsDeclaredAccessorInfo()) {
return GetDeclaredAccessorProperty(receiver,
DeclaredAccessorInfo::cast(structure),
isolate);
}
UNREACHABLE();
return NULL;
}
Handle<Object> JSObject::SetElementWithCallback(Handle<JSObject> object,
Handle<Object> structure,
uint32_t index,
Handle<Object> value,
Handle<JSObject> holder,
StrictModeFlag strict_mode) {
Isolate* isolate = object->GetIsolate();
// We should never get here to initialize a const with the hole
// value since a const declaration would conflict with the setter.
ASSERT(!value->IsTheHole());
// To accommodate both the old and the new api we switch on the
// data structure used to store the callbacks. Eventually foreign
// callbacks should be phased out.
ASSERT(!structure->IsForeign());
if (structure->IsExecutableAccessorInfo()) {
// api style callbacks
Handle<ExecutableAccessorInfo> data =
Handle<ExecutableAccessorInfo>::cast(structure);
Object* call_obj = data->setter();
v8::AccessorSetterCallback call_fun =
v8::ToCData<v8::AccessorSetterCallback>(call_obj);
if (call_fun == NULL) return value;
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
Handle<String> key(isolate->factory()->NumberToString(number));
LOG(isolate, ApiNamedPropertyAccess("store", *object, *key));
PropertyCallbackArguments
args(isolate, data->data(), *object, *holder);
args.Call(call_fun,
v8::Utils::ToLocal(key),
v8::Utils::ToLocal(value));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
return value;
}
if (structure->IsAccessorPair()) {
Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
if (setter->IsSpecFunction()) {
// TODO(rossberg): nicer would be to cast to some JSCallable here...
return SetPropertyWithDefinedSetter(
object, Handle<JSReceiver>::cast(setter), value);
} else {
if (strict_mode == kNonStrictMode) {
return value;
}
Handle<Object> key(isolate->factory()->NewNumberFromUint(index));
Handle<Object> args[2] = { key, holder };
Handle<Object> error = isolate->factory()->NewTypeError(
"no_setter_in_callback", HandleVector(args, 2));
isolate->Throw(*error);
return Handle<Object>();
}
}
// TODO(dcarney): Handle correctly.
if (structure->IsDeclaredAccessorInfo()) return value;
UNREACHABLE();
return Handle<Object>();
}
bool JSObject::HasFastArgumentsElements() {
Heap* heap = GetHeap();
if (!elements()->IsFixedArray()) return false;
FixedArray* elements = FixedArray::cast(this->elements());
if (elements->map() != heap->non_strict_arguments_elements_map()) {
return false;
}
FixedArray* arguments = FixedArray::cast(elements->get(1));
return !arguments->IsDictionary();
}
bool JSObject::HasDictionaryArgumentsElements() {
Heap* heap = GetHeap();
if (!elements()->IsFixedArray()) return false;
FixedArray* elements = FixedArray::cast(this->elements());
if (elements->map() != heap->non_strict_arguments_elements_map()) {
return false;
}
FixedArray* arguments = FixedArray::cast(elements->get(1));
return arguments->IsDictionary();
}
// Adding n elements in fast case is O(n*n).
// Note: revisit design to have dual undefined values to capture absent
// elements.
MaybeObject* JSObject::SetFastElement(uint32_t index,
Object* value,
StrictModeFlag strict_mode,
bool check_prototype) {
ASSERT(HasFastSmiOrObjectElements() ||
HasFastArgumentsElements());
// Array optimizations rely on the prototype lookups of Array objects always
// returning undefined. If there is a store to the initial prototype object,
// make sure all of these optimizations are invalidated.
Isolate* isolate(GetIsolate());
if (isolate->is_initial_object_prototype(this) ||
isolate->is_initial_array_prototype(this)) {
HandleScope scope(GetIsolate());
map()->dependent_code()->DeoptimizeDependentCodeGroup(
GetIsolate(),
DependentCode::kElementsCantBeAddedGroup);
}
FixedArray* backing_store = FixedArray::cast(elements());
if (backing_store->map() == GetHeap()->non_strict_arguments_elements_map()) {
backing_store = FixedArray::cast(backing_store->get(1));
} else {
MaybeObject* maybe = EnsureWritableFastElements();
if (!maybe->To(&backing_store)) return maybe;
}
uint32_t capacity = static_cast<uint32_t>(backing_store->length());
if (check_prototype &&
(index >= capacity || backing_store->get(index)->IsTheHole())) {
bool found;
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index,
value,
&found,
strict_mode);
if (found) return result;
}
uint32_t new_capacity = capacity;
// Check if the length property of this object needs to be updated.
uint32_t array_length = 0;
bool must_update_array_length = false;
bool introduces_holes = true;
if (IsJSArray()) {
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length));
introduces_holes = index > array_length;
if (index >= array_length) {
must_update_array_length = true;
array_length = index + 1;
}
} else {
introduces_holes = index >= capacity;
}
// If the array is growing, and it's not growth by a single element at the
// end, make sure that the ElementsKind is HOLEY.
ElementsKind elements_kind = GetElementsKind();
if (introduces_holes &&
IsFastElementsKind(elements_kind) &&
!IsFastHoleyElementsKind(elements_kind)) {
ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind);
MaybeObject* maybe = TransitionElementsKind(transitioned_kind);
if (maybe->IsFailure()) return maybe;
}
// Check if the capacity of the backing store needs to be increased, or if
// a transition to slow elements is necessary.
if (index >= capacity) {
bool convert_to_slow = true;
if ((index - capacity) < kMaxGap) {
new_capacity = NewElementsCapacity(index + 1);
ASSERT(new_capacity > index);
if (!ShouldConvertToSlowElements(new_capacity)) {
convert_to_slow = false;
}
}
if (convert_to_slow) {
MaybeObject* result = NormalizeElements();
if (result->IsFailure()) return result;
return SetDictionaryElement(index, value, NONE, strict_mode,
check_prototype);
}
}
// Convert to fast double elements if appropriate.
if (HasFastSmiElements() && !value->IsSmi() && value->IsNumber()) {
// Consider fixing the boilerplate as well if we have one.
ElementsKind to_kind = IsHoleyElementsKind(elements_kind)
? FAST_HOLEY_DOUBLE_ELEMENTS
: FAST_DOUBLE_ELEMENTS;
MaybeObject* maybe_failure = UpdateAllocationSite(to_kind);
if (maybe_failure->IsFailure()) return maybe_failure;
MaybeObject* maybe =
SetFastDoubleElementsCapacityAndLength(new_capacity, array_length);
if (maybe->IsFailure()) return maybe;
FixedDoubleArray::cast(elements())->set(index, value->Number());
ValidateElements();
return value;
}
// Change elements kind from Smi-only to generic FAST if necessary.
if (HasFastSmiElements() && !value->IsSmi()) {
Map* new_map;
ElementsKind kind = HasFastHoleyElements()
? FAST_HOLEY_ELEMENTS
: FAST_ELEMENTS;
MaybeObject* maybe_failure = UpdateAllocationSite(kind);
if (maybe_failure->IsFailure()) return maybe_failure;
MaybeObject* maybe_new_map = GetElementsTransitionMap(GetIsolate(),
kind);
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
set_map(new_map);
}
// Increase backing store capacity if that's been decided previously.
if (new_capacity != capacity) {
FixedArray* new_elements;
SetFastElementsCapacitySmiMode smi_mode =
value->IsSmi() && HasFastSmiElements()
? kAllowSmiElements
: kDontAllowSmiElements;
{ MaybeObject* maybe =
SetFastElementsCapacityAndLength(new_capacity,
array_length,
smi_mode);
if (!maybe->To(&new_elements)) return maybe;
}
new_elements->set(index, value);
ValidateElements();
return value;
}
// Finally, set the new element and length.
ASSERT(elements()->IsFixedArray());
backing_store->set(index, value);
if (must_update_array_length) {
JSArray::cast(this)->set_length(Smi::FromInt(array_length));
}
return value;
}
MaybeObject* JSObject::SetDictionaryElement(uint32_t index,
Object* value_raw,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
bool check_prototype,
SetPropertyMode set_mode) {
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
Isolate* isolate = GetIsolate();
Heap* heap = isolate->heap();
Handle<JSObject> self(this);
Handle<Object> value(value_raw, isolate);
// Insert element in the dictionary.
Handle<FixedArray> elements(FixedArray::cast(this->elements()));
bool is_arguments =
(elements->map() == heap->non_strict_arguments_elements_map());
Handle<SeededNumberDictionary> dictionary(is_arguments
? SeededNumberDictionary::cast(elements->get(1))
: SeededNumberDictionary::cast(*elements));
int entry = dictionary->FindEntry(index);
if (entry != SeededNumberDictionary::kNotFound) {
Handle<Object> element(dictionary->ValueAt(entry), isolate);
PropertyDetails details = dictionary->DetailsAt(entry);
if (details.type() == CALLBACKS && set_mode == SET_PROPERTY) {
Handle<Object> result = SetElementWithCallback(self, element, index,
value, self, strict_mode);
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
} else {
dictionary->UpdateMaxNumberKey(index);
// If a value has not been initialized we allow writing to it even if it
// is read-only (a declared const that has not been initialized). If a
// value is being defined we skip attribute checks completely.
if (set_mode == DEFINE_PROPERTY) {
details = PropertyDetails(
attributes, NORMAL, details.dictionary_index());
dictionary->DetailsAtPut(entry, details);
} else if (details.IsReadOnly() && !element->IsTheHole()) {
if (strict_mode == kNonStrictMode) {
return isolate->heap()->undefined_value();
} else {
Handle<Object> holder(this, isolate);
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
Handle<Object> args[2] = { number, holder };
Handle<Object> error =
isolate->factory()->NewTypeError("strict_read_only_property",
HandleVector(args, 2));
return isolate->Throw(*error);
}
}
// Elements of the arguments object in slow mode might be slow aliases.
if (is_arguments && element->IsAliasedArgumentsEntry()) {
AliasedArgumentsEntry* entry = AliasedArgumentsEntry::cast(*element);
Context* context = Context::cast(elements->get(0));
int context_index = entry->aliased_context_slot();
ASSERT(!context->get(context_index)->IsTheHole());
context->set(context_index, *value);
// For elements that are still writable we keep slow aliasing.
if (!details.IsReadOnly()) value = element;
}
dictionary->ValueAtPut(entry, *value);
}
} else {
// Index not already used. Look for an accessor in the prototype chain.
// Can cause GC!
if (check_prototype) {
bool found;
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(
index, *value, &found, strict_mode);
if (found) return result;
}
// When we set the is_extensible flag to false we always force the
// element into dictionary mode (and force them to stay there).
if (!self->map()->is_extensible()) {
if (strict_mode == kNonStrictMode) {
return isolate->heap()->undefined_value();
} else {
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
Handle<String> name = isolate->factory()->NumberToString(number);
Handle<Object> args[1] = { name };
Handle<Object> error =
isolate->factory()->NewTypeError("object_not_extensible",
HandleVector(args, 1));
return isolate->Throw(*error);
}
}
FixedArrayBase* new_dictionary;
PropertyDetails details = PropertyDetails(attributes, NORMAL, 0);
MaybeObject* maybe = dictionary->AddNumberEntry(index, *value, details);
if (!maybe->To(&new_dictionary)) return maybe;
if (*dictionary != SeededNumberDictionary::cast(new_dictionary)) {
if (is_arguments) {
elements->set(1, new_dictionary);
} else {
self->set_elements(new_dictionary);
}
dictionary =
handle(SeededNumberDictionary::cast(new_dictionary), isolate);
}
}
// Update the array length if this JSObject is an array.
if (self->IsJSArray()) {
MaybeObject* result =
JSArray::cast(*self)->JSArrayUpdateLengthFromIndex(index, *value);
if (result->IsFailure()) return result;
}
// Attempt to put this object back in fast case.
if (self->ShouldConvertToFastElements()) {
uint32_t new_length = 0;
if (self->IsJSArray()) {
CHECK(JSArray::cast(*self)->length()->ToArrayIndex(&new_length));
} else {
new_length = dictionary->max_number_key() + 1;
}
SetFastElementsCapacitySmiMode smi_mode = FLAG_smi_only_arrays
? kAllowSmiElements
: kDontAllowSmiElements;
bool has_smi_only_elements = false;
bool should_convert_to_fast_double_elements =
self->ShouldConvertToFastDoubleElements(&has_smi_only_elements);
if (has_smi_only_elements) {
smi_mode = kForceSmiElements;
}
MaybeObject* result = should_convert_to_fast_double_elements
? self->SetFastDoubleElementsCapacityAndLength(new_length, new_length)
: self->SetFastElementsCapacityAndLength(
new_length, new_length, smi_mode);
self->ValidateElements();
if (result->IsFailure()) return result;
#ifdef DEBUG
if (FLAG_trace_normalization) {
PrintF("Object elements are fast case again:\n");
Print();
}
#endif
}
return *value;
}
MUST_USE_RESULT MaybeObject* JSObject::SetFastDoubleElement(
uint32_t index,
Object* value,
StrictModeFlag strict_mode,
bool check_prototype) {
ASSERT(HasFastDoubleElements());
FixedArrayBase* base_elms = FixedArrayBase::cast(elements());
uint32_t elms_length = static_cast<uint32_t>(base_elms->length());
// If storing to an element that isn't in the array, pass the store request
// up the prototype chain before storing in the receiver's elements.
if (check_prototype &&
(index >= elms_length ||
FixedDoubleArray::cast(base_elms)->is_the_hole(index))) {
bool found;
MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index,
value,
&found,
strict_mode);
if (found) return result;
}
// If the value object is not a heap number, switch to fast elements and try
// again.
bool value_is_smi = value->IsSmi();
bool introduces_holes = true;
uint32_t length = elms_length;
if (IsJSArray()) {
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length));
introduces_holes = index > length;
} else {
introduces_holes = index >= elms_length;
}
if (!value->IsNumber()) {
MaybeObject* maybe_obj = SetFastElementsCapacityAndLength(
elms_length,
length,
kDontAllowSmiElements);
if (maybe_obj->IsFailure()) return maybe_obj;
maybe_obj = SetFastElement(index, value, strict_mode, check_prototype);
if (maybe_obj->IsFailure()) return maybe_obj;
ValidateElements();
return maybe_obj;
}
double double_value = value_is_smi
? static_cast<double>(Smi::cast(value)->value())
: HeapNumber::cast(value)->value();
// If the array is growing, and it's not growth by a single element at the
// end, make sure that the ElementsKind is HOLEY.
ElementsKind elements_kind = GetElementsKind();
if (introduces_holes && !IsFastHoleyElementsKind(elements_kind)) {
ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind);
MaybeObject* maybe = TransitionElementsKind(transitioned_kind);
if (maybe->IsFailure()) return maybe;
}
// Check whether there is extra space in the fixed array.
if (index < elms_length) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elements());
elms->set(index, double_value);
if (IsJSArray()) {
// Update the length of the array if needed.
uint32_t array_length = 0;
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length));
if (index >= array_length) {
JSArray::cast(this)->set_length(Smi::FromInt(index + 1));
}
}
return value;
}
// Allow gap in fast case.
if ((index - elms_length) < kMaxGap) {
// Try allocating extra space.
int new_capacity = NewElementsCapacity(index+1);
if (!ShouldConvertToSlowElements(new_capacity)) {
ASSERT(static_cast<uint32_t>(new_capacity) > index);
MaybeObject* maybe_obj =
SetFastDoubleElementsCapacityAndLength(new_capacity, index + 1);
if (maybe_obj->IsFailure()) return maybe_obj;
FixedDoubleArray::cast(elements())->set(index, double_value);
ValidateElements();
return value;
}
}
// Otherwise default to slow case.
ASSERT(HasFastDoubleElements());
ASSERT(map()->has_fast_double_elements());
ASSERT(elements()->IsFixedDoubleArray());
Object* obj;
{ MaybeObject* maybe_obj = NormalizeElements();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
ASSERT(HasDictionaryElements());
return SetElement(index, value, NONE, strict_mode, check_prototype);
}
Handle<Object> JSReceiver::SetElement(Handle<JSReceiver> object,
uint32_t index,
Handle<Object> value,
PropertyAttributes attributes,
StrictModeFlag strict_mode) {
if (object->IsJSProxy()) {
return JSProxy::SetElementWithHandler(
Handle<JSProxy>::cast(object), object, index, value, strict_mode);
}
return JSObject::SetElement(
Handle<JSObject>::cast(object), index, value, attributes, strict_mode);
}
Handle<Object> JSObject::SetOwnElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value,
StrictModeFlag strict_mode) {
ASSERT(!object->HasExternalArrayElements());
CALL_HEAP_FUNCTION(
object->GetIsolate(),
object->SetElement(index, *value, NONE, strict_mode, false),
Object);
}
Handle<Object> JSObject::SetElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value,
PropertyAttributes attr,
StrictModeFlag strict_mode,
bool check_prototype,
SetPropertyMode set_mode) {
if (object->HasExternalArrayElements()) {
if (!value->IsNumber() && !value->IsUndefined()) {
bool has_exception;
Handle<Object> number =
Execution::ToNumber(object->GetIsolate(), value, &has_exception);
if (has_exception) return Handle<Object>();
value = number;
}
}
CALL_HEAP_FUNCTION(
object->GetIsolate(),
object->SetElement(index, *value, attr, strict_mode, check_prototype,
set_mode),
Object);
}
MaybeObject* JSObject::SetElement(uint32_t index,
Object* value_raw,
PropertyAttributes attributes,
StrictModeFlag strict_mode,
bool check_prototype,
SetPropertyMode set_mode) {
Isolate* isolate = GetIsolate();
// Check access rights if needed.
if (IsAccessCheckNeeded()) {
if (!isolate->MayIndexedAccess(this, index, v8::ACCESS_SET)) {
isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return value_raw;
}
}
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return value_raw;
ASSERT(proto->IsJSGlobalObject());
return JSObject::cast(proto)->SetElement(index,
value_raw,
attributes,
strict_mode,
check_prototype,
set_mode);
}
// Don't allow element properties to be redefined for external arrays.
if (HasExternalArrayElements() && set_mode == DEFINE_PROPERTY) {
Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
Handle<Object> args[] = { handle(this, isolate), number };
Handle<Object> error = isolate->factory()->NewTypeError(
"redef_external_array_element", HandleVector(args, ARRAY_SIZE(args)));
return isolate->Throw(*error);
}
// Normalize the elements to enable attributes on the property.
if ((attributes & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) {
SeededNumberDictionary* dictionary;
MaybeObject* maybe_object = NormalizeElements();
if (!maybe_object->To(&dictionary)) return maybe_object;
// Make sure that we never go back to fast case.
dictionary->set_requires_slow_elements();
}
if (!(FLAG_harmony_observation && map()->is_observed())) {
return HasIndexedInterceptor()
? SetElementWithInterceptor(
index, value_raw, attributes, strict_mode, check_prototype, set_mode)
: SetElementWithoutInterceptor(
index, value_raw, attributes, strict_mode, check_prototype, set_mode);
}
// From here on, everything has to be handlified.
Handle<JSObject> self(this);
Handle<Object> value(value_raw, isolate);
PropertyAttributes old_attributes = self->GetLocalElementAttribute(index);
Handle<Object> old_value = isolate->factory()->the_hole_value();
Handle<Object> old_length_handle;
Handle<Object> new_length_handle;
if (old_attributes != ABSENT) {
if (self->GetLocalElementAccessorPair(index) == NULL)
old_value = Object::GetElement(isolate, self, index);
} else if (self->IsJSArray()) {
// Store old array length in case adding an element grows the array.
old_length_handle = handle(Handle<JSArray>::cast(self)->length(), isolate);
}
// Check for lookup interceptor
MaybeObject* result = self->HasIndexedInterceptor()
? self->SetElementWithInterceptor(
index, *value, attributes, strict_mode, check_prototype, set_mode)
: self->SetElementWithoutInterceptor(
index, *value, attributes, strict_mode, check_prototype, set_mode);
Handle<Object> hresult;
if (!result->ToHandle(&hresult, isolate)) return result;
Handle<String> name = isolate->factory()->Uint32ToString(index);
PropertyAttributes new_attributes = self->GetLocalElementAttribute(index);
if (old_attributes == ABSENT) {
if (self->IsJSArray() &&
!old_length_handle->SameValue(Handle<JSArray>::cast(self)->length())) {
new_length_handle = handle(Handle<JSArray>::cast(self)->length(),
isolate);
uint32_t old_length = 0;
uint32_t new_length = 0;
CHECK(old_length_handle->ToArrayIndex(&old_length));
CHECK(new_length_handle->ToArrayIndex(&new_length));
BeginPerformSplice(Handle<JSArray>::cast(self));
EnqueueChangeRecord(self, "add", name, old_value);
EnqueueChangeRecord(self, "update", isolate->factory()->length_string(),
old_length_handle);
EndPerformSplice(Handle<JSArray>::cast(self));
Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
EnqueueSpliceRecord(Handle<JSArray>::cast(self), old_length, deleted,
new_length - old_length);
} else {
EnqueueChangeRecord(self, "add", name, old_value);
}
} else if (old_value->IsTheHole()) {
EnqueueChangeRecord(self, "reconfigure", name, old_value);
} else {
Handle<Object> new_value = Object::GetElement(isolate, self, index);
bool value_changed = !old_value->SameValue(*new_value);
if (old_attributes != new_attributes) {
if (!value_changed) old_value = isolate->factory()->the_hole_value();
EnqueueChangeRecord(self, "reconfigure", name, old_value);
} else if (value_changed) {
EnqueueChangeRecord(self, "update", name, old_value);
}
}
return *hresult;
}
MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index,
Object* value,
PropertyAttributes attr,
StrictModeFlag strict_mode,
bool check_prototype,
SetPropertyMode set_mode) {
ASSERT(HasDictionaryElements() ||
HasDictionaryArgumentsElements() ||
(attr & (DONT_DELETE | DONT_ENUM | READ_ONLY)) == 0);
Isolate* isolate = GetIsolate();
if (FLAG_trace_external_array_abuse &&
IsExternalArrayElementsKind(GetElementsKind())) {
CheckArrayAbuse(this, "external elements write", index);
}
if (FLAG_trace_js_array_abuse &&
!IsExternalArrayElementsKind(GetElementsKind())) {
if (IsJSArray()) {
CheckArrayAbuse(this, "elements write", index, true);
}
}
switch (GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
return SetFastElement(index, value, strict_mode, check_prototype);
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
return SetFastDoubleElement(index, value, strict_mode, check_prototype);
case EXTERNAL_PIXEL_ELEMENTS: {
ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
return pixels->SetValue(index, value);
}
case EXTERNAL_BYTE_ELEMENTS: {
ExternalByteArray* array = ExternalByteArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
ExternalUnsignedByteArray* array =
ExternalUnsignedByteArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_SHORT_ELEMENTS: {
ExternalShortArray* array = ExternalShortArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
ExternalUnsignedShortArray* array =
ExternalUnsignedShortArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_INT_ELEMENTS: {
ExternalIntArray* array = ExternalIntArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
ExternalUnsignedIntArray* array =
ExternalUnsignedIntArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_FLOAT_ELEMENTS: {
ExternalFloatArray* array = ExternalFloatArray::cast(elements());
return array->SetValue(index, value);
}
case EXTERNAL_DOUBLE_ELEMENTS: {
ExternalDoubleArray* array = ExternalDoubleArray::cast(elements());
return array->SetValue(index, value);
}
case DICTIONARY_ELEMENTS:
return SetDictionaryElement(index, value, attr, strict_mode,
check_prototype, set_mode);
case NON_STRICT_ARGUMENTS_ELEMENTS: {
FixedArray* parameter_map = FixedArray::cast(elements());
uint32_t length = parameter_map->length();
Object* probe =
(index < length - 2) ? parameter_map->get(index + 2) : NULL;
if (probe != NULL && !probe->IsTheHole()) {
Context* context = Context::cast(parameter_map->get(0));
int context_index = Smi::cast(probe)->value();
ASSERT(!context->get(context_index)->IsTheHole());
context->set(context_index, value);
// Redefining attributes of an aliased element destroys fast aliasing.
if (set_mode == SET_PROPERTY || attr == NONE) return value;
parameter_map->set_the_hole(index + 2);
// For elements that are still writable we re-establish slow aliasing.
if ((attr & READ_ONLY) == 0) {
MaybeObject* maybe_entry =
isolate->heap()->AllocateAliasedArgumentsEntry(context_index);
if (!maybe_entry->ToObject(&value)) return maybe_entry;
}
}
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
if (arguments->IsDictionary()) {
return SetDictionaryElement(index, value, attr, strict_mode,
check_prototype, set_mode);
} else {
return SetFastElement(index, value, strict_mode, check_prototype);
}
}
}
// All possible cases have been handled above. Add a return to avoid the
// complaints from the compiler.
UNREACHABLE();
return isolate->heap()->null_value();
}
void JSObject::TransitionElementsKind(Handle<JSObject> object,
ElementsKind to_kind) {
CALL_HEAP_FUNCTION_VOID(object->GetIsolate(),
object->TransitionElementsKind(to_kind));
}
bool AllocationSite::IsNestedSite() {
ASSERT(FLAG_trace_track_allocation_sites);
Object* current = GetHeap()->allocation_sites_list();
while (current != NULL && current->IsAllocationSite()) {
AllocationSite* current_site = AllocationSite::cast(current);
if (current_site->nested_site() == this) {
return true;
}
current = current_site->weak_next();
}
return false;
}
MaybeObject* JSObject::UpdateAllocationSite(ElementsKind to_kind) {
if (!FLAG_track_allocation_sites || !IsJSArray()) {
return this;
}
AllocationMemento* memento = AllocationMemento::FindForJSObject(this);
if (memento == NULL || !memento->IsValid()) {
return this;
}
// Walk through to the Allocation Site
AllocationSite* site = memento->GetAllocationSite();
if (site->SitePointsToLiteral() &&
site->transition_info()->IsJSArray()) {
JSArray* transition_info = JSArray::cast(site->transition_info());
ElementsKind kind = transition_info->GetElementsKind();
// if kind is holey ensure that to_kind is as well.
if (IsHoleyElementsKind(kind)) {
to_kind = GetHoleyElementsKind(to_kind);
}
if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
// If the array is huge, it's not likely to be defined in a local
// function, so we shouldn't make new instances of it very often.
uint32_t length = 0;
CHECK(transition_info->length()->ToArrayIndex(&length));
if (length <= AllocationSite::kMaximumArrayBytesToPretransition) {
if (FLAG_trace_track_allocation_sites) {
bool is_nested = site->IsNestedSite();
PrintF(
"AllocationSite: JSArray %p boilerplate %s updated %s->%s\n",
reinterpret_cast<void*>(this),
is_nested ? "(nested)" : "",
ElementsKindToString(kind),
ElementsKindToString(to_kind));
}
return transition_info->TransitionElementsKind(to_kind);
}
}
} else {
ElementsKind kind = site->GetElementsKind();
// if kind is holey ensure that to_kind is as well.
if (IsHoleyElementsKind(kind)) {
to_kind = GetHoleyElementsKind(to_kind);
}
if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
if (FLAG_trace_track_allocation_sites) {
PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
reinterpret_cast<void*>(this),
ElementsKindToString(kind),
ElementsKindToString(to_kind));
}
site->set_transition_info(Smi::FromInt(to_kind));
}
}
return this;
}
MaybeObject* JSObject::TransitionElementsKind(ElementsKind to_kind) {
ASSERT(!map()->is_observed());
ElementsKind from_kind = map()->elements_kind();
if (IsFastHoleyElementsKind(from_kind)) {
to_kind = GetHoleyElementsKind(to_kind);
}
if (from_kind == to_kind) return this;
// Don't update the site if to_kind isn't fast
if (IsFastElementsKind(to_kind)) {
MaybeObject* maybe_failure = UpdateAllocationSite(to_kind);
if (maybe_failure->IsFailure()) return maybe_failure;
}
Isolate* isolate = GetIsolate();
if (elements() == isolate->heap()->empty_fixed_array() ||
(IsFastSmiOrObjectElementsKind(from_kind) &&
IsFastSmiOrObjectElementsKind(to_kind)) ||
(from_kind == FAST_DOUBLE_ELEMENTS &&
to_kind == FAST_HOLEY_DOUBLE_ELEMENTS)) {
ASSERT(from_kind != TERMINAL_FAST_ELEMENTS_KIND);
// No change is needed to the elements() buffer, the transition
// only requires a map change.
MaybeObject* maybe_new_map = GetElementsTransitionMap(isolate, to_kind);
Map* new_map;
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
set_map(new_map);
if (FLAG_trace_elements_transitions) {
FixedArrayBase* elms = FixedArrayBase::cast(elements());
PrintElementsTransition(stdout, from_kind, elms, to_kind, elms);
}
return this;
}
FixedArrayBase* elms = FixedArrayBase::cast(elements());
uint32_t capacity = static_cast<uint32_t>(elms->length());
uint32_t length = capacity;
if (IsJSArray()) {
Object* raw_length = JSArray::cast(this)->length();
if (raw_length->IsUndefined()) {
// If length is undefined, then JSArray is being initialized and has no
// elements, assume a length of zero.
length = 0;
} else {
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length));
}
}
if (IsFastSmiElementsKind(from_kind) &&
IsFastDoubleElementsKind(to_kind)) {
MaybeObject* maybe_result =
SetFastDoubleElementsCapacityAndLength(capacity, length);
if (maybe_result->IsFailure()) return maybe_result;
ValidateElements();
return this;
}
if (IsFastDoubleElementsKind(from_kind) &&
IsFastObjectElementsKind(to_kind)) {
MaybeObject* maybe_result = SetFastElementsCapacityAndLength(
capacity, length, kDontAllowSmiElements);
if (maybe_result->IsFailure()) return maybe_result;
ValidateElements();
return this;
}
// This method should never be called for any other case than the ones
// handled above.
UNREACHABLE();
return GetIsolate()->heap()->null_value();
}
// static
bool Map::IsValidElementsTransition(ElementsKind from_kind,
ElementsKind to_kind) {
// Transitions can't go backwards.
if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
return false;
}
// Transitions from HOLEY -> PACKED are not allowed.
return !IsFastHoleyElementsKind(from_kind) ||
IsFastHoleyElementsKind(to_kind);
}
MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index,
Object* value) {
uint32_t old_len = 0;
CHECK(length()->ToArrayIndex(&old_len));
// Check to see if we need to update the length. For now, we make
// sure that the length stays within 32-bits (unsigned).
if (index >= old_len && index != 0xffffffff) {
Object* len;
{ MaybeObject* maybe_len =
GetHeap()->NumberFromDouble(static_cast<double>(index) + 1);
if (!maybe_len->ToObject(&len)) return maybe_len;
}
set_length(len);
}
return value;
}
MaybeObject* JSObject::GetElementWithInterceptor(Object* receiver,
uint32_t index) {
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
// Make sure that the top context does not change when doing
// callbacks or interceptor calls.
AssertNoContextChange ncc(isolate);
Handle<InterceptorInfo> interceptor(GetIndexedInterceptor(), isolate);
Handle<Object> this_handle(receiver, isolate);
Handle<JSObject> holder_handle(this, isolate);
if (!interceptor->getter()->IsUndefined()) {
v8::IndexedPropertyGetterCallback getter =
v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
LOG(isolate,
ApiIndexedPropertyAccess("interceptor-indexed-get", this, index));
PropertyCallbackArguments
args(isolate, interceptor->data(), receiver, this);
v8::Handle<v8::Value> result = args.Call(getter, index);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!result.IsEmpty()) {
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
result_internal->VerifyApiCallResultType();
return *result_internal;
}
}
Heap* heap = holder_handle->GetHeap();
ElementsAccessor* handler = holder_handle->GetElementsAccessor();
MaybeObject* raw_result = handler->Get(*this_handle,
*holder_handle,
index);
if (raw_result != heap->the_hole_value()) return raw_result;
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
Object* pt = holder_handle->GetPrototype();
if (pt == heap->null_value()) return heap->undefined_value();
return pt->GetElementWithReceiver(isolate, *this_handle, index);
}
bool JSObject::HasDenseElements() {
int capacity = 0;
int used = 0;
GetElementsCapacityAndUsage(&capacity, &used);
return (capacity == 0) || (used > (capacity / 2));
}
void JSObject::GetElementsCapacityAndUsage(int* capacity, int* used) {
*capacity = 0;
*used = 0;
FixedArrayBase* backing_store_base = FixedArrayBase::cast(elements());
FixedArray* backing_store = NULL;
switch (GetElementsKind()) {
case NON_STRICT_ARGUMENTS_ELEMENTS:
backing_store_base =
FixedArray::cast(FixedArray::cast(backing_store_base)->get(1));
backing_store = FixedArray::cast(backing_store_base);
if (backing_store->IsDictionary()) {
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(backing_store);
*capacity = dictionary->Capacity();
*used = dictionary->NumberOfElements();
break;
}
// Fall through.
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
if (IsJSArray()) {
*capacity = backing_store_base->length();
*used = Smi::cast(JSArray::cast(this)->length())->value();
break;
}
// Fall through if packing is not guaranteed.
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
backing_store = FixedArray::cast(backing_store_base);
*capacity = backing_store->length();
for (int i = 0; i < *capacity; ++i) {
if (!backing_store->get(i)->IsTheHole()) ++(*used);
}
break;
case DICTIONARY_ELEMENTS: {
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(FixedArray::cast(elements()));
*capacity = dictionary->Capacity();
*used = dictionary->NumberOfElements();
break;
}
case FAST_DOUBLE_ELEMENTS:
if (IsJSArray()) {
*capacity = backing_store_base->length();
*used = Smi::cast(JSArray::cast(this)->length())->value();
break;
}
// Fall through if packing is not guaranteed.
case FAST_HOLEY_DOUBLE_ELEMENTS: {
FixedDoubleArray* elms = FixedDoubleArray::cast(elements());
*capacity = elms->length();
for (int i = 0; i < *capacity; i++) {
if (!elms->is_the_hole(i)) ++(*used);
}
break;
}
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
// External arrays are considered 100% used.
ExternalArray* external_array = ExternalArray::cast(elements());
*capacity = external_array->length();
*used = external_array->length();
break;
}
}
bool JSObject::ShouldConvertToSlowElements(int new_capacity) {
STATIC_ASSERT(kMaxUncheckedOldFastElementsLength <=
kMaxUncheckedFastElementsLength);
if (new_capacity <= kMaxUncheckedOldFastElementsLength ||
(new_capacity <= kMaxUncheckedFastElementsLength &&
GetHeap()->InNewSpace(this))) {
return false;
}
// If the fast-case backing storage takes up roughly three times as
// much space (in machine words) as a dictionary backing storage
// would, the object should have slow elements.
int old_capacity = 0;
int used_elements = 0;
GetElementsCapacityAndUsage(&old_capacity, &used_elements);
int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
SeededNumberDictionary::kEntrySize;
return 3 * dictionary_size <= new_capacity;
}
bool JSObject::ShouldConvertToFastElements() {
ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements());
// If the elements are sparse, we should not go back to fast case.
if (!HasDenseElements()) return false;
// An object requiring access checks is never allowed to have fast
// elements. If it had fast elements we would skip security checks.
if (IsAccessCheckNeeded()) return false;
// Observed objects may not go to fast mode because they rely on map checks,
// and for fast element accesses we sometimes check element kinds only.
if (FLAG_harmony_observation && map()->is_observed()) return false;
FixedArray* elements = FixedArray::cast(this->elements());
SeededNumberDictionary* dictionary = NULL;
if (elements->map() == GetHeap()->non_strict_arguments_elements_map()) {
dictionary = SeededNumberDictionary::cast(elements->get(1));
} else {
dictionary = SeededNumberDictionary::cast(elements);
}
// If an element has been added at a very high index in the elements
// dictionary, we cannot go back to fast case.
if (dictionary->requires_slow_elements()) return false;
// If the dictionary backing storage takes up roughly half as much
// space (in machine words) as a fast-case backing storage would,
// the object should have fast elements.
uint32_t array_size = 0;
if (IsJSArray()) {
CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_size));
} else {
array_size = dictionary->max_number_key();
}
uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
SeededNumberDictionary::kEntrySize;
return 2 * dictionary_size >= array_size;
}
bool JSObject::ShouldConvertToFastDoubleElements(
bool* has_smi_only_elements) {
*has_smi_only_elements = false;
if (FLAG_unbox_double_arrays) {
ASSERT(HasDictionaryElements());
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(elements());
bool found_double = false;
for (int i = 0; i < dictionary->Capacity(); i++) {
Object* key = dictionary->KeyAt(i);
if (key->IsNumber()) {
Object* value = dictionary->ValueAt(i);
if (!value->IsNumber()) return false;
if (!value->IsSmi()) {
found_double = true;
}
}
}
*has_smi_only_elements = !found_double;
return found_double;
} else {
return false;
}
}
// Certain compilers request function template instantiation when they
// see the definition of the other template functions in the
// class. This requires us to have the template functions put
// together, so even though this function belongs in objects-debug.cc,
// we keep it here instead to satisfy certain compilers.
#ifdef OBJECT_PRINT
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::Print(FILE* out) {
int capacity = HashTable<Shape, Key>::Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = HashTable<Shape, Key>::KeyAt(i);
if (HashTable<Shape, Key>::IsKey(k)) {
PrintF(out, " ");
if (k->IsString()) {
String::cast(k)->StringPrint(out);
} else {
k->ShortPrint(out);
}
PrintF(out, ": ");
ValueAt(i)->ShortPrint(out);
PrintF(out, "\n");
}
}
}
#endif
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) {
int pos = 0;
int capacity = HashTable<Shape, Key>::Capacity();
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
for (int i = 0; i < capacity; i++) {
Object* k = Dictionary<Shape, Key>::KeyAt(i);
if (Dictionary<Shape, Key>::IsKey(k)) {
elements->set(pos++, ValueAt(i), mode);
}
}
ASSERT(pos == elements->length());
}
InterceptorInfo* JSObject::GetNamedInterceptor() {
ASSERT(map()->has_named_interceptor());
JSFunction* constructor = JSFunction::cast(map()->constructor());
ASSERT(constructor->shared()->IsApiFunction());
Object* result =
constructor->shared()->get_api_func_data()->named_property_handler();
return InterceptorInfo::cast(result);
}
InterceptorInfo* JSObject::GetIndexedInterceptor() {
ASSERT(map()->has_indexed_interceptor());
JSFunction* constructor = JSFunction::cast(map()->constructor());
ASSERT(constructor->shared()->IsApiFunction());
Object* result =
constructor->shared()->get_api_func_data()->indexed_property_handler();
return InterceptorInfo::cast(result);
}
Handle<Object> JSObject::GetPropertyPostInterceptor(
Handle<JSObject> object,
Handle<Object> receiver,
Handle<Name> name,
PropertyAttributes* attributes) {
// Check local property in holder, ignore interceptor.
Isolate* isolate = object->GetIsolate();
LookupResult lookup(isolate);
object->LocalLookupRealNamedProperty(*name, &lookup);
Handle<Object> result;
if (lookup.IsFound()) {
result = GetProperty(object, receiver, &lookup, name, attributes);
} else {
// Continue searching via the prototype chain.
Handle<Object> prototype(object->GetPrototype(), isolate);
*attributes = ABSENT;
if (prototype->IsNull()) return isolate->factory()->undefined_value();
result = GetPropertyWithReceiver(prototype, receiver, name, attributes);
}
return result;
}
MaybeObject* JSObject::GetLocalPropertyPostInterceptor(
Object* receiver,
Name* name,
PropertyAttributes* attributes) {
// Check local property in holder, ignore interceptor.
LookupResult result(GetIsolate());
LocalLookupRealNamedProperty(name, &result);
if (result.IsFound()) {
return GetProperty(receiver, &result, name, attributes);
}
return GetHeap()->undefined_value();
}
Handle<Object> JSObject::GetPropertyWithInterceptor(
Handle<JSObject> object,
Handle<Object> receiver,
Handle<Name> name,
PropertyAttributes* attributes) {
Isolate* isolate = object->GetIsolate();
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return isolate->factory()->undefined_value();
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor(), isolate);
Handle<String> name_string = Handle<String>::cast(name);
if (!interceptor->getter()->IsUndefined()) {
v8::NamedPropertyGetterCallback getter =
v8::ToCData<v8::NamedPropertyGetterCallback>(interceptor->getter());
LOG(isolate,
ApiNamedPropertyAccess("interceptor-named-get", *object, *name));
PropertyCallbackArguments
args(isolate, interceptor->data(), *receiver, *object);
v8::Handle<v8::Value> result =
args.Call(getter, v8::Utils::ToLocal(name_string));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!result.IsEmpty()) {
*attributes = NONE;
Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
result_internal->VerifyApiCallResultType();
// Rebox handle to escape this scope.
return handle(*result_internal, isolate);
}
}
return GetPropertyPostInterceptor(object, receiver, name, attributes);
}
bool JSObject::HasRealNamedProperty(Handle<JSObject> object,
Handle<Name> key) {
Isolate* isolate = object->GetIsolate();
SealHandleScope shs(isolate);
// Check access rights if needed.
if (object->IsAccessCheckNeeded()) {
if (!isolate->MayNamedAccess(*object, *key, v8::ACCESS_HAS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_HAS);
return false;
}
}
LookupResult result(isolate);
object->LocalLookupRealNamedProperty(*key, &result);
return result.IsFound() && !result.IsInterceptor();
}
bool JSObject::HasRealElementProperty(Handle<JSObject> object, uint32_t index) {
Isolate* isolate = object->GetIsolate();
SealHandleScope shs(isolate);
// Check access rights if needed.
if (object->IsAccessCheckNeeded()) {
if (!isolate->MayIndexedAccess(*object, index, v8::ACCESS_HAS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_HAS);
return false;
}
}
if (object->IsJSGlobalProxy()) {
HandleScope scope(isolate);
Handle<Object> proto(object->GetPrototype(), isolate);
if (proto->IsNull()) return false;
ASSERT(proto->IsJSGlobalObject());
return HasRealElementProperty(Handle<JSObject>::cast(proto), index);
}
return object->GetElementAttributeWithoutInterceptor(
*object, index, false) != ABSENT;
}
bool JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object,
Handle<Name> key) {
Isolate* isolate = object->GetIsolate();
SealHandleScope shs(isolate);
// Check access rights if needed.
if (object->IsAccessCheckNeeded()) {
if (!isolate->MayNamedAccess(*object, *key, v8::ACCESS_HAS)) {
isolate->ReportFailedAccessCheck(*object, v8::ACCESS_HAS);
return false;
}
}
LookupResult result(isolate);
object->LocalLookupRealNamedProperty(*key, &result);
return result.IsPropertyCallbacks();
}
int JSObject::NumberOfLocalProperties(PropertyAttributes filter) {
if (HasFastProperties()) {
Map* map = this->map();
if (filter == NONE) return map->NumberOfOwnDescriptors();
if (filter & DONT_ENUM) {
int result = map->EnumLength();
if (result != Map::kInvalidEnumCache) return result;
}
return map->NumberOfDescribedProperties(OWN_DESCRIPTORS, filter);
}
return property_dictionary()->NumberOfElementsFilterAttributes(filter);
}
void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
Object* temp = get(i);
set(i, get(j));
set(j, temp);
if (this != numbers) {
temp = numbers->get(i);
numbers->set(i, Smi::cast(numbers->get(j)));
numbers->set(j, Smi::cast(temp));
}
}
static void InsertionSortPairs(FixedArray* content,
FixedArray* numbers,
int len) {
for (int i = 1; i < len; i++) {
int j = i;
while (j > 0 &&
(NumberToUint32(numbers->get(j - 1)) >
NumberToUint32(numbers->get(j)))) {
content->SwapPairs(numbers, j - 1, j);
j--;
}
}
}
void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
// In-place heap sort.
ASSERT(content->length() == numbers->length());
// Bottom-up max-heap construction.
for (int i = 1; i < len; ++i) {
int child_index = i;
while (child_index > 0) {
int parent_index = ((child_index + 1) >> 1) - 1;
uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
uint32_t child_value = NumberToUint32(numbers->get(child_index));
if (parent_value < child_value) {
content->SwapPairs(numbers, parent_index, child_index);
} else {
break;
}
child_index = parent_index;
}
}
// Extract elements and create sorted array.
for (int i = len - 1; i > 0; --i) {
// Put max element at the back of the array.
content->SwapPairs(numbers, 0, i);
// Sift down the new top element.
int parent_index = 0;
while (true) {
int child_index = ((parent_index + 1) << 1) - 1;
if (child_index >= i) break;
uint32_t child1_value = NumberToUint32(numbers->get(child_index));
uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
if (child_index + 1 >= i || child1_value > child2_value) {
if (parent_value > child1_value) break;
content->SwapPairs(numbers, parent_index, child_index);
parent_index = child_index;
} else {
if (parent_value > child2_value) break;
content->SwapPairs(numbers, parent_index, child_index + 1);
parent_index = child_index + 1;
}
}
}
}
// Sort this array and the numbers as pairs wrt. the (distinct) numbers.
void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
ASSERT(this->length() == numbers->length());
// For small arrays, simply use insertion sort.
if (len <= 10) {
InsertionSortPairs(this, numbers, len);
return;
}
// Check the range of indices.
uint32_t min_index = NumberToUint32(numbers->get(0));
uint32_t max_index = min_index;
uint32_t i;
for (i = 1; i < len; i++) {
if (NumberToUint32(numbers->get(i)) < min_index) {
min_index = NumberToUint32(numbers->get(i));
} else if (NumberToUint32(numbers->get(i)) > max_index) {
max_index = NumberToUint32(numbers->get(i));
}
}
if (max_index - min_index + 1 == len) {
// Indices form a contiguous range, unless there are duplicates.
// Do an in-place linear time sort assuming distinct numbers, but
// avoid hanging in case they are not.
for (i = 0; i < len; i++) {
uint32_t p;
uint32_t j = 0;
// While the current element at i is not at its correct position p,
// swap the elements at these two positions.
while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
j++ < len) {
SwapPairs(numbers, i, p);
}
}
} else {
HeapSortPairs(this, numbers, len);
return;
}
}
// Fill in the names of local properties into the supplied storage. The main
// purpose of this function is to provide reflection information for the object
// mirrors.
void JSObject::GetLocalPropertyNames(
FixedArray* storage, int index, PropertyAttributes filter) {
ASSERT(storage->length() >= (NumberOfLocalProperties(filter) - index));
if (HasFastProperties()) {
int real_size = map()->NumberOfOwnDescriptors();
DescriptorArray* descs = map()->instance_descriptors();
for (int i = 0; i < real_size; i++) {
if ((descs->GetDetails(i).attributes() & filter) == 0 &&
((filter & SYMBOLIC) == 0 || !descs->GetKey(i)->IsSymbol())) {
storage->set(index++, descs->GetKey(i));
}
}
} else {
property_dictionary()->CopyKeysTo(storage,
index,
filter,
NameDictionary::UNSORTED);
}
}
int JSObject::NumberOfLocalElements(PropertyAttributes filter) {
return GetLocalElementKeys(NULL, filter);
}
int JSObject::NumberOfEnumElements() {
// Fast case for objects with no elements.
if (!IsJSValue() && HasFastObjectElements()) {
uint32_t length = IsJSArray() ?
static_cast<uint32_t>(
Smi::cast(JSArray::cast(this)->length())->value()) :
static_cast<uint32_t>(FixedArray::cast(elements())->length());
if (length == 0) return 0;
}
// Compute the number of enumerable elements.
return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM));
}
int JSObject::GetLocalElementKeys(FixedArray* storage,
PropertyAttributes filter) {
int counter = 0;
switch (GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
int length = IsJSArray() ?
Smi::cast(JSArray::cast(this)->length())->value() :
FixedArray::cast(elements())->length();
for (int i = 0; i < length; i++) {
if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
if (storage != NULL) {
storage->set(counter, Smi::FromInt(i));
}
counter++;
}
}
ASSERT(!storage || storage->length() >= counter);
break;
}
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
int length = IsJSArray() ?
Smi::cast(JSArray::cast(this)->length())->value() :
FixedDoubleArray::cast(elements())->length();
for (int i = 0; i < length; i++) {
if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) {
if (storage != NULL) {
storage->set(counter, Smi::FromInt(i));
}
counter++;
}
}
ASSERT(!storage || storage->length() >= counter);
break;
}
case EXTERNAL_PIXEL_ELEMENTS: {
int length = ExternalPixelArray::cast(elements())->length();
while (counter < length) {
if (storage != NULL) {
storage->set(counter, Smi::FromInt(counter));
}
counter++;
}
ASSERT(!storage || storage->length() >= counter);
break;
}
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS: {
int length = ExternalArray::cast(elements())->length();
while (counter < length) {
if (storage != NULL) {
storage->set(counter, Smi::FromInt(counter));
}
counter++;
}
ASSERT(!storage || storage->length() >= counter);
break;
}
case DICTIONARY_ELEMENTS: {
if (storage != NULL) {
element_dictionary()->CopyKeysTo(storage,
filter,
SeededNumberDictionary::SORTED);
}
counter += element_dictionary()->NumberOfElementsFilterAttributes(filter);
break;
}
case NON_STRICT_ARGUMENTS_ELEMENTS: {
FixedArray* parameter_map = FixedArray::cast(elements());
int mapped_length = parameter_map->length() - 2;
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
if (arguments->IsDictionary()) {
// Copy the keys from arguments first, because Dictionary::CopyKeysTo
// will insert in storage starting at index 0.
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(arguments);
if (storage != NULL) {
dictionary->CopyKeysTo(
storage, filter, SeededNumberDictionary::UNSORTED);
}
counter += dictionary->NumberOfElementsFilterAttributes(filter);
for (int i = 0; i < mapped_length; ++i) {
if (!parameter_map->get(i + 2)->IsTheHole()) {
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
++counter;
}
}
if (storage != NULL) storage->SortPairs(storage, counter);
} else {
int backing_length = arguments->length();
int i = 0;
for (; i < mapped_length; ++i) {
if (!parameter_map->get(i + 2)->IsTheHole()) {
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
++counter;
} else if (i < backing_length && !arguments->get(i)->IsTheHole()) {
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
++counter;
}
}
for (; i < backing_length; ++i) {
if (storage != NULL) storage->set(counter, Smi::FromInt(i));
++counter;
}
}
break;
}
}
if (this->IsJSValue()) {
Object* val = JSValue::cast(this)->value();
if (val->IsString()) {
String* str = String::cast(val);
if (storage) {
for (int i = 0; i < str->length(); i++) {
storage->set(counter + i, Smi::FromInt(i));
}
}
counter += str->length();
}
}
ASSERT(!storage || storage->length() == counter);
return counter;
}
int JSObject::GetEnumElementKeys(FixedArray* storage) {
return GetLocalElementKeys(storage,
static_cast<PropertyAttributes>(DONT_ENUM));
}
// StringKey simply carries a string object as key.
class StringKey : public HashTableKey {
public:
explicit StringKey(String* string) :
string_(string),
hash_(HashForObject(string)) { }
bool IsMatch(Object* string) {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (hash_ != HashForObject(string)) {
return false;
}
return string_->Equals(String::cast(string));
}
uint32_t Hash() { return hash_; }
uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); }
Object* AsObject(Heap* heap) { return string_; }
String* string_;
uint32_t hash_;
};
// StringSharedKeys are used as keys in the eval cache.
class StringSharedKey : public HashTableKey {
public:
StringSharedKey(String* source,
SharedFunctionInfo* shared,
LanguageMode language_mode,
int scope_position)
: source_(source),
shared_(shared),
language_mode_(language_mode),
scope_position_(scope_position) { }
bool IsMatch(Object* other) {
if (!other->IsFixedArray()) return false;
FixedArray* other_array = FixedArray::cast(other);
SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
if (shared != shared_) return false;
int language_unchecked = Smi::cast(other_array->get(2))->value();
ASSERT(language_unchecked == CLASSIC_MODE ||
language_unchecked == STRICT_MODE ||
language_unchecked == EXTENDED_MODE);
LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
if (language_mode != language_mode_) return false;
int scope_position = Smi::cast(other_array->get(3))->value();
if (scope_position != scope_position_) return false;
String* source = String::cast(other_array->get(1));
return source->Equals(source_);
}
static uint32_t StringSharedHashHelper(String* source,
SharedFunctionInfo* shared,
LanguageMode language_mode,
int scope_position) {
uint32_t hash = source->Hash();
if (shared->HasSourceCode()) {
// Instead of using the SharedFunctionInfo pointer in the hash
// code computation, we use a combination of the hash of the
// script source code and the start position of the calling scope.
// We do this to ensure that the cache entries can survive garbage
// collection.
Script* script = Script::cast(shared->script());
hash ^= String::cast(script->source())->Hash();
if (language_mode == STRICT_MODE) hash ^= 0x8000;
if (language_mode == EXTENDED_MODE) hash ^= 0x0080;
hash += scope_position;
}
return hash;
}
uint32_t Hash() {
return StringSharedHashHelper(
source_, shared_, language_mode_, scope_position_);
}
uint32_t HashForObject(Object* obj) {
FixedArray* other_array = FixedArray::cast(obj);
SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
String* source = String::cast(other_array->get(1));
int language_unchecked = Smi::cast(other_array->get(2))->value();
ASSERT(language_unchecked == CLASSIC_MODE ||
language_unchecked == STRICT_MODE ||
language_unchecked == EXTENDED_MODE);
LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
int scope_position = Smi::cast(other_array->get(3))->value();
return StringSharedHashHelper(
source, shared, language_mode, scope_position);
}
MUST_USE_RESULT MaybeObject* AsObject(Heap* heap) {
Object* obj;
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(4);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* other_array = FixedArray::cast(obj);
other_array->set(0, shared_);
other_array->set(1, source_);
other_array->set(2, Smi::FromInt(language_mode_));
other_array->set(3, Smi::FromInt(scope_position_));
return other_array;
}
private:
String* source_;
SharedFunctionInfo* shared_;
LanguageMode language_mode_;
int scope_position_;
};
// RegExpKey carries the source and flags of a regular expression as key.
class RegExpKey : public HashTableKey {
public:
RegExpKey(String* string, JSRegExp::Flags flags)
: string_(string),
flags_(Smi::FromInt(flags.value())) { }
// Rather than storing the key in the hash table, a pointer to the
// stored value is stored where the key should be. IsMatch then
// compares the search key to the found object, rather than comparing
// a key to a key.
bool IsMatch(Object* obj) {
FixedArray* val = FixedArray::cast(obj);
return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
&& (flags_ == val->get(JSRegExp::kFlagsIndex));
}
uint32_t Hash() { return RegExpHash(string_, flags_); }
Object* AsObject(Heap* heap) {
// Plain hash maps, which is where regexp keys are used, don't
// use this function.
UNREACHABLE();
return NULL;
}
uint32_t HashForObject(Object* obj) {
FixedArray* val = FixedArray::cast(obj);
return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
Smi::cast(val->get(JSRegExp::kFlagsIndex)));
}
static uint32_t RegExpHash(String* string, Smi* flags) {
return string->Hash() + flags->value();
}
String* string_;
Smi* flags_;
};
// Utf8StringKey carries a vector of chars as key.
class Utf8StringKey : public HashTableKey {
public:
explicit Utf8StringKey(Vector<const char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
bool IsMatch(Object* string) {
return String::cast(string)->IsUtf8EqualTo(string_);
}
uint32_t Hash() {
if (hash_field_ != 0) return hash_field_ >> String::kHashShift;
hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_);
uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) {
return String::cast(other)->Hash();
}
MaybeObject* AsObject(Heap* heap) {
if (hash_field_ == 0) Hash();
return heap->AllocateInternalizedStringFromUtf8(string_,
chars_,
hash_field_);
}
Vector<const char> string_;
uint32_t hash_field_;
int chars_; // Caches the number of characters when computing the hash code.
uint32_t seed_;
};
template <typename Char>
class SequentialStringKey : public HashTableKey {
public:
explicit SequentialStringKey(Vector<const Char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
uint32_t Hash() {
hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(),
string_.length(),
seed_);
uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) {
return String::cast(other)->Hash();
}
Vector<const Char> string_;
uint32_t hash_field_;
uint32_t seed_;
};
class OneByteStringKey : public SequentialStringKey<uint8_t> {
public:
OneByteStringKey(Vector<const uint8_t> str, uint32_t seed)
: SequentialStringKey<uint8_t>(str, seed) { }
bool IsMatch(Object* string) {
return String::cast(string)->IsOneByteEqualTo(string_);
}
MaybeObject* AsObject(Heap* heap) {
if (hash_field_ == 0) Hash();
return heap->AllocateOneByteInternalizedString(string_, hash_field_);
}
};
class SubStringOneByteStringKey : public HashTableKey {
public:
explicit SubStringOneByteStringKey(Handle<SeqOneByteString> string,
int from,
int length)
: string_(string), from_(from), length_(length) { }
uint32_t Hash() {
ASSERT(length_ >= 0);
ASSERT(from_ + length_ <= string_->length());
uint8_t* chars = string_->GetChars() + from_;
hash_field_ = StringHasher::HashSequentialString(
chars, length_, string_->GetHeap()->HashSeed());
uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
uint32_t HashForObject(Object* other) {
return String::cast(other)->Hash();
}
bool IsMatch(Object* string) {
Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
return String::cast(string)->IsOneByteEqualTo(chars);
}
MaybeObject* AsObject(Heap* heap) {
if (hash_field_ == 0) Hash();
Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
return heap->AllocateOneByteInternalizedString(chars, hash_field_);
}
private:
Handle<SeqOneByteString> string_;
int from_;
int length_;
uint32_t hash_field_;
};
class TwoByteStringKey : public SequentialStringKey<uc16> {
public:
explicit TwoByteStringKey(Vector<const uc16> str, uint32_t seed)
: SequentialStringKey<uc16>(str, seed) { }
bool IsMatch(Object* string) {
return String::cast(string)->IsTwoByteEqualTo(string_);
}
MaybeObject* AsObject(Heap* heap) {
if (hash_field_ == 0) Hash();
return heap->AllocateTwoByteInternalizedString(string_, hash_field_);
}
};
// InternalizedStringKey carries a string/internalized-string object as key.
class InternalizedStringKey : public HashTableKey {
public:
explicit InternalizedStringKey(String* string)
: string_(string) { }
bool IsMatch(Object* string) {
return String::cast(string)->Equals(string_);
}
uint32_t Hash() { return string_->Hash(); }
uint32_t HashForObject(Object* other) {
return String::cast(other)->Hash();
}
MaybeObject* AsObject(Heap* heap) {
// Attempt to flatten the string, so that internalized strings will most
// often be flat strings.
string_ = string_->TryFlattenGetString();
// Internalize the string if possible.
Map* map = heap->InternalizedStringMapForString(string_);
if (map != NULL) {
string_->set_map_no_write_barrier(map);
ASSERT(string_->IsInternalizedString());
return string_;
}
// Otherwise allocate a new internalized string.
return heap->AllocateInternalizedStringImpl(
string_, string_->length(), string_->hash_field());
}
static uint32_t StringHash(Object* obj) {
return String::cast(obj)->Hash();
}
String* string_;
};
template<typename Shape, typename Key>
void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) {
IteratePointers(v, 0, kElementsStartOffset);
}
template<typename Shape, typename Key>
void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) {
IteratePointers(v,
kElementsStartOffset,
kHeaderSize + length() * kPointerSize);
}
template<typename Shape, typename Key>
MaybeObject* HashTable<Shape, Key>::Allocate(Heap* heap,
int at_least_space_for,
MinimumCapacity capacity_option,
PretenureFlag pretenure) {
ASSERT(!capacity_option || IS_POWER_OF_TWO(at_least_space_for));
int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
? at_least_space_for
: ComputeCapacity(at_least_space_for);
if (capacity > HashTable::kMaxCapacity) {
return Failure::OutOfMemoryException(0x10);
}
Object* obj;
{ MaybeObject* maybe_obj =
heap-> AllocateHashTable(EntryToIndex(capacity), pretenure);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
HashTable::cast(obj)->SetNumberOfElements(0);
HashTable::cast(obj)->SetNumberOfDeletedElements(0);
HashTable::cast(obj)->SetCapacity(capacity);
return obj;
}
// Find entry for key otherwise return kNotFound.
int NameDictionary::FindEntry(Name* key) {
if (!key->IsUniqueName()) {
return HashTable<NameDictionaryShape, Name*>::FindEntry(key);
}
// Optimized for unique names. Knowledge of the key type allows:
// 1. Move the check if the key is unique out of the loop.
// 2. Avoid comparing hash codes in unique-to-unique comparison.
// 3. Detect a case when a dictionary key is not unique but the key is.
// In case of positive result the dictionary key may be replaced by the
// internalized string with minimal performance penalty. It gives a chance
// to perform further lookups in code stubs (and significant performance
// boost a certain style of code).
// EnsureCapacity will guarantee the hash table is never full.
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(key->Hash(), capacity);
uint32_t count = 1;
while (true) {
int index = EntryToIndex(entry);
Object* element = get(index);
if (element->IsUndefined()) break; // Empty entry.
if (key == element) return entry;
if (!element->IsUniqueName() &&
!element->IsTheHole() &&
Name::cast(element)->Equals(key)) {
// Replace a key that is a non-internalized string by the equivalent
// internalized string for faster further lookups.
set(index, key);
return entry;
}
ASSERT(element->IsTheHole() || !Name::cast(element)->Equals(key));
entry = NextProbe(entry, count++, capacity);
}
return kNotFound;
}
template<typename Shape, typename Key>
MaybeObject* HashTable<Shape, Key>::Rehash(HashTable* new_table, Key key) {
ASSERT(NumberOfElements() < new_table->Capacity());
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
// Copy prefix to new array.
for (int i = kPrefixStartIndex;
i < kPrefixStartIndex + Shape::kPrefixSize;
i++) {
new_table->set(i, get(i), mode);
}
// Rehash the elements.
int capacity = Capacity();
for (int i = 0; i < capacity; i++) {
uint32_t from_index = EntryToIndex(i);
Object* k = get(from_index);
if (IsKey(k)) {
uint32_t hash = HashTable<Shape, Key>::HashForObject(key, k);
uint32_t insertion_index =
EntryToIndex(new_table->FindInsertionEntry(hash));
for (int j = 0; j < Shape::kEntrySize; j++) {
new_table->set(insertion_index + j, get(from_index + j), mode);
}
}
}
new_table->SetNumberOfElements(NumberOfElements());
new_table->SetNumberOfDeletedElements(0);
return new_table;
}
template<typename Shape, typename Key>
uint32_t HashTable<Shape, Key>::EntryForProbe(Key key,
Object* k,
int probe,
uint32_t expected) {
uint32_t hash = HashTable<Shape, Key>::HashForObject(key, k);
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(hash, capacity);
for (int i = 1; i < probe; i++) {
if (entry == expected) return expected;
entry = NextProbe(entry, i, capacity);
}
return entry;
}
template<typename Shape, typename Key>
void HashTable<Shape, Key>::Swap(uint32_t entry1,
uint32_t entry2,
WriteBarrierMode mode) {
int index1 = EntryToIndex(entry1);
int index2 = EntryToIndex(entry2);
Object* temp[Shape::kEntrySize];
for (int j = 0; j < Shape::kEntrySize; j++) {
temp[j] = get(index1 + j);
}
for (int j = 0; j < Shape::kEntrySize; j++) {
set(index1 + j, get(index2 + j), mode);
}
for (int j = 0; j < Shape::kEntrySize; j++) {
set(index2 + j, temp[j], mode);
}
}
template<typename Shape, typename Key>
void HashTable<Shape, Key>::Rehash(Key key) {
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = GetWriteBarrierMode(no_gc);
uint32_t capacity = Capacity();
bool done = false;
for (int probe = 1; !done; probe++) {
// All elements at entries given by one of the first _probe_ probes
// are placed correctly. Other elements might need to be moved.
done = true;
for (uint32_t current = 0; current < capacity; current++) {
Object* current_key = get(EntryToIndex(current));
if (IsKey(current_key)) {
uint32_t target = EntryForProbe(key, current_key, probe, current);
if (current == target) continue;
Object* target_key = get(EntryToIndex(target));
if (!IsKey(target_key) ||
EntryForProbe(key, target_key, probe, target) != target) {
// Put the current element into the correct position.
Swap(current, target, mode);
// The other element will be processed on the next iteration.
current--;
} else {
// The place for the current element is occupied. Leave the element
// for the next probe.
done = false;
}
}
}
}
}
template<typename Shape, typename Key>
MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n,
Key key,
PretenureFlag pretenure) {
int capacity = Capacity();
int nof = NumberOfElements() + n;
int nod = NumberOfDeletedElements();
// Return if:
// 50% is still free after adding n elements and
// at most 50% of the free elements are deleted elements.
if (nod <= (capacity - nof) >> 1) {
int needed_free = nof >> 1;
if (nof + needed_free <= capacity) return this;
}
const int kMinCapacityForPretenure = 256;
bool should_pretenure = pretenure == TENURED ||
((capacity > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this));
Object* obj;
{ MaybeObject* maybe_obj =
Allocate(GetHeap(),
nof * 2,
USE_DEFAULT_MINIMUM_CAPACITY,
should_pretenure ? TENURED : NOT_TENURED);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return Rehash(HashTable::cast(obj), key);
}
template<typename Shape, typename Key>
MaybeObject* HashTable<Shape, Key>::Shrink(Key key) {
int capacity = Capacity();
int nof = NumberOfElements();
// Shrink to fit the number of elements if only a quarter of the
// capacity is filled with elements.
if (nof > (capacity >> 2)) return this;
// Allocate a new dictionary with room for at least the current
// number of elements. The allocation method will make sure that
// there is extra room in the dictionary for additions. Don't go
// lower than room for 16 elements.
int at_least_room_for = nof;
if (at_least_room_for < 16) return this;
const int kMinCapacityForPretenure = 256;
bool pretenure =
(at_least_room_for > kMinCapacityForPretenure) &&
!GetHeap()->InNewSpace(this);
Object* obj;
{ MaybeObject* maybe_obj =
Allocate(GetHeap(),
at_least_room_for,
USE_DEFAULT_MINIMUM_CAPACITY,
pretenure ? TENURED : NOT_TENURED);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return Rehash(HashTable::cast(obj), key);
}
template<typename Shape, typename Key>
uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) {
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(hash, capacity);
uint32_t count = 1;
// EnsureCapacity will guarantee the hash table is never full.
while (true) {
Object* element = KeyAt(entry);
if (element->IsUndefined() || element->IsTheHole()) break;
entry = NextProbe(entry, count++, capacity);
}
return entry;
}
// Force instantiation of template instances class.
// Please note this list is compiler dependent.
template class HashTable<StringTableShape, HashTableKey*>;
template class HashTable<CompilationCacheShape, HashTableKey*>;
template class HashTable<MapCacheShape, HashTableKey*>;
template class HashTable<ObjectHashTableShape<1>, Object*>;
template class HashTable<ObjectHashTableShape<2>, Object*>;
template class HashTable<WeakHashTableShape<2>, Object*>;
template class Dictionary<NameDictionaryShape, Name*>;
template class Dictionary<SeededNumberDictionaryShape, uint32_t>;
template class Dictionary<UnseededNumberDictionaryShape, uint32_t>;
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
Allocate(Heap* heap, int at_least_space_for, PretenureFlag pretenure);
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
Allocate(Heap* heap, int at_least_space_for, PretenureFlag pretenure);
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::
Allocate(Heap* heap, int n, PretenureFlag pretenure);
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::AtPut(
uint32_t, Object*);
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
AtPut(uint32_t, Object*);
template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>::
SlowReverseLookup(Object* value);
template Object* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
SlowReverseLookup(Object* value);
template Object* Dictionary<NameDictionaryShape, Name*>::SlowReverseLookup(
Object*);
template void Dictionary<SeededNumberDictionaryShape, uint32_t>::CopyKeysTo(
FixedArray*,
PropertyAttributes,
Dictionary<SeededNumberDictionaryShape, uint32_t>::SortMode);
template Object* Dictionary<NameDictionaryShape, Name*>::DeleteProperty(
int, JSObject::DeleteMode);
template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>::
DeleteProperty(int, JSObject::DeleteMode);
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::Shrink(Name* n);
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Shrink(
uint32_t);
template void Dictionary<NameDictionaryShape, Name*>::CopyKeysTo(
FixedArray*,
int,
PropertyAttributes,
Dictionary<NameDictionaryShape, Name*>::SortMode);
template int
Dictionary<NameDictionaryShape, Name*>::NumberOfElementsFilterAttributes(
PropertyAttributes);
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::Add(
Name*, Object*, PropertyDetails);
template MaybeObject*
Dictionary<NameDictionaryShape, Name*>::GenerateNewEnumerationIndices();
template int
Dictionary<SeededNumberDictionaryShape, uint32_t>::
NumberOfElementsFilterAttributes(PropertyAttributes);
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Add(
uint32_t, Object*, PropertyDetails);
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::Add(
uint32_t, Object*, PropertyDetails);
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
EnsureCapacity(int, uint32_t);
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
EnsureCapacity(int, uint32_t);
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::
EnsureCapacity(int, Name*);
template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::
AddEntry(uint32_t, Object*, PropertyDetails, uint32_t);
template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::
AddEntry(uint32_t, Object*, PropertyDetails, uint32_t);
template MaybeObject* Dictionary<NameDictionaryShape, Name*>::AddEntry(
Name*, Object*, PropertyDetails, uint32_t);
template
int Dictionary<SeededNumberDictionaryShape, uint32_t>::NumberOfEnumElements();
template
int Dictionary<NameDictionaryShape, Name*>::NumberOfEnumElements();
template
int HashTable<SeededNumberDictionaryShape, uint32_t>::FindEntry(uint32_t);
Handle<Object> JSObject::PrepareSlowElementsForSort(
Handle<JSObject> object, uint32_t limit) {
CALL_HEAP_FUNCTION(object->GetIsolate(),
object->PrepareSlowElementsForSort(limit),
Object);
}
// Collates undefined and unexisting elements below limit from position
// zero of the elements. The object stays in Dictionary mode.
MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) {
ASSERT(HasDictionaryElements());
// Must stay in dictionary mode, either because of requires_slow_elements,
// or because we are not going to sort (and therefore compact) all of the
// elements.
SeededNumberDictionary* dict = element_dictionary();
HeapNumber* result_double = NULL;
if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
// Allocate space for result before we start mutating the object.
Object* new_double;
{ MaybeObject* maybe_new_double = GetHeap()->AllocateHeapNumber(0.0);
if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double;
}
result_double = HeapNumber::cast(new_double);
}
Object* obj;
{ MaybeObject* maybe_obj =
SeededNumberDictionary::Allocate(GetHeap(), dict->NumberOfElements());
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
SeededNumberDictionary* new_dict = SeededNumberDictionary::cast(obj);
DisallowHeapAllocation no_alloc;
uint32_t pos = 0;
uint32_t undefs = 0;
int capacity = dict->Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = dict->KeyAt(i);
if (dict->IsKey(k)) {
ASSERT(k->IsNumber());
ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0);
ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
Object* value = dict->ValueAt(i);
PropertyDetails details = dict->DetailsAt(i);
if (details.type() == CALLBACKS || details.IsReadOnly()) {
// Bail out and do the sorting of undefineds and array holes in JS.
// Also bail out if the element is not supposed to be moved.
return Smi::FromInt(-1);
}
uint32_t key = NumberToUint32(k);
// In the following we assert that adding the entry to the new dictionary
// does not cause GC. This is the case because we made sure to allocate
// the dictionary big enough above, so it need not grow.
if (key < limit) {
if (value->IsUndefined()) {
undefs++;
} else {
if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
// Adding an entry with the key beyond smi-range requires
// allocation. Bailout.
return Smi::FromInt(-1);
}
new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked();
pos++;
}
} else {
if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
// Adding an entry with the key beyond smi-range requires
// allocation. Bailout.
return Smi::FromInt(-1);
}
new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked();
}
}
}
uint32_t result = pos;
PropertyDetails no_details = PropertyDetails(NONE, NORMAL, 0);
Heap* heap = GetHeap();
while (undefs > 0) {
if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
// Adding an entry with the key beyond smi-range requires
// allocation. Bailout.
return Smi::FromInt(-1);
}
new_dict->AddNumberEntry(pos, heap->undefined_value(), no_details)->
ToObjectUnchecked();
pos++;
undefs--;
}
set_elements(new_dict);
if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
return Smi::FromInt(static_cast<int>(result));
}
ASSERT_NE(NULL, result_double);
result_double->set_value(static_cast<double>(result));
return result_double;
}
// Collects all defined (non-hole) and non-undefined (array) elements at
// the start of the elements array.
// If the object is in dictionary mode, it is converted to fast elements
// mode.
Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object,
uint32_t limit) {
Isolate* isolate = object->GetIsolate();
ASSERT(!object->map()->is_observed());
if (object->HasDictionaryElements()) {
// Convert to fast elements containing only the existing properties.
// Ordering is irrelevant, since we are going to sort anyway.
Handle<SeededNumberDictionary> dict(object->element_dictionary());
if (object->IsJSArray() || dict->requires_slow_elements() ||
dict->max_number_key() >= limit) {
return JSObject::PrepareSlowElementsForSort(object, limit);
}
// Convert to fast elements.
Handle<Map> new_map =
JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS);
PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ?
NOT_TENURED: TENURED;
Handle<FixedArray> fast_elements =
isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
dict->CopyValuesTo(*fast_elements);
object->ValidateElements();
object->set_map_and_elements(*new_map, *fast_elements);
} else if (object->HasExternalArrayElements()) {
// External arrays cannot have holes or undefined elements.
return handle(Smi::FromInt(
ExternalArray::cast(object->elements())->length()), isolate);
} else if (!object->HasFastDoubleElements()) {
JSObject::EnsureWritableFastElements(object);
}
ASSERT(object->HasFastSmiOrObjectElements() ||
object->HasFastDoubleElements());
// Collect holes at the end, undefined before that and the rest at the
// start, and return the number of non-hole, non-undefined values.
Handle<FixedArrayBase> elements_base(object->elements());
uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
if (limit > elements_length) {
limit = elements_length ;
}
if (limit == 0) {
return handle(Smi::FromInt(0), isolate);
}
uint32_t result = 0;
if (elements_base->map() == isolate->heap()->fixed_double_array_map()) {
FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
// Split elements into defined and the_hole, in that order.
unsigned int holes = limit;
// Assume most arrays contain no holes and undefined values, so minimize the
// number of stores of non-undefined, non-the-hole values.
for (unsigned int i = 0; i < holes; i++) {
if (elements->is_the_hole(i)) {
holes--;
} else {
continue;
}
// Position i needs to be filled.
while (holes > i) {
if (elements->is_the_hole(holes)) {
holes--;
} else {
elements->set(i, elements->get_scalar(holes));
break;
}
}
}
result = holes;
while (holes < limit) {
elements->set_the_hole(holes);
holes++;
}
} else {
FixedArray* elements = FixedArray::cast(*elements_base);
DisallowHeapAllocation no_gc;
// Split elements into defined, undefined and the_hole, in that order. Only
// count locations for undefined and the hole, and fill them afterwards.
WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
unsigned int undefs = limit;
unsigned int holes = limit;
// Assume most arrays contain no holes and undefined values, so minimize the
// number of stores of non-undefined, non-the-hole values.
for (unsigned int i = 0; i < undefs; i++) {
Object* current = elements->get(i);
if (current->IsTheHole()) {
holes--;
undefs--;
} else if (current->IsUndefined()) {
undefs--;
} else {
continue;
}
// Position i needs to be filled.
while (undefs > i) {
current = elements->get(undefs);
if (current->IsTheHole()) {
holes--;
undefs--;
} else if (current->IsUndefined()) {
undefs--;
} else {
elements->set(i, current, write_barrier);
break;
}
}
}
result = undefs;
while (undefs < holes) {
elements->set_undefined(undefs);
undefs++;
}
while (holes < limit) {
elements->set_the_hole(holes);
holes++;
}
}
return isolate->factory()->NewNumberFromUint(result);
}
ExternalArrayType JSTypedArray::type() {
switch (elements()->map()->instance_type()) {
case EXTERNAL_BYTE_ARRAY_TYPE:
return kExternalByteArray;
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
return kExternalUnsignedByteArray;
case EXTERNAL_SHORT_ARRAY_TYPE:
return kExternalShortArray;
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
return kExternalUnsignedShortArray;
case EXTERNAL_INT_ARRAY_TYPE:
return kExternalIntArray;
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
return kExternalUnsignedIntArray;
case EXTERNAL_FLOAT_ARRAY_TYPE:
return kExternalFloatArray;
case EXTERNAL_DOUBLE_ARRAY_TYPE:
return kExternalDoubleArray;
case EXTERNAL_PIXEL_ARRAY_TYPE:
return kExternalPixelArray;
default:
return static_cast<ExternalArrayType>(-1);
}
}
size_t JSTypedArray::element_size() {
switch (elements()->map()->instance_type()) {
case EXTERNAL_BYTE_ARRAY_TYPE:
return 1;
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
return 1;
case EXTERNAL_SHORT_ARRAY_TYPE:
return 2;
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
return 2;
case EXTERNAL_INT_ARRAY_TYPE:
return 4;
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
return 4;
case EXTERNAL_FLOAT_ARRAY_TYPE:
return 4;
case EXTERNAL_DOUBLE_ARRAY_TYPE:
return 8;
case EXTERNAL_PIXEL_ARRAY_TYPE:
return 1;
default:
UNREACHABLE();
return 0;
}
}
Object* ExternalPixelArray::SetValue(uint32_t index, Object* value) {
uint8_t clamped_value = 0;
if (index < static_cast<uint32_t>(length())) {
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
if (int_value < 0) {
clamped_value = 0;
} else if (int_value > 255) {
clamped_value = 255;
} else {
clamped_value = static_cast<uint8_t>(int_value);
}
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
if (!(double_value > 0)) {
// NaN and less than zero clamp to zero.
clamped_value = 0;
} else if (double_value > 255) {
// Greater than 255 clamp to 255.
clamped_value = 255;
} else {
// Other doubles are rounded to the nearest integer.
clamped_value = static_cast<uint8_t>(lrint(double_value));
}
} else {
// Clamp undefined to zero (default). All other types have been
// converted to a number type further up in the call chain.
ASSERT(value->IsUndefined());
}
set(index, clamped_value);
}
return Smi::FromInt(clamped_value);
}
template<typename ExternalArrayClass, typename ValueType>
static MaybeObject* ExternalArrayIntSetter(Heap* heap,
ExternalArrayClass* receiver,
uint32_t index,
Object* value) {
ValueType cast_value = 0;
if (index < static_cast<uint32_t>(receiver->length())) {
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
cast_value = static_cast<ValueType>(int_value);
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
cast_value = static_cast<ValueType>(DoubleToInt32(double_value));
} else {
// Clamp undefined to zero (default). All other types have been
// converted to a number type further up in the call chain.
ASSERT(value->IsUndefined());
}
receiver->set(index, cast_value);
}
return heap->NumberFromInt32(cast_value);
}
MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) {
return ExternalArrayIntSetter<ExternalByteArray, int8_t>
(GetHeap(), this, index, value);
}
MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index,
Object* value) {
return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t>
(GetHeap(), this, index, value);
}
MaybeObject* ExternalShortArray::SetValue(uint32_t index,
Object* value) {
return ExternalArrayIntSetter<ExternalShortArray, int16_t>
(GetHeap(), this, index, value);
}
MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index,
Object* value) {
return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t>
(GetHeap(), this, index, value);
}
MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) {
return ExternalArrayIntSetter<ExternalIntArray, int32_t>
(GetHeap(), this, index, value);
}
MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) {
uint32_t cast_value = 0;
Heap* heap = GetHeap();
if (index < static_cast<uint32_t>(length())) {
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
cast_value = static_cast<uint32_t>(int_value);
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
cast_value = static_cast<uint32_t>(DoubleToUint32(double_value));
} else {
// Clamp undefined to zero (default). All other types have been
// converted to a number type further up in the call chain.
ASSERT(value->IsUndefined());
}
set(index, cast_value);
}
return heap->NumberFromUint32(cast_value);
}
MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) {
float cast_value = static_cast<float>(OS::nan_value());
Heap* heap = GetHeap();
if (index < static_cast<uint32_t>(length())) {
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
cast_value = static_cast<float>(int_value);
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
cast_value = static_cast<float>(double_value);
} else {
// Clamp undefined to NaN (default). All other types have been
// converted to a number type further up in the call chain.
ASSERT(value->IsUndefined());
}
set(index, cast_value);
}
return heap->AllocateHeapNumber(cast_value);
}
MaybeObject* ExternalDoubleArray::SetValue(uint32_t index, Object* value) {
double double_value = OS::nan_value();
Heap* heap = GetHeap();
if (index < static_cast<uint32_t>(length())) {
if (value->IsSmi()) {
int int_value = Smi::cast(value)->value();
double_value = static_cast<double>(int_value);
} else if (value->IsHeapNumber()) {
double_value = HeapNumber::cast(value)->value();
} else {
// Clamp undefined to NaN (default). All other types have been
// converted to a number type further up in the call chain.
ASSERT(value->IsUndefined());
}
set(index, double_value);
}
return heap->AllocateHeapNumber(double_value);
}
PropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) {
ASSERT(!HasFastProperties());
Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
return PropertyCell::cast(value);
}
Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell(
Handle<JSGlobalObject> global,
Handle<Name> name) {
ASSERT(!global->HasFastProperties());
int entry = global->property_dictionary()->FindEntry(*name);
if (entry == NameDictionary::kNotFound) {
Isolate* isolate = global->GetIsolate();
Handle<PropertyCell> cell = isolate->factory()->NewPropertyCell(
isolate->factory()->the_hole_value());
PropertyDetails details(NONE, NORMAL, 0);
details = details.AsDeleted();
Handle<NameDictionary> dictionary = NameDictionaryAdd(
handle(global->property_dictionary()), name, cell, details);
global->set_properties(*dictionary);
return cell;
} else {
Object* value = global->property_dictionary()->ValueAt(entry);
ASSERT(value->IsPropertyCell());
return handle(PropertyCell::cast(value));
}
}
MaybeObject* StringTable::LookupString(String* string, Object** s) {
InternalizedStringKey key(string);
return LookupKey(&key, s);
}
// This class is used for looking up two character strings in the string table.
// If we don't have a hit we don't want to waste much time so we unroll the
// string hash calculation loop here for speed. Doesn't work if the two
// characters form a decimal integer, since such strings have a different hash
// algorithm.
class TwoCharHashTableKey : public HashTableKey {
public:
TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
: c1_(c1), c2_(c2) {
// Char 1.
uint32_t hash = seed;
hash += c1;
hash += hash << 10;
hash ^= hash >> 6;
// Char 2.
hash += c2;
hash += hash << 10;
hash ^= hash >> 6;
// GetHash.
hash += hash << 3;
hash ^= hash >> 11;
hash += hash << 15;
if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
hash_ = hash;
#ifdef DEBUG
// If this assert fails then we failed to reproduce the two-character
// version of the string hashing algorithm above. One reason could be
// that we were passed two digits as characters, since the hash
// algorithm is different in that case.
uint16_t chars[2] = {c1, c2};
uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
ASSERT_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
#endif
}
bool IsMatch(Object* o) {
if (!o->IsString()) return false;
String* other = String::cast(o);
if (other->length() != 2) return false;
if (other->Get(0) != c1_) return false;
return other->Get(1) == c2_;
}
uint32_t Hash() { return hash_; }
uint32_t HashForObject(Object* key) {
if (!key->IsString()) return 0;
return String::cast(key)->Hash();
}
Object* AsObject(Heap* heap) {
// The TwoCharHashTableKey is only used for looking in the string
// table, not for adding to it.
UNREACHABLE();
return NULL;
}
private:
uint16_t c1_;
uint16_t c2_;
uint32_t hash_;
};
bool StringTable::LookupStringIfExists(String* string, String** result) {
InternalizedStringKey key(string);
int entry = FindEntry(&key);
if (entry == kNotFound) {
return false;
} else {
*result = String::cast(KeyAt(entry));
ASSERT(StringShape(*result).IsInternalized());
return true;
}
}
bool StringTable::LookupTwoCharsStringIfExists(uint16_t c1,
uint16_t c2,
String** result) {
TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed());
int entry = FindEntry(&key);
if (entry == kNotFound) {
return false;
} else {
*result = String::cast(KeyAt(entry));
ASSERT(StringShape(*result).IsInternalized());
return true;
}
}
MaybeObject* StringTable::LookupUtf8String(Vector<const char> str,
Object** s) {
Utf8StringKey key(str, GetHeap()->HashSeed());
return LookupKey(&key, s);
}
MaybeObject* StringTable::LookupOneByteString(Vector<const uint8_t> str,
Object** s) {
OneByteStringKey key(str, GetHeap()->HashSeed());
return LookupKey(&key, s);
}
MaybeObject* StringTable::LookupSubStringOneByteString(
Handle<SeqOneByteString> str,
int from,
int length,
Object** s) {
SubStringOneByteStringKey key(str, from, length);
return LookupKey(&key, s);
}
MaybeObject* StringTable::LookupTwoByteString(Vector<const uc16> str,
Object** s) {
TwoByteStringKey key(str, GetHeap()->HashSeed());
return LookupKey(&key, s);
}
MaybeObject* StringTable::LookupKey(HashTableKey* key, Object** s) {
int entry = FindEntry(key);
// String already in table.
if (entry != kNotFound) {
*s = KeyAt(entry);
return this;
}
// Adding new string. Grow table if needed.
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Create string object.
Object* string;
{ MaybeObject* maybe_string = key->AsObject(GetHeap());
if (!maybe_string->ToObject(&string)) return maybe_string;
}
// If the string table grew as part of EnsureCapacity, obj is not
// the current string table and therefore we cannot use
// StringTable::cast here.
StringTable* table = reinterpret_cast<StringTable*>(obj);
// Add the new string and return it along with the string table.
entry = table->FindInsertionEntry(key->Hash());
table->set(EntryToIndex(entry), string);
table->ElementAdded();
*s = string;
return table;
}
// The key for the script compilation cache is dependent on the mode flags,
// because they change the global language mode and thus binding behaviour.
// If flags change at some point, we must ensure that we do not hit the cache
// for code compiled with different settings.
static LanguageMode CurrentGlobalLanguageMode() {
return FLAG_use_strict
? (FLAG_harmony_scoping ? EXTENDED_MODE : STRICT_MODE)
: CLASSIC_MODE;
}
Object* CompilationCacheTable::Lookup(String* src, Context* context) {
SharedFunctionInfo* shared = context->closure()->shared();
StringSharedKey key(src,
shared,
CurrentGlobalLanguageMode(),
RelocInfo::kNoPosition);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
Object* CompilationCacheTable::LookupEval(String* src,
Context* context,
LanguageMode language_mode,
int scope_position) {
StringSharedKey key(src,
context->closure()->shared(),
language_mode,
scope_position);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
Object* CompilationCacheTable::LookupRegExp(String* src,
JSRegExp::Flags flags) {
RegExpKey key(src, flags);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
MaybeObject* CompilationCacheTable::Put(String* src,
Context* context,
Object* value) {
SharedFunctionInfo* shared = context->closure()->shared();
StringSharedKey key(src,
shared,
CurrentGlobalLanguageMode(),
RelocInfo::kNoPosition);
CompilationCacheTable* cache;
MaybeObject* maybe_cache = EnsureCapacity(1, &key);
if (!maybe_cache->To(&cache)) return maybe_cache;
Object* k;
MaybeObject* maybe_k = key.AsObject(GetHeap());
if (!maybe_k->To(&k)) return maybe_k;
int entry = cache->FindInsertionEntry(key.Hash());
cache->set(EntryToIndex(entry), k);
cache->set(EntryToIndex(entry) + 1, value);
cache->ElementAdded();
return cache;
}
MaybeObject* CompilationCacheTable::PutEval(String* src,
Context* context,
SharedFunctionInfo* value,
int scope_position) {
StringSharedKey key(src,
context->closure()->shared(),
value->language_mode(),
scope_position);
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
CompilationCacheTable* cache =
reinterpret_cast<CompilationCacheTable*>(obj);
int entry = cache->FindInsertionEntry(key.Hash());
Object* k;
{ MaybeObject* maybe_k = key.AsObject(GetHeap());
if (!maybe_k->ToObject(&k)) return maybe_k;
}
cache->set(EntryToIndex(entry), k);
cache->set(EntryToIndex(entry) + 1, value);
cache->ElementAdded();
return cache;
}
MaybeObject* CompilationCacheTable::PutRegExp(String* src,
JSRegExp::Flags flags,
FixedArray* value) {
RegExpKey key(src, flags);
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
CompilationCacheTable* cache =
reinterpret_cast<CompilationCacheTable*>(obj);
int entry = cache->FindInsertionEntry(key.Hash());
// We store the value in the key slot, and compare the search key
// to the stored value with a custon IsMatch function during lookups.
cache->set(EntryToIndex(entry), value);
cache->set(EntryToIndex(entry) + 1, value);
cache->ElementAdded();
return cache;
}
void CompilationCacheTable::Remove(Object* value) {
Object* the_hole_value = GetHeap()->the_hole_value();
for (int entry = 0, size = Capacity(); entry < size; entry++) {
int entry_index = EntryToIndex(entry);
int value_index = entry_index + 1;
if (get(value_index) == value) {
NoWriteBarrierSet(this, entry_index, the_hole_value);
NoWriteBarrierSet(this, value_index, the_hole_value);
ElementRemoved();
}
}
return;
}
// StringsKey used for HashTable where key is array of internalized strings.
class StringsKey : public HashTableKey {
public:
explicit StringsKey(FixedArray* strings) : strings_(strings) { }
bool IsMatch(Object* strings) {
FixedArray* o = FixedArray::cast(strings);
int len = strings_->length();
if (o->length() != len) return false;
for (int i = 0; i < len; i++) {
if (o->get(i) != strings_->get(i)) return false;
}
return true;
}
uint32_t Hash() { return HashForObject(strings_); }
uint32_t HashForObject(Object* obj) {
FixedArray* strings = FixedArray::cast(obj);
int len = strings->length();
uint32_t hash = 0;
for (int i = 0; i < len; i++) {
hash ^= String::cast(strings->get(i))->Hash();
}
return hash;
}
Object* AsObject(Heap* heap) { return strings_; }
private:
FixedArray* strings_;
};
Object* MapCache::Lookup(FixedArray* array) {
StringsKey key(array);
int entry = FindEntry(&key);
if (entry == kNotFound) return GetHeap()->undefined_value();
return get(EntryToIndex(entry) + 1);
}
MaybeObject* MapCache::Put(FixedArray* array, Map* value) {
StringsKey key(array);
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, &key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
MapCache* cache = reinterpret_cast<MapCache*>(obj);
int entry = cache->FindInsertionEntry(key.Hash());
cache->set(EntryToIndex(entry), array);
cache->set(EntryToIndex(entry) + 1, value);
cache->ElementAdded();
return cache;
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::Allocate(Heap* heap,
int at_least_space_for,
PretenureFlag pretenure) {
Object* obj;
{ MaybeObject* maybe_obj =
HashTable<Shape, Key>::Allocate(
heap,
at_least_space_for,
USE_DEFAULT_MINIMUM_CAPACITY,
pretenure);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Initialize the next enumeration index.
Dictionary<Shape, Key>::cast(obj)->
SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
return obj;
}
void NameDictionary::DoGenerateNewEnumerationIndices(
Handle<NameDictionary> dictionary) {
CALL_HEAP_FUNCTION_VOID(dictionary->GetIsolate(),
dictionary->GenerateNewEnumerationIndices());
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() {
Heap* heap = Dictionary<Shape, Key>::GetHeap();
int length = HashTable<Shape, Key>::NumberOfElements();
// Allocate and initialize iteration order array.
Object* obj;
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* iteration_order = FixedArray::cast(obj);
for (int i = 0; i < length; i++) {
iteration_order->set(i, Smi::FromInt(i));
}
// Allocate array with enumeration order.
{ MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
FixedArray* enumeration_order = FixedArray::cast(obj);
// Fill the enumeration order array with property details.
int capacity = HashTable<Shape, Key>::Capacity();
int pos = 0;
for (int i = 0; i < capacity; i++) {
if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
int index = DetailsAt(i).dictionary_index();
enumeration_order->set(pos++, Smi::FromInt(index));
}
}
// Sort the arrays wrt. enumeration order.
iteration_order->SortPairs(enumeration_order, enumeration_order->length());
// Overwrite the enumeration_order with the enumeration indices.
for (int i = 0; i < length; i++) {
int index = Smi::cast(iteration_order->get(i))->value();
int enum_index = PropertyDetails::kInitialIndex + i;
enumeration_order->set(index, Smi::FromInt(enum_index));
}
// Update the dictionary with new indices.
capacity = HashTable<Shape, Key>::Capacity();
pos = 0;
for (int i = 0; i < capacity; i++) {
if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
int enum_index = Smi::cast(enumeration_order->get(pos++))->value();
PropertyDetails details = DetailsAt(i);
PropertyDetails new_details = PropertyDetails(
details.attributes(), details.type(), enum_index);
DetailsAtPut(i, new_details);
}
}
// Set the next enumeration index.
SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
return this;
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) {
// Check whether there are enough enumeration indices to add n elements.
if (Shape::kIsEnumerable &&
!PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) {
// If not, we generate new indices for the properties.
Object* result;
{ MaybeObject* maybe_result = GenerateNewEnumerationIndices();
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return HashTable<Shape, Key>::EnsureCapacity(n, key);
}
template<typename Shape, typename Key>
Object* Dictionary<Shape, Key>::DeleteProperty(int entry,
JSReceiver::DeleteMode mode) {
Heap* heap = Dictionary<Shape, Key>::GetHeap();
PropertyDetails details = DetailsAt(entry);
// Ignore attributes if forcing a deletion.
if (details.IsDontDelete() && mode != JSReceiver::FORCE_DELETION) {
return heap->false_value();
}
SetEntry(entry, heap->the_hole_value(), heap->the_hole_value());
HashTable<Shape, Key>::ElementRemoved();
return heap->true_value();
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::Shrink(Key key) {
return HashTable<Shape, Key>::Shrink(key);
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) {
int entry = this->FindEntry(key);
// If the entry is present set the value;
if (entry != Dictionary<Shape, Key>::kNotFound) {
ValueAtPut(entry, value);
return this;
}
// Check whether the dictionary should be extended.
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
Object* k;
{ MaybeObject* maybe_k = Shape::AsObject(this->GetHeap(), key);
if (!maybe_k->ToObject(&k)) return maybe_k;
}
PropertyDetails details = PropertyDetails(NONE, NORMAL, 0);
return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details,
Dictionary<Shape, Key>::Hash(key));
}
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::Add(Key key,
Object* value,
PropertyDetails details) {
// Valdate key is absent.
SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound));
// Check whether the dictionary should be extended.
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, key);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details,
Dictionary<Shape, Key>::Hash(key));
}
// Add a key, value pair to the dictionary.
template<typename Shape, typename Key>
MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key,
Object* value,
PropertyDetails details,
uint32_t hash) {
// Compute the key object.
Object* k;
{ MaybeObject* maybe_k = Shape::AsObject(this->GetHeap(), key);
if (!maybe_k->ToObject(&k)) return maybe_k;
}
uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash);
// Insert element at empty or deleted entry
if (!details.IsDeleted() &&
details.dictionary_index() == 0 &&
Shape::kIsEnumerable) {
// Assign an enumeration index to the property and update
// SetNextEnumerationIndex.
int index = NextEnumerationIndex();
details = PropertyDetails(details.attributes(), details.type(), index);
SetNextEnumerationIndex(index + 1);
}
SetEntry(entry, k, value, details);
ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() ||
Dictionary<Shape, Key>::KeyAt(entry)->IsName()));
HashTable<Shape, Key>::ElementAdded();
return this;
}
void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key) {
// If the dictionary requires slow elements an element has already
// been added at a high index.
if (requires_slow_elements()) return;
// Check if this index is high enough that we should require slow
// elements.
if (key > kRequiresSlowElementsLimit) {
set_requires_slow_elements();
return;
}
// Update max key value.
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi() || max_number_key() < key) {
FixedArray::set(kMaxNumberKeyIndex,
Smi::FromInt(key << kRequiresSlowElementsTagSize));
}
}
MaybeObject* SeededNumberDictionary::AddNumberEntry(uint32_t key,
Object* value,
PropertyDetails details) {
UpdateMaxNumberKey(key);
SLOW_ASSERT(this->FindEntry(key) == kNotFound);
return Add(key, value, details);
}
MaybeObject* UnseededNumberDictionary::AddNumberEntry(uint32_t key,
Object* value) {
SLOW_ASSERT(this->FindEntry(key) == kNotFound);
return Add(key, value, PropertyDetails(NONE, NORMAL, 0));
}
MaybeObject* SeededNumberDictionary::AtNumberPut(uint32_t key, Object* value) {
UpdateMaxNumberKey(key);
return AtPut(key, value);
}
MaybeObject* UnseededNumberDictionary::AtNumberPut(uint32_t key,
Object* value) {
return AtPut(key, value);
}
Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
Handle<SeededNumberDictionary> dictionary,
uint32_t index,
Handle<Object> value,
PropertyDetails details) {
CALL_HEAP_FUNCTION(dictionary->GetIsolate(),
dictionary->Set(index, *value, details),
SeededNumberDictionary);
}
Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
Handle<UnseededNumberDictionary> dictionary,
uint32_t index,
Handle<Object> value) {
CALL_HEAP_FUNCTION(dictionary->GetIsolate(),
dictionary->Set(index, *value),
UnseededNumberDictionary);
}
MaybeObject* SeededNumberDictionary::Set(uint32_t key,
Object* value,
PropertyDetails details) {
int entry = FindEntry(key);
if (entry == kNotFound) return AddNumberEntry(key, value, details);
// Preserve enumeration index.
details = PropertyDetails(details.attributes(),
details.type(),
DetailsAt(entry).dictionary_index());
MaybeObject* maybe_object_key =
SeededNumberDictionaryShape::AsObject(GetHeap(), key);
Object* object_key;
if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key;
SetEntry(entry, object_key, value, details);
return this;
}
MaybeObject* UnseededNumberDictionary::Set(uint32_t key,
Object* value) {
int entry = FindEntry(key);
if (entry == kNotFound) return AddNumberEntry(key, value);
MaybeObject* maybe_object_key =
UnseededNumberDictionaryShape::AsObject(GetHeap(), key);
Object* object_key;
if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key;
SetEntry(entry, object_key, value);
return this;
}
template<typename Shape, typename Key>
int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes(
PropertyAttributes filter) {
int capacity = HashTable<Shape, Key>::Capacity();
int result = 0;
for (int i = 0; i < capacity; i++) {
Object* k = HashTable<Shape, Key>::KeyAt(i);
if (HashTable<Shape, Key>::IsKey(k) &&
((filter & SYMBOLIC) == 0 || !k->IsSymbol())) {
PropertyDetails details = DetailsAt(i);
if (details.IsDeleted()) continue;
PropertyAttributes attr = details.attributes();
if ((attr & filter) == 0) result++;
}
}
return result;
}
template<typename Shape, typename Key>
int Dictionary<Shape, Key>::NumberOfEnumElements() {
return NumberOfElementsFilterAttributes(
static_cast<PropertyAttributes>(DONT_ENUM));
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::CopyKeysTo(
FixedArray* storage,
PropertyAttributes filter,
typename Dictionary<Shape, Key>::SortMode sort_mode) {
ASSERT(storage->length() >= NumberOfEnumElements());
int capacity = HashTable<Shape, Key>::Capacity();
int index = 0;
for (int i = 0; i < capacity; i++) {
Object* k = HashTable<Shape, Key>::KeyAt(i);
if (HashTable<Shape, Key>::IsKey(k)) {
PropertyDetails details = DetailsAt(i);
if (details.IsDeleted()) continue;
PropertyAttributes attr = details.attributes();
if ((attr & filter) == 0) storage->set(index++, k);
}
}
if (sort_mode == Dictionary<Shape, Key>::SORTED) {
storage->SortPairs(storage, index);
}
ASSERT(storage->length() >= index);
}
FixedArray* NameDictionary::CopyEnumKeysTo(FixedArray* storage) {
int length = storage->length();
ASSERT(length >= NumberOfEnumElements());
Heap* heap = GetHeap();
Object* undefined_value = heap->undefined_value();
int capacity = Capacity();
int properties = 0;
// Fill in the enumeration array by assigning enumerable keys at their
// enumeration index. This will leave holes in the array if there are keys
// that are deleted or not enumerable.
for (int i = 0; i < capacity; i++) {
Object* k = KeyAt(i);
if (IsKey(k) && !k->IsSymbol()) {
PropertyDetails details = DetailsAt(i);
if (details.IsDeleted() || details.IsDontEnum()) continue;
properties++;
storage->set(details.dictionary_index() - 1, k);
if (properties == length) break;
}
}
// There are holes in the enumeration array if less properties were assigned
// than the length of the array. If so, crunch all the existing properties
// together by shifting them to the left (maintaining the enumeration order),
// and trimming of the right side of the array.
if (properties < length) {
if (properties == 0) return heap->empty_fixed_array();
properties = 0;
for (int i = 0; i < length; ++i) {
Object* value = storage->get(i);
if (value != undefined_value) {
storage->set(properties, value);
++properties;
}
}
RightTrimFixedArray<FROM_MUTATOR>(heap, storage, length - properties);
}
return storage;
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::CopyKeysTo(
FixedArray* storage,
int index,
PropertyAttributes filter,
typename Dictionary<Shape, Key>::SortMode sort_mode) {
ASSERT(storage->length() >= NumberOfElementsFilterAttributes(
static_cast<PropertyAttributes>(NONE)));
int capacity = HashTable<Shape, Key>::Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = HashTable<Shape, Key>::KeyAt(i);
if (HashTable<Shape, Key>::IsKey(k)) {
PropertyDetails details = DetailsAt(i);
if (details.IsDeleted()) continue;
PropertyAttributes attr = details.attributes();
if ((attr & filter) == 0) storage->set(index++, k);
}
}
if (sort_mode == Dictionary<Shape, Key>::SORTED) {
storage->SortPairs(storage, index);
}
ASSERT(storage->length() >= index);
}
// Backwards lookup (slow).
template<typename Shape, typename Key>
Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) {
int capacity = HashTable<Shape, Key>::Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = HashTable<Shape, Key>::KeyAt(i);
if (Dictionary<Shape, Key>::IsKey(k)) {
Object* e = ValueAt(i);
if (e->IsPropertyCell()) {
e = PropertyCell::cast(e)->value();
}
if (e == value) return k;
}
}
Heap* heap = Dictionary<Shape, Key>::GetHeap();
return heap->undefined_value();
}
MaybeObject* NameDictionary::TransformPropertiesToFastFor(
JSObject* obj, int unused_property_fields) {
// Make sure we preserve dictionary representation if there are too many
// descriptors.
int number_of_elements = NumberOfElements();
if (number_of_elements > DescriptorArray::kMaxNumberOfDescriptors) return obj;
if (number_of_elements != NextEnumerationIndex()) {
MaybeObject* maybe_result = GenerateNewEnumerationIndices();
if (maybe_result->IsFailure()) return maybe_result;
}
int instance_descriptor_length = 0;
int number_of_fields = 0;
Heap* heap = GetHeap();
// Compute the length of the instance descriptor.
int capacity = Capacity();
for (int i = 0; i < capacity; i++) {
Object* k = KeyAt(i);
if (IsKey(k)) {
Object* value = ValueAt(i);
PropertyType type = DetailsAt(i).type();
ASSERT(type != FIELD);
instance_descriptor_length++;
if (type == NORMAL && !value->IsJSFunction()) {
number_of_fields += 1;
}
}
}
int inobject_props = obj->map()->inobject_properties();
// Allocate new map.
Map* new_map;
MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors();
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
new_map->set_dictionary_map(false);
if (instance_descriptor_length == 0) {
ASSERT_LE(unused_property_fields, inobject_props);
// Transform the object.
new_map->set_unused_property_fields(inobject_props);
obj->set_map(new_map);
obj->set_properties(heap->empty_fixed_array());
// Check that it really works.
ASSERT(obj->HasFastProperties());
return obj;
}
// Allocate the instance descriptor.
DescriptorArray* descriptors;
MaybeObject* maybe_descriptors =
DescriptorArray::Allocate(GetIsolate(), instance_descriptor_length);
if (!maybe_descriptors->To(&descriptors)) {
return maybe_descriptors;
}
DescriptorArray::WhitenessWitness witness(descriptors);
int number_of_allocated_fields =
number_of_fields + unused_property_fields - inobject_props;
if (number_of_allocated_fields < 0) {
// There is enough inobject space for all fields (including unused).
number_of_allocated_fields = 0;
unused_property_fields = inobject_props - number_of_fields;
}
// Allocate the fixed array for the fields.
FixedArray* fields;
MaybeObject* maybe_fields =
heap->AllocateFixedArray(number_of_allocated_fields);
if (!maybe_fields->To(&fields)) return maybe_fields;
// Fill in the instance descriptor and the fields.
int current_offset = 0;
for (int i = 0; i < capacity; i++) {
Object* k = KeyAt(i);
if (IsKey(k)) {
Object* value = ValueAt(i);
Name* key;
if (k->IsSymbol()) {
key = Symbol::cast(k);
} else {
// Ensure the key is a unique name before writing into the
// instance descriptor.
MaybeObject* maybe_key = heap->InternalizeString(String::cast(k));
if (!maybe_key->To(&key)) return maybe_key;
}
PropertyDetails details = DetailsAt(i);
int enumeration_index = details.dictionary_index();
PropertyType type = details.type();
if (value->IsJSFunction()) {
ConstantDescriptor d(key, value, details.attributes());
descriptors->Set(enumeration_index - 1, &d, witness);
} else if (type == NORMAL) {
if (current_offset < inobject_props) {
obj->InObjectPropertyAtPut(current_offset,
value,
UPDATE_WRITE_BARRIER);
} else {
int offset = current_offset - inobject_props;
fields->set(offset, value);
}
FieldDescriptor d(key,
current_offset++,
details.attributes(),
// TODO(verwaest): value->OptimalRepresentation();
Representation::Tagged());
descriptors->Set(enumeration_index - 1, &d, witness);
} else if (type == CALLBACKS) {
CallbacksDescriptor d(key,
value,
details.attributes());
descriptors->Set(enumeration_index - 1, &d, witness);
} else {
UNREACHABLE();
}
}
}
ASSERT(current_offset == number_of_fields);
descriptors->Sort();
new_map->InitializeDescriptors(descriptors);
new_map->set_unused_property_fields(unused_property_fields);
// Transform the object.
obj->set_map(new_map);
obj->set_properties(fields);
ASSERT(obj->IsJSObject());
// Check that it really works.
ASSERT(obj->HasFastProperties());
return obj;
}
Handle<ObjectHashSet> ObjectHashSet::EnsureCapacity(
Handle<ObjectHashSet> table,
int n,
Handle<Object> key,
PretenureFlag pretenure) {
Handle<HashTable<ObjectHashTableShape<1>, Object*> > table_base = table;
CALL_HEAP_FUNCTION(table_base->GetIsolate(),
table_base->EnsureCapacity(n, *key, pretenure),
ObjectHashSet);
}
Handle<ObjectHashSet> ObjectHashSet::Shrink(Handle<ObjectHashSet> table,
Handle<Object> key) {
Handle<HashTable<ObjectHashTableShape<1>, Object*> > table_base = table;
CALL_HEAP_FUNCTION(table_base->GetIsolate(),
table_base->Shrink(*key),
ObjectHashSet);
}
bool ObjectHashSet::Contains(Object* key) {
ASSERT(IsKey(key));
// If the object does not have an identity hash, it was never used as a key.
Object* hash = key->GetHash();
if (hash->IsUndefined()) return false;
return (FindEntry(key) != kNotFound);
}
Handle<ObjectHashSet> ObjectHashSet::Add(Handle<ObjectHashSet> table,
Handle<Object> key) {
ASSERT(table->IsKey(*key));
// Make sure the key object has an identity hash code.
Handle<Object> object_hash = Object::GetOrCreateHash(key,
table->GetIsolate());
int entry = table->FindEntry(*key);
// Check whether key is already present.
if (entry != kNotFound) return table;
// Check whether the hash set should be extended and add entry.
Handle<ObjectHashSet> new_table =
ObjectHashSet::EnsureCapacity(table, 1, key);
entry = new_table->FindInsertionEntry(Smi::cast(*object_hash)->value());
new_table->set(EntryToIndex(entry), *key);
new_table->ElementAdded();
return new_table;
}
Handle<ObjectHashSet> ObjectHashSet::Remove(Handle<ObjectHashSet> table,
Handle<Object> key) {
ASSERT(table->IsKey(*key));
// If the object does not have an identity hash, it was never used as a key.
if (key->GetHash()->IsUndefined()) return table;
int entry = table->FindEntry(*key);
// Check whether key is actually present.
if (entry == kNotFound) return table;
// Remove entry and try to shrink this hash set.
table->set_the_hole(EntryToIndex(entry));
table->ElementRemoved();
return ObjectHashSet::Shrink(table, key);
}
Handle<ObjectHashTable> ObjectHashTable::EnsureCapacity(
Handle<ObjectHashTable> table,
int n,
Handle<Object> key,
PretenureFlag pretenure) {
Handle<HashTable<ObjectHashTableShape<2>, Object*> > table_base = table;
CALL_HEAP_FUNCTION(table_base->GetIsolate(),
table_base->EnsureCapacity(n, *key, pretenure),
ObjectHashTable);
}
Handle<ObjectHashTable> ObjectHashTable::Shrink(
Handle<ObjectHashTable> table, Handle<Object> key) {
Handle<HashTable<ObjectHashTableShape<2>, Object*> > table_base = table;
CALL_HEAP_FUNCTION(table_base->GetIsolate(),
table_base->Shrink(*key),
ObjectHashTable);
}
Object* ObjectHashTable::Lookup(Object* key) {
ASSERT(IsKey(key));
// If the object does not have an identity hash, it was never used as a key.
Object* hash = key->GetHash();
if (hash->IsUndefined()) {
return GetHeap()->the_hole_value();
}
int entry = FindEntry(key);
if (entry == kNotFound) return GetHeap()->the_hole_value();
return get(EntryToIndex(entry) + 1);
}
Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
Handle<Object> key,
Handle<Object> value) {
ASSERT(table->IsKey(*key));
Isolate* isolate = table->GetIsolate();
// Make sure the key object has an identity hash code.
Handle<Object> hash = Object::GetOrCreateHash(key, isolate);
int entry = table->FindEntry(*key);
// Check whether to perform removal operation.
if (value->IsTheHole()) {
if (entry == kNotFound) return table;
table->RemoveEntry(entry);
return Shrink(table, key);
}
// Key is already in table, just overwrite value.
if (entry != kNotFound) {
table->set(EntryToIndex(entry) + 1, *value);
return table;
}
// Check whether the hash table should be extended.
table = EnsureCapacity(table, 1, key);
table->AddEntry(table->FindInsertionEntry(Handle<Smi>::cast(hash)->value()),
*key,
*value);
return table;
}
void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
set(EntryToIndex(entry), key);
set(EntryToIndex(entry) + 1, value);
ElementAdded();
}
void ObjectHashTable::RemoveEntry(int entry) {
set_the_hole(EntryToIndex(entry));
set_the_hole(EntryToIndex(entry) + 1);
ElementRemoved();
}
Object* WeakHashTable::Lookup(Object* key) {
ASSERT(IsKey(key));
int entry = FindEntry(key);
if (entry == kNotFound) return GetHeap()->the_hole_value();
return get(EntryToValueIndex(entry));
}
MaybeObject* WeakHashTable::Put(Object* key, Object* value) {
ASSERT(IsKey(key));
int entry = FindEntry(key);
// Key is already in table, just overwrite value.
if (entry != kNotFound) {
set(EntryToValueIndex(entry), value);
return this;
}
// Check whether the hash table should be extended.
Object* obj;
{ MaybeObject* maybe_obj = EnsureCapacity(1, key, TENURED);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
WeakHashTable* table = WeakHashTable::cast(obj);
table->AddEntry(table->FindInsertionEntry(Hash(key)), key, value);
return table;
}
void WeakHashTable::AddEntry(int entry, Object* key, Object* value) {
set(EntryToIndex(entry), key);
set(EntryToValueIndex(entry), value);
ElementAdded();
}
DeclaredAccessorDescriptorIterator::DeclaredAccessorDescriptorIterator(
DeclaredAccessorDescriptor* descriptor)
: array_(descriptor->serialized_data()->GetDataStartAddress()),
length_(descriptor->serialized_data()->length()),
offset_(0) {
}
const DeclaredAccessorDescriptorData*
DeclaredAccessorDescriptorIterator::Next() {
ASSERT(offset_ < length_);
uint8_t* ptr = &array_[offset_];
ASSERT(reinterpret_cast<uintptr_t>(ptr) % sizeof(uintptr_t) == 0);
const DeclaredAccessorDescriptorData* data =
reinterpret_cast<const DeclaredAccessorDescriptorData*>(ptr);
offset_ += sizeof(*data);
ASSERT(offset_ <= length_);
return data;
}
Handle<DeclaredAccessorDescriptor> DeclaredAccessorDescriptor::Create(
Isolate* isolate,
const DeclaredAccessorDescriptorData& descriptor,
Handle<DeclaredAccessorDescriptor> previous) {
int previous_length =
previous.is_null() ? 0 : previous->serialized_data()->length();
int length = sizeof(descriptor) + previous_length;
Handle<ByteArray> serialized_descriptor =
isolate->factory()->NewByteArray(length);
Handle<DeclaredAccessorDescriptor> value =
isolate->factory()->NewDeclaredAccessorDescriptor();
value->set_serialized_data(*serialized_descriptor);
// Copy in the data.
{
DisallowHeapAllocation no_allocation;
uint8_t* array = serialized_descriptor->GetDataStartAddress();
if (previous_length != 0) {
uint8_t* previous_array =
previous->serialized_data()->GetDataStartAddress();
OS::MemCopy(array, previous_array, previous_length);
array += previous_length;
}
ASSERT(reinterpret_cast<uintptr_t>(array) % sizeof(uintptr_t) == 0);
DeclaredAccessorDescriptorData* data =
reinterpret_cast<DeclaredAccessorDescriptorData*>(array);
*data = descriptor;
}
return value;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check if there is a break point at this code position.
bool DebugInfo::HasBreakPoint(int code_position) {
// Get the break point info object for this code position.
Object* break_point_info = GetBreakPointInfo(code_position);
// If there is no break point info object or no break points in the break
// point info object there is no break point at this code position.
if (break_point_info->IsUndefined()) return false;
return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
}
// Get the break point info object for this code position.
Object* DebugInfo::GetBreakPointInfo(int code_position) {
// Find the index of the break point info object for this code position.
int index = GetBreakPointInfoIndex(code_position);
// Return the break point info object if any.
if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
return BreakPointInfo::cast(break_points()->get(index));
}
// Clear a break point at the specified code position.
void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
int code_position,
Handle<Object> break_point_object) {
Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
debug_info->GetIsolate());
if (break_point_info->IsUndefined()) return;
BreakPointInfo::ClearBreakPoint(
Handle<BreakPointInfo>::cast(break_point_info),
break_point_object);
}
void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
int code_position,
int source_position,
int statement_position,
Handle<Object> break_point_object) {
Isolate* isolate = debug_info->GetIsolate();
Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
isolate);
if (!break_point_info->IsUndefined()) {
BreakPointInfo::SetBreakPoint(
Handle<BreakPointInfo>::cast(break_point_info),
break_point_object);
return;
}
// Adding a new break point for a code position which did not have any
// break points before. Try to find a free slot.
int index = kNoBreakPointInfo;
for (int i = 0; i < debug_info->break_points()->length(); i++) {
if (debug_info->break_points()->get(i)->IsUndefined()) {
index = i;
break;
}
}
if (index == kNoBreakPointInfo) {
// No free slot - extend break point info array.
Handle<FixedArray> old_break_points =
Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
Handle<FixedArray> new_break_points =
isolate->factory()->NewFixedArray(
old_break_points->length() +
Debug::kEstimatedNofBreakPointsInFunction);
debug_info->set_break_points(*new_break_points);
for (int i = 0; i < old_break_points->length(); i++) {
new_break_points->set(i, old_break_points->get(i));
}
index = old_break_points->length();
}
ASSERT(index != kNoBreakPointInfo);
// Allocate new BreakPointInfo object and set the break point.
Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
new_break_point_info->set_code_position(Smi::FromInt(code_position));
new_break_point_info->set_source_position(Smi::FromInt(source_position));
new_break_point_info->
set_statement_position(Smi::FromInt(statement_position));
new_break_point_info->set_break_point_objects(
isolate->heap()->undefined_value());
BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
debug_info->break_points()->set(index, *new_break_point_info);
}
// Get the break point objects for a code position.
Object* DebugInfo::GetBreakPointObjects(int code_position) {
Object* break_point_info = GetBreakPointInfo(code_position);
if (break_point_info->IsUndefined()) {
return GetHeap()->undefined_value();
}
return BreakPointInfo::cast(break_point_info)->break_point_objects();
}
// Get the total number of break points.
int DebugInfo::GetBreakPointCount() {
if (break_points()->IsUndefined()) return 0;
int count = 0;
for (int i = 0; i < break_points()->length(); i++) {
if (!break_points()->get(i)->IsUndefined()) {
BreakPointInfo* break_point_info =
BreakPointInfo::cast(break_points()->get(i));
count += break_point_info->GetBreakPointCount();
}
}
return count;
}
Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info,
Handle<Object> break_point_object) {
Heap* heap = debug_info->GetHeap();
if (debug_info->break_points()->IsUndefined()) return heap->undefined_value();
for (int i = 0; i < debug_info->break_points()->length(); i++) {
if (!debug_info->break_points()->get(i)->IsUndefined()) {
Handle<BreakPointInfo> break_point_info =
Handle<BreakPointInfo>(BreakPointInfo::cast(
debug_info->break_points()->get(i)));
if (BreakPointInfo::HasBreakPointObject(break_point_info,
break_point_object)) {
return *break_point_info;
}
}
}
return heap->undefined_value();
}
// Find the index of the break point info object for the specified code
// position.
int DebugInfo::GetBreakPointInfoIndex(int code_position) {
if (break_points()->IsUndefined()) return kNoBreakPointInfo;
for (int i = 0; i < break_points()->length(); i++) {
if (!break_points()->get(i)->IsUndefined()) {
BreakPointInfo* break_point_info =
BreakPointInfo::cast(break_points()->get(i));
if (break_point_info->code_position()->value() == code_position) {
return i;
}
}
}
return kNoBreakPointInfo;
}
// Remove the specified break point object.
void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
Handle<Object> break_point_object) {
Isolate* isolate = break_point_info->GetIsolate();
// If there are no break points just ignore.
if (break_point_info->break_point_objects()->IsUndefined()) return;
// If there is a single break point clear it if it is the same.
if (!break_point_info->break_point_objects()->IsFixedArray()) {
if (break_point_info->break_point_objects() == *break_point_object) {
break_point_info->set_break_point_objects(
isolate->heap()->undefined_value());
}
return;
}
// If there are multiple break points shrink the array
ASSERT(break_point_info->break_point_objects()->IsFixedArray());
Handle<FixedArray> old_array =
Handle<FixedArray>(
FixedArray::cast(break_point_info->break_point_objects()));
Handle<FixedArray> new_array =
isolate->factory()->NewFixedArray(old_array->length() - 1);
int found_count = 0;
for (int i = 0; i < old_array->length(); i++) {
if (old_array->get(i) == *break_point_object) {
ASSERT(found_count == 0);
found_count++;
} else {
new_array->set(i - found_count, old_array->get(i));
}
}
// If the break point was found in the list change it.
if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
}
// Add the specified break point object.
void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
Handle<Object> break_point_object) {
Isolate* isolate = break_point_info->GetIsolate();
// If there was no break point objects before just set it.
if (break_point_info->break_point_objects()->IsUndefined()) {
break_point_info->set_break_point_objects(*break_point_object);
return;
}
// If the break point object is the same as before just ignore.
if (break_point_info->break_point_objects() == *break_point_object) return;
// If there was one break point object before replace with array.
if (!break_point_info->break_point_objects()->IsFixedArray()) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
array->set(0, break_point_info->break_point_objects());
array->set(1, *break_point_object);
break_point_info->set_break_point_objects(*array);
return;
}
// If there was more than one break point before extend array.
Handle<FixedArray> old_array =
Handle<FixedArray>(
FixedArray::cast(break_point_info->break_point_objects()));
Handle<FixedArray> new_array =
isolate->factory()->NewFixedArray(old_array->length() + 1);
for (int i = 0; i < old_array->length(); i++) {
// If the break point was there before just ignore.
if (old_array->get(i) == *break_point_object) return;
new_array->set(i, old_array->get(i));
}
// Add the new break point.
new_array->set(old_array->length(), *break_point_object);
break_point_info->set_break_point_objects(*new_array);
}
bool BreakPointInfo::HasBreakPointObject(
Handle<BreakPointInfo> break_point_info,
Handle<Object> break_point_object) {
// No break point.
if (break_point_info->break_point_objects()->IsUndefined()) return false;
// Single break point.
if (!break_point_info->break_point_objects()->IsFixedArray()) {
return break_point_info->break_point_objects() == *break_point_object;
}
// Multiple break points.
FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
for (int i = 0; i < array->length(); i++) {
if (array->get(i) == *break_point_object) {
return true;
}
}
return false;
}
// Get the number of break points.
int BreakPointInfo::GetBreakPointCount() {
// No break point.
if (break_point_objects()->IsUndefined()) return 0;
// Single break point.
if (!break_point_objects()->IsFixedArray()) return 1;
// Multiple break points.
return FixedArray::cast(break_point_objects())->length();
}
#endif // ENABLE_DEBUGGER_SUPPORT
Object* JSDate::GetField(Object* object, Smi* index) {
return JSDate::cast(object)->DoGetField(
static_cast<FieldIndex>(index->value()));
}
Object* JSDate::DoGetField(FieldIndex index) {
ASSERT(index != kDateValue);
DateCache* date_cache = GetIsolate()->date_cache();
if (index < kFirstUncachedField) {
Object* stamp = cache_stamp();
if (stamp != date_cache->stamp() && stamp->IsSmi()) {
// Since the stamp is not NaN, the value is also not NaN.
int64_t local_time_ms =
date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
SetLocalFields(local_time_ms, date_cache);
}
switch (index) {
case kYear: return year();
case kMonth: return month();
case kDay: return day();
case kWeekday: return weekday();
case kHour: return hour();
case kMinute: return min();
case kSecond: return sec();
default: UNREACHABLE();
}
}
if (index >= kFirstUTCField) {
return GetUTCField(index, value()->Number(), date_cache);
}
double time = value()->Number();
if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
int days = DateCache::DaysFromTime(local_time_ms);
if (index == kDays) return Smi::FromInt(days);
int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
ASSERT(index == kTimeInDay);
return Smi::FromInt(time_in_day_ms);
}
Object* JSDate::GetUTCField(FieldIndex index,
double value,
DateCache* date_cache) {
ASSERT(index >= kFirstUTCField);
if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
int64_t time_ms = static_cast<int64_t>(value);
if (index == kTimezoneOffset) {
return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
}
int days = DateCache::DaysFromTime(time_ms);
if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
if (index <= kDayUTC) {
int year, month, day;
date_cache->YearMonthDayFromDays(days, &year, &month, &day);
if (index == kYearUTC) return Smi::FromInt(year);
if (index == kMonthUTC) return Smi::FromInt(month);
ASSERT(index == kDayUTC);
return Smi::FromInt(day);
}
int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
switch (index) {
case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
case kDaysUTC: return Smi::FromInt(days);
case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
default: UNREACHABLE();
}
UNREACHABLE();
return NULL;
}
void JSDate::SetValue(Object* value, bool is_value_nan) {
set_value(value);
if (is_value_nan) {
HeapNumber* nan = GetIsolate()->heap()->nan_value();
set_cache_stamp(nan, SKIP_WRITE_BARRIER);
set_year(nan, SKIP_WRITE_BARRIER);
set_month(nan, SKIP_WRITE_BARRIER);
set_day(nan, SKIP_WRITE_BARRIER);
set_hour(nan, SKIP_WRITE_BARRIER);
set_min(nan, SKIP_WRITE_BARRIER);
set_sec(nan, SKIP_WRITE_BARRIER);
set_weekday(nan, SKIP_WRITE_BARRIER);
} else {
set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
}
}
void JSDate::SetLocalFields(int64_t local_time_ms, DateCache* date_cache) {
int days = DateCache::DaysFromTime(local_time_ms);
int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
int year, month, day;
date_cache->YearMonthDayFromDays(days, &year, &month, &day);
int weekday = date_cache->Weekday(days);
int hour = time_in_day_ms / (60 * 60 * 1000);
int min = (time_in_day_ms / (60 * 1000)) % 60;
int sec = (time_in_day_ms / 1000) % 60;
set_cache_stamp(date_cache->stamp());
set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
}
void JSArrayBuffer::Neuter() {
ASSERT(is_external());
set_backing_store(NULL);
set_byte_length(Smi::FromInt(0));
}
void JSArrayBufferView::NeuterView() {
set_byte_offset(Smi::FromInt(0));
set_byte_length(Smi::FromInt(0));
}
void JSDataView::Neuter() {
NeuterView();
}
void JSTypedArray::Neuter() {
NeuterView();
set_length(Smi::FromInt(0));
set_elements(GetHeap()->EmptyExternalArrayForMap(map()));
}
Type* PropertyCell::type() {
return static_cast<Type*>(type_raw());
}
void PropertyCell::set_type(Type* type, WriteBarrierMode ignored) {
ASSERT(IsPropertyCell());
set_type_raw(type, ignored);
}
Handle<Type> PropertyCell::UpdatedType(Handle<PropertyCell> cell,
Handle<Object> value) {
Isolate* isolate = cell->GetIsolate();
Handle<Type> old_type(cell->type(), isolate);
// TODO(2803): Do not track ConsString as constant because they cannot be
// embedded into code.
Handle<Type> new_type(value->IsConsString() || value->IsTheHole()
? Type::Any()
: Type::Constant(value, isolate), isolate);
if (new_type->Is(old_type)) {
return old_type;
}
cell->dependent_code()->DeoptimizeDependentCodeGroup(
isolate, DependentCode::kPropertyCellChangedGroup);
if (old_type->Is(Type::None()) || old_type->Is(Type::Undefined())) {
return new_type;
}
return handle(Type::Any(), isolate);
}
void PropertyCell::SetValueInferType(Handle<PropertyCell> cell,
Handle<Object> value) {
cell->set_value(*value);
if (!Type::Any()->Is(cell->type())) {
Handle<Type> new_type = UpdatedType(cell, value);
cell->set_type(*new_type);
}
}
void PropertyCell::AddDependentCompilationInfo(CompilationInfo* info) {
Handle<DependentCode> dep(dependent_code());
Handle<DependentCode> codes =
DependentCode::Insert(dep, DependentCode::kPropertyCellChangedGroup,
info->object_wrapper());
if (*codes != dependent_code()) set_dependent_code(*codes);
info->dependencies(DependentCode::kPropertyCellChangedGroup)->Add(
Handle<HeapObject>(this), info->zone());
}
void PropertyCell::AddDependentCode(Handle<Code> code) {
Handle<DependentCode> codes = DependentCode::Insert(
Handle<DependentCode>(dependent_code()),
DependentCode::kPropertyCellChangedGroup, code);
if (*codes != dependent_code()) set_dependent_code(*codes);
}
const char* GetBailoutReason(BailoutReason reason) {
ASSERT(reason < kLastErrorMessage);
#define ERROR_MESSAGES_TEXTS(C, T) T,
static const char* error_messages_[] = {
ERROR_MESSAGES_LIST(ERROR_MESSAGES_TEXTS)
};
#undef ERROR_MESSAGES_TEXTS
return error_messages_[reason];
}
} } // namespace v8::internal