v8/test/cctest/test-alloc.cc
mlippautz 277795e28f [heap,cctest] Fix CodeRange tests that use AllocateRawMemory directly.
* Enforce invariants on the way.
* Unmark flaky CodeRange test.

BUG=v8:4141
BUG=v8:3005
LOG=N

Review URL: https://codereview.chromium.org/1325853003

Cr-Commit-Position: refs/heads/master@{#30524}
2015-09-01 18:39:32 +00:00

250 lines
9.1 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "src/accessors.h"
#include "src/api.h"
#include "test/cctest/heap-tester.h"
using namespace v8::internal;
AllocationResult v8::internal::HeapTester::AllocateAfterFailures() {
static int attempts = 0;
// The first 4 times we simulate a full heap, by returning retry.
if (++attempts < 4) return AllocationResult::Retry();
// Expose some private stuff on Heap.
Heap* heap = CcTest::heap();
// Now that we have returned 'retry' 4 times, we are in a last-chance
// scenario, with always_allocate. See CALL_AND_RETRY. Test that all
// allocations succeed.
// New space.
SimulateFullSpace(heap->new_space());
heap->AllocateByteArray(100).ToObjectChecked();
heap->AllocateFixedArray(100, NOT_TENURED).ToObjectChecked();
// Make sure we can allocate through optimized allocation functions
// for specific kinds.
heap->AllocateFixedArray(100).ToObjectChecked();
heap->AllocateHeapNumber(0.42).ToObjectChecked();
Object* object = heap->AllocateJSObject(
*CcTest::i_isolate()->object_function()).ToObjectChecked();
heap->CopyJSObject(JSObject::cast(object)).ToObjectChecked();
// Old data space.
SimulateFullSpace(heap->old_space());
heap->AllocateByteArray(100, TENURED).ToObjectChecked();
// Old pointer space.
SimulateFullSpace(heap->old_space());
heap->AllocateFixedArray(10000, TENURED).ToObjectChecked();
// Large object space.
static const int kLargeObjectSpaceFillerLength = 3 * (Page::kPageSize / 10);
static const int kLargeObjectSpaceFillerSize = FixedArray::SizeFor(
kLargeObjectSpaceFillerLength);
DCHECK(kLargeObjectSpaceFillerSize > heap->old_space()->AreaSize());
while (heap->OldGenerationSpaceAvailable() > kLargeObjectSpaceFillerSize) {
heap->AllocateFixedArray(
kLargeObjectSpaceFillerLength, TENURED).ToObjectChecked();
}
heap->AllocateFixedArray(
kLargeObjectSpaceFillerLength, TENURED).ToObjectChecked();
// Map space.
SimulateFullSpace(heap->map_space());
int instance_size = JSObject::kHeaderSize;
heap->AllocateMap(JS_OBJECT_TYPE, instance_size).ToObjectChecked();
// Test that we can allocate in old pointer space and code space.
SimulateFullSpace(heap->code_space());
heap->AllocateFixedArray(100, TENURED).ToObjectChecked();
heap->CopyCode(CcTest::i_isolate()->builtins()->builtin(
Builtins::kIllegal)).ToObjectChecked();
// Return success.
return heap->true_value();
}
Handle<Object> v8::internal::HeapTester::TestAllocateAfterFailures() {
CALL_HEAP_FUNCTION(CcTest::i_isolate(), AllocateAfterFailures(), Object);
}
HEAP_TEST(StressHandles) {
v8::HandleScope scope(CcTest::isolate());
v8::Handle<v8::Context> env = v8::Context::New(CcTest::isolate());
env->Enter();
Handle<Object> o = TestAllocateAfterFailures();
CHECK(o->IsTrue());
env->Exit();
}
void TestGetter(
v8::Local<v8::Name> name,
const v8::PropertyCallbackInfo<v8::Value>& info) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(info.GetIsolate());
HandleScope scope(isolate);
info.GetReturnValue().Set(v8::Utils::ToLocal(
v8::internal::HeapTester::TestAllocateAfterFailures()));
}
void TestSetter(
v8::Local<v8::Name> name,
v8::Local<v8::Value> value,
const v8::PropertyCallbackInfo<void>& info) {
UNREACHABLE();
}
Handle<AccessorInfo> TestAccessorInfo(
Isolate* isolate, PropertyAttributes attributes) {
Handle<String> name = isolate->factory()->NewStringFromStaticChars("get");
return Accessors::MakeAccessor(isolate, name, &TestGetter, &TestSetter,
attributes);
}
TEST(StressJS) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
v8::Handle<v8::Context> env = v8::Context::New(CcTest::isolate());
env->Enter();
Handle<JSFunction> function = factory->NewFunction(
factory->function_string());
// Force the creation of an initial map and set the code to
// something empty.
factory->NewJSObject(function);
function->ReplaceCode(CcTest::i_isolate()->builtins()->builtin(
Builtins::kEmptyFunction));
// Patch the map to have an accessor for "get".
Handle<Map> map(function->initial_map());
Handle<DescriptorArray> instance_descriptors(map->instance_descriptors());
DCHECK(instance_descriptors->IsEmpty());
PropertyAttributes attrs = static_cast<PropertyAttributes>(0);
Handle<AccessorInfo> foreign = TestAccessorInfo(isolate, attrs);
Map::EnsureDescriptorSlack(map, 1);
AccessorConstantDescriptor d(Handle<Name>(Name::cast(foreign->name())),
foreign, attrs);
map->AppendDescriptor(&d);
// Add the Foo constructor the global object.
env->Global()->Set(v8::String::NewFromUtf8(CcTest::isolate(), "Foo"),
v8::Utils::ToLocal(function));
// Call the accessor through JavaScript.
v8::Handle<v8::Value> result = v8::Script::Compile(
v8::String::NewFromUtf8(CcTest::isolate(), "(new Foo).get"))->Run();
CHECK_EQ(true, result->BooleanValue());
env->Exit();
}
// CodeRange test.
// Tests memory management in a CodeRange by allocating and freeing blocks,
// using a pseudorandom generator to choose block sizes geometrically
// distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize.
// Ensure that the freed chunks are collected and reused by allocating (in
// total) more than the size of the CodeRange.
// This pseudorandom generator does not need to be particularly good.
// Use the lower half of the V8::Random() generator.
unsigned int Pseudorandom() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0.
return lo & 0xFFFF;
}
// Plain old data class. Represents a block of allocated memory.
class Block {
public:
Block(Address base_arg, int size_arg)
: base(base_arg), size(size_arg) {}
Address base;
int size;
};
TEST(CodeRange) {
const size_t code_range_size = 32*MB;
CcTest::InitializeVM();
CodeRange code_range(reinterpret_cast<Isolate*>(CcTest::isolate()));
code_range.SetUp(code_range_size +
kReservedCodeRangePages * v8::base::OS::CommitPageSize());
size_t current_allocated = 0;
size_t total_allocated = 0;
List< ::Block> blocks(1000);
while (total_allocated < 5 * code_range_size) {
if (current_allocated < code_range_size / 10) {
// Allocate a block.
// Geometrically distributed sizes, greater than
// Page::kMaxRegularHeapObjectSize (which is greater than code page area).
// TODO(gc): instead of using 3 use some contant based on code_range_size
// kMaxRegularHeapObjectSize.
size_t requested =
(Page::kMaxRegularHeapObjectSize << (Pseudorandom() % 3)) +
Pseudorandom() % 5000 + 1;
size_t allocated = 0;
// The request size has to be at least 2 code guard pages larger than the
// actual commit size.
Address base = code_range.AllocateRawMemory(
requested, requested - (2 * MemoryAllocator::CodePageGuardSize()),
&allocated);
CHECK(base != NULL);
blocks.Add(::Block(base, static_cast<int>(allocated)));
current_allocated += static_cast<int>(allocated);
total_allocated += static_cast<int>(allocated);
} else {
// Free a block.
int index = Pseudorandom() % blocks.length();
code_range.FreeRawMemory(blocks[index].base, blocks[index].size);
current_allocated -= blocks[index].size;
if (index < blocks.length() - 1) {
blocks[index] = blocks.RemoveLast();
} else {
blocks.RemoveLast();
}
}
}
}