v8/test/unittests/heap/slot-set-unittest.cc
Dominik Inführ 80caf2cf53 [heap] Reduce size of possibly empty buckets
Before this CL a byte was used per bucket to store whether the bucket
is possibly empty or not. This CL changes this such that each bucket
only needs a single bit.

PossiblyEmptyBuckets is now a word in the page header. If more bits
are needed than fit into a single word, an external bitmap is
allocated using AlignedAlloc. Storing this on the page header, allows
to remove initial_buckets from the SlotSet. The SlotSet allocation is
then again a power-of-2 in release mode.

Change-Id: If61fd5cfa153f98757beeb444a530f6e2803fdb6
Bug: chromium:1023139
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1906376
Commit-Queue: Dominik Inführ <dinfuehr@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Cr-Commit-Position: refs/heads/master@{#64991}
2019-11-16 16:31:39 +00:00

273 lines
8.2 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include <map>
#include "src/common/globals.h"
#include "src/heap/slot-set.h"
#include "src/heap/spaces.h"
#include "src/objects/slots.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
TEST(SlotSet, BucketsForSize) {
EXPECT_EQ(static_cast<size_t>(SlotSet::kBucketsRegularPage),
SlotSet::BucketsForSize(Page::kPageSize));
EXPECT_EQ(static_cast<size_t>(SlotSet::kBucketsRegularPage) * 2,
SlotSet::BucketsForSize(Page::kPageSize * 2));
}
TEST(SlotSet, InsertAndLookup1) {
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
EXPECT_FALSE(set->Lookup(i));
}
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
set->Insert<AccessMode::ATOMIC>(i);
}
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
EXPECT_TRUE(set->Lookup(i));
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(SlotSet, InsertAndLookup2) {
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 7 == 0) {
set->Insert<AccessMode::ATOMIC>(i);
}
}
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 7 == 0) {
EXPECT_TRUE(set->Lookup(i));
} else {
EXPECT_FALSE(set->Lookup(i));
}
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(SlotSet, Iterate) {
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 7 == 0) {
set->Insert<AccessMode::ATOMIC>(i);
}
}
set->Iterate(
kNullAddress, SlotSet::kBucketsRegularPage,
[](MaybeObjectSlot slot) {
if (slot.address() % 3 == 0) {
return KEEP_SLOT;
} else {
return REMOVE_SLOT;
}
},
SlotSet::KEEP_EMPTY_BUCKETS);
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 21 == 0) {
EXPECT_TRUE(set->Lookup(i));
} else {
EXPECT_FALSE(set->Lookup(i));
}
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(SlotSet, Remove) {
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 7 == 0) {
set->Insert<AccessMode::ATOMIC>(i);
}
}
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 3 != 0) {
set->Remove(i);
}
}
for (int i = 0; i < Page::kPageSize; i += kTaggedSize) {
if (i % 21 == 0) {
EXPECT_TRUE(set->Lookup(i));
} else {
EXPECT_FALSE(set->Lookup(i));
}
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(PossiblyEmptyBuckets, ContainsAndInsert) {
static const int kBuckets = 100;
PossiblyEmptyBuckets possibly_empty_buckets;
possibly_empty_buckets.Insert(0, kBuckets);
int last = sizeof(uintptr_t) * kBitsPerByte - 2;
possibly_empty_buckets.Insert(last, kBuckets);
EXPECT_TRUE(possibly_empty_buckets.Contains(0));
EXPECT_TRUE(possibly_empty_buckets.Contains(last));
possibly_empty_buckets.Insert(last + 1, kBuckets);
EXPECT_TRUE(possibly_empty_buckets.Contains(0));
EXPECT_TRUE(possibly_empty_buckets.Contains(last));
EXPECT_TRUE(possibly_empty_buckets.Contains(last + 1));
}
void CheckRemoveRangeOn(uint32_t start, uint32_t end) {
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
uint32_t first = start == 0 ? 0 : start - kTaggedSize;
uint32_t last = end == Page::kPageSize ? end - kTaggedSize : end;
for (const auto mode :
{SlotSet::FREE_EMPTY_BUCKETS, SlotSet::KEEP_EMPTY_BUCKETS}) {
for (uint32_t i = first; i <= last; i += kTaggedSize) {
set->Insert<AccessMode::ATOMIC>(i);
}
set->RemoveRange(start, end, SlotSet::kBucketsRegularPage, mode);
if (first != start) {
EXPECT_TRUE(set->Lookup(first));
}
if (last == end) {
EXPECT_TRUE(set->Lookup(last));
}
for (uint32_t i = start; i < end; i += kTaggedSize) {
EXPECT_FALSE(set->Lookup(i));
}
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(SlotSet, RemoveRange) {
CheckRemoveRangeOn(0, Page::kPageSize);
CheckRemoveRangeOn(1 * kTaggedSize, 1023 * kTaggedSize);
for (uint32_t start = 0; start <= 32; start++) {
CheckRemoveRangeOn(start * kTaggedSize, (start + 1) * kTaggedSize);
CheckRemoveRangeOn(start * kTaggedSize, (start + 2) * kTaggedSize);
const uint32_t kEnds[] = {32, 64, 100, 128, 1024, 1500, 2048};
for (size_t i = 0; i < sizeof(kEnds) / sizeof(uint32_t); i++) {
for (int k = -3; k <= 3; k++) {
uint32_t end = (kEnds[i] + k);
if (start < end) {
CheckRemoveRangeOn(start * kTaggedSize, end * kTaggedSize);
}
}
}
}
SlotSet* set = SlotSet::Allocate(SlotSet::kBucketsRegularPage);
for (const auto mode :
{SlotSet::FREE_EMPTY_BUCKETS, SlotSet::KEEP_EMPTY_BUCKETS}) {
set->Insert<AccessMode::ATOMIC>(Page::kPageSize / 2);
set->RemoveRange(0, Page::kPageSize, SlotSet::kBucketsRegularPage, mode);
for (uint32_t i = 0; i < Page::kPageSize; i += kTaggedSize) {
EXPECT_FALSE(set->Lookup(i));
}
}
SlotSet::Delete(set, SlotSet::kBucketsRegularPage);
}
TEST(TypedSlotSet, Iterate) {
TypedSlotSet set(0);
// These two constants must be static as a workaround
// for a MSVC++ bug about lambda captures, see the discussion at
// https://social.msdn.microsoft.com/Forums/SqlServer/4abf18bd-4ae4-4c72-ba3e-3b13e7909d5f
static const int kDelta = 10000001;
int added = 0;
for (uint32_t i = 0; i < TypedSlotSet::kMaxOffset; i += kDelta) {
SlotType type = static_cast<SlotType>(i % CLEARED_SLOT);
set.Insert(type, i);
++added;
}
int iterated = 0;
set.Iterate(
[&iterated](SlotType type, Address addr) {
uint32_t i = static_cast<uint32_t>(addr);
EXPECT_EQ(i % CLEARED_SLOT, static_cast<uint32_t>(type));
EXPECT_EQ(0u, i % kDelta);
++iterated;
return i % 2 == 0 ? KEEP_SLOT : REMOVE_SLOT;
},
TypedSlotSet::KEEP_EMPTY_CHUNKS);
EXPECT_EQ(added, iterated);
iterated = 0;
set.Iterate(
[&iterated](SlotType type, Address addr) {
uint32_t i = static_cast<uint32_t>(addr);
EXPECT_EQ(0u, i % 2);
++iterated;
return KEEP_SLOT;
},
TypedSlotSet::KEEP_EMPTY_CHUNKS);
EXPECT_EQ(added / 2, iterated);
}
TEST(TypedSlotSet, ClearInvalidSlots) {
TypedSlotSet set(0);
const int kHostDelta = 100;
uint32_t entries = 10;
for (uint32_t i = 0; i < entries; i++) {
SlotType type = static_cast<SlotType>(i % CLEARED_SLOT);
set.Insert(type, i * kHostDelta);
}
std::map<uint32_t, uint32_t> invalid_ranges;
for (uint32_t i = 1; i < entries; i += 2) {
invalid_ranges.insert(
std::pair<uint32_t, uint32_t>(i * kHostDelta, i * kHostDelta + 1));
}
set.ClearInvalidSlots(invalid_ranges);
for (std::map<uint32_t, uint32_t>::iterator it = invalid_ranges.begin();
it != invalid_ranges.end(); ++it) {
uint32_t start = it->first;
uint32_t end = it->second;
set.Iterate(
[=](SlotType slot_type, Address slot_addr) {
CHECK(slot_addr < start || slot_addr >= end);
return KEEP_SLOT;
},
TypedSlotSet::KEEP_EMPTY_CHUNKS);
}
}
TEST(TypedSlotSet, Merge) {
TypedSlotSet set0(0), set1(0);
static const uint32_t kEntries = 10000;
for (uint32_t i = 0; i < kEntries; i++) {
set0.Insert(FULL_EMBEDDED_OBJECT_SLOT, 2 * i);
set1.Insert(FULL_EMBEDDED_OBJECT_SLOT, 2 * i + 1);
}
uint32_t count = 0;
set0.Merge(&set1);
set0.Iterate(
[&count](SlotType slot_type, Address slot_addr) {
if (count < kEntries) {
CHECK_EQ(slot_addr % 2, 0);
} else {
CHECK_EQ(slot_addr % 2, 1);
}
++count;
return KEEP_SLOT;
},
TypedSlotSet::KEEP_EMPTY_CHUNKS);
CHECK_EQ(2 * kEntries, count);
set1.Iterate(
[](SlotType slot_type, Address slot_addr) {
CHECK(false); // Unreachable.
return KEEP_SLOT;
},
TypedSlotSet::KEEP_EMPTY_CHUNKS);
}
} // namespace internal
} // namespace v8