v8/test/cctest/test-assembler-arm64.cc
Georgia Kouveli 35b4f3a0e5 [arm64][cfi] Enable sim_abort_on_bad_auth by default.
This requires a small fix in {Push,Pop}CalleeSavedRegisters, where
the return address was signed/authenticated at the wrong point,
which meant the stack pointer used as modifier was different from
the one the StackFrameIterator expected.

Bug: v8:10026
Change-Id: Idebd2ee8f07312b5e99dd2ea5181fc7a7e4a87bc
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2667861
Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Cr-Commit-Position: refs/heads/master@{#72542}
2021-02-05 10:23:40 +00:00

15167 lines
436 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <limits>
#include "src/init/v8.h"
#include "src/base/platform/platform.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/arm64/assembler-arm64-inl.h"
#include "src/codegen/arm64/decoder-arm64-inl.h"
#include "src/codegen/arm64/macro-assembler-arm64-inl.h"
#include "src/codegen/arm64/utils-arm64.h"
#include "src/codegen/macro-assembler.h"
#include "src/diagnostics/arm64/disasm-arm64.h"
#include "src/execution/arm64/simulator-arm64.h"
#include "src/execution/simulator.h"
#include "src/heap/factory.h"
#include "test/cctest/cctest.h"
#include "test/cctest/test-utils-arm64.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
// Test infrastructure.
//
// Tests are functions which accept no parameters and have no return values.
// The testing code should not perform an explicit return once completed. For
// example to test the mov immediate instruction a very simple test would be:
//
// TEST(mov_x0_one) {
// SETUP();
//
// START();
// __ mov(x0, Operand(1));
// END();
//
// RUN();
//
// CHECK_EQUAL_64(1, x0);
// }
//
// Within a START ... END block all registers but sp can be modified. sp has to
// be explicitly saved/restored. The END() macro replaces the function return
// so it may appear multiple times in a test if the test has multiple exit
// points.
//
// Once the test has been run all integer and floating point registers as well
// as flags are accessible through a RegisterDump instance, see
// utils-arm64.cc for more info on RegisterDump.
//
// We provide some helper assert to handle common cases:
//
// CHECK_EQUAL_32(int32_t, int_32t)
// CHECK_EQUAL_FP32(float, float)
// CHECK_EQUAL_32(int32_t, W register)
// CHECK_EQUAL_FP32(float, S register)
// CHECK_EQUAL_64(int64_t, int_64t)
// CHECK_EQUAL_FP64(double, double)
// CHECK_EQUAL_64(int64_t, X register)
// CHECK_EQUAL_64(X register, X register)
// CHECK_EQUAL_FP64(double, D register)
//
// e.g. CHECK_EQUAL_64(0.5, d30);
//
// If more advance computation is required before the assert then access the
// RegisterDump named core directly:
//
// CHECK_EQUAL_64(0x1234, core.xreg(0) & 0xFFFF);
#if 0 // TODO(all): enable.
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) {
env = v8::Context::New();
}
}
#endif
#define __ masm.
#define BUF_SIZE 8192
#define SETUP() SETUP_SIZE(BUF_SIZE)
#define INIT_V8() \
CcTest::InitializeVM(); \
#ifdef USE_SIMULATOR
// Run tests with the simulator.
#define SETUP_SIZE(buf_size) \
Isolate* isolate = CcTest::i_isolate(); \
HandleScope scope(isolate); \
CHECK_NOT_NULL(isolate); \
std::unique_ptr<byte[]> owned_buf{new byte[buf_size]}; \
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, \
ExternalAssemblerBuffer(owned_buf.get(), buf_size)); \
Decoder<DispatchingDecoderVisitor>* decoder = \
new Decoder<DispatchingDecoderVisitor>(); \
Simulator simulator(decoder); \
std::unique_ptr<PrintDisassembler> pdis; \
RegisterDump core; \
HandleScope handle_scope(isolate); \
Handle<Code> code; \
if (i::FLAG_trace_sim) { \
pdis.reset(new PrintDisassembler(stdout)); \
decoder->PrependVisitor(pdis.get()); \
}
// Reset the assembler and simulator, so that instructions can be generated,
// but don't actually emit any code. This can be used by tests that need to
// emit instructions at the start of the buffer. Note that START_AFTER_RESET
// must be called before any callee-saved register is modified, and before an
// END is encountered.
//
// Most tests should call START, rather than call RESET directly.
#define RESET() \
__ Reset(); \
simulator.ResetState();
#define START_AFTER_RESET() \
__ PushCalleeSavedRegisters(); \
__ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL);
#define START() \
RESET(); \
START_AFTER_RESET();
#define RUN() simulator.RunFrom(reinterpret_cast<Instruction*>(code->entry()))
#define END() \
__ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
{ \
CodeDesc desc; \
__ GetCode(masm.isolate(), &desc); \
code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); \
if (FLAG_print_code) code->Print(); \
}
#else // ifdef USE_SIMULATOR.
// Run the test on real hardware or models.
#define SETUP_SIZE(buf_size) \
Isolate* isolate = CcTest::i_isolate(); \
HandleScope scope(isolate); \
CHECK_NOT_NULL(isolate); \
auto owned_buf = AllocateAssemblerBuffer(buf_size); \
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes, \
owned_buf->CreateView()); \
HandleScope handle_scope(isolate); \
Handle<Code> code; \
RegisterDump core;
#define RESET() \
owned_buf->MakeWritable(); \
__ Reset(); \
__ CodeEntry(); \
/* Reset the machine state (like simulator.ResetState()). */ \
__ Msr(NZCV, xzr); \
__ Msr(FPCR, xzr);
#define START_AFTER_RESET() \
__ PushCalleeSavedRegisters();
#define START() \
RESET(); \
START_AFTER_RESET();
#define RUN() \
{ \
auto f = GeneratedCode<void>::FromCode(*code); \
f.Call(); \
}
#define END() \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
{ \
CodeDesc desc; \
__ GetCode(masm.isolate(), &desc); \
code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); \
if (FLAG_print_code) code->Print(); \
}
#endif // ifdef USE_SIMULATOR.
#define CHECK_EQUAL_NZCV(expected) \
CHECK(EqualNzcv(expected, core.flags_nzcv()))
#define CHECK_EQUAL_REGISTERS(expected) \
CHECK(EqualV8Registers(&expected, &core))
#define CHECK_EQUAL_32(expected, result) \
CHECK(Equal32(static_cast<uint32_t>(expected), &core, result))
#define CHECK_EQUAL_FP32(expected, result) \
CHECK(EqualFP32(expected, &core, result))
#define CHECK_EQUAL_64(expected, result) \
CHECK(Equal64(expected, &core, result))
#define CHECK_FULL_HEAP_OBJECT_IN_REGISTER(expected, result) \
CHECK(Equal64(expected->ptr(), &core, result))
#define CHECK_NOT_ZERO_AND_NOT_EQUAL_64(reg0, reg1) \
{ \
int64_t value0 = core.xreg(reg0.code()); \
int64_t value1 = core.xreg(reg1.code()); \
CHECK_NE(0, value0); \
CHECK_NE(0, value1); \
CHECK_NE(value0, value1); \
}
#define CHECK_EQUAL_FP64(expected, result) \
CHECK(EqualFP64(expected, &core, result))
// Expected values for 128-bit comparisons are passed as two 64-bit values,
// where expected_h (high) is <127:64> and expected_l (low) is <63:0>.
#define CHECK_EQUAL_128(expected_h, expected_l, result) \
CHECK(Equal128(expected_h, expected_l, &core, result))
#ifdef DEBUG
#define CHECK_CONSTANT_POOL_SIZE(expected) \
CHECK_EQ(expected, __ GetConstantPoolEntriesSizeForTesting())
#else
#define CHECK_CONSTANT_POOL_SIZE(expected) ((void)0)
#endif
TEST(stack_ops) {
INIT_V8();
SETUP();
START();
// save sp.
__ Mov(x29, sp);
// Set the sp to a known value.
__ Mov(x16, 0x1000);
__ Mov(sp, x16);
__ Mov(x0, sp);
// Add immediate to the sp, and move the result to a normal register.
__ Add(sp, sp, Operand(0x50));
__ Mov(x1, sp);
// Add extended to the sp, and move the result to a normal register.
__ Mov(x17, 0xFFF);
__ Add(sp, sp, Operand(x17, SXTB));
__ Mov(x2, sp);
// Create an sp using a logical instruction, and move to normal register.
__ Orr(sp, xzr, Operand(0x1FFF));
__ Mov(x3, sp);
// Write wsp using a logical instruction.
__ Orr(wsp, wzr, Operand(0xFFFFFFF8L));
__ Mov(x4, sp);
// Write sp, and read back wsp.
__ Orr(sp, xzr, Operand(0xFFFFFFF8L));
__ Mov(w5, wsp);
// restore sp.
__ Mov(sp, x29);
END();
RUN();
CHECK_EQUAL_64(0x1000, x0);
CHECK_EQUAL_64(0x1050, x1);
CHECK_EQUAL_64(0x104F, x2);
CHECK_EQUAL_64(0x1FFF, x3);
CHECK_EQUAL_64(0xFFFFFFF8, x4);
CHECK_EQUAL_64(0xFFFFFFF8, x5);
}
TEST(mvn) {
INIT_V8();
SETUP();
START();
__ Mvn(w0, 0xFFF);
__ Mvn(x1, 0xFFF);
__ Mvn(w2, Operand(w0, LSL, 1));
__ Mvn(x3, Operand(x1, LSL, 2));
__ Mvn(w4, Operand(w0, LSR, 3));
__ Mvn(x5, Operand(x1, LSR, 4));
__ Mvn(w6, Operand(w0, ASR, 11));
__ Mvn(x7, Operand(x1, ASR, 12));
__ Mvn(w8, Operand(w0, ROR, 13));
__ Mvn(x9, Operand(x1, ROR, 14));
__ Mvn(w10, Operand(w2, UXTB));
__ Mvn(x11, Operand(x2, SXTB, 1));
__ Mvn(w12, Operand(w2, UXTH, 2));
__ Mvn(x13, Operand(x2, SXTH, 3));
__ Mvn(x14, Operand(w2, UXTW, 4));
__ Mvn(x15, Operand(w2, SXTW, 4));
END();
RUN();
CHECK_EQUAL_64(0xFFFFF000, x0);
CHECK_EQUAL_64(0xFFFFFFFFFFFFF000UL, x1);
CHECK_EQUAL_64(0x00001FFF, x2);
CHECK_EQUAL_64(0x0000000000003FFFUL, x3);
CHECK_EQUAL_64(0xE00001FF, x4);
CHECK_EQUAL_64(0xF0000000000000FFUL, x5);
CHECK_EQUAL_64(0x00000001, x6);
CHECK_EQUAL_64(0x0, x7);
CHECK_EQUAL_64(0x7FF80000, x8);
CHECK_EQUAL_64(0x3FFC000000000000UL, x9);
CHECK_EQUAL_64(0xFFFFFF00, x10);
CHECK_EQUAL_64(0x0000000000000001UL, x11);
CHECK_EQUAL_64(0xFFFF8003, x12);
CHECK_EQUAL_64(0xFFFFFFFFFFFF0007UL, x13);
CHECK_EQUAL_64(0xFFFFFFFFFFFE000FUL, x14);
CHECK_EQUAL_64(0xFFFFFFFFFFFE000FUL, x15);
}
TEST(mov) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x1, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x2, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x3, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x0, 0x0123456789ABCDEFL);
__ movz(x1, 0xABCDLL << 16);
__ movk(x2, 0xABCDLL << 32);
__ movn(x3, 0xABCDLL << 48);
__ Mov(x4, 0x0123456789ABCDEFL);
__ Mov(x5, x4);
__ Mov(w6, -1);
// Test that moves back to the same register have the desired effect. This
// is a no-op for X registers, and a truncation for W registers.
__ Mov(x7, 0x0123456789ABCDEFL);
__ Mov(x7, x7);
__ Mov(x8, 0x0123456789ABCDEFL);
__ Mov(w8, w8);
__ Mov(x9, 0x0123456789ABCDEFL);
__ Mov(x9, Operand(x9));
__ Mov(x10, 0x0123456789ABCDEFL);
__ Mov(w10, Operand(w10));
__ Mov(w11, 0xFFF);
__ Mov(x12, 0xFFF);
__ Mov(w13, Operand(w11, LSL, 1));
__ Mov(x14, Operand(x12, LSL, 2));
__ Mov(w15, Operand(w11, LSR, 3));
__ Mov(x28, Operand(x12, LSR, 4));
__ Mov(w19, Operand(w11, ASR, 11));
__ Mov(x20, Operand(x12, ASR, 12));
__ Mov(w21, Operand(w11, ROR, 13));
__ Mov(x22, Operand(x12, ROR, 14));
__ Mov(w23, Operand(w13, UXTB));
__ Mov(x24, Operand(x13, SXTB, 1));
__ Mov(w25, Operand(w13, UXTH, 2));
__ Mov(x26, Operand(x13, SXTH, 3));
__ Mov(x27, Operand(w13, UXTW, 4));
END();
RUN();
CHECK_EQUAL_64(0x0123456789ABCDEFL, x0);
CHECK_EQUAL_64(0x00000000ABCD0000L, x1);
CHECK_EQUAL_64(0xFFFFABCDFFFFFFFFL, x2);
CHECK_EQUAL_64(0x5432FFFFFFFFFFFFL, x3);
CHECK_EQUAL_64(x4, x5);
CHECK_EQUAL_32(-1, w6);
CHECK_EQUAL_64(0x0123456789ABCDEFL, x7);
CHECK_EQUAL_32(0x89ABCDEFL, w8);
CHECK_EQUAL_64(0x0123456789ABCDEFL, x9);
CHECK_EQUAL_32(0x89ABCDEFL, w10);
CHECK_EQUAL_64(0x00000FFF, x11);
CHECK_EQUAL_64(0x0000000000000FFFUL, x12);
CHECK_EQUAL_64(0x00001FFE, x13);
CHECK_EQUAL_64(0x0000000000003FFCUL, x14);
CHECK_EQUAL_64(0x000001FF, x15);
CHECK_EQUAL_64(0x00000000000000FFUL, x28);
CHECK_EQUAL_64(0x00000001, x19);
CHECK_EQUAL_64(0x0, x20);
CHECK_EQUAL_64(0x7FF80000, x21);
CHECK_EQUAL_64(0x3FFC000000000000UL, x22);
CHECK_EQUAL_64(0x000000FE, x23);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFCUL, x24);
CHECK_EQUAL_64(0x00007FF8, x25);
CHECK_EQUAL_64(0x000000000000FFF0UL, x26);
CHECK_EQUAL_64(0x000000000001FFE0UL, x27);
}
TEST(move_pair) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xabababab);
__ Mov(x1, 0xbabababa);
__ Mov(x2, 0x12341234);
__ Mov(x3, 0x43214321);
// No overlap:
// x4 <- x0
// x5 <- x1
__ MovePair(x4, x0, x5, x1);
// Overlap but we can swap moves:
// x2 <- x0
// x6 <- x2
__ MovePair(x2, x0, x6, x2);
// Overlap but can be done:
// x7 <- x3
// x3 <- x0
__ MovePair(x7, x3, x3, x0);
// Swap.
// x0 <- x1
// x1 <- x0
__ MovePair(x0, x1, x1, x0);
END();
RUN();
// x4 <- x0
// x5 <- x1
CHECK_EQUAL_64(0xabababab, x4);
CHECK_EQUAL_64(0xbabababa, x5);
// x2 <- x0
// x6 <- x2
CHECK_EQUAL_64(0xabababab, x2);
CHECK_EQUAL_64(0x12341234, x6);
// x7 <- x3
// x3 <- x0
CHECK_EQUAL_64(0x43214321, x7);
CHECK_EQUAL_64(0xabababab, x3);
// x0 and x1 should be swapped.
CHECK_EQUAL_64(0xbabababa, x0);
CHECK_EQUAL_64(0xabababab, x1);
}
TEST(mov_imm_w) {
INIT_V8();
SETUP();
START();
__ Mov(w0, 0xFFFFFFFFL);
__ Mov(w1, 0xFFFF1234L);
__ Mov(w2, 0x1234FFFFL);
__ Mov(w3, 0x00000000L);
__ Mov(w4, 0x00001234L);
__ Mov(w5, 0x12340000L);
__ Mov(w6, 0x12345678L);
__ Mov(w7, (int32_t)0x80000000);
__ Mov(w8, (int32_t)0xFFFF0000);
__ Mov(w9, kWMinInt);
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFL, x0);
CHECK_EQUAL_64(0xFFFF1234L, x1);
CHECK_EQUAL_64(0x1234FFFFL, x2);
CHECK_EQUAL_64(0x00000000L, x3);
CHECK_EQUAL_64(0x00001234L, x4);
CHECK_EQUAL_64(0x12340000L, x5);
CHECK_EQUAL_64(0x12345678L, x6);
CHECK_EQUAL_64(0x80000000L, x7);
CHECK_EQUAL_64(0xFFFF0000L, x8);
CHECK_EQUAL_32(kWMinInt, w9);
}
TEST(mov_imm_x) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x1, 0xFFFFFFFFFFFF1234L);
__ Mov(x2, 0xFFFFFFFF12345678L);
__ Mov(x3, 0xFFFF1234FFFF5678L);
__ Mov(x4, 0x1234FFFFFFFF5678L);
__ Mov(x5, 0x1234FFFF5678FFFFL);
__ Mov(x6, 0x12345678FFFFFFFFL);
__ Mov(x7, 0x1234FFFFFFFFFFFFL);
__ Mov(x8, 0x123456789ABCFFFFL);
__ Mov(x9, 0x12345678FFFF9ABCL);
__ Mov(x10, 0x1234FFFF56789ABCL);
__ Mov(x11, 0xFFFF123456789ABCL);
__ Mov(x12, 0x0000000000000000L);
__ Mov(x13, 0x0000000000001234L);
__ Mov(x14, 0x0000000012345678L);
__ Mov(x15, 0x0000123400005678L);
__ Mov(x30, 0x1234000000005678L);
__ Mov(x19, 0x1234000056780000L);
__ Mov(x20, 0x1234567800000000L);
__ Mov(x21, 0x1234000000000000L);
__ Mov(x22, 0x123456789ABC0000L);
__ Mov(x23, 0x1234567800009ABCL);
__ Mov(x24, 0x1234000056789ABCL);
__ Mov(x25, 0x0000123456789ABCL);
__ Mov(x26, 0x123456789ABCDEF0L);
__ Mov(x27, 0xFFFF000000000001L);
__ Mov(x28, 0x8000FFFF00000000L);
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFFFFF1234L, x1);
CHECK_EQUAL_64(0xFFFFFFFF12345678L, x2);
CHECK_EQUAL_64(0xFFFF1234FFFF5678L, x3);
CHECK_EQUAL_64(0x1234FFFFFFFF5678L, x4);
CHECK_EQUAL_64(0x1234FFFF5678FFFFL, x5);
CHECK_EQUAL_64(0x12345678FFFFFFFFL, x6);
CHECK_EQUAL_64(0x1234FFFFFFFFFFFFL, x7);
CHECK_EQUAL_64(0x123456789ABCFFFFL, x8);
CHECK_EQUAL_64(0x12345678FFFF9ABCL, x9);
CHECK_EQUAL_64(0x1234FFFF56789ABCL, x10);
CHECK_EQUAL_64(0xFFFF123456789ABCL, x11);
CHECK_EQUAL_64(0x0000000000000000L, x12);
CHECK_EQUAL_64(0x0000000000001234L, x13);
CHECK_EQUAL_64(0x0000000012345678L, x14);
CHECK_EQUAL_64(0x0000123400005678L, x15);
CHECK_EQUAL_64(0x1234000000005678L, x30);
CHECK_EQUAL_64(0x1234000056780000L, x19);
CHECK_EQUAL_64(0x1234567800000000L, x20);
CHECK_EQUAL_64(0x1234000000000000L, x21);
CHECK_EQUAL_64(0x123456789ABC0000L, x22);
CHECK_EQUAL_64(0x1234567800009ABCL, x23);
CHECK_EQUAL_64(0x1234000056789ABCL, x24);
CHECK_EQUAL_64(0x0000123456789ABCL, x25);
CHECK_EQUAL_64(0x123456789ABCDEF0L, x26);
CHECK_EQUAL_64(0xFFFF000000000001L, x27);
CHECK_EQUAL_64(0x8000FFFF00000000L, x28);
}
TEST(orr) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xF0F0);
__ Mov(x1, 0xF00000FF);
__ Orr(x2, x0, Operand(x1));
__ Orr(w3, w0, Operand(w1, LSL, 28));
__ Orr(x4, x0, Operand(x1, LSL, 32));
__ Orr(x5, x0, Operand(x1, LSR, 4));
__ Orr(w6, w0, Operand(w1, ASR, 4));
__ Orr(x7, x0, Operand(x1, ASR, 4));
__ Orr(w8, w0, Operand(w1, ROR, 12));
__ Orr(x9, x0, Operand(x1, ROR, 12));
__ Orr(w10, w0, Operand(0xF));
__ Orr(x11, x0, Operand(0xF0000000F0000000L));
END();
RUN();
CHECK_EQUAL_64(0xF000F0FF, x2);
CHECK_EQUAL_64(0xF000F0F0, x3);
CHECK_EQUAL_64(0xF00000FF0000F0F0L, x4);
CHECK_EQUAL_64(0x0F00F0FF, x5);
CHECK_EQUAL_64(0xFF00F0FF, x6);
CHECK_EQUAL_64(0x0F00F0FF, x7);
CHECK_EQUAL_64(0x0FFFF0F0, x8);
CHECK_EQUAL_64(0x0FF00000000FF0F0L, x9);
CHECK_EQUAL_64(0xF0FF, x10);
CHECK_EQUAL_64(0xF0000000F000F0F0L, x11);
}
TEST(orr_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008080UL);
__ Orr(w6, w0, Operand(w1, UXTB));
__ Orr(x7, x0, Operand(x1, UXTH, 1));
__ Orr(w8, w0, Operand(w1, UXTW, 2));
__ Orr(x9, x0, Operand(x1, UXTX, 3));
__ Orr(w10, w0, Operand(w1, SXTB));
__ Orr(x11, x0, Operand(x1, SXTH, 1));
__ Orr(x12, x0, Operand(x1, SXTW, 2));
__ Orr(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0x00000081, x6);
CHECK_EQUAL_64(0x00010101, x7);
CHECK_EQUAL_64(0x00020201, x8);
CHECK_EQUAL_64(0x0000000400040401UL, x9);
CHECK_EQUAL_64(0x00000000FFFFFF81UL, x10);
CHECK_EQUAL_64(0xFFFFFFFFFFFF0101UL, x11);
CHECK_EQUAL_64(0xFFFFFFFE00020201UL, x12);
CHECK_EQUAL_64(0x0000000400040401UL, x13);
}
TEST(bitwise_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0xF0F0F0F0F0F0F0F0UL);
__ Orr(x10, x0, Operand(0x1234567890ABCDEFUL));
__ Orr(w11, w1, Operand(0x90ABCDEF));
__ Orr(w12, w0, kWMinInt);
__ Eor(w13, w0, kWMinInt);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(0xF0F0F0F0F0F0F0F0UL, x1);
CHECK_EQUAL_64(0x1234567890ABCDEFUL, x10);
CHECK_EQUAL_64(0xF0FBFDFFUL, x11);
CHECK_EQUAL_32(kWMinInt, w12);
CHECK_EQUAL_32(kWMinInt, w13);
}
TEST(orn) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xF0F0);
__ Mov(x1, 0xF00000FF);
__ Orn(x2, x0, Operand(x1));
__ Orn(w3, w0, Operand(w1, LSL, 4));
__ Orn(x4, x0, Operand(x1, LSL, 4));
__ Orn(x5, x0, Operand(x1, LSR, 1));
__ Orn(w6, w0, Operand(w1, ASR, 1));
__ Orn(x7, x0, Operand(x1, ASR, 1));
__ Orn(w8, w0, Operand(w1, ROR, 16));
__ Orn(x9, x0, Operand(x1, ROR, 16));
__ Orn(w10, w0, Operand(0xFFFF));
__ Orn(x11, x0, Operand(0xFFFF0000FFFFL));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFF0FFFFFF0L, x2);
CHECK_EQUAL_64(0xFFFFF0FF, x3);
CHECK_EQUAL_64(0xFFFFFFF0FFFFF0FFL, x4);
CHECK_EQUAL_64(0xFFFFFFFF87FFFFF0L, x5);
CHECK_EQUAL_64(0x07FFFFF0, x6);
CHECK_EQUAL_64(0xFFFFFFFF87FFFFF0L, x7);
CHECK_EQUAL_64(0xFF00FFFF, x8);
CHECK_EQUAL_64(0xFF00FFFFFFFFFFFFL, x9);
CHECK_EQUAL_64(0xFFFFF0F0, x10);
CHECK_EQUAL_64(0xFFFF0000FFFFF0F0L, x11);
}
TEST(orn_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008081UL);
__ Orn(w6, w0, Operand(w1, UXTB));
__ Orn(x7, x0, Operand(x1, UXTH, 1));
__ Orn(w8, w0, Operand(w1, UXTW, 2));
__ Orn(x9, x0, Operand(x1, UXTX, 3));
__ Orn(w10, w0, Operand(w1, SXTB));
__ Orn(x11, x0, Operand(x1, SXTH, 1));
__ Orn(x12, x0, Operand(x1, SXTW, 2));
__ Orn(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFF7F, x6);
CHECK_EQUAL_64(0xFFFFFFFFFFFEFEFDUL, x7);
CHECK_EQUAL_64(0xFFFDFDFB, x8);
CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x9);
CHECK_EQUAL_64(0x0000007F, x10);
CHECK_EQUAL_64(0x0000FEFD, x11);
CHECK_EQUAL_64(0x00000001FFFDFDFBUL, x12);
CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x13);
}
TEST(and_) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFF0);
__ Mov(x1, 0xF00000FF);
__ And(x2, x0, Operand(x1));
__ And(w3, w0, Operand(w1, LSL, 4));
__ And(x4, x0, Operand(x1, LSL, 4));
__ And(x5, x0, Operand(x1, LSR, 1));
__ And(w6, w0, Operand(w1, ASR, 20));
__ And(x7, x0, Operand(x1, ASR, 20));
__ And(w8, w0, Operand(w1, ROR, 28));
__ And(x9, x0, Operand(x1, ROR, 28));
__ And(w10, w0, Operand(0xFF00));
__ And(x11, x0, Operand(0xFF));
END();
RUN();
CHECK_EQUAL_64(0x000000F0, x2);
CHECK_EQUAL_64(0x00000FF0, x3);
CHECK_EQUAL_64(0x00000FF0, x4);
CHECK_EQUAL_64(0x00000070, x5);
CHECK_EQUAL_64(0x0000FF00, x6);
CHECK_EQUAL_64(0x00000F00, x7);
CHECK_EQUAL_64(0x00000FF0, x8);
CHECK_EQUAL_64(0x00000000, x9);
CHECK_EQUAL_64(0x0000FF00, x10);
CHECK_EQUAL_64(0x000000F0, x11);
}
TEST(and_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x1, 0x8000000080008081UL);
__ And(w6, w0, Operand(w1, UXTB));
__ And(x7, x0, Operand(x1, UXTH, 1));
__ And(w8, w0, Operand(w1, UXTW, 2));
__ And(x9, x0, Operand(x1, UXTX, 3));
__ And(w10, w0, Operand(w1, SXTB));
__ And(x11, x0, Operand(x1, SXTH, 1));
__ And(x12, x0, Operand(x1, SXTW, 2));
__ And(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0x00000081, x6);
CHECK_EQUAL_64(0x00010102, x7);
CHECK_EQUAL_64(0x00020204, x8);
CHECK_EQUAL_64(0x0000000400040408UL, x9);
CHECK_EQUAL_64(0xFFFFFF81, x10);
CHECK_EQUAL_64(0xFFFFFFFFFFFF0102UL, x11);
CHECK_EQUAL_64(0xFFFFFFFE00020204UL, x12);
CHECK_EQUAL_64(0x0000000400040408UL, x13);
}
TEST(ands) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0xF00000FF);
__ Ands(w0, w1, Operand(w1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
CHECK_EQUAL_64(0xF00000FF, x0);
START();
__ Mov(x0, 0xFFF0);
__ Mov(x1, 0xF00000FF);
__ Ands(w0, w0, Operand(w1, LSR, 4));
END();
RUN();
CHECK_EQUAL_NZCV(ZFlag);
CHECK_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0x8000000000000000L);
__ Mov(x1, 0x00000001);
__ Ands(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
CHECK_EQUAL_64(0x8000000000000000L, x0);
START();
__ Mov(x0, 0xFFF0);
__ Ands(w0, w0, Operand(0xF));
END();
RUN();
CHECK_EQUAL_NZCV(ZFlag);
CHECK_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xFF000000);
__ Ands(w0, w0, Operand(0x80000000));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
CHECK_EQUAL_64(0x80000000, x0);
}
TEST(bic) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFF0);
__ Mov(x1, 0xF00000FF);
__ Bic(x2, x0, Operand(x1));
__ Bic(w3, w0, Operand(w1, LSL, 4));
__ Bic(x4, x0, Operand(x1, LSL, 4));
__ Bic(x5, x0, Operand(x1, LSR, 1));
__ Bic(w6, w0, Operand(w1, ASR, 20));
__ Bic(x7, x0, Operand(x1, ASR, 20));
__ Bic(w8, w0, Operand(w1, ROR, 28));
__ Bic(x9, x0, Operand(x1, ROR, 24));
__ Bic(x10, x0, Operand(0x1F));
__ Bic(x11, x0, Operand(0x100));
// Test bic into sp when the constant cannot be encoded in the immediate
// field.
// Use x20 to preserve sp. We check for the result via x21 because the
// test infrastructure requires that sp be restored to its original value.
__ Mov(x20, sp);
__ Mov(x0, 0xFFFFFF);
__ Bic(sp, x0, Operand(0xABCDEF));
__ Mov(x21, sp);
__ Mov(sp, x20);
END();
RUN();
CHECK_EQUAL_64(0x0000FF00, x2);
CHECK_EQUAL_64(0x0000F000, x3);
CHECK_EQUAL_64(0x0000F000, x4);
CHECK_EQUAL_64(0x0000FF80, x5);
CHECK_EQUAL_64(0x000000F0, x6);
CHECK_EQUAL_64(0x0000F0F0, x7);
CHECK_EQUAL_64(0x0000F000, x8);
CHECK_EQUAL_64(0x0000FF00, x9);
CHECK_EQUAL_64(0x0000FFE0, x10);
CHECK_EQUAL_64(0x0000FEF0, x11);
CHECK_EQUAL_64(0x543210, x21);
}
TEST(bic_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x1, 0x8000000080008081UL);
__ Bic(w6, w0, Operand(w1, UXTB));
__ Bic(x7, x0, Operand(x1, UXTH, 1));
__ Bic(w8, w0, Operand(w1, UXTW, 2));
__ Bic(x9, x0, Operand(x1, UXTX, 3));
__ Bic(w10, w0, Operand(w1, SXTB));
__ Bic(x11, x0, Operand(x1, SXTH, 1));
__ Bic(x12, x0, Operand(x1, SXTW, 2));
__ Bic(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFF7E, x6);
CHECK_EQUAL_64(0xFFFFFFFFFFFEFEFDUL, x7);
CHECK_EQUAL_64(0xFFFDFDFB, x8);
CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x9);
CHECK_EQUAL_64(0x0000007E, x10);
CHECK_EQUAL_64(0x0000FEFD, x11);
CHECK_EQUAL_64(0x00000001FFFDFDFBUL, x12);
CHECK_EQUAL_64(0xFFFFFFFBFFFBFBF7UL, x13);
}
TEST(bics) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0xFFFF);
__ Bics(w0, w1, Operand(w1));
END();
RUN();
CHECK_EQUAL_NZCV(ZFlag);
CHECK_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xFFFFFFFF);
__ Bics(w0, w0, Operand(w0, LSR, 1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
CHECK_EQUAL_64(0x80000000, x0);
START();
__ Mov(x0, 0x8000000000000000L);
__ Mov(x1, 0x00000001);
__ Bics(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
CHECK_EQUAL_NZCV(ZFlag);
CHECK_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xFFFFFFFFFFFFFFFFL);
__ Bics(x0, x0, Operand(0x7FFFFFFFFFFFFFFFL));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
CHECK_EQUAL_64(0x8000000000000000L, x0);
START();
__ Mov(w0, 0xFFFF0000);
__ Bics(w0, w0, Operand(0xFFFFFFF0));
END();
RUN();
CHECK_EQUAL_NZCV(ZFlag);
CHECK_EQUAL_64(0x00000000, x0);
}
TEST(eor) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFF0);
__ Mov(x1, 0xF00000FF);
__ Eor(x2, x0, Operand(x1));
__ Eor(w3, w0, Operand(w1, LSL, 4));
__ Eor(x4, x0, Operand(x1, LSL, 4));
__ Eor(x5, x0, Operand(x1, LSR, 1));
__ Eor(w6, w0, Operand(w1, ASR, 20));
__ Eor(x7, x0, Operand(x1, ASR, 20));
__ Eor(w8, w0, Operand(w1, ROR, 28));
__ Eor(x9, x0, Operand(x1, ROR, 28));
__ Eor(w10, w0, Operand(0xFF00FF00));
__ Eor(x11, x0, Operand(0xFF00FF00FF00FF00L));
END();
RUN();
CHECK_EQUAL_64(0xF000FF0F, x2);
CHECK_EQUAL_64(0x0000F000, x3);
CHECK_EQUAL_64(0x0000000F0000F000L, x4);
CHECK_EQUAL_64(0x7800FF8F, x5);
CHECK_EQUAL_64(0xFFFF00F0, x6);
CHECK_EQUAL_64(0x0000F0F0, x7);
CHECK_EQUAL_64(0x0000F00F, x8);
CHECK_EQUAL_64(0x00000FF00000FFFFL, x9);
CHECK_EQUAL_64(0xFF0000F0, x10);
CHECK_EQUAL_64(0xFF00FF00FF0000F0L, x11);
}
TEST(eor_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x1111111111111111UL);
__ Mov(x1, 0x8000000080008081UL);
__ Eor(w6, w0, Operand(w1, UXTB));
__ Eor(x7, x0, Operand(x1, UXTH, 1));
__ Eor(w8, w0, Operand(w1, UXTW, 2));
__ Eor(x9, x0, Operand(x1, UXTX, 3));
__ Eor(w10, w0, Operand(w1, SXTB));
__ Eor(x11, x0, Operand(x1, SXTH, 1));
__ Eor(x12, x0, Operand(x1, SXTW, 2));
__ Eor(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0x11111190, x6);
CHECK_EQUAL_64(0x1111111111101013UL, x7);
CHECK_EQUAL_64(0x11131315, x8);
CHECK_EQUAL_64(0x1111111511151519UL, x9);
CHECK_EQUAL_64(0xEEEEEE90, x10);
CHECK_EQUAL_64(0xEEEEEEEEEEEE1013UL, x11);
CHECK_EQUAL_64(0xEEEEEEEF11131315UL, x12);
CHECK_EQUAL_64(0x1111111511151519UL, x13);
}
TEST(eon) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xFFF0);
__ Mov(x1, 0xF00000FF);
__ Eon(x2, x0, Operand(x1));
__ Eon(w3, w0, Operand(w1, LSL, 4));
__ Eon(x4, x0, Operand(x1, LSL, 4));
__ Eon(x5, x0, Operand(x1, LSR, 1));
__ Eon(w6, w0, Operand(w1, ASR, 20));
__ Eon(x7, x0, Operand(x1, ASR, 20));
__ Eon(w8, w0, Operand(w1, ROR, 28));
__ Eon(x9, x0, Operand(x1, ROR, 28));
__ Eon(w10, w0, Operand(0x03C003C0));
__ Eon(x11, x0, Operand(0x0000100000001000L));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFF0FFF00F0L, x2);
CHECK_EQUAL_64(0xFFFF0FFF, x3);
CHECK_EQUAL_64(0xFFFFFFF0FFFF0FFFL, x4);
CHECK_EQUAL_64(0xFFFFFFFF87FF0070L, x5);
CHECK_EQUAL_64(0x0000FF0F, x6);
CHECK_EQUAL_64(0xFFFFFFFFFFFF0F0FL, x7);
CHECK_EQUAL_64(0xFFFF0FF0, x8);
CHECK_EQUAL_64(0xFFFFF00FFFFF0000L, x9);
CHECK_EQUAL_64(0xFC3F03CF, x10);
CHECK_EQUAL_64(0xFFFFEFFFFFFF100FL, x11);
}
TEST(eon_extend) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x1111111111111111UL);
__ Mov(x1, 0x8000000080008081UL);
__ Eon(w6, w0, Operand(w1, UXTB));
__ Eon(x7, x0, Operand(x1, UXTH, 1));
__ Eon(w8, w0, Operand(w1, UXTW, 2));
__ Eon(x9, x0, Operand(x1, UXTX, 3));
__ Eon(w10, w0, Operand(w1, SXTB));
__ Eon(x11, x0, Operand(x1, SXTH, 1));
__ Eon(x12, x0, Operand(x1, SXTW, 2));
__ Eon(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
CHECK_EQUAL_64(0xEEEEEE6F, x6);
CHECK_EQUAL_64(0xEEEEEEEEEEEFEFECUL, x7);
CHECK_EQUAL_64(0xEEECECEA, x8);
CHECK_EQUAL_64(0xEEEEEEEAEEEAEAE6UL, x9);
CHECK_EQUAL_64(0x1111116F, x10);
CHECK_EQUAL_64(0x111111111111EFECUL, x11);
CHECK_EQUAL_64(0x11111110EEECECEAUL, x12);
CHECK_EQUAL_64(0xEEEEEEEAEEEAEAE6UL, x13);
}
TEST(mul) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x15, 0xFFFFFFFF);
__ Mov(x19, 0xFFFFFFFFFFFFFFFFUL);
__ Mul(w0, w16, w16);
__ Mul(w1, w16, w17);
__ Mul(w2, w17, w15);
__ Mul(w3, w15, w19);
__ Mul(x4, x16, x16);
__ Mul(x5, x17, x15);
__ Mul(x6, x15, x19);
__ Mul(x7, x19, x19);
__ Smull(x8, w17, w15);
__ Smull(x9, w15, w15);
__ Smull(x10, w19, w19);
__ Mneg(w11, w16, w16);
__ Mneg(w12, w16, w17);
__ Mneg(w13, w17, w15);
__ Mneg(w14, w15, w19);
__ Mneg(x20, x16, x16);
__ Mneg(x21, x17, x15);
__ Mneg(x22, x15, x19);
__ Mneg(x23, x19, x19);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(0, x1);
CHECK_EQUAL_64(0xFFFFFFFF, x2);
CHECK_EQUAL_64(1, x3);
CHECK_EQUAL_64(0, x4);
CHECK_EQUAL_64(0xFFFFFFFF, x5);
CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x6);
CHECK_EQUAL_64(1, x7);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(1, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0, x12);
CHECK_EQUAL_64(1, x13);
CHECK_EQUAL_64(0xFFFFFFFF, x14);
CHECK_EQUAL_64(0, x20);
CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x21);
CHECK_EQUAL_64(0xFFFFFFFF, x22);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x23);
}
static void SmullHelper(int64_t expected, int64_t a, int64_t b) {
SETUP();
START();
__ Mov(w0, a);
__ Mov(w1, b);
__ Smull(x2, w0, w1);
END();
RUN();
CHECK_EQUAL_64(expected, x2);
}
TEST(smull) {
INIT_V8();
SmullHelper(0, 0, 0);
SmullHelper(1, 1, 1);
SmullHelper(-1, -1, 1);
SmullHelper(1, -1, -1);
SmullHelper(0xFFFFFFFF80000000, 0x80000000, 1);
SmullHelper(0x0000000080000000, 0x00010000, 0x00008000);
}
TEST(madd) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x28, 0xFFFFFFFF);
__ Mov(x19, 0xFFFFFFFFFFFFFFFFUL);
__ Madd(w0, w16, w16, w16);
__ Madd(w1, w16, w16, w17);
__ Madd(w2, w16, w16, w28);
__ Madd(w3, w16, w16, w19);
__ Madd(w4, w16, w17, w17);
__ Madd(w5, w17, w17, w28);
__ Madd(w6, w17, w17, w19);
__ Madd(w7, w17, w28, w16);
__ Madd(w8, w17, w28, w28);
__ Madd(w9, w28, w28, w17);
__ Madd(w10, w28, w19, w28);
__ Madd(w11, w19, w19, w19);
__ Madd(x12, x16, x16, x16);
__ Madd(x13, x16, x16, x17);
__ Madd(x14, x16, x16, x28);
__ Madd(x15, x16, x16, x19);
__ Madd(x20, x16, x17, x17);
__ Madd(x21, x17, x17, x28);
__ Madd(x22, x17, x17, x19);
__ Madd(x23, x17, x28, x16);
__ Madd(x24, x17, x28, x28);
__ Madd(x25, x28, x28, x17);
__ Madd(x26, x28, x19, x28);
__ Madd(x27, x19, x19, x19);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(0xFFFFFFFF, x2);
CHECK_EQUAL_64(0xFFFFFFFF, x3);
CHECK_EQUAL_64(1, x4);
CHECK_EQUAL_64(0, x5);
CHECK_EQUAL_64(0, x6);
CHECK_EQUAL_64(0xFFFFFFFF, x7);
CHECK_EQUAL_64(0xFFFFFFFE, x8);
CHECK_EQUAL_64(2, x9);
CHECK_EQUAL_64(0, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0, x12);
CHECK_EQUAL_64(1, x13);
CHECK_EQUAL_64(0xFFFFFFFF, x14);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFF, x15);
CHECK_EQUAL_64(1, x20);
CHECK_EQUAL_64(0x100000000UL, x21);
CHECK_EQUAL_64(0, x22);
CHECK_EQUAL_64(0xFFFFFFFF, x23);
CHECK_EQUAL_64(0x1FFFFFFFE, x24);
CHECK_EQUAL_64(0xFFFFFFFE00000002UL, x25);
CHECK_EQUAL_64(0, x26);
CHECK_EQUAL_64(0, x27);
}
TEST(msub) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x28, 0xFFFFFFFF);
__ Mov(x19, 0xFFFFFFFFFFFFFFFFUL);
__ Msub(w0, w16, w16, w16);
__ Msub(w1, w16, w16, w17);
__ Msub(w2, w16, w16, w28);
__ Msub(w3, w16, w16, w19);
__ Msub(w4, w16, w17, w17);
__ Msub(w5, w17, w17, w28);
__ Msub(w6, w17, w17, w19);
__ Msub(w7, w17, w28, w16);
__ Msub(w8, w17, w28, w28);
__ Msub(w9, w28, w28, w17);
__ Msub(w10, w28, w19, w28);
__ Msub(w11, w19, w19, w19);
__ Msub(x12, x16, x16, x16);
__ Msub(x13, x16, x16, x17);
__ Msub(x14, x16, x16, x28);
__ Msub(x15, x16, x16, x19);
__ Msub(x20, x16, x17, x17);
__ Msub(x21, x17, x17, x28);
__ Msub(x22, x17, x17, x19);
__ Msub(x23, x17, x28, x16);
__ Msub(x24, x17, x28, x28);
__ Msub(x25, x28, x28, x17);
__ Msub(x26, x28, x19, x28);
__ Msub(x27, x19, x19, x19);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(0xFFFFFFFF, x2);
CHECK_EQUAL_64(0xFFFFFFFF, x3);
CHECK_EQUAL_64(1, x4);
CHECK_EQUAL_64(0xFFFFFFFE, x5);
CHECK_EQUAL_64(0xFFFFFFFE, x6);
CHECK_EQUAL_64(1, x7);
CHECK_EQUAL_64(0, x8);
CHECK_EQUAL_64(0, x9);
CHECK_EQUAL_64(0xFFFFFFFE, x10);
CHECK_EQUAL_64(0xFFFFFFFE, x11);
CHECK_EQUAL_64(0, x12);
CHECK_EQUAL_64(1, x13);
CHECK_EQUAL_64(0xFFFFFFFF, x14);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x15);
CHECK_EQUAL_64(1, x20);
CHECK_EQUAL_64(0xFFFFFFFEUL, x21);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x22);
CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x23);
CHECK_EQUAL_64(0, x24);
CHECK_EQUAL_64(0x200000000UL, x25);
CHECK_EQUAL_64(0x1FFFFFFFEUL, x26);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x27);
}
TEST(smulh) {
INIT_V8();
SETUP();
START();
__ Mov(x20, 0);
__ Mov(x21, 1);
__ Mov(x22, 0x0000000100000000L);
__ Mov(x23, 0x12345678);
__ Mov(x24, 0x0123456789ABCDEFL);
__ Mov(x25, 0x0000000200000000L);
__ Mov(x26, 0x8000000000000000UL);
__ Mov(x27, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x28, 0x5555555555555555UL);
__ Mov(x29, 0xAAAAAAAAAAAAAAAAUL);
__ Smulh(x0, x20, x24);
__ Smulh(x1, x21, x24);
__ Smulh(x2, x22, x23);
__ Smulh(x3, x22, x24);
__ Smulh(x4, x24, x25);
__ Smulh(x5, x23, x27);
__ Smulh(x6, x26, x26);
__ Smulh(x7, x26, x27);
__ Smulh(x8, x27, x27);
__ Smulh(x9, x28, x28);
__ Smulh(x10, x28, x29);
__ Smulh(x11, x29, x29);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(0, x1);
CHECK_EQUAL_64(0, x2);
CHECK_EQUAL_64(0x01234567, x3);
CHECK_EQUAL_64(0x02468ACF, x4);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x5);
CHECK_EQUAL_64(0x4000000000000000UL, x6);
CHECK_EQUAL_64(0, x7);
CHECK_EQUAL_64(0, x8);
CHECK_EQUAL_64(0x1C71C71C71C71C71UL, x9);
CHECK_EQUAL_64(0xE38E38E38E38E38EUL, x10);
CHECK_EQUAL_64(0x1C71C71C71C71C72UL, x11);
}
TEST(smaddl_umaddl) {
INIT_V8();
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x28, 0xFFFFFFFF);
__ Mov(x19, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x20, 4);
__ Mov(x21, 0x200000000UL);
__ Smaddl(x9, w17, w28, x20);
__ Smaddl(x10, w28, w28, x20);
__ Smaddl(x11, w19, w19, x20);
__ Smaddl(x12, w19, w19, x21);
__ Umaddl(x13, w17, w28, x20);
__ Umaddl(x14, w28, w28, x20);
__ Umaddl(x15, w19, w19, x20);
__ Umaddl(x22, w19, w19, x21);
END();
RUN();
CHECK_EQUAL_64(3, x9);
CHECK_EQUAL_64(5, x10);
CHECK_EQUAL_64(5, x11);
CHECK_EQUAL_64(0x200000001UL, x12);
CHECK_EQUAL_64(0x100000003UL, x13);
CHECK_EQUAL_64(0xFFFFFFFE00000005UL, x14);
CHECK_EQUAL_64(0xFFFFFFFE00000005UL, x15);
CHECK_EQUAL_64(0x1, x22);
}
TEST(smsubl_umsubl) {
INIT_V8();
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x28, 0xFFFFFFFF);
__ Mov(x19, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x20, 4);
__ Mov(x21, 0x200000000UL);
__ Smsubl(x9, w17, w28, x20);
__ Smsubl(x10, w28, w28, x20);
__ Smsubl(x11, w19, w19, x20);
__ Smsubl(x12, w19, w19, x21);
__ Umsubl(x13, w17, w28, x20);
__ Umsubl(x14, w28, w28, x20);
__ Umsubl(x15, w19, w19, x20);
__ Umsubl(x22, w19, w19, x21);
END();
RUN();
CHECK_EQUAL_64(5, x9);
CHECK_EQUAL_64(3, x10);
CHECK_EQUAL_64(3, x11);
CHECK_EQUAL_64(0x1FFFFFFFFUL, x12);
CHECK_EQUAL_64(0xFFFFFFFF00000005UL, x13);
CHECK_EQUAL_64(0x200000003UL, x14);
CHECK_EQUAL_64(0x200000003UL, x15);
CHECK_EQUAL_64(0x3FFFFFFFFUL, x22);
}
TEST(div) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 1);
__ Mov(x17, 0xFFFFFFFF);
__ Mov(x30, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000UL);
__ Mov(x21, 2);
__ Udiv(w0, w16, w16);
__ Udiv(w1, w17, w16);
__ Sdiv(w2, w16, w16);
__ Sdiv(w3, w16, w17);
__ Sdiv(w4, w17, w30);
__ Udiv(x5, x16, x16);
__ Udiv(x6, x17, x30);
__ Sdiv(x7, x16, x16);
__ Sdiv(x8, x16, x17);
__ Sdiv(x9, x17, x30);
__ Udiv(w10, w19, w21);
__ Sdiv(w11, w19, w21);
__ Udiv(x12, x19, x21);
__ Sdiv(x13, x19, x21);
__ Udiv(x14, x20, x21);
__ Sdiv(x15, x20, x21);
__ Udiv(w22, w19, w17);
__ Sdiv(w23, w19, w17);
__ Udiv(x24, x20, x30);
__ Sdiv(x25, x20, x30);
__ Udiv(x26, x16, x21);
__ Sdiv(x27, x16, x21);
__ Udiv(x28, x30, x21);
__ Sdiv(x29, x30, x21);
__ Mov(x17, 0);
__ Udiv(w30, w16, w17);
__ Sdiv(w19, w16, w17);
__ Udiv(x20, x16, x17);
__ Sdiv(x21, x16, x17);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(0xFFFFFFFF, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0xFFFFFFFF, x3);
CHECK_EQUAL_64(1, x4);
CHECK_EQUAL_64(1, x5);
CHECK_EQUAL_64(0, x6);
CHECK_EQUAL_64(1, x7);
CHECK_EQUAL_64(0, x8);
CHECK_EQUAL_64(0xFFFFFFFF00000001UL, x9);
CHECK_EQUAL_64(0x40000000, x10);
CHECK_EQUAL_64(0xC0000000, x11);
CHECK_EQUAL_64(0x40000000, x12);
CHECK_EQUAL_64(0x40000000, x13);
CHECK_EQUAL_64(0x4000000000000000UL, x14);
CHECK_EQUAL_64(0xC000000000000000UL, x15);
CHECK_EQUAL_64(0, x22);
CHECK_EQUAL_64(0x80000000, x23);
CHECK_EQUAL_64(0, x24);
CHECK_EQUAL_64(0x8000000000000000UL, x25);
CHECK_EQUAL_64(0, x26);
CHECK_EQUAL_64(0, x27);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x28);
CHECK_EQUAL_64(0, x29);
CHECK_EQUAL_64(0, x30);
CHECK_EQUAL_64(0, x19);
CHECK_EQUAL_64(0, x20);
CHECK_EQUAL_64(0, x21);
}
TEST(rbit_rev) {
INIT_V8();
SETUP();
START();
__ Mov(x24, 0xFEDCBA9876543210UL);
__ Rbit(w0, w24);
__ Rbit(x1, x24);
__ Rev16(w2, w24);
__ Rev16(x3, x24);
__ Rev(w4, w24);
__ Rev32(x5, x24);
__ Rev(x6, x24);
END();
RUN();
CHECK_EQUAL_64(0x084C2A6E, x0);
CHECK_EQUAL_64(0x084C2A6E195D3B7FUL, x1);
CHECK_EQUAL_64(0x54761032, x2);
CHECK_EQUAL_64(0xDCFE98BA54761032UL, x3);
CHECK_EQUAL_64(0x10325476, x4);
CHECK_EQUAL_64(0x98BADCFE10325476UL, x5);
CHECK_EQUAL_64(0x1032547698BADCFEUL, x6);
}
TEST(clz_cls) {
INIT_V8();
SETUP();
START();
__ Mov(x24, 0x0008000000800000UL);
__ Mov(x25, 0xFF800000FFF80000UL);
__ Mov(x26, 0);
__ Clz(w0, w24);
__ Clz(x1, x24);
__ Clz(w2, w25);
__ Clz(x3, x25);
__ Clz(w4, w26);
__ Clz(x5, x26);
__ Cls(w6, w24);
__ Cls(x7, x24);
__ Cls(w8, w25);
__ Cls(x9, x25);
__ Cls(w10, w26);
__ Cls(x11, x26);
END();
RUN();
CHECK_EQUAL_64(8, x0);
CHECK_EQUAL_64(12, x1);
CHECK_EQUAL_64(0, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(32, x4);
CHECK_EQUAL_64(64, x5);
CHECK_EQUAL_64(7, x6);
CHECK_EQUAL_64(11, x7);
CHECK_EQUAL_64(12, x8);
CHECK_EQUAL_64(8, x9);
CHECK_EQUAL_64(31, x10);
CHECK_EQUAL_64(63, x11);
}
TEST(label) {
INIT_V8();
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x0);
__ Mov(x22, lr); // Save lr.
__ B(&label_1);
__ B(&label_1);
__ B(&label_1); // Multiple branches to the same label.
__ Mov(x0, 0x0);
__ Bind(&label_2);
__ B(&label_3); // Forward branch.
__ Mov(x0, 0x0);
__ Bind(&label_1);
__ B(&label_2); // Backward branch.
__ Mov(x0, 0x0);
__ Bind(&label_3);
__ Bl(&label_4);
END();
__ Bind(&label_4);
__ Mov(x1, 0x1);
__ Mov(lr, x22);
END();
RUN();
CHECK_EQUAL_64(0x1, x0);
CHECK_EQUAL_64(0x1, x1);
}
TEST(branch_at_start) {
INIT_V8();
SETUP();
Label good, exit;
// Test that branches can exist at the start of the buffer. (This is a
// boundary condition in the label-handling code.) To achieve this, we have
// to work around the code generated by START.
RESET();
__ B(&good);
START_AFTER_RESET();
__ Mov(x0, 0x0);
END();
__ Bind(&exit);
START_AFTER_RESET();
__ Mov(x0, 0x1);
END();
__ Bind(&good);
__ B(&exit);
END();
RUN();
CHECK_EQUAL_64(0x1, x0);
}
TEST(adr) {
INIT_V8();
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x0); // Set to non-zero to indicate failure.
__ Adr(x1, &label_3); // Set to zero to indicate success.
__ Adr(x2, &label_1); // Multiple forward references to the same label.
__ Adr(x3, &label_1);
__ Adr(x4, &label_1);
__ Bind(&label_2, BranchTargetIdentifier::kBtiJump);
__ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical.
__ Eor(x6, x2, Operand(x4));
__ Orr(x0, x0, Operand(x5));
__ Orr(x0, x0, Operand(x6));
__ Br(x2); // label_1, label_3
__ Bind(&label_3, BranchTargetIdentifier::kBtiJump);
__ Adr(x2, &label_3); // Self-reference (offset 0).
__ Eor(x1, x1, Operand(x2));
__ Adr(x2, &label_4); // Simple forward reference.
__ Br(x2); // label_4
__ Bind(&label_1, BranchTargetIdentifier::kBtiJump);
__ Adr(x2, &label_3); // Multiple reverse references to the same label.
__ Adr(x3, &label_3);
__ Adr(x4, &label_3);
__ Adr(x5, &label_2); // Simple reverse reference.
__ Br(x5); // label_2
__ Bind(&label_4, BranchTargetIdentifier::kBtiJump);
END();
RUN();
CHECK_EQUAL_64(0x0, x0);
CHECK_EQUAL_64(0x0, x1);
}
TEST(adr_far) {
INIT_V8();
int max_range = 1 << (Instruction::ImmPCRelRangeBitwidth - 1);
SETUP_SIZE(max_range + 1000 * kInstrSize);
Label done, fail;
Label test_near, near_forward, near_backward;
Label test_far, far_forward, far_backward;
START();
__ Mov(x0, 0x0);
__ Bind(&test_near);
__ Adr(x10, &near_forward, MacroAssembler::kAdrFar);
__ Br(x10);
__ B(&fail);
__ Bind(&near_backward, BranchTargetIdentifier::kBtiJump);
__ Orr(x0, x0, 1 << 1);
__ B(&test_far);
__ Bind(&near_forward, BranchTargetIdentifier::kBtiJump);
__ Orr(x0, x0, 1 << 0);
__ Adr(x10, &near_backward, MacroAssembler::kAdrFar);
__ Br(x10);
__ Bind(&test_far);
__ Adr(x10, &far_forward, MacroAssembler::kAdrFar);
__ Br(x10);
__ B(&fail);
__ Bind(&far_backward, BranchTargetIdentifier::kBtiJump);
__ Orr(x0, x0, 1 << 3);
__ B(&done);
for (int i = 0; i < max_range / kInstrSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
__ b(&fail);
} else {
__ nop();
}
}
__ Bind(&far_forward, BranchTargetIdentifier::kBtiJump);
__ Orr(x0, x0, 1 << 2);
__ Adr(x10, &far_backward, MacroAssembler::kAdrFar);
__ Br(x10);
__ B(&done);
__ Bind(&fail);
__ Orr(x0, x0, 1 << 4);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0xF, x0);
}
TEST(branch_cond) {
INIT_V8();
SETUP();
Label wrong;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x1);
__ Mov(x2, 0x8000000000000000L);
// For each 'cmp' instruction below, condition codes other than the ones
// following it would branch.
__ Cmp(x1, 0);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, ls);
__ B(&wrong, lt);
__ B(&wrong, le);
Label ok_1;
__ B(&ok_1, ne);
__ Mov(x0, 0x0);
__ Bind(&ok_1);
__ Cmp(x1, 1);
__ B(&wrong, ne);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, lt);
__ B(&wrong, gt);
Label ok_2;
__ B(&ok_2, pl);
__ Mov(x0, 0x0);
__ Bind(&ok_2);
__ Cmp(x1, 2);
__ B(&wrong, eq);
__ B(&wrong, hs);
__ B(&wrong, pl);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_3;
__ B(&ok_3, vc);
__ Mov(x0, 0x0);
__ Bind(&ok_3);
__ Cmp(x2, 1);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vc);
__ B(&wrong, ls);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_4;
__ B(&ok_4, le);
__ Mov(x0, 0x0);
__ Bind(&ok_4);
Label ok_5;
__ b(&ok_5, al);
__ Mov(x0, 0x0);
__ Bind(&ok_5);
Label ok_6;
__ b(&ok_6, nv);
__ Mov(x0, 0x0);
__ Bind(&ok_6);
END();
__ Bind(&wrong);
__ Mov(x0, 0x0);
END();
RUN();
CHECK_EQUAL_64(0x1, x0);
}
TEST(branch_to_reg) {
INIT_V8();
SETUP();
// Test br.
Label fn1, after_fn1, after_bl1;
START();
__ Mov(x29, lr);
__ Mov(x1, 0);
__ B(&after_fn1);
__ Bind(&fn1);
__ Mov(x0, lr);
__ Mov(x1, 42);
__ Br(x0);
__ Bind(&after_fn1);
__ Bl(&fn1);
__ Bind(&after_bl1, BranchTargetIdentifier::kBtiJump); // For Br(x0) in fn1.
// Test blr.
Label fn2, after_fn2, after_bl2;
__ Mov(x2, 0);
__ B(&after_fn2);
__ Bind(&fn2);
__ Mov(x0, lr);
__ Mov(x2, 84);
__ Blr(x0);
__ Bind(&after_fn2);
__ Bl(&fn2);
__ Bind(&after_bl2, BranchTargetIdentifier::kBtiCall); // For Blr(x0) in fn2.
__ Mov(x3, lr);
__ Mov(lr, x29);
END();
RUN();
CHECK_EQUAL_64(core.xreg(3) + kInstrSize, x0);
CHECK_EQUAL_64(42, x1);
CHECK_EQUAL_64(84, x2);
}
static void BtiHelper(Register ipreg) {
SETUP();
Label jump_target, jump_call_target, call_target, test_pacibsp,
pacibsp_target, done;
START();
UseScratchRegisterScope temps(&masm);
temps.Exclude(ipreg);
__ Adr(x0, &jump_target);
__ Br(x0);
__ Nop();
__ Bind(&jump_target, BranchTargetIdentifier::kBtiJump);
__ Adr(x0, &call_target);
__ Blr(x0);
__ Adr(ipreg, &jump_call_target);
__ Blr(ipreg);
__ Adr(lr, &test_pacibsp); // Make Ret return to test_pacibsp.
__ Br(ipreg);
__ Bind(&test_pacibsp, BranchTargetIdentifier::kNone);
__ Adr(ipreg, &pacibsp_target);
__ Blr(ipreg);
__ Adr(lr, &done); // Make Ret return to done label.
__ Br(ipreg);
__ Bind(&call_target, BranchTargetIdentifier::kBtiCall);
__ Ret();
__ Bind(&jump_call_target, BranchTargetIdentifier::kBtiJumpCall);
__ Ret();
__ Bind(&pacibsp_target, BranchTargetIdentifier::kPacibsp);
__ Autibsp();
__ Ret();
__ Bind(&done);
END();
#ifdef USE_SIMULATOR
simulator.SetGuardedPages(true);
RUN();
#endif // USE_SIMULATOR
}
TEST(bti) {
BtiHelper(x16);
BtiHelper(x17);
}
TEST(unguarded_bti_is_nop) {
SETUP();
Label start, none, c, j, jc;
START();
__ B(&start);
__ Bind(&none, BranchTargetIdentifier::kBti);
__ Bind(&c, BranchTargetIdentifier::kBtiCall);
__ Bind(&j, BranchTargetIdentifier::kBtiJump);
__ Bind(&jc, BranchTargetIdentifier::kBtiJumpCall);
CHECK(__ SizeOfCodeGeneratedSince(&none) == 4 * kInstrSize);
__ Ret();
Label jump_to_c, call_to_j;
__ Bind(&start);
__ Adr(x0, &none);
__ Adr(lr, &jump_to_c);
__ Br(x0);
__ Bind(&jump_to_c);
__ Adr(x0, &c);
__ Adr(lr, &call_to_j);
__ Br(x0);
__ Bind(&call_to_j);
__ Adr(x0, &j);
__ Blr(x0);
END();
#ifdef USE_SIMULATOR
simulator.SetGuardedPages(false);
RUN();
#endif // USE_SIMULATOR
}
TEST(compare_branch) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x4, 0);
__ Mov(x5, 0);
__ Mov(x16, 0);
__ Mov(x17, 42);
Label zt, zt_end;
__ Cbz(w16, &zt);
__ B(&zt_end);
__ Bind(&zt);
__ Mov(x0, 1);
__ Bind(&zt_end);
Label zf, zf_end;
__ Cbz(x17, &zf);
__ B(&zf_end);
__ Bind(&zf);
__ Mov(x1, 1);
__ Bind(&zf_end);
Label nzt, nzt_end;
__ Cbnz(w17, &nzt);
__ B(&nzt_end);
__ Bind(&nzt);
__ Mov(x2, 1);
__ Bind(&nzt_end);
Label nzf, nzf_end;
__ Cbnz(x16, &nzf);
__ B(&nzf_end);
__ Bind(&nzf);
__ Mov(x3, 1);
__ Bind(&nzf_end);
__ Mov(x19, 0xFFFFFFFF00000000UL);
Label a, a_end;
__ Cbz(w19, &a);
__ B(&a_end);
__ Bind(&a);
__ Mov(x4, 1);
__ Bind(&a_end);
Label b, b_end;
__ Cbnz(w19, &b);
__ B(&b_end);
__ Bind(&b);
__ Mov(x5, 1);
__ Bind(&b_end);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(0, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(1, x4);
CHECK_EQUAL_64(0, x5);
}
TEST(test_branch) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x16, 0xAAAAAAAAAAAAAAAAUL);
Label bz, bz_end;
__ Tbz(w16, 0, &bz);
__ B(&bz_end);
__ Bind(&bz);
__ Mov(x0, 1);
__ Bind(&bz_end);
Label bo, bo_end;
__ Tbz(x16, 63, &bo);
__ B(&bo_end);
__ Bind(&bo);
__ Mov(x1, 1);
__ Bind(&bo_end);
Label nbz, nbz_end;
__ Tbnz(x16, 61, &nbz);
__ B(&nbz_end);
__ Bind(&nbz);
__ Mov(x2, 1);
__ Bind(&nbz_end);
Label nbo, nbo_end;
__ Tbnz(w16, 2, &nbo);
__ B(&nbo_end);
__ Bind(&nbo);
__ Mov(x3, 1);
__ Bind(&nbo_end);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(0, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0, x3);
}
namespace {
// Generate a block of code that, when hit, always jumps to `landing_pad`.
void GenerateLandingNops(MacroAssembler* masm, int n, Label* landing_pad) {
for (int i = 0; i < (n - 1); i++) {
if (i % 100 == 0) {
masm->B(landing_pad);
} else {
masm->Nop();
}
}
masm->B(landing_pad);
}
} // namespace
TEST(far_branch_backward) {
INIT_V8();
ImmBranchType branch_types[] = {TestBranchType, CompareBranchType,
CondBranchType};
for (ImmBranchType type : branch_types) {
int range = Instruction::ImmBranchRange(type);
SETUP_SIZE(range + 1000 * kInstrSize);
START();
Label done, fail;
// Avoid using near and far as variable name because both are defined as
// macro in minwindef.h from Windows SDK.
Label near_label, far_label, in_range, out_of_range;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ B(&near_label);
__ Bind(&in_range);
__ Orr(x0, x0, 1 << 0);
__ B(&far_label);
__ Bind(&out_of_range);
__ Orr(x0, x0, 1 << 1);
__ B(&done);
// We use a slack and an approximate budget instead of checking precisely
// when the branch limit is hit, since veneers and literal pool can mess
// with our calculation of where the limit is.
// In this test, we want to make sure we support backwards branches and the
// range is more-or-less correct. It's not a big deal if the macro-assembler
// got the range a little wrong, as long as it's not far off which could
// affect performance.
int budget =
(range - static_cast<int>(__ SizeOfCodeGeneratedSince(&in_range))) /
kInstrSize;
const int kSlack = 100;
// Generate enough code so that the next branch will be in range but we are
// close to the limit.
GenerateLandingNops(&masm, budget - kSlack, &fail);
__ Bind(&near_label);
switch (type) {
case TestBranchType:
__ Tbz(x10, 3, &in_range);
// This should be:
// TBZ <in_range>
CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label));
break;
case CompareBranchType:
__ Cbz(x10, &in_range);
// This should be:
// CBZ <in_range>
CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label));
break;
case CondBranchType:
__ Cmp(x10, 0);
__ B(eq, &in_range);
// This should be:
// CMP
// B.EQ <in_range>
CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&near_label));
break;
default:
UNREACHABLE();
break;
}
// Now go past the limit so that branches are now out of range.
GenerateLandingNops(&masm, kSlack * 2, &fail);
__ Bind(&far_label);
switch (type) {
case TestBranchType:
__ Tbz(x10, 5, &out_of_range);
// This should be:
// TBNZ <skip>
// B <out_of_range>
// skip:
CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label));
break;
case CompareBranchType:
__ Cbz(x10, &out_of_range);
// This should be:
// CBNZ <skip>
// B <out_of_range>
// skip:
CHECK_EQ(2 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label));
break;
case CondBranchType:
__ Cmp(x10, 0);
__ B(eq, &out_of_range);
// This should be:
// CMP
// B.NE <skip>
// B <out_of_range>
// skip:
CHECK_EQ(3 * kInstrSize, __ SizeOfCodeGeneratedSince(&far_label));
break;
default:
UNREACHABLE();
break;
}
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0x3, x0);
CHECK_EQUAL_64(1, x1);
}
}
TEST(far_branch_simple_veneer) {
INIT_V8();
// Test that the MacroAssembler correctly emits veneers for forward branches
// to labels that are outside the immediate range of branch instructions.
int max_range =
std::max(Instruction::ImmBranchRange(TestBranchType),
std::max(Instruction::ImmBranchRange(CompareBranchType),
Instruction::ImmBranchRange(CondBranchType)));
SETUP_SIZE(max_range + 1000 * kInstrSize);
START();
Label done, fail;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (int i = 0; i < max_range / kInstrSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
// Also, the branches give the MacroAssembler the opportunity to emit the
// veneers.
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0x7, x0);
CHECK_EQUAL_64(0x1, x1);
}
TEST(far_branch_veneer_link_chain) {
INIT_V8();
// Test that the MacroAssembler correctly emits veneers for forward branches
// that target out-of-range labels and are part of multiple instructions
// jumping to that label.
//
// We test the three situations with the different types of instruction:
// (1)- When the branch is at the start of the chain with tbz.
// (2)- When the branch is in the middle of the chain with cbz.
// (3)- When the branch is at the end of the chain with bcond.
int max_range =
std::max(Instruction::ImmBranchRange(TestBranchType),
std::max(Instruction::ImmBranchRange(CompareBranchType),
Instruction::ImmBranchRange(CondBranchType)));
SETUP_SIZE(max_range + 1000 * kInstrSize);
START();
Label skip, fail, done;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ B(&skip);
// Branches at the start of the chain for situations (2) and (3).
__ B(&success_cbz);
__ B(&success_bcond);
__ Nop();
__ B(&success_bcond);
__ B(&success_cbz);
__ Bind(&skip);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
skip.Unuse();
__ B(&skip);
// Branches at the end of the chain for situations (1) and (2).
__ B(&success_cbz);
__ B(&success_tbz);
__ Nop();
__ B(&success_tbz);
__ B(&success_cbz);
__ Bind(&skip);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
GenerateLandingNops(&masm, (max_range / kInstrSize) + 1, &fail);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0x7, x0);
CHECK_EQUAL_64(0x1, x1);
}
TEST(far_branch_veneer_broken_link_chain) {
INIT_V8();
// Check that the MacroAssembler correctly handles the situation when removing
// a branch from the link chain of a label and the two links on each side of
// the removed branch cannot be linked together (out of range).
//
// We want to generate the following code, we test with tbz because it has a
// small range:
//
// ~~~
// 1: B <far>
// :
// :
// :
// 2: TBZ <far> -------.
// : |
// : | out of range
// : |
// 3: TBZ <far> |
// | |
// | in range |
// V |
// far: <-'
// ~~~
//
// If we say that the range of TBZ is 3 lines on this graph, then we can get
// into a situation where the link chain gets broken. When emitting the two
// TBZ instructions, we are in range of the previous branch in the chain so
// we'll generate a TBZ and not a TBNZ+B sequence that can encode a bigger
// range.
//
// However, the first TBZ (2), is out of range of the far label so a veneer
// will be generated after the second TBZ (3). And this will result in a
// broken chain because we can no longer link from (3) back to (1).
//
// ~~~
// 1: B <far> <-.
// :
// : out of range
// :
// 2: TBZ <veneer> :
// :
// :
// :
// 3: TBZ <far> ----'
//
// B <skip>
// veneer:
// B <far>
// skip:
//
// far:
// ~~~
//
// This test makes sure the MacroAssembler is able to resolve this case by,
// for instance, resolving (1) early and making it jump to <veneer> instead of
// <far>.
int max_range = Instruction::ImmBranchRange(TestBranchType);
int inter_range = max_range / 2 + max_range / 10;
SETUP_SIZE(3 * inter_range + 1000 * kInstrSize);
START();
Label fail, done;
Label test_1, test_2, test_3;
Label far_target;
__ Mov(x0, 0); // Indicates the origin of the branch.
__ Mov(x1, 1);
__ Mov(x10, 0);
// First instruction in the label chain.
__ Bind(&test_1);
__ Mov(x0, 1);
__ B(&far_target);
GenerateLandingNops(&masm, inter_range / kInstrSize, &fail);
// Will need a veneer to point to reach the target.
__ Bind(&test_2);
__ Mov(x0, 2);
{
Label tbz;
__ Bind(&tbz);
__ Tbz(x10, 7, &far_target);
// This should be a single TBZ since the previous link is in range at this
// point.
CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&tbz));
}
GenerateLandingNops(&masm, inter_range / kInstrSize, &fail);
// Does not need a veneer to reach the target, but the initial branch
// instruction is out of range.
__ Bind(&test_3);
__ Mov(x0, 3);
{
Label tbz;
__ Bind(&tbz);
__ Tbz(x10, 7, &far_target);
// This should be a single TBZ since the previous link is in range at this
// point.
CHECK_EQ(1 * kInstrSize, __ SizeOfCodeGeneratedSince(&tbz));
}
// A veneer will be generated for the first TBZ, which will then remove the
// label from the chain and break it because the second TBZ is out of range of
// the first branch.
// The MacroAssembler should be able to cope with this.
GenerateLandingNops(&masm, inter_range / kInstrSize, &fail);
__ B(&fail);
__ Bind(&far_target);
__ Cmp(x0, 1);
__ B(eq, &test_2);
__ Cmp(x0, 2);
__ B(eq, &test_3);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0x3, x0);
CHECK_EQUAL_64(0x1, x1);
}
TEST(branch_type) {
INIT_V8();
SETUP();
Label fail, done;
START();
__ Mov(x0, 0x0);
__ Mov(x10, 0x7);
__ Mov(x11, 0x0);
// Test non taken branches.
__ Cmp(x10, 0x7);
__ B(&fail, ne);
__ B(&fail, never);
__ B(&fail, reg_zero, x10);
__ B(&fail, reg_not_zero, x11);
__ B(&fail, reg_bit_clear, x10, 0);
__ B(&fail, reg_bit_set, x10, 3);
// Test taken branches.
Label l1, l2, l3, l4, l5;
__ Cmp(x10, 0x7);
__ B(&l1, eq);
__ B(&fail);
__ Bind(&l1);
__ B(&l2, always);
__ B(&fail);
__ Bind(&l2);
__ B(&l3, reg_not_zero, x10);
__ B(&fail);
__ Bind(&l3);
__ B(&l4, reg_bit_clear, x10, 15);
__ B(&fail);
__ Bind(&l4);
__ B(&l5, reg_bit_set, x10, 1);
__ B(&fail);
__ Bind(&l5);
__ B(&done);
__ Bind(&fail);
__ Mov(x0, 0x1);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0x0, x0);
}
TEST(ldr_str_offset) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x19, dst_base);
__ Ldr(w0, MemOperand(x17));
__ Str(w0, MemOperand(x19));
__ Ldr(w1, MemOperand(x17, 4));
__ Str(w1, MemOperand(x19, 12));
__ Ldr(x2, MemOperand(x17, 8));
__ Str(x2, MemOperand(x19, 16));
__ Ldrb(w3, MemOperand(x17, 1));
__ Strb(w3, MemOperand(x19, 25));
__ Ldrh(w4, MemOperand(x17, 2));
__ Strh(w4, MemOperand(x19, 33));
END();
RUN();
CHECK_EQUAL_64(0x76543210, x0);
CHECK_EQUAL_64(0x76543210, dst[0]);
CHECK_EQUAL_64(0xFEDCBA98, x1);
CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, x2);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]);
CHECK_EQUAL_64(0x32, x3);
CHECK_EQUAL_64(0x3200, dst[3]);
CHECK_EQUAL_64(0x7654, x4);
CHECK_EQUAL_64(0x765400, dst[4]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base, x19);
}
TEST(ldr_str_wide) {
INIT_V8();
SETUP();
uint32_t src[8192];
uint32_t dst[8192];
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
memset(src, 0xAA, 8192 * sizeof(src[0]));
memset(dst, 0xAA, 8192 * sizeof(dst[0]));
src[0] = 0;
src[6144] = 6144;
src[8191] = 8191;
START();
__ Mov(x22, src_base);
__ Mov(x23, dst_base);
__ Mov(x24, src_base);
__ Mov(x25, dst_base);
__ Mov(x26, src_base);
__ Mov(x27, dst_base);
__ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0])));
__ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0])));
__ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex));
__ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex));
__ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex));
__ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex));
END();
RUN();
CHECK_EQUAL_32(8191, w0);
CHECK_EQUAL_32(8191, dst[8191]);
CHECK_EQUAL_64(src_base, x22);
CHECK_EQUAL_64(dst_base, x23);
CHECK_EQUAL_32(0, w1);
CHECK_EQUAL_32(0, dst[0]);
CHECK_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24);
CHECK_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25);
CHECK_EQUAL_32(6144, w2);
CHECK_EQUAL_32(6144, dst[6144]);
CHECK_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26);
CHECK_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27);
}
TEST(ldr_str_preindex) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base + 16);
__ Mov(x22, dst_base + 40);
__ Mov(x23, src_base);
__ Mov(x24, dst_base);
__ Mov(x25, src_base);
__ Mov(x26, dst_base);
__ Ldr(w0, MemOperand(x17, 4, PreIndex));
__ Str(w0, MemOperand(x28, 12, PreIndex));
__ Ldr(x1, MemOperand(x19, 8, PreIndex));
__ Str(x1, MemOperand(x20, 16, PreIndex));
__ Ldr(w2, MemOperand(x21, -4, PreIndex));
__ Str(w2, MemOperand(x22, -4, PreIndex));
__ Ldrb(w3, MemOperand(x23, 1, PreIndex));
__ Strb(w3, MemOperand(x24, 25, PreIndex));
__ Ldrh(w4, MemOperand(x25, 3, PreIndex));
__ Strh(w4, MemOperand(x26, 41, PreIndex));
END();
RUN();
CHECK_EQUAL_64(0xFEDCBA98, x0);
CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, x1);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]);
CHECK_EQUAL_64(0x01234567, x2);
CHECK_EQUAL_64(0x0123456700000000UL, dst[4]);
CHECK_EQUAL_64(0x32, x3);
CHECK_EQUAL_64(0x3200, dst[3]);
CHECK_EQUAL_64(0x9876, x4);
CHECK_EQUAL_64(0x987600, dst[5]);
CHECK_EQUAL_64(src_base + 4, x17);
CHECK_EQUAL_64(dst_base + 12, x28);
CHECK_EQUAL_64(src_base + 8, x19);
CHECK_EQUAL_64(dst_base + 16, x20);
CHECK_EQUAL_64(src_base + 12, x21);
CHECK_EQUAL_64(dst_base + 36, x22);
CHECK_EQUAL_64(src_base + 1, x23);
CHECK_EQUAL_64(dst_base + 25, x24);
CHECK_EQUAL_64(src_base + 3, x25);
CHECK_EQUAL_64(dst_base + 41, x26);
}
TEST(ldr_str_postindex) {
INIT_V8();
SETUP();
uint64_t src[2] = {0xFEDCBA9876543210UL, 0x0123456789ABCDEFUL};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base + 4);
__ Mov(x28, dst_base + 12);
__ Mov(x19, src_base + 8);
__ Mov(x20, dst_base + 16);
__ Mov(x21, src_base + 8);
__ Mov(x22, dst_base + 32);
__ Mov(x23, src_base + 1);
__ Mov(x24, dst_base + 25);
__ Mov(x25, src_base + 3);
__ Mov(x26, dst_base + 41);
__ Ldr(w0, MemOperand(x17, 4, PostIndex));
__ Str(w0, MemOperand(x28, 12, PostIndex));
__ Ldr(x1, MemOperand(x19, 8, PostIndex));
__ Str(x1, MemOperand(x20, 16, PostIndex));
__ Ldr(x2, MemOperand(x21, -8, PostIndex));
__ Str(x2, MemOperand(x22, -32, PostIndex));
__ Ldrb(w3, MemOperand(x23, 1, PostIndex));
__ Strb(w3, MemOperand(x24, 5, PostIndex));
__ Ldrh(w4, MemOperand(x25, -3, PostIndex));
__ Strh(w4, MemOperand(x26, -41, PostIndex));
END();
RUN();
CHECK_EQUAL_64(0xFEDCBA98, x0);
CHECK_EQUAL_64(0xFEDCBA9800000000UL, dst[1]);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, x1);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[2]);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, x2);
CHECK_EQUAL_64(0x0123456789ABCDEFUL, dst[4]);
CHECK_EQUAL_64(0x32, x3);
CHECK_EQUAL_64(0x3200, dst[3]);
CHECK_EQUAL_64(0x9876, x4);
CHECK_EQUAL_64(0x987600, dst[5]);
CHECK_EQUAL_64(src_base + 8, x17);
CHECK_EQUAL_64(dst_base + 24, x28);
CHECK_EQUAL_64(src_base + 16, x19);
CHECK_EQUAL_64(dst_base + 32, x20);
CHECK_EQUAL_64(src_base, x21);
CHECK_EQUAL_64(dst_base, x22);
CHECK_EQUAL_64(src_base + 2, x23);
CHECK_EQUAL_64(dst_base + 30, x24);
CHECK_EQUAL_64(src_base, x25);
CHECK_EQUAL_64(dst_base, x26);
}
TEST(load_signed) {
INIT_V8();
SETUP();
uint32_t src[2] = {0x80008080, 0x7FFF7F7F};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldrsb(w0, MemOperand(x24));
__ Ldrsb(w1, MemOperand(x24, 4));
__ Ldrsh(w2, MemOperand(x24));
__ Ldrsh(w3, MemOperand(x24, 4));
__ Ldrsb(x4, MemOperand(x24));
__ Ldrsb(x5, MemOperand(x24, 4));
__ Ldrsh(x6, MemOperand(x24));
__ Ldrsh(x7, MemOperand(x24, 4));
__ Ldrsw(x8, MemOperand(x24));
__ Ldrsw(x9, MemOperand(x24, 4));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFF80, x0);
CHECK_EQUAL_64(0x0000007F, x1);
CHECK_EQUAL_64(0xFFFF8080, x2);
CHECK_EQUAL_64(0x00007F7F, x3);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFF80UL, x4);
CHECK_EQUAL_64(0x000000000000007FUL, x5);
CHECK_EQUAL_64(0xFFFFFFFFFFFF8080UL, x6);
CHECK_EQUAL_64(0x0000000000007F7FUL, x7);
CHECK_EQUAL_64(0xFFFFFFFF80008080UL, x8);
CHECK_EQUAL_64(0x000000007FFF7F7FUL, x9);
}
TEST(load_store_regoffset) {
INIT_V8();
SETUP();
uint32_t src[3] = {1, 2, 3};
uint32_t dst[4] = {0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x21, src_base + 3 * sizeof(src[0]));
__ Mov(x19, dst_base + 3 * sizeof(dst[0]));
__ Mov(x20, dst_base + 4 * sizeof(dst[0]));
__ Mov(x24, 0);
__ Mov(x25, 4);
__ Mov(x26, -4);
__ Mov(x27, 0xFFFFFFFC); // 32-bit -4.
__ Mov(x28, 0xFFFFFFFE); // 32-bit -2.
__ Mov(x29, 0xFFFFFFFF); // 32-bit -1.
__ Ldr(w0, MemOperand(x16, x24));
__ Ldr(x1, MemOperand(x16, x25));
__ Ldr(w2, MemOperand(x21, x26));
__ Ldr(w3, MemOperand(x21, x27, SXTW));
__ Ldr(w4, MemOperand(x21, x28, SXTW, 2));
__ Str(w0, MemOperand(x17, x24));
__ Str(x1, MemOperand(x17, x25));
__ Str(w2, MemOperand(x20, x29, SXTW, 2));
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(0x0000000300000002UL, x1);
CHECK_EQUAL_64(3, x2);
CHECK_EQUAL_64(3, x3);
CHECK_EQUAL_64(2, x4);
CHECK_EQUAL_32(1, dst[0]);
CHECK_EQUAL_32(2, dst[1]);
CHECK_EQUAL_32(3, dst[2]);
CHECK_EQUAL_32(3, dst[3]);
}
TEST(load_store_float) {
INIT_V8();
SETUP();
float src[3] = {1.0, 2.0, 3.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(s0, MemOperand(x17, sizeof(src[0])));
__ Str(s0, MemOperand(x28, sizeof(dst[0]), PostIndex));
__ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(s2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
CHECK_EQUAL_FP32(2.0, s0);
CHECK_EQUAL_FP32(2.0, dst[0]);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(1.0, dst[2]);
CHECK_EQUAL_FP32(3.0, s2);
CHECK_EQUAL_FP32(3.0, dst[1]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28);
CHECK_EQUAL_64(src_base + sizeof(src[0]), x19);
CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
CHECK_EQUAL_64(dst_base, x22);
}
TEST(load_store_double) {
INIT_V8();
SETUP();
double src[3] = {1.0, 2.0, 3.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(d0, MemOperand(x17, sizeof(src[0])));
__ Str(d0, MemOperand(x28, sizeof(dst[0]), PostIndex));
__ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(d2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
CHECK_EQUAL_FP64(2.0, d0);
CHECK_EQUAL_FP64(2.0, dst[0]);
CHECK_EQUAL_FP64(1.0, d1);
CHECK_EQUAL_FP64(1.0, dst[2]);
CHECK_EQUAL_FP64(3.0, d2);
CHECK_EQUAL_FP64(3.0, dst[1]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28);
CHECK_EQUAL_64(src_base + sizeof(src[0]), x19);
CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
CHECK_EQUAL_64(dst_base, x22);
}
TEST(load_store_b) {
INIT_V8();
SETUP();
uint8_t src[3] = {0x12, 0x23, 0x34};
uint8_t dst[3] = {0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(b0, MemOperand(x17, sizeof(src[0])));
__ Str(b0, MemOperand(x28, sizeof(dst[0]), PostIndex));
__ Ldr(b1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(b1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(b2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(b2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
CHECK_EQUAL_128(0, 0x23, q0);
CHECK_EQUAL_64(0x23, dst[0]);
CHECK_EQUAL_128(0, 0x12, q1);
CHECK_EQUAL_64(0x12, dst[2]);
CHECK_EQUAL_128(0, 0x34, q2);
CHECK_EQUAL_64(0x34, dst[1]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28);
CHECK_EQUAL_64(src_base + sizeof(src[0]), x19);
CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
CHECK_EQUAL_64(dst_base, x22);
}
TEST(load_store_h) {
INIT_V8();
SETUP();
uint16_t src[3] = {0x1234, 0x2345, 0x3456};
uint16_t dst[3] = {0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(h0, MemOperand(x17, sizeof(src[0])));
__ Str(h0, MemOperand(x28, sizeof(dst[0]), PostIndex));
__ Ldr(h1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(h1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(h2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(h2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
CHECK_EQUAL_128(0, 0x2345, q0);
CHECK_EQUAL_64(0x2345, dst[0]);
CHECK_EQUAL_128(0, 0x1234, q1);
CHECK_EQUAL_64(0x1234, dst[2]);
CHECK_EQUAL_128(0, 0x3456, q2);
CHECK_EQUAL_64(0x3456, dst[1]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base + sizeof(dst[0]), x28);
CHECK_EQUAL_64(src_base + sizeof(src[0]), x19);
CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
CHECK_EQUAL_64(dst_base, x22);
}
TEST(load_store_q) {
INIT_V8();
SETUP();
uint8_t src[48] = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE, 0x01, 0x23,
0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x21, 0x43, 0x65, 0x87,
0xA9, 0xCB, 0xED, 0x0F, 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC,
0xDE, 0xF0, 0x24, 0x46, 0x68, 0x8A, 0xAC, 0xCE, 0xE0, 0x02,
0x42, 0x64, 0x86, 0xA8, 0xCA, 0xEC, 0x0E, 0x20};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(q0, MemOperand(x17, 16));
__ Str(q0, MemOperand(x28, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Str(q1, MemOperand(x20, 32, PreIndex));
__ Ldr(q2, MemOperand(x21, 32, PreIndex));
__ Str(q2, MemOperand(x22, 16));
END();
RUN();
CHECK_EQUAL_128(0xF0DEBC9A78563412, 0x0FEDCBA987654321, q0);
CHECK_EQUAL_64(0x0FEDCBA987654321, dst[0]);
CHECK_EQUAL_64(0xF0DEBC9A78563412, dst[1]);
CHECK_EQUAL_128(0xEFCDAB8967452301, 0xFEDCBA9876543210, q1);
CHECK_EQUAL_64(0xFEDCBA9876543210, dst[4]);
CHECK_EQUAL_64(0xEFCDAB8967452301, dst[5]);
CHECK_EQUAL_128(0x200EECCAA8866442, 0x02E0CEAC8A684624, q2);
CHECK_EQUAL_64(0x02E0CEAC8A684624, dst[2]);
CHECK_EQUAL_64(0x200EECCAA8866442, dst[3]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base + 16, x28);
CHECK_EQUAL_64(src_base + 16, x19);
CHECK_EQUAL_64(dst_base + 32, x20);
CHECK_EQUAL_64(src_base + 32, x21);
CHECK_EQUAL_64(dst_base, x22);
}
TEST(neon_ld1_d) {
INIT_V8();
SETUP();
uint8_t src[32 + 5];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register.
__ Ld1(v2.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v3.V8B(), v4.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0, 0x0706050403020100, q2);
CHECK_EQUAL_128(0, 0x0807060504030201, q3);
CHECK_EQUAL_128(0, 0x100F0E0D0C0B0A09, q4);
CHECK_EQUAL_128(0, 0x0908070605040302, q5);
CHECK_EQUAL_128(0, 0x11100F0E0D0C0B0A, q6);
CHECK_EQUAL_128(0, 0x1918171615141312, q7);
CHECK_EQUAL_128(0, 0x0A09080706050403, q16);
CHECK_EQUAL_128(0, 0x1211100F0E0D0C0B, q17);
CHECK_EQUAL_128(0, 0x1A19181716151413, q18);
CHECK_EQUAL_128(0, 0x2221201F1E1D1C1B, q19);
CHECK_EQUAL_128(0, 0x0B0A090807060504, q30);
CHECK_EQUAL_128(0, 0x131211100F0E0D0C, q31);
CHECK_EQUAL_128(0, 0x1B1A191817161514, q0);
CHECK_EQUAL_128(0, 0x232221201F1E1D1C, q1);
CHECK_EQUAL_128(0, 0x0C0B0A0908070605, q20);
CHECK_EQUAL_128(0, 0x14131211100F0E0D, q21);
CHECK_EQUAL_128(0, 0x1C1B1A1918171615, q22);
CHECK_EQUAL_128(0, 0x24232221201F1E1D, q23);
}
TEST(neon_ld1_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[32 + 5];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, src_base + 5);
__ Mov(x23, 1);
__ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register.
__ Ld1(v2.V8B(), MemOperand(x17, x23, PostIndex));
__ Ld1(v3.V8B(), v4.V8B(), MemOperand(x28, 16, PostIndex));
__ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x19, 24, PostIndex));
__ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(),
MemOperand(x20, 32, PostIndex));
__ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(),
MemOperand(x21, 32, PostIndex));
__ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(),
MemOperand(x22, 32, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0, 0x0706050403020100, q2);
CHECK_EQUAL_128(0, 0x0807060504030201, q3);
CHECK_EQUAL_128(0, 0x100F0E0D0C0B0A09, q4);
CHECK_EQUAL_128(0, 0x0908070605040302, q5);
CHECK_EQUAL_128(0, 0x11100F0E0D0C0B0A, q6);
CHECK_EQUAL_128(0, 0x1918171615141312, q7);
CHECK_EQUAL_128(0, 0x0A09080706050403, q16);
CHECK_EQUAL_128(0, 0x1211100F0E0D0C0B, q17);
CHECK_EQUAL_128(0, 0x1A19181716151413, q18);
CHECK_EQUAL_128(0, 0x2221201F1E1D1C1B, q19);
CHECK_EQUAL_128(0, 0x0B0A090807060504, q30);
CHECK_EQUAL_128(0, 0x131211100F0E0D0C, q31);
CHECK_EQUAL_128(0, 0x1B1A191817161514, q0);
CHECK_EQUAL_128(0, 0x232221201F1E1D1C, q1);
CHECK_EQUAL_128(0, 0x0C0B0A0908070605, q20);
CHECK_EQUAL_128(0, 0x14131211100F0E0D, q21);
CHECK_EQUAL_128(0, 0x1C1B1A1918171615, q22);
CHECK_EQUAL_128(0, 0x24232221201F1E1D, q23);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 16, x28);
CHECK_EQUAL_64(src_base + 2 + 24, x19);
CHECK_EQUAL_64(src_base + 3 + 32, x20);
CHECK_EQUAL_64(src_base + 4 + 32, x21);
CHECK_EQUAL_64(src_base + 5 + 32, x22);
}
TEST(neon_ld1_q) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld1(v2.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v3.V16B(), v4.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q2);
CHECK_EQUAL_128(0x100F0E0D0C0B0A09, 0x0807060504030201, q3);
CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x1817161514131211, q4);
CHECK_EQUAL_128(0x11100F0E0D0C0B0A, 0x0908070605040302, q5);
CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x1918171615141312, q6);
CHECK_EQUAL_128(0x31302F2E2D2C2B2A, 0x2928272625242322, q7);
CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x0A09080706050403, q16);
CHECK_EQUAL_128(0x2221201F1E1D1C1B, 0x1A19181716151413, q17);
CHECK_EQUAL_128(0x3231302F2E2D2C2B, 0x2A29282726252423, q18);
CHECK_EQUAL_128(0x4241403F3E3D3C3B, 0x3A39383736353433, q19);
CHECK_EQUAL_128(0x131211100F0E0D0C, 0x0B0A090807060504, q30);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x1B1A191817161514, q31);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x2B2A292827262524, q0);
CHECK_EQUAL_128(0x434241403F3E3D3C, 0x3B3A393837363534, q1);
}
TEST(neon_ld1_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld1(v2.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld1(v3.V16B(), v4.V16B(), MemOperand(x28, 32, PostIndex));
__ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x19, 48, PostIndex));
__ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(),
MemOperand(x20, 64, PostIndex));
__ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(),
MemOperand(x21, 64, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q2);
CHECK_EQUAL_128(0x100F0E0D0C0B0A09, 0x0807060504030201, q3);
CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x1817161514131211, q4);
CHECK_EQUAL_128(0x11100F0E0D0C0B0A, 0x0908070605040302, q5);
CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x1918171615141312, q6);
CHECK_EQUAL_128(0x31302F2E2D2C2B2A, 0x2928272625242322, q7);
CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x0A09080706050403, q16);
CHECK_EQUAL_128(0x2221201F1E1D1C1B, 0x1A19181716151413, q17);
CHECK_EQUAL_128(0x3231302F2E2D2C2B, 0x2A29282726252423, q18);
CHECK_EQUAL_128(0x4241403F3E3D3C3B, 0x3A39383736353433, q19);
CHECK_EQUAL_128(0x131211100F0E0D0C, 0x0B0A090807060504, q30);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x1B1A191817161514, q31);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x2B2A292827262524, q0);
CHECK_EQUAL_128(0x434241403F3E3D3C, 0x3B3A393837363534, q1);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 32, x28);
CHECK_EQUAL_64(src_base + 2 + 48, x19);
CHECK_EQUAL_64(src_base + 3 + 64, x20);
CHECK_EQUAL_64(src_base + 4 + 64, x21);
}
TEST(neon_ld1_lane) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld1(v0.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld1(v1.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld1(v2.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld1(v3.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Ldr(q4, MemOperand(x17));
__ Ld1(v4.B(), 4, MemOperand(x17));
__ Ldr(q5, MemOperand(x17));
__ Ld1(v5.H(), 3, MemOperand(x17));
__ Ldr(q6, MemOperand(x17));
__ Ld1(v6.S(), 2, MemOperand(x17));
__ Ldr(q7, MemOperand(x17));
__ Ld1(v7.D(), 1, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0);
CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q1);
CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q2);
CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q3);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q4);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q5);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q6);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7);
}
TEST(neon_ld2_d) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v4.V8B(), v5.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v6.V4H(), v7.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v31.V2S(), v0.V2S(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0, 0x0E0C0A0806040200, q2);
CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q3);
CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q4);
CHECK_EQUAL_128(0, 0x100E0C0A08060402, q5);
CHECK_EQUAL_128(0, 0x0F0E0B0A07060302, q6);
CHECK_EQUAL_128(0, 0x11100D0C09080504, q7);
CHECK_EQUAL_128(0, 0x0E0D0C0B06050403, q31);
CHECK_EQUAL_128(0, 0x1211100F0A090807, q0);
}
TEST(neon_ld2_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17, x22, PostIndex));
__ Ld2(v4.V8B(), v5.V8B(), MemOperand(x28, 16, PostIndex));
__ Ld2(v5.V4H(), v6.V4H(), MemOperand(x19, 16, PostIndex));
__ Ld2(v16.V2S(), v17.V2S(), MemOperand(x20, 16, PostIndex));
__ Ld2(v31.V2S(), v0.V2S(), MemOperand(x21, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0, 0x0E0C0A0806040200, q2);
CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q3);
CHECK_EQUAL_128(0, 0x0F0D0B0907050301, q4);
CHECK_EQUAL_128(0, 0x0F0E0B0A07060302, q5);
CHECK_EQUAL_128(0, 0x11100D0C09080504, q6);
CHECK_EQUAL_128(0, 0x0E0D0C0B06050403, q16);
CHECK_EQUAL_128(0, 0x1211100F0A090807, q17);
CHECK_EQUAL_128(0, 0x0F0E0D0C07060504, q31);
CHECK_EQUAL_128(0, 0x131211100B0A0908, q0);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 16, x28);
CHECK_EQUAL_64(src_base + 2 + 16, x19);
CHECK_EQUAL_64(src_base + 3 + 16, x20);
CHECK_EQUAL_64(src_base + 4 + 16, x21);
}
TEST(neon_ld2_q) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v31.V2D(), v0.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x1E1C1A1816141210, 0x0E0C0A0806040200, q2);
CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q3);
CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q4);
CHECK_EQUAL_128(0x201E1C1A18161412, 0x100E0C0A08060402, q5);
CHECK_EQUAL_128(0x1F1E1B1A17161312, 0x0F0E0B0A07060302, q6);
CHECK_EQUAL_128(0x21201D1C19181514, 0x11100D0C09080504, q7);
CHECK_EQUAL_128(0x1E1D1C1B16151413, 0x0E0D0C0B06050403, q16);
CHECK_EQUAL_128(0x2221201F1A191817, 0x1211100F0A090807, q17);
CHECK_EQUAL_128(0x1B1A191817161514, 0x0B0A090807060504, q31);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x131211100F0E0D0C, q0);
}
TEST(neon_ld2_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld2(v4.V16B(), v5.V16B(), MemOperand(x28, 32, PostIndex));
__ Ld2(v6.V8H(), v7.V8H(), MemOperand(x19, 32, PostIndex));
__ Ld2(v16.V4S(), v17.V4S(), MemOperand(x20, 32, PostIndex));
__ Ld2(v31.V2D(), v0.V2D(), MemOperand(x21, 32, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1E1C1A1816141210, 0x0E0C0A0806040200, q2);
CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q3);
CHECK_EQUAL_128(0x1F1D1B1917151311, 0x0F0D0B0907050301, q4);
CHECK_EQUAL_128(0x201E1C1A18161412, 0x100E0C0A08060402, q5);
CHECK_EQUAL_128(0x1F1E1B1A17161312, 0x0F0E0B0A07060302, q6);
CHECK_EQUAL_128(0x21201D1C19181514, 0x11100D0C09080504, q7);
CHECK_EQUAL_128(0x1E1D1C1B16151413, 0x0E0D0C0B06050403, q16);
CHECK_EQUAL_128(0x2221201F1A191817, 0x1211100F0A090807, q17);
CHECK_EQUAL_128(0x1B1A191817161514, 0x0B0A090807060504, q31);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x131211100F0E0D0C, q0);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 32, x28);
CHECK_EQUAL_64(src_base + 2 + 32, x19);
CHECK_EQUAL_64(src_base + 3 + 32, x20);
CHECK_EQUAL_64(src_base + 4 + 32, x21);
}
TEST(neon_ld2_lane) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld2(v0.B(), v1.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld2(v2.H(), v3.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld2(v4.S(), v5.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld2(v6.D(), v7.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q8, MemOperand(x4, 16, PostIndex));
__ Ldr(q9, MemOperand(x4));
__ Ld2(v8_.B(), v9.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q10, MemOperand(x5, 16, PostIndex));
__ Ldr(q11, MemOperand(x5));
__ Ld2(v10.H(), v11.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q12, MemOperand(x6, 16, PostIndex));
__ Ldr(q13, MemOperand(x6));
__ Ld2(v12.S(), v13.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q14, MemOperand(x7, 16, PostIndex));
__ Ldr(q15, MemOperand(x7));
__ Ld2(v14.D(), v15.D(), 1, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0);
CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1);
CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q2);
CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q3);
CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q4);
CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q5);
CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q6);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q7);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q8);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q9);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q10);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q11);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q12);
CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q13);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q15);
}
TEST(neon_ld2_lane_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
// Test loading whole register by element.
for (int i = 15; i >= 0; i--) {
__ Ld2(v0.B(), v1.B(), i, MemOperand(x17, 2, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld2(v2.H(), v3.H(), i, MemOperand(x28, 4, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld2(v4.S(), v5.S(), i, MemOperand(x19, 8, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld2(v6.D(), v7.D(), i, MemOperand(x20, 16, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x4, x21);
__ Ldr(q8, MemOperand(x4, 16, PostIndex));
__ Ldr(q9, MemOperand(x4));
__ Ld2(v8_.B(), v9.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q10, MemOperand(x5, 16, PostIndex));
__ Ldr(q11, MemOperand(x5));
__ Ld2(v10.H(), v11.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q12, MemOperand(x6, 16, PostIndex));
__ Ldr(q13, MemOperand(x6));
__ Ld2(v12.S(), v13.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q14, MemOperand(x7, 16, PostIndex));
__ Ldr(q15, MemOperand(x7));
__ Ld2(v14.D(), v15.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x00020406080A0C0E, 0x10121416181A1C1E, q0);
CHECK_EQUAL_128(0x01030507090B0D0F, 0x11131517191B1D1F, q1);
CHECK_EQUAL_128(0x0100050409080D0C, 0x1110151419181D1C, q2);
CHECK_EQUAL_128(0x030207060B0A0F0E, 0x131217161B1A1F1E, q3);
CHECK_EQUAL_128(0x030201000B0A0908, 0x131211101B1A1918, q4);
CHECK_EQUAL_128(0x070605040F0E0D0C, 0x171615141F1E1D1C, q5);
CHECK_EQUAL_128(0x0706050403020100, 0x1716151413121110, q6);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1F1E1D1C1B1A1918, q7);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q8);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q9);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q10);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q11);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q12);
CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q13);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q15);
CHECK_EQUAL_64(src_base + 32, x17);
CHECK_EQUAL_64(src_base + 32, x28);
CHECK_EQUAL_64(src_base + 32, x19);
CHECK_EQUAL_64(src_base + 32, x20);
CHECK_EQUAL_64(src_base + 1, x21);
CHECK_EQUAL_64(src_base + 2, x22);
CHECK_EQUAL_64(src_base + 3, x23);
CHECK_EQUAL_64(src_base + 4, x24);
}
TEST(neon_ld2_alllanes) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17));
__ Add(x17, x17, 2);
__ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 4);
__ Ld2r(v8_.V2S(), v9.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17));
__ Add(x17, x17, 8);
__ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4);
CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5);
CHECK_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6);
CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0C0B0A090C0B0A09, q8);
CHECK_EQUAL_128(0x0000000000000000, 0x100F0E0D100F0E0D, q9);
CHECK_EQUAL_128(0x0D0C0B0A0D0C0B0A, 0x0D0C0B0A0D0C0B0A, q10);
CHECK_EQUAL_128(0x11100F0E11100F0E, 0x11100F0E11100F0E, q11);
CHECK_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12);
CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x21201F1E1D1C1B1A, q13);
}
TEST(neon_ld2_alllanes_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x19, 1);
__ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17, 2, PostIndex));
__ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17, x19, PostIndex));
__ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17, x19, PostIndex));
__ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17, 4, PostIndex));
__ Ld2r(v8_.V2S(), v9.V2S(), MemOperand(x17, x19, PostIndex));
__ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17, 8, PostIndex));
__ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4);
CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5);
CHECK_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6);
CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0C0B0A090C0B0A09, q8);
CHECK_EQUAL_128(0x0000000000000000, 0x100F0E0D100F0E0D, q9);
CHECK_EQUAL_128(0x0D0C0B0A0D0C0B0A, 0x0D0C0B0A0D0C0B0A, q10);
CHECK_EQUAL_128(0x11100F0E11100F0E, 0x11100F0E11100F0E, q11);
CHECK_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12);
CHECK_EQUAL_128(0x21201F1E1D1C1B1A, 0x21201F1E1D1C1B1A, q13);
CHECK_EQUAL_64(src_base + 34, x17);
}
TEST(neon_ld3_d) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v8_.V4H(), v9.V4H(), v10.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0, 0x15120F0C09060300, q2);
CHECK_EQUAL_128(0, 0x1613100D0A070401, q3);
CHECK_EQUAL_128(0, 0x1714110E0B080502, q4);
CHECK_EQUAL_128(0, 0x1613100D0A070401, q5);
CHECK_EQUAL_128(0, 0x1714110E0B080502, q6);
CHECK_EQUAL_128(0, 0x1815120F0C090603, q7);
CHECK_EQUAL_128(0, 0x15140F0E09080302, q8);
CHECK_EQUAL_128(0, 0x171611100B0A0504, q9);
CHECK_EQUAL_128(0, 0x191813120D0C0706, q10);
CHECK_EQUAL_128(0, 0x1211100F06050403, q31);
CHECK_EQUAL_128(0, 0x161514130A090807, q0);
CHECK_EQUAL_128(0, 0x1A1918170E0D0C0B, q1);
}
TEST(neon_ld3_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17, x22, PostIndex));
__ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x28, 24, PostIndex));
__ Ld3(v8_.V4H(), v9.V4H(), v10.V4H(), MemOperand(x19, 24, PostIndex));
__ Ld3(v11.V2S(), v12.V2S(), v13.V2S(), MemOperand(x20, 24, PostIndex));
__ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x21, 24, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0, 0x15120F0C09060300, q2);
CHECK_EQUAL_128(0, 0x1613100D0A070401, q3);
CHECK_EQUAL_128(0, 0x1714110E0B080502, q4);
CHECK_EQUAL_128(0, 0x1613100D0A070401, q5);
CHECK_EQUAL_128(0, 0x1714110E0B080502, q6);
CHECK_EQUAL_128(0, 0x1815120F0C090603, q7);
CHECK_EQUAL_128(0, 0x15140F0E09080302, q8);
CHECK_EQUAL_128(0, 0x171611100B0A0504, q9);
CHECK_EQUAL_128(0, 0x191813120D0C0706, q10);
CHECK_EQUAL_128(0, 0x1211100F06050403, q11);
CHECK_EQUAL_128(0, 0x161514130A090807, q12);
CHECK_EQUAL_128(0, 0x1A1918170E0D0C0B, q13);
CHECK_EQUAL_128(0, 0x1312111007060504, q31);
CHECK_EQUAL_128(0, 0x171615140B0A0908, q0);
CHECK_EQUAL_128(0, 0x1B1A19180F0E0D0C, q1);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 24, x28);
CHECK_EQUAL_64(src_base + 2 + 24, x19);
CHECK_EQUAL_64(src_base + 3 + 24, x20);
CHECK_EQUAL_64(src_base + 4 + 24, x21);
}
TEST(neon_ld3_q) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v8_.V8H(), v9.V8H(), v10.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x2D2A2724211E1B18, 0x15120F0C09060300, q2);
CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q3);
CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q4);
CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q5);
CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q6);
CHECK_EQUAL_128(0x302D2A2724211E1B, 0x1815120F0C090603, q7);
CHECK_EQUAL_128(0x2D2C272621201B1A, 0x15140F0E09080302, q8);
CHECK_EQUAL_128(0x2F2E292823221D1C, 0x171611100B0A0504, q9);
CHECK_EQUAL_128(0x31302B2A25241F1E, 0x191813120D0C0706, q10);
CHECK_EQUAL_128(0x2A2928271E1D1C1B, 0x1211100F06050403, q11);
CHECK_EQUAL_128(0x2E2D2C2B2221201F, 0x161514130A090807, q12);
CHECK_EQUAL_128(0x3231302F26252423, 0x1A1918170E0D0C0B, q13);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x0B0A090807060504, q31);
CHECK_EQUAL_128(0x2B2A292827262524, 0x131211100F0E0D0C, q0);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x1B1A191817161514, q1);
}
TEST(neon_ld3_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x28, 48, PostIndex));
__ Ld3(v8_.V8H(), v9.V8H(), v10.V8H(), MemOperand(x19, 48, PostIndex));
__ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x20, 48, PostIndex));
__ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x21, 48, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x2D2A2724211E1B18, 0x15120F0C09060300, q2);
CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q3);
CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q4);
CHECK_EQUAL_128(0x2E2B2825221F1C19, 0x1613100D0A070401, q5);
CHECK_EQUAL_128(0x2F2C292623201D1A, 0x1714110E0B080502, q6);
CHECK_EQUAL_128(0x302D2A2724211E1B, 0x1815120F0C090603, q7);
CHECK_EQUAL_128(0x2D2C272621201B1A, 0x15140F0E09080302, q8);
CHECK_EQUAL_128(0x2F2E292823221D1C, 0x171611100B0A0504, q9);
CHECK_EQUAL_128(0x31302B2A25241F1E, 0x191813120D0C0706, q10);
CHECK_EQUAL_128(0x2A2928271E1D1C1B, 0x1211100F06050403, q11);
CHECK_EQUAL_128(0x2E2D2C2B2221201F, 0x161514130A090807, q12);
CHECK_EQUAL_128(0x3231302F26252423, 0x1A1918170E0D0C0B, q13);
CHECK_EQUAL_128(0x232221201F1E1D1C, 0x0B0A090807060504, q31);
CHECK_EQUAL_128(0x2B2A292827262524, 0x131211100F0E0D0C, q0);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x1B1A191817161514, q1);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 48, x28);
CHECK_EQUAL_64(src_base + 2 + 48, x19);
CHECK_EQUAL_64(src_base + 3 + 48, x20);
CHECK_EQUAL_64(src_base + 4 + 48, x21);
}
TEST(neon_ld3_lane) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld3(v6.S(), v7.S(), v8_.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q12, MemOperand(x4, 16, PostIndex));
__ Ldr(q13, MemOperand(x4, 16, PostIndex));
__ Ldr(q14, MemOperand(x4));
__ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q15, MemOperand(x5, 16, PostIndex));
__ Ldr(q16, MemOperand(x5, 16, PostIndex));
__ Ldr(q17, MemOperand(x5));
__ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q18, MemOperand(x6, 16, PostIndex));
__ Ldr(q19, MemOperand(x6, 16, PostIndex));
__ Ldr(q20, MemOperand(x6));
__ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q21, MemOperand(x7, 16, PostIndex));
__ Ldr(q22, MemOperand(x7, 16, PostIndex));
__ Ldr(q23, MemOperand(x7));
__ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0);
CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1);
CHECK_EQUAL_128(0x0203040506070809, 0x0A0B0C0D0E0F1011, q2);
CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q3);
CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q4);
CHECK_EQUAL_128(0x0504060507060807, 0x09080A090B0A0C0B, q5);
CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q6);
CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q7);
CHECK_EQUAL_128(0x0B0A09080C0B0A09, 0x0D0C0B0A0E0D0C0B, q8);
CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q9);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q10);
CHECK_EQUAL_128(0x1716151413121110, 0x1817161514131211, q11);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q12);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q13);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q14);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q15);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q16);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q17);
}
TEST(neon_ld3_lane_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17, 3, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x28, 6, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld3(v6.S(), v7.S(), v8_.S(), i, MemOperand(x19, 12, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x20, 24, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x4, x21);
__ Ldr(q12, MemOperand(x4, 16, PostIndex));
__ Ldr(q13, MemOperand(x4, 16, PostIndex));
__ Ldr(q14, MemOperand(x4));
__ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q15, MemOperand(x5, 16, PostIndex));
__ Ldr(q16, MemOperand(x5, 16, PostIndex));
__ Ldr(q17, MemOperand(x5));
__ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q18, MemOperand(x6, 16, PostIndex));
__ Ldr(q19, MemOperand(x6, 16, PostIndex));
__ Ldr(q20, MemOperand(x6));
__ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q21, MemOperand(x7, 16, PostIndex));
__ Ldr(q22, MemOperand(x7, 16, PostIndex));
__ Ldr(q23, MemOperand(x7));
__ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x000306090C0F1215, 0x181B1E2124272A2D, q0);
CHECK_EQUAL_128(0x0104070A0D101316, 0x191C1F2225282B2E, q1);
CHECK_EQUAL_128(0x0205080B0E111417, 0x1A1D202326292C2F, q2);
CHECK_EQUAL_128(0x010007060D0C1312, 0x19181F1E25242B2A, q3);
CHECK_EQUAL_128(0x030209080F0E1514, 0x1B1A212027262D2C, q4);
CHECK_EQUAL_128(0x05040B0A11101716, 0x1D1C232229282F2E, q5);
CHECK_EQUAL_128(0x030201000F0E0D0C, 0x1B1A191827262524, q6);
CHECK_EQUAL_128(0x0706050413121110, 0x1F1E1D1C2B2A2928, q7);
CHECK_EQUAL_128(0x0B0A090817161514, 0x232221202F2E2D2C, q8);
CHECK_EQUAL_128(0x0706050403020100, 0x1F1E1D1C1B1A1918, q9);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x2726252423222120, q10);
CHECK_EQUAL_128(0x1716151413121110, 0x2F2E2D2C2B2A2928, q11);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q12);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q13);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q14);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q15);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q16);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q17);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q18);
CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q19);
CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q20);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q21);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q22);
CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q23);
CHECK_EQUAL_64(src_base + 48, x17);
CHECK_EQUAL_64(src_base + 48, x28);
CHECK_EQUAL_64(src_base + 48, x19);
CHECK_EQUAL_64(src_base + 48, x20);
CHECK_EQUAL_64(src_base + 1, x21);
CHECK_EQUAL_64(src_base + 2, x22);
CHECK_EQUAL_64(src_base + 3, x23);
CHECK_EQUAL_64(src_base + 4, x24);
}
TEST(neon_ld3_alllanes) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17));
__ Add(x17, x17, 3);
__ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v6.V4H(), v7.V4H(), v8_.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17));
__ Add(x17, x17, 6);
__ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 12);
__ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
CHECK_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6);
CHECK_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0A090A090A090A09, q8);
CHECK_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9);
CHECK_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10);
CHECK_EQUAL_128(0x0B0A0B0A0B0A0B0A, 0x0B0A0B0A0B0A0B0A, q11);
CHECK_EQUAL_128(0x0000000000000000, 0x0F0E0D0C0F0E0D0C, q12);
CHECK_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13);
CHECK_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14);
CHECK_EQUAL_128(0x100F0E0D100F0E0D, 0x100F0E0D100F0E0D, q15);
CHECK_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16);
CHECK_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17);
CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x201F1E1D1C1B1A19, q18);
CHECK_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19);
CHECK_EQUAL_128(0x302F2E2D2C2B2A29, 0x302F2E2D2C2B2A29, q20);
}
TEST(neon_ld3_alllanes_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x19, 1);
__ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17, 3, PostIndex));
__ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17, x19, PostIndex));
__ Ld3r(v6.V4H(), v7.V4H(), v8_.V4H(), MemOperand(x17, x19, PostIndex));
__ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17, 6, PostIndex));
__ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17, x19, PostIndex));
__ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17, 12, PostIndex));
__ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17, 24, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
CHECK_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6);
CHECK_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0A090A090A090A09, q8);
CHECK_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9);
CHECK_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10);
CHECK_EQUAL_128(0x0B0A0B0A0B0A0B0A, 0x0B0A0B0A0B0A0B0A, q11);
CHECK_EQUAL_128(0x0000000000000000, 0x0F0E0D0C0F0E0D0C, q12);
CHECK_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13);
CHECK_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14);
CHECK_EQUAL_128(0x100F0E0D100F0E0D, 0x100F0E0D100F0E0D, q15);
CHECK_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16);
CHECK_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17);
CHECK_EQUAL_128(0x201F1E1D1C1B1A19, 0x201F1E1D1C1B1A19, q18);
CHECK_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19);
CHECK_EQUAL_128(0x302F2E2D2C2B2A29, 0x302F2E2D2C2B2A29, q20);
}
TEST(neon_ld4_d) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v6.V8B(), v7.V8B(), v8_.V8B(), v9.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0, 0x1C1814100C080400, q2);
CHECK_EQUAL_128(0, 0x1D1915110D090501, q3);
CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q4);
CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q5);
CHECK_EQUAL_128(0, 0x1D1915110D090501, q6);
CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q7);
CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q8);
CHECK_EQUAL_128(0, 0x201C1814100C0804, q9);
CHECK_EQUAL_128(0, 0x1B1A13120B0A0302, q10);
CHECK_EQUAL_128(0, 0x1D1C15140D0C0504, q11);
CHECK_EQUAL_128(0, 0x1F1E17160F0E0706, q12);
CHECK_EQUAL_128(0, 0x2120191811100908, q13);
CHECK_EQUAL_128(0, 0x1615141306050403, q30);
CHECK_EQUAL_128(0, 0x1A1918170A090807, q31);
CHECK_EQUAL_128(0, 0x1E1D1C1B0E0D0C0B, q0);
CHECK_EQUAL_128(0, 0x2221201F1211100F, q1);
}
TEST(neon_ld4_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(),
MemOperand(x17, x22, PostIndex));
__ Ld4(v6.V8B(), v7.V8B(), v8_.V8B(), v9.V8B(),
MemOperand(x28, 32, PostIndex));
__ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(),
MemOperand(x19, 32, PostIndex));
__ Ld4(v14.V2S(), v15.V2S(), v16.V2S(), v17.V2S(),
MemOperand(x20, 32, PostIndex));
__ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(),
MemOperand(x21, 32, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0, 0x1C1814100C080400, q2);
CHECK_EQUAL_128(0, 0x1D1915110D090501, q3);
CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q4);
CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q5);
CHECK_EQUAL_128(0, 0x1D1915110D090501, q6);
CHECK_EQUAL_128(0, 0x1E1A16120E0A0602, q7);
CHECK_EQUAL_128(0, 0x1F1B17130F0B0703, q8);
CHECK_EQUAL_128(0, 0x201C1814100C0804, q9);
CHECK_EQUAL_128(0, 0x1B1A13120B0A0302, q10);
CHECK_EQUAL_128(0, 0x1D1C15140D0C0504, q11);
CHECK_EQUAL_128(0, 0x1F1E17160F0E0706, q12);
CHECK_EQUAL_128(0, 0x2120191811100908, q13);
CHECK_EQUAL_128(0, 0x1615141306050403, q14);
CHECK_EQUAL_128(0, 0x1A1918170A090807, q15);
CHECK_EQUAL_128(0, 0x1E1D1C1B0E0D0C0B, q16);
CHECK_EQUAL_128(0, 0x2221201F1211100F, q17);
CHECK_EQUAL_128(0, 0x1716151407060504, q30);
CHECK_EQUAL_128(0, 0x1B1A19180B0A0908, q31);
CHECK_EQUAL_128(0, 0x1F1E1D1C0F0E0D0C, q0);
CHECK_EQUAL_128(0, 0x2322212013121110, q1);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 32, x28);
CHECK_EQUAL_64(src_base + 2 + 32, x19);
CHECK_EQUAL_64(src_base + 3 + 32, x20);
CHECK_EQUAL_64(src_base + 4 + 32, x21);
}
TEST(neon_ld4_q) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v6.V16B(), v7.V16B(), v8_.V16B(), v9.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v18.V2D(), v19.V2D(), v20.V2D(), v21.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x3C3834302C282420, 0x1C1814100C080400, q2);
CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q3);
CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q4);
CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q5);
CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q6);
CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q7);
CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q8);
CHECK_EQUAL_128(0x403C3834302C2824, 0x201C1814100C0804, q9);
CHECK_EQUAL_128(0x3B3A33322B2A2322, 0x1B1A13120B0A0302, q10);
CHECK_EQUAL_128(0x3D3C35342D2C2524, 0x1D1C15140D0C0504, q11);
CHECK_EQUAL_128(0x3F3E37362F2E2726, 0x1F1E17160F0E0706, q12);
CHECK_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13);
CHECK_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14);
CHECK_EQUAL_128(0x3A3938372A292827, 0x1A1918170A090807, q15);
CHECK_EQUAL_128(0x3E3D3C3B2E2D2C2B, 0x1E1D1C1B0E0D0C0B, q16);
CHECK_EQUAL_128(0x4241403F3231302F, 0x2221201F1211100F, q17);
CHECK_EQUAL_128(0x2B2A292827262524, 0x0B0A090807060504, q18);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x131211100F0E0D0C, q19);
CHECK_EQUAL_128(0x3B3A393837363534, 0x1B1A191817161514, q20);
CHECK_EQUAL_128(0x434241403F3E3D3C, 0x232221201F1E1D1C, q21);
}
TEST(neon_ld4_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(),
MemOperand(x17, x22, PostIndex));
__ Ld4(v6.V16B(), v7.V16B(), v8_.V16B(), v9.V16B(),
MemOperand(x28, 64, PostIndex));
__ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(),
MemOperand(x19, 64, PostIndex));
__ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(),
MemOperand(x20, 64, PostIndex));
__ Ld4(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(),
MemOperand(x21, 64, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x3C3834302C282420, 0x1C1814100C080400, q2);
CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q3);
CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q4);
CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q5);
CHECK_EQUAL_128(0x3D3935312D292521, 0x1D1915110D090501, q6);
CHECK_EQUAL_128(0x3E3A36322E2A2622, 0x1E1A16120E0A0602, q7);
CHECK_EQUAL_128(0x3F3B37332F2B2723, 0x1F1B17130F0B0703, q8);
CHECK_EQUAL_128(0x403C3834302C2824, 0x201C1814100C0804, q9);
CHECK_EQUAL_128(0x3B3A33322B2A2322, 0x1B1A13120B0A0302, q10);
CHECK_EQUAL_128(0x3D3C35342D2C2524, 0x1D1C15140D0C0504, q11);
CHECK_EQUAL_128(0x3F3E37362F2E2726, 0x1F1E17160F0E0706, q12);
CHECK_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13);
CHECK_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14);
CHECK_EQUAL_128(0x3A3938372A292827, 0x1A1918170A090807, q15);
CHECK_EQUAL_128(0x3E3D3C3B2E2D2C2B, 0x1E1D1C1B0E0D0C0B, q16);
CHECK_EQUAL_128(0x4241403F3231302F, 0x2221201F1211100F, q17);
CHECK_EQUAL_128(0x2B2A292827262524, 0x0B0A090807060504, q30);
CHECK_EQUAL_128(0x333231302F2E2D2C, 0x131211100F0E0D0C, q31);
CHECK_EQUAL_128(0x3B3A393837363534, 0x1B1A191817161514, q0);
CHECK_EQUAL_128(0x434241403F3E3D3C, 0x232221201F1E1D1C, q1);
CHECK_EQUAL_64(src_base + 1, x17);
CHECK_EQUAL_64(src_base + 1 + 64, x28);
CHECK_EQUAL_64(src_base + 2 + 64, x19);
CHECK_EQUAL_64(src_base + 3 + 64, x20);
CHECK_EQUAL_64(src_base + 4 + 64, x21);
}
TEST(neon_ld4_lane) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld4(v8_.S(), v9.S(), v10.S(), v11.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q16, MemOperand(x4, 16, PostIndex));
__ Ldr(q17, MemOperand(x4, 16, PostIndex));
__ Ldr(q18, MemOperand(x4, 16, PostIndex));
__ Ldr(q19, MemOperand(x4));
__ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q20, MemOperand(x5, 16, PostIndex));
__ Ldr(q21, MemOperand(x5, 16, PostIndex));
__ Ldr(q22, MemOperand(x5, 16, PostIndex));
__ Ldr(q23, MemOperand(x5));
__ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q24, MemOperand(x6, 16, PostIndex));
__ Ldr(q25, MemOperand(x6, 16, PostIndex));
__ Ldr(q26, MemOperand(x6, 16, PostIndex));
__ Ldr(q27, MemOperand(x6));
__ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q28, MemOperand(x7, 16, PostIndex));
__ Ldr(q29, MemOperand(x7, 16, PostIndex));
__ Ldr(q30, MemOperand(x7, 16, PostIndex));
__ Ldr(q31, MemOperand(x7));
__ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0);
CHECK_EQUAL_128(0x0102030405060708, 0x090A0B0C0D0E0F10, q1);
CHECK_EQUAL_128(0x0203040506070809, 0x0A0B0C0D0E0F1011, q2);
CHECK_EQUAL_128(0x030405060708090A, 0x0B0C0D0E0F101112, q3);
CHECK_EQUAL_128(0x0100020103020403, 0x0504060507060807, q4);
CHECK_EQUAL_128(0x0302040305040605, 0x0706080709080A09, q5);
CHECK_EQUAL_128(0x0504060507060807, 0x09080A090B0A0C0B, q6);
CHECK_EQUAL_128(0x0706080709080A09, 0x0B0A0C0B0D0C0E0D, q7);
CHECK_EQUAL_128(0x0302010004030201, 0x0504030206050403, q8);
CHECK_EQUAL_128(0x0706050408070605, 0x090807060A090807, q9);
CHECK_EQUAL_128(0x0B0A09080C0B0A09, 0x0D0C0B0A0E0D0C0B, q10);
CHECK_EQUAL_128(0x0F0E0D0C100F0E0D, 0x11100F0E1211100F, q11);
CHECK_EQUAL_128(0x0706050403020100, 0x0807060504030201, q12);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x100F0E0D0C0B0A09, q13);
CHECK_EQUAL_128(0x1716151413121110, 0x1817161514131211, q14);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x201F1E1D1C1B1A19, q15);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q16);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q17);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q18);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736350333323130, q19);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q20);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q21);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q22);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x0706353433323130, q23);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q24);
CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q25);
CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q26);
CHECK_EQUAL_128(0x3F3E3D3C0F0E0D0C, 0x3736353433323130, q27);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q29);
CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3736353433323130, q31);
}
TEST(neon_ld4_lane_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x17, 4, PostIndex));
}
__ Mov(x28, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i, MemOperand(x28, 8, PostIndex));
}
__ Mov(x19, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld4(v8_.S(), v9.S(), v10.S(), v11.S(), i,
MemOperand(x19, 16, PostIndex));
}
__ Mov(x20, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i,
MemOperand(x20, 32, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
__ Mov(x4, x21);
__ Ldr(q16, MemOperand(x4, 16, PostIndex));
__ Ldr(q17, MemOperand(x4, 16, PostIndex));
__ Ldr(q18, MemOperand(x4, 16, PostIndex));
__ Ldr(q19, MemOperand(x4));
__ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4,
MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q20, MemOperand(x5, 16, PostIndex));
__ Ldr(q21, MemOperand(x5, 16, PostIndex));
__ Ldr(q22, MemOperand(x5, 16, PostIndex));
__ Ldr(q23, MemOperand(x5));
__ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3,
MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q24, MemOperand(x6, 16, PostIndex));
__ Ldr(q25, MemOperand(x6, 16, PostIndex));
__ Ldr(q26, MemOperand(x6, 16, PostIndex));
__ Ldr(q27, MemOperand(x6));
__ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2,
MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q28, MemOperand(x7, 16, PostIndex));
__ Ldr(q29, MemOperand(x7, 16, PostIndex));
__ Ldr(q30, MemOperand(x7, 16, PostIndex));
__ Ldr(q31, MemOperand(x7));
__ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1,
MemOperand(x24, x25, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0004080C1014181C, 0x2024282C3034383C, q0);
CHECK_EQUAL_128(0x0105090D1115191D, 0x2125292D3135393D, q1);
CHECK_EQUAL_128(0x02060A0E12161A1E, 0x22262A2E32363A3E, q2);
CHECK_EQUAL_128(0x03070B0F13171B1F, 0x23272B2F33373B3F, q3);
CHECK_EQUAL_128(0x0100090811101918, 0x2120292831303938, q4);
CHECK_EQUAL_128(0x03020B0A13121B1A, 0x23222B2A33323B3A, q5);
CHECK_EQUAL_128(0x05040D0C15141D1C, 0x25242D2C35343D3C, q6);
CHECK_EQUAL_128(0x07060F0E17161F1E, 0x27262F2E37363F3E, q7);
CHECK_EQUAL_128(0x0302010013121110, 0x2322212033323130, q8);
CHECK_EQUAL_128(0x0706050417161514, 0x2726252437363534, q9);
CHECK_EQUAL_128(0x0B0A09081B1A1918, 0x2B2A29283B3A3938, q10);
CHECK_EQUAL_128(0x0F0E0D0C1F1E1D1C, 0x2F2E2D2C3F3E3D3C, q11);
CHECK_EQUAL_128(0x0706050403020100, 0x2726252423222120, q12);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x2F2E2D2C2B2A2928, q13);
CHECK_EQUAL_128(0x1716151413121110, 0x3736353433323130, q14);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3F3E3D3C3B3A3938, q15);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q16);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716150113121110, q17);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726250223222120, q18);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736350333323130, q19);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q20);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0302151413121110, q21);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x0504252423222120, q22);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x0706353433323130, q23);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q24);
CHECK_EQUAL_128(0x1F1E1D1C07060504, 0x1716151413121110, q25);
CHECK_EQUAL_128(0x2F2E2D2C0B0A0908, 0x2726252423222120, q26);
CHECK_EQUAL_128(0x3F3E3D3C0F0E0D0C, 0x3736353433323130, q27);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x1716151413121110, q29);
CHECK_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x3736353433323130, q31);
CHECK_EQUAL_64(src_base + 64, x17);
CHECK_EQUAL_64(src_base + 64, x28);
CHECK_EQUAL_64(src_base + 64, x19);
CHECK_EQUAL_64(src_base + 64, x20);
CHECK_EQUAL_64(src_base + 1, x21);
CHECK_EQUAL_64(src_base + 2, x22);
CHECK_EQUAL_64(src_base + 3, x23);
CHECK_EQUAL_64(src_base + 4, x24);
}
TEST(neon_ld4_alllanes) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x17));
__ Add(x17, x17, 4);
__ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v8_.V4H(), v9.V4H(), v10.V4H(), v11.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(), MemOperand(x17));
__ Add(x17, x17, 8);
__ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(), MemOperand(x17));
__ Add(x17, x17, 16);
__ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
CHECK_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6);
CHECK_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8);
CHECK_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9);
CHECK_EQUAL_128(0x0000000000000000, 0x0B0A0B0A0B0A0B0A, q10);
CHECK_EQUAL_128(0x0000000000000000, 0x0D0C0D0C0D0C0D0C, q11);
CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12);
CHECK_EQUAL_128(0x0A090A090A090A09, 0x0A090A090A090A09, q13);
CHECK_EQUAL_128(0x0C0B0C0B0C0B0C0B, 0x0C0B0C0B0C0B0C0B, q14);
CHECK_EQUAL_128(0x0E0D0E0D0E0D0E0D, 0x0E0D0E0D0E0D0E0D, q15);
CHECK_EQUAL_128(0x0000000000000000, 0x1211100F1211100F, q16);
CHECK_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17);
CHECK_EQUAL_128(0x0000000000000000, 0x1A1918171A191817, q18);
CHECK_EQUAL_128(0x0000000000000000, 0x1E1D1C1B1E1D1C1B, q19);
CHECK_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20);
CHECK_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21);
CHECK_EQUAL_128(0x1B1A19181B1A1918, 0x1B1A19181B1A1918, q22);
CHECK_EQUAL_128(0x1F1E1D1C1F1E1D1C, 0x1F1E1D1C1F1E1D1C, q23);
CHECK_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2F2E2D2C2B2A2928, q25);
CHECK_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3F3E3D3C3B3A3938, q27);
}
TEST(neon_ld4_alllanes_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x19, 1);
__ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(),
MemOperand(x17, 4, PostIndex));
__ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(),
MemOperand(x17, x19, PostIndex));
__ Ld4r(v8_.V4H(), v9.V4H(), v10.V4H(), v11.V4H(),
MemOperand(x17, x19, PostIndex));
__ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(),
MemOperand(x17, 8, PostIndex));
__ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(),
MemOperand(x17, x19, PostIndex));
__ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(),
MemOperand(x17, 16, PostIndex));
__ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(),
MemOperand(x17, 32, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
CHECK_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
CHECK_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3);
CHECK_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
CHECK_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
CHECK_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6);
CHECK_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7);
CHECK_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8);
CHECK_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9);
CHECK_EQUAL_128(0x0000000000000000, 0x0B0A0B0A0B0A0B0A, q10);
CHECK_EQUAL_128(0x0000000000000000, 0x0D0C0D0C0D0C0D0C, q11);
CHECK_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12);
CHECK_EQUAL_128(0x0A090A090A090A09, 0x0A090A090A090A09, q13);
CHECK_EQUAL_128(0x0C0B0C0B0C0B0C0B, 0x0C0B0C0B0C0B0C0B, q14);
CHECK_EQUAL_128(0x0E0D0E0D0E0D0E0D, 0x0E0D0E0D0E0D0E0D, q15);
CHECK_EQUAL_128(0x0000000000000000, 0x1211100F1211100F, q16);
CHECK_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17);
CHECK_EQUAL_128(0x0000000000000000, 0x1A1918171A191817, q18);
CHECK_EQUAL_128(0x0000000000000000, 0x1E1D1C1B1E1D1C1B, q19);
CHECK_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20);
CHECK_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21);
CHECK_EQUAL_128(0x1B1A19181B1A1918, 0x1B1A19181B1A1918, q22);
CHECK_EQUAL_128(0x1F1E1D1C1F1E1D1C, 0x1F1E1D1C1F1E1D1C, q23);
CHECK_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2F2E2D2C2B2A2928, q25);
CHECK_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3F3E3D3C3B3A3938, q27);
CHECK_EQUAL_64(src_base + 64, x17);
}
TEST(neon_st1_lane) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, -16);
__ Ldr(q0, MemOperand(x17));
for (int i = 15; i >= 0; i--) {
__ St1(v0.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Ldr(q1, MemOperand(x17, x19));
for (int i = 7; i >= 0; i--) {
__ St1(v0.H(), i, MemOperand(x17));
__ Add(x17, x17, 2);
}
__ Ldr(q2, MemOperand(x17, x19));
for (int i = 3; i >= 0; i--) {
__ St1(v0.S(), i, MemOperand(x17));
__ Add(x17, x17, 4);
}
__ Ldr(q3, MemOperand(x17, x19));
for (int i = 1; i >= 0; i--) {
__ St1(v0.D(), i, MemOperand(x17));
__ Add(x17, x17, 8);
}
__ Ldr(q4, MemOperand(x17, x19));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q1);
CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q2);
CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q3);
CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q4);
}
TEST(neon_st2_lane) {
INIT_V8();
SETUP();
// Struct size * addressing modes * element sizes * vector size.
uint8_t dst[2 * 2 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x19, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F);
// Test B stores with and without post index.
for (int i = 15; i >= 0; i--) {
__ St2(v0.B(), v1.B(), i, MemOperand(x19));
__ Add(x19, x19, 2);
}
for (int i = 15; i >= 0; i--) {
__ St2(v0.B(), v1.B(), i, MemOperand(x19, 2, PostIndex));
}
__ Ldr(q2, MemOperand(x17, 0 * 16));
__ Ldr(q3, MemOperand(x17, 1 * 16));
__ Ldr(q4, MemOperand(x17, 2 * 16));
__ Ldr(q5, MemOperand(x17, 3 * 16));
// Test H stores with and without post index.
__ Mov(x0, 4);
for (int i = 7; i >= 0; i--) {
__ St2(v0.H(), v1.H(), i, MemOperand(x19));
__ Add(x19, x19, 4);
}
for (int i = 7; i >= 0; i--) {
__ St2(v0.H(), v1.H(), i, MemOperand(x19, x0, PostIndex));
}
__ Ldr(q6, MemOperand(x17, 4 * 16));
__ Ldr(q7, MemOperand(x17, 5 * 16));
__ Ldr(q16, MemOperand(x17, 6 * 16));
__ Ldr(q17, MemOperand(x17, 7 * 16));
// Test S stores with and without post index.
for (int i = 3; i >= 0; i--) {
__ St2(v0.S(), v1.S(), i, MemOperand(x19));
__ Add(x19, x19, 8);
}
for (int i = 3; i >= 0; i--) {
__ St2(v0.S(), v1.S(), i, MemOperand(x19, 8, PostIndex));
}
__ Ldr(q18, MemOperand(x17, 8 * 16));
__ Ldr(q19, MemOperand(x17, 9 * 16));
__ Ldr(q20, MemOperand(x17, 10 * 16));
__ Ldr(q21, MemOperand(x17, 11 * 16));
// Test D stores with and without post index.
__ Mov(x0, 16);
__ St2(v0.D(), v1.D(), 1, MemOperand(x19));
__ Add(x19, x19, 16);
__ St2(v0.D(), v1.D(), 0, MemOperand(x19, 16, PostIndex));
__ St2(v0.D(), v1.D(), 1, MemOperand(x19, x0, PostIndex));
__ St2(v0.D(), v1.D(), 0, MemOperand(x19, x0, PostIndex));
__ Ldr(q22, MemOperand(x17, 12 * 16));
__ Ldr(q23, MemOperand(x17, 13 * 16));
__ Ldr(q24, MemOperand(x17, 14 * 16));
__ Ldr(q25, MemOperand(x17, 15 * 16));
END();
RUN();
CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q2);
CHECK_EQUAL_128(0x1F0F1E0E1D0D1C0C, 0x1B0B1A0A19091808, q3);
CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q4);
CHECK_EQUAL_128(0x1F0F1E0E1D0D1C0C, 0x1B0B1A0A19091808, q5);
CHECK_EQUAL_128(0x1617060714150405, 0x1213020310110001, q6);
CHECK_EQUAL_128(0x1E1F0E0F1C1D0C0D, 0x1A1B0A0B18190809, q7);
CHECK_EQUAL_128(0x1617060714150405, 0x1213020310110001, q16);
CHECK_EQUAL_128(0x1E1F0E0F1C1D0C0D, 0x1A1B0A0B18190809, q17);
CHECK_EQUAL_128(0x1415161704050607, 0x1011121300010203, q18);
CHECK_EQUAL_128(0x1C1D1E1F0C0D0E0F, 0x18191A1B08090A0B, q19);
CHECK_EQUAL_128(0x1415161704050607, 0x1011121300010203, q20);
CHECK_EQUAL_128(0x1C1D1E1F0C0D0E0F, 0x18191A1B08090A0B, q21);
CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22);
CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q23);
CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22);
CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q23);
}
TEST(neon_st3_lane) {
INIT_V8();
SETUP();
// Struct size * addressing modes * element sizes * vector size.
uint8_t dst[3 * 2 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x19, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F);
__ Movi(v2.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F);
// Test B stores with and without post index.
for (int i = 15; i >= 0; i--) {
__ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x19));
__ Add(x19, x19, 3);
}
for (int i = 15; i >= 0; i--) {
__ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x19, 3, PostIndex));
}
__ Ldr(q3, MemOperand(x17, 0 * 16));
__ Ldr(q4, MemOperand(x17, 1 * 16));
__ Ldr(q5, MemOperand(x17, 2 * 16));
__ Ldr(q6, MemOperand(x17, 3 * 16));
__ Ldr(q7, MemOperand(x17, 4 * 16));
__ Ldr(q16, MemOperand(x17, 5 * 16));
// Test H stores with and without post index.
__ Mov(x0, 6);
for (int i = 7; i >= 0; i--) {
__ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x19));
__ Add(x19, x19, 6);
}
for (int i = 7; i >= 0; i--) {
__ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x19, x0, PostIndex));
}
__ Ldr(q17, MemOperand(x17, 6 * 16));
__ Ldr(q18, MemOperand(x17, 7 * 16));
__ Ldr(q19, MemOperand(x17, 8 * 16));
__ Ldr(q20, MemOperand(x17, 9 * 16));
__ Ldr(q21, MemOperand(x17, 10 * 16));
__ Ldr(q22, MemOperand(x17, 11 * 16));
// Test S stores with and without post index.
for (int i = 3; i >= 0; i--) {
__ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x19));
__ Add(x19, x19, 12);
}
for (int i = 3; i >= 0; i--) {
__ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x19, 12, PostIndex));
}
__ Ldr(q23, MemOperand(x17, 12 * 16));
__ Ldr(q24, MemOperand(x17, 13 * 16));
__ Ldr(q25, MemOperand(x17, 14 * 16));
__ Ldr(q26, MemOperand(x17, 15 * 16));
__ Ldr(q27, MemOperand(x17, 16 * 16));
__ Ldr(q28, MemOperand(x17, 17 * 16));
// Test D stores with and without post index.
__ Mov(x0, 24);
__ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x19));
__ Add(x19, x19, 24);
__ St3(v0.D(), v1.D(), v2.D(), 0, MemOperand(x19, 24, PostIndex));
__ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x19, x0, PostIndex));
__ Ldr(q29, MemOperand(x17, 18 * 16));
__ Ldr(q30, MemOperand(x17, 19 * 16));
__ Ldr(q31, MemOperand(x17, 20 * 16));
END();
RUN();
CHECK_EQUAL_128(0x0524140423130322, 0x1202211101201000, q3);
CHECK_EQUAL_128(0x1A0A291909281808, 0x2717072616062515, q4);
CHECK_EQUAL_128(0x2F1F0F2E1E0E2D1D, 0x0D2C1C0C2B1B0B2A, q5);
CHECK_EQUAL_128(0x0524140423130322, 0x1202211101201000, q6);
CHECK_EQUAL_128(0x1A0A291909281808, 0x2717072616062515, q7);
CHECK_EQUAL_128(0x2F1F0F2E1E0E2D1D, 0x0D2C1C0C2B1B0B2A, q16);
CHECK_EQUAL_128(0x1415040522231213, 0x0203202110110001, q17);
CHECK_EQUAL_128(0x0A0B282918190809, 0x2627161706072425, q18);
CHECK_EQUAL_128(0x2E2F1E1F0E0F2C2D, 0x1C1D0C0D2A2B1A1B, q19);
CHECK_EQUAL_128(0x1415040522231213, 0x0203202110110001, q20);
CHECK_EQUAL_128(0x0A0B282918190809, 0x2627161706072425, q21);
CHECK_EQUAL_128(0x2E2F1E1F0E0F2C2D, 0x1C1D0C0D2A2B1A1B, q22);
CHECK_EQUAL_128(0x0405060720212223, 0x1011121300010203, q23);
CHECK_EQUAL_128(0x18191A1B08090A0B, 0x2425262714151617, q24);
CHECK_EQUAL_128(0x2C2D2E2F1C1D1E1F, 0x0C0D0E0F28292A2B, q25);
CHECK_EQUAL_128(0x0405060720212223, 0x1011121300010203, q26);
CHECK_EQUAL_128(0x18191A1B08090A0B, 0x2425262714151617, q27);
CHECK_EQUAL_128(0x2C2D2E2F1C1D1E1F, 0x0C0D0E0F28292A2B, q28);
}
TEST(neon_st4_lane) {
INIT_V8();
SETUP();
// Struct size * element sizes * vector size.
uint8_t dst[4 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x19, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090A0B0C0D0E0F);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191A1B1C1D1E1F);
__ Movi(v2.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F);
__ Movi(v3.V2D(), 0x2021222324252627, 0x28292A2B2C2D2E2F);
// Test B stores without post index.
for (int i = 15; i >= 0; i--) {
__ St4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x19));
__ Add(x19, x19, 4);
}
__ Ldr(q4, MemOperand(x17, 0 * 16));
__ Ldr(q5, MemOperand(x17, 1 * 16));
__ Ldr(q6, MemOperand(x17, 2 * 16));
__ Ldr(q7, MemOperand(x17, 3 * 16));
// Test H stores with post index.
__ Mov(x0, 8);
for (int i = 7; i >= 0; i--) {
__ St4(v0.H(), v1.H(), v2.H(), v3.H(), i, MemOperand(x19, x0, PostIndex));
}
__ Ldr(q16, MemOperand(x17, 4 * 16));
__ Ldr(q17, MemOperand(x17, 5 * 16));
__ Ldr(q18, MemOperand(x17, 6 * 16));
__ Ldr(q19, MemOperand(x17, 7 * 16));
// Test S stores without post index.
for (int i = 3; i >= 0; i--) {
__ St4(v0.S(), v1.S(), v2.S(), v3.S(), i, MemOperand(x19));
__ Add(x19, x19, 16);
}
__ Ldr(q20, MemOperand(x17, 8 * 16));
__ Ldr(q21, MemOperand(x17, 9 * 16));
__ Ldr(q22, MemOperand(x17, 10 * 16));
__ Ldr(q23, MemOperand(x17, 11 * 16));
// Test D stores with post index.
__ Mov(x0, 32);
__ St4(v0.D(), v1.D(), v2.D(), v3.D(), 0, MemOperand(x19, 32, PostIndex));
__ St4(v0.D(), v1.D(), v2.D(), v3.D(), 1, MemOperand(x19, x0, PostIndex));
__ Ldr(q24, MemOperand(x17, 12 * 16));
__ Ldr(q25, MemOperand(x17, 13 * 16));
__ Ldr(q26, MemOperand(x17, 14 * 16));
__ Ldr(q27, MemOperand(x17, 15 * 16));
END();
RUN();
CHECK_EQUAL_128(0x2323130322221202, 0x2121110120201000, q4);
CHECK_EQUAL_128(0x2727170726261606, 0x2525150524241404, q5);
CHECK_EQUAL_128(0x2B2B1B0B2A2A1A0A, 0x2929190928281808, q6);
CHECK_EQUAL_128(0x2F2F1F0F2E2E1E0E, 0x2D2D1D0D2C2C1C0C, q7);
CHECK_EQUAL_128(0x2223222312130203, 0x2021202110110001, q16);
CHECK_EQUAL_128(0x2627262716170607, 0x2425242514150405, q17);
CHECK_EQUAL_128(0x2A2B2A2B1A1B0A0B, 0x2829282918190809, q18);
CHECK_EQUAL_128(0x2E2F2E2F1E1F0E0F, 0x2C2D2C2D1C1D0C0D, q19);
CHECK_EQUAL_128(0x2021222320212223, 0x1011121300010203, q20);
CHECK_EQUAL_128(0x2425262724252627, 0x1415161704050607, q21);
CHECK_EQUAL_128(0x28292A2B28292A2B, 0x18191A1B08090A0B, q22);
CHECK_EQUAL_128(0x2C2D2E2F2C2D2E2F, 0x1C1D1E1F0C0D0E0F, q23);
CHECK_EQUAL_128(0x18191A1B1C1D1E1F, 0x08090A0B0C0D0E0F, q24);
CHECK_EQUAL_128(0x28292A2B2C2D2E2F, 0x28292A2B2C2D2E2F, q25);
CHECK_EQUAL_128(0x1011121314151617, 0x0001020304050607, q26);
CHECK_EQUAL_128(0x2021222324252627, 0x2021222324252627, q27);
}
TEST(neon_ld1_lane_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
// Test loading whole register by element.
for (int i = 15; i >= 0; i--) {
__ Ld1(v0.B(), i, MemOperand(x17, 1, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld1(v1.H(), i, MemOperand(x28, 2, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld1(v2.S(), i, MemOperand(x19, 4, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld1(v3.D(), i, MemOperand(x20, 8, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Ldr(q4, MemOperand(x21));
__ Ld1(v4.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q5, MemOperand(x22));
__ Ld1(v5.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q6, MemOperand(x23));
__ Ld1(v6.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q7, MemOperand(x24));
__ Ld1(v7.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q0);
CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q1);
CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q2);
CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q3);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050003020100, q4);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0100050403020100, q5);
CHECK_EQUAL_128(0x0F0E0D0C03020100, 0x0706050403020100, q6);
CHECK_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7);
CHECK_EQUAL_64(src_base + 16, x17);
CHECK_EQUAL_64(src_base + 16, x28);
CHECK_EQUAL_64(src_base + 16, x19);
CHECK_EQUAL_64(src_base + 16, x20);
CHECK_EQUAL_64(src_base + 1, x21);
CHECK_EQUAL_64(src_base + 2, x22);
CHECK_EQUAL_64(src_base + 3, x23);
CHECK_EQUAL_64(src_base + 4, x24);
}
TEST(neon_st1_lane_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, -16);
__ Ldr(q0, MemOperand(x17));
for (int i = 15; i >= 0; i--) {
__ St1(v0.B(), i, MemOperand(x17, 1, PostIndex));
}
__ Ldr(q1, MemOperand(x17, x19));
for (int i = 7; i >= 0; i--) {
__ St1(v0.H(), i, MemOperand(x17, 2, PostIndex));
}
__ Ldr(q2, MemOperand(x17, x19));
for (int i = 3; i >= 0; i--) {
__ St1(v0.S(), i, MemOperand(x17, 4, PostIndex));
}
__ Ldr(q3, MemOperand(x17, x19));
for (int i = 1; i >= 0; i--) {
__ St1(v0.D(), i, MemOperand(x17, 8, PostIndex));
}
__ Ldr(q4, MemOperand(x17, x19));
END();
RUN();
CHECK_EQUAL_128(0x0001020304050607, 0x08090A0B0C0D0E0F, q1);
CHECK_EQUAL_128(0x0100030205040706, 0x09080B0A0D0C0F0E, q2);
CHECK_EQUAL_128(0x0302010007060504, 0x0B0A09080F0E0D0C, q3);
CHECK_EQUAL_128(0x0706050403020100, 0x0F0E0D0C0B0A0908, q4);
}
TEST(neon_ld1_alllanes) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Ld1r(v0.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v1.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v2.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v3.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v4.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v5.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v6.V1D(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v7.V2D(), MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1);
CHECK_EQUAL_128(0, 0x0403040304030403, q2);
CHECK_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3);
CHECK_EQUAL_128(0, 0x0807060508070605, q4);
CHECK_EQUAL_128(0x0908070609080706, 0x0908070609080706, q5);
CHECK_EQUAL_128(0, 0x0E0D0C0B0A090807, q6);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0F0E0D0C0B0A0908, q7);
}
TEST(neon_ld1_alllanes_postindex) {
INIT_V8();
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x19, 1);
__ Ld1r(v0.V8B(), MemOperand(x17, 1, PostIndex));
__ Ld1r(v1.V16B(), MemOperand(x17, x19, PostIndex));
__ Ld1r(v2.V4H(), MemOperand(x17, x19, PostIndex));
__ Ld1r(v3.V8H(), MemOperand(x17, 2, PostIndex));
__ Ld1r(v4.V2S(), MemOperand(x17, x19, PostIndex));
__ Ld1r(v5.V4S(), MemOperand(x17, 4, PostIndex));
__ Ld1r(v6.V2D(), MemOperand(x17, 8, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0, 0x0101010101010101, q0);
CHECK_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1);
CHECK_EQUAL_128(0, 0x0403040304030403, q2);
CHECK_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3);
CHECK_EQUAL_128(0, 0x0908070609080706, q4);
CHECK_EQUAL_128(0x0A0908070A090807, 0x0A0908070A090807, q5);
CHECK_EQUAL_128(0x1211100F0E0D0C0B, 0x1211100F0E0D0C0B, q6);
CHECK_EQUAL_64(src_base + 19, x17);
}
TEST(neon_st1_d) {
INIT_V8();
SETUP();
uint8_t src[14 * kDRegSize];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ Mov(x17, src_base);
__ St1(v0.V8B(), MemOperand(x17));
__ Ldr(d16, MemOperand(x17, 8, PostIndex));
__ St1(v0.V8B(), v1.V8B(), MemOperand(x17));
__ Ldr(q17, MemOperand(x17, 16, PostIndex));
__ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17));
__ Ldr(d18, MemOperand(x17, 8, PostIndex));
__ Ldr(d19, MemOperand(x17, 8, PostIndex));
__ Ldr(d20, MemOperand(x17, 8, PostIndex));
__ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x17));
__ Ldr(q21, MemOperand(x17, 16, PostIndex));
__ Ldr(q22, MemOperand(x17, 16, PostIndex));
__ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(), MemOperand(x17));
__ Ldr(q23, MemOperand(x17, 16, PostIndex));
__ Ldr(q24, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q0);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q1);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q2);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q3);
CHECK_EQUAL_128(0, 0x0706050403020100, q16);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17);
CHECK_EQUAL_128(0, 0x0706050403020100, q18);
CHECK_EQUAL_128(0, 0x1716151413121110, q19);
CHECK_EQUAL_128(0, 0x2726252423222120, q20);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21);
CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23);
CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24);
}
TEST(neon_st1_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 14 * kDRegSize];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, -8);
__ Mov(x19, -16);
__ Mov(x20, -24);
__ Mov(x21, -32);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ Mov(x17, src_base);
__ St1(v0.V8B(), MemOperand(x17, 8, PostIndex));
__ Ldr(d16, MemOperand(x17, x28));
__ St1(v0.V8B(), v1.V8B(), MemOperand(x17, 16, PostIndex));
__ Ldr(q17, MemOperand(x17, x19));
__ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17, 24, PostIndex));
__ Ldr(d18, MemOperand(x17, x20));
__ Ldr(d19, MemOperand(x17, x19));
__ Ldr(d20, MemOperand(x17, x28));
__ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(),
MemOperand(x17, 32, PostIndex));
__ Ldr(q21, MemOperand(x17, x21));
__ Ldr(q22, MemOperand(x17, x19));
__ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(),
MemOperand(x17, 32, PostIndex));
__ Ldr(q23, MemOperand(x17, x21));
__ Ldr(q24, MemOperand(x17, x19));
END();
RUN();
CHECK_EQUAL_128(0, 0x0706050403020100, q16);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17);
CHECK_EQUAL_128(0, 0x0706050403020100, q18);
CHECK_EQUAL_128(0, 0x1716151413121110, q19);
CHECK_EQUAL_128(0, 0x2726252423222120, q20);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21);
CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23);
CHECK_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24);
}
TEST(neon_st1_q) {
INIT_V8();
SETUP();
uint8_t src[64 + 160];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St1(v0.V16B(), MemOperand(x17));
__ Ldr(q16, MemOperand(x17, 16, PostIndex));
__ St1(v0.V8H(), v1.V8H(), MemOperand(x17));
__ Ldr(q17, MemOperand(x17, 16, PostIndex));
__ Ldr(q18, MemOperand(x17, 16, PostIndex));
__ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17));
__ Ldr(q19, MemOperand(x17, 16, PostIndex));
__ Ldr(q20, MemOperand(x17, 16, PostIndex));
__ Ldr(q21, MemOperand(x17, 16, PostIndex));
__ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x17));
__ Ldr(q22, MemOperand(x17, 16, PostIndex));
__ Ldr(q23, MemOperand(x17, 16, PostIndex));
__ Ldr(q24, MemOperand(x17, 16, PostIndex));
__ Ldr(q25, MemOperand(x17));
END();
RUN();
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q16);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q17);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q18);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q19);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q20);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q21);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q22);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q23);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q24);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q25);
}
TEST(neon_st1_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[64 + 160];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, -16);
__ Mov(x19, -32);
__ Mov(x20, -48);
__ Mov(x21, -64);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St1(v0.V16B(), MemOperand(x17, 16, PostIndex));
__ Ldr(q16, MemOperand(x17, x28));
__ St1(v0.V8H(), v1.V8H(), MemOperand(x17, 32, PostIndex));
__ Ldr(q17, MemOperand(x17, x19));
__ Ldr(q18, MemOperand(x17, x28));
__ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17, 48, PostIndex));
__ Ldr(q19, MemOperand(x17, x20));
__ Ldr(q20, MemOperand(x17, x19));
__ Ldr(q21, MemOperand(x17, x28));
__ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(),
MemOperand(x17, 64, PostIndex));
__ Ldr(q22, MemOperand(x17, x21));
__ Ldr(q23, MemOperand(x17, x20));
__ Ldr(q24, MemOperand(x17, x19));
__ Ldr(q25, MemOperand(x17, x28));
END();
RUN();
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q16);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q17);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q18);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q19);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q20);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q21);
CHECK_EQUAL_128(0x0F0E0D0C0B0A0908, 0x0706050403020100, q22);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x1716151413121110, q23);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726252423222120, q24);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323130, q25);
}
TEST(neon_st2_d) {
INIT_V8();
SETUP();
uint8_t src[4 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V8B(), v1.V8B(), MemOperand(x19));
__ Add(x19, x19, 22);
__ St2(v0.V4H(), v1.V4H(), MemOperand(x19));
__ Add(x19, x19, 11);
__ St2(v0.V2S(), v1.V2S(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1707160615051404, 0x1303120211011000, q0);
CHECK_EQUAL_128(0x0504131203021110, 0x0100151413121110, q1);
CHECK_EQUAL_128(0x1615140706050413, 0x1211100302010014, q2);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736353433323117, q3);
}
TEST(neon_st2_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[4 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V8B(), v1.V8B(), MemOperand(x19, x22, PostIndex));
__ St2(v0.V4H(), v1.V4H(), MemOperand(x19, 16, PostIndex));
__ St2(v0.V2S(), v1.V2S(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0);
CHECK_EQUAL_128(0x0605041312111003, 0x0201001716070615, q1);
CHECK_EQUAL_128(0x2F2E2D2C2B2A2928, 0x2726251716151407, q2);
}
TEST(neon_st2_q) {
INIT_V8();
SETUP();
uint8_t src[5 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V16B(), v1.V16B(), MemOperand(x19));
__ Add(x19, x19, 8);
__ St2(v0.V8H(), v1.V8H(), MemOperand(x19));
__ Add(x19, x19, 22);
__ St2(v0.V4S(), v1.V4S(), MemOperand(x19));
__ Add(x19, x19, 2);
__ St2(v0.V2D(), v1.V2D(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1312030211100100, 0x1303120211011000, q0);
CHECK_EQUAL_128(0x01000B0A19180908, 0x1716070615140504, q1);
CHECK_EQUAL_128(0x1716151413121110, 0x0706050403020100, q2);
CHECK_EQUAL_128(0x1F1E1D1C1B1A1918, 0x0F0E0D0C0B0A0908, q3);
}
TEST(neon_st2_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[5 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V16B(), v1.V16B(), MemOperand(x19, x22, PostIndex));
__ St2(v0.V8H(), v1.V8H(), MemOperand(x19, 32, PostIndex));
__ St2(v0.V4S(), v1.V4S(), MemOperand(x19, x22, PostIndex));
__ St2(v0.V2D(), v1.V2D(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0);
CHECK_EQUAL_128(0x1C0D0C1B1A0B0A19, 0x1809081716070615, q1);
CHECK_EQUAL_128(0x0504030201001003, 0x0201001F1E0F0E1D, q2);
CHECK_EQUAL_128(0x0D0C0B0A09081716, 0x1514131211100706, q3);
CHECK_EQUAL_128(0x4F4E4D4C4B4A1F1E, 0x1D1C1B1A19180F0E, q4);
}
TEST(neon_st3_d) {
INIT_V8();
SETUP();
uint8_t src[3 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x19));
__ Add(x19, x19, 3);
__ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x19));
__ Add(x19, x19, 2);
__ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x2221201312111003, 0x0201000100201000, q0);
CHECK_EQUAL_128(0x1F1E1D2726252417, 0x1615140706050423, q1);
}
TEST(neon_st3_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[4 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x19, x22, PostIndex));
__ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x19, 24, PostIndex));
__ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
CHECK_EQUAL_128(0x0201002726171607, 0x0625241514050423, q1);
CHECK_EQUAL_128(0x1615140706050423, 0x2221201312111003, q2);
CHECK_EQUAL_128(0x3F3E3D3C3B3A3938, 0x3736352726252417, q3);
}
TEST(neon_st3_q) {
INIT_V8();
SETUP();
uint8_t src[6 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x19));
__ Add(x19, x19, 5);
__ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x19));
__ Add(x19, x19, 12);
__ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x19));
__ Add(x19, x19, 22);
__ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x19));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
CHECK_EQUAL_128(0x0605042322212013, 0x1211100302010023, q1);
CHECK_EQUAL_128(0x1007060504030201, 0x0025241716151407, q2);
CHECK_EQUAL_128(0x0827262524232221, 0x2017161514131211, q3);
CHECK_EQUAL_128(0x281F1E1D1C1B1A19, 0x180F0E0D0C0B0A09, q4);
CHECK_EQUAL_128(0x5F5E5D5C5B5A5958, 0x572F2E2D2C2B2A29, q5);
}
TEST(neon_st3_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[7 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x28, x22, PostIndex));
__ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x28, 48, PostIndex));
__ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x28, x22, PostIndex));
__ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x28));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
CHECK_EQUAL_128(0x1809082726171607, 0x0625241514050423, q1);
CHECK_EQUAL_128(0x0E2D2C1D1C0D0C2B, 0x2A1B1A0B0A292819, q2);
CHECK_EQUAL_128(0x0504030201001003, 0x0201002F2E1F1E0F, q3);
CHECK_EQUAL_128(0x2524232221201716, 0x1514131211100706, q4);
CHECK_EQUAL_128(0x1D1C1B1A19180F0E, 0x0D0C0B0A09082726, q5);
CHECK_EQUAL_128(0x6F6E6D6C6B6A2F2E, 0x2D2C2B2A29281F1E, q6);
}
TEST(neon_st4_d) {
INIT_V8();
SETUP();
uint8_t src[4 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x28));
__ Add(x28, x28, 12);
__ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(), MemOperand(x28));
__ Add(x28, x28, 15);
__ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x28));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1110010032221202, 0X3121110130201000, q0);
CHECK_EQUAL_128(0x1003020100322322, 0X1312030231302120, q1);
CHECK_EQUAL_128(0x1407060504333231, 0X3023222120131211, q2);
CHECK_EQUAL_128(0x3F3E3D3C3B373635, 0x3427262524171615, q3);
}
TEST(neon_st4_d_postindex) {
INIT_V8();
SETUP();
uint8_t src[5 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(),
MemOperand(x28, x22, PostIndex));
__ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(),
MemOperand(x28, 32, PostIndex));
__ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x28));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
CHECK_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1);
CHECK_EQUAL_128(0x2221201312111003, 0x0201003736272617, q2);
CHECK_EQUAL_128(0x2625241716151407, 0x0605043332313023, q3);
CHECK_EQUAL_128(0x4F4E4D4C4B4A4948, 0x4746453736353427, q4);
}
TEST(neon_st4_q) {
INIT_V8();
SETUP();
uint8_t src[7 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), MemOperand(x28));
__ Add(x28, x28, 5);
__ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(), MemOperand(x28));
__ Add(x28, x28, 12);
__ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(), MemOperand(x28));
__ Add(x28, x28, 22);
__ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x28));
__ Add(x28, x28, 10);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
CHECK_EQUAL_128(0x3231302322212013, 0x1211100302010013, q1);
CHECK_EQUAL_128(0x1007060504030201, 0x0015140706050433, q2);
CHECK_EQUAL_128(0x3027262524232221, 0x2017161514131211, q3);
CHECK_EQUAL_128(0x180F0E0D0C0B0A09, 0x0837363534333231, q4);
CHECK_EQUAL_128(0x382F2E2D2C2B2A29, 0x281F1E1D1C1B1A19, q5);
CHECK_EQUAL_128(0x6F6E6D6C6B6A6968, 0x673F3E3D3C3B3A39, q6);
}
TEST(neon_st4_q_postindex) {
INIT_V8();
SETUP();
uint8_t src[9 * 16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x28, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(),
MemOperand(x28, x22, PostIndex));
__ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(),
MemOperand(x28, 64, PostIndex));
__ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(),
MemOperand(x28, x22, PostIndex));
__ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x28));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
__ Ldr(q7, MemOperand(x19, 16, PostIndex));
__ Ldr(q8, MemOperand(x19, 16, PostIndex));
END();
RUN();
CHECK_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
CHECK_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1);
CHECK_EQUAL_128(0x1A0B0A3938292819, 0x1809083736272617, q2);
CHECK_EQUAL_128(0x1E0F0E3D3C2D2C1D, 0x1C0D0C3B3A2B2A1B, q3);
CHECK_EQUAL_128(0x0504030201001003, 0x0201003F3E2F2E1F, q4);
CHECK_EQUAL_128(0x2524232221201716, 0x1514131211100706, q5);
CHECK_EQUAL_128(0x0D0C0B0A09083736, 0x3534333231302726, q6);
CHECK_EQUAL_128(0x2D2C2B2A29281F1E, 0x1D1C1B1A19180F0E, q7);
CHECK_EQUAL_128(0x8F8E8D8C8B8A3F3E, 0x3D3C3B3A39382F2E, q8);
}
TEST(neon_destructive_minmaxp) {
INIT_V8();
SETUP();
START();
__ Movi(v0.V2D(), 0, 0x2222222233333333);
__ Movi(v1.V2D(), 0, 0x0000000011111111);
__ Sminp(v16.V2S(), v0.V2S(), v1.V2S());
__ Mov(v17, v0);
__ Sminp(v17.V2S(), v17.V2S(), v1.V2S());
__ Mov(v18, v1);
__ Sminp(v18.V2S(), v0.V2S(), v18.V2S());
__ Mov(v19, v0);
__ Sminp(v19.V2S(), v19.V2S(), v19.V2S());
__ Smaxp(v20.V2S(), v0.V2S(), v1.V2S());
__ Mov(v21, v0);
__ Smaxp(v21.V2S(), v21.V2S(), v1.V2S());
__ Mov(v22, v1);
__ Smaxp(v22.V2S(), v0.V2S(), v22.V2S());
__ Mov(v23, v0);
__ Smaxp(v23.V2S(), v23.V2S(), v23.V2S());
__ Uminp(v24.V2S(), v0.V2S(), v1.V2S());
__ Mov(v25, v0);
__ Uminp(v25.V2S(), v25.V2S(), v1.V2S());
__ Mov(v26, v1);
__ Uminp(v26.V2S(), v0.V2S(), v26.V2S());
__ Mov(v27, v0);
__ Uminp(v27.V2S(), v27.V2S(), v27.V2S());
__ Umaxp(v28.V2S(), v0.V2S(), v1.V2S());
__ Mov(v29, v0);
__ Umaxp(v29.V2S(), v29.V2S(), v1.V2S());
__ Mov(v30, v1);
__ Umaxp(v30.V2S(), v0.V2S(), v30.V2S());
__ Mov(v31, v0);
__ Umaxp(v31.V2S(), v31.V2S(), v31.V2S());
END();
RUN();
CHECK_EQUAL_128(0, 0x0000000022222222, q16);
CHECK_EQUAL_128(0, 0x0000000022222222, q17);
CHECK_EQUAL_128(0, 0x0000000022222222, q18);
CHECK_EQUAL_128(0, 0x2222222222222222, q19);
CHECK_EQUAL_128(0, 0x1111111133333333, q20);
CHECK_EQUAL_128(0, 0x1111111133333333, q21);
CHECK_EQUAL_128(0, 0x1111111133333333, q22);
CHECK_EQUAL_128(0, 0x3333333333333333, q23);
CHECK_EQUAL_128(0, 0x0000000022222222, q24);
CHECK_EQUAL_128(0, 0x0000000022222222, q25);
CHECK_EQUAL_128(0, 0x0000000022222222, q26);
CHECK_EQUAL_128(0, 0x2222222222222222, q27);
CHECK_EQUAL_128(0, 0x1111111133333333, q28);
CHECK_EQUAL_128(0, 0x1111111133333333, q29);
CHECK_EQUAL_128(0, 0x1111111133333333, q30);
CHECK_EQUAL_128(0, 0x3333333333333333, q31);
}
TEST(neon_destructive_tbl) {
INIT_V8();
SETUP();
START();
__ Movi(v0.V2D(), 0x0041424334353627, 0x28291A1B1C0D0E0F);
__ Movi(v1.V2D(), 0xAFAEADACABAAA9A8, 0xA7A6A5A4A3A2A1A0);
__ Movi(v2.V2D(), 0xBFBEBDBCBBBAB9B8, 0xB7B6B5B4B3B2B1B0);
__ Movi(v3.V2D(), 0xCFCECDCCCBCAC9C8, 0xC7C6C5C4C3C2C1C0);
__ Movi(v4.V2D(), 0xDFDEDDDCDBDAD9D8, 0xD7D6D5D4D3D2D1D0);
__ Movi(v16.V2D(), 0x5555555555555555, 0x5555555555555555);
__ Tbl(v16.V16B(), v1.V16B(), v0.V16B());
__ Mov(v17, v0);
__ Tbl(v17.V16B(), v1.V16B(), v17.V16B());
__ Mov(v18, v1);
__ Tbl(v18.V16B(), v18.V16B(), v0.V16B());
__ Mov(v19, v0);
__ Tbl(v19.V16B(), v19.V16B(), v19.V16B());
__ Movi(v20.V2D(), 0x5555555555555555, 0x5555555555555555);
__ Tbl(v20.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v0.V16B());
__ Mov(v21, v0);
__ Tbl(v21.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v21.V16B());
__ Mov(v22, v1);
__ Mov(v23, v2);
__ Mov(v24, v3);
__ Mov(v25, v4);
__ Tbl(v22.V16B(), v22.V16B(), v23.V16B(), v24.V16B(), v25.V16B(), v0.V16B());
__ Mov(v26, v0);
__ Mov(v27, v1);
__ Mov(v28, v2);
__ Mov(v29, v3);
__ Tbl(v26.V16B(), v26.V16B(), v27.V16B(), v28.V16B(), v29.V16B(),
v26.V16B());
END();
RUN();
CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q16);
CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q17);
CHECK_EQUAL_128(0xA000000000000000, 0x0000000000ADAEAF, q18);
CHECK_EQUAL_128(0x0F00000000000000, 0x0000000000424100, q19);
CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q20);
CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q21);
CHECK_EQUAL_128(0xA0000000D4D5D6C7, 0xC8C9BABBBCADAEAF, q22);
CHECK_EQUAL_128(0x0F000000C4C5C6B7, 0xB8B9AAABAC424100, q26);
}
TEST(neon_destructive_tbx) {
INIT_V8();
SETUP();
START();
__ Movi(v0.V2D(), 0x0041424334353627, 0x28291A1B1C0D0E0F);
__ Movi(v1.V2D(), 0xAFAEADACABAAA9A8, 0xA7A6A5A4A3A2A1A0);
__ Movi(v2.V2D(), 0xBFBEBDBCBBBAB9B8, 0xB7B6B5B4B3B2B1B0);
__ Movi(v3.V2D(), 0xCFCECDCCCBCAC9C8, 0xC7C6C5C4C3C2C1C0);
__ Movi(v4.V2D(), 0xDFDEDDDCDBDAD9D8, 0xD7D6D5D4D3D2D1D0);
__ Movi(v16.V2D(), 0x5555555555555555, 0x5555555555555555);
__ Tbx(v16.V16B(), v1.V16B(), v0.V16B());
__ Mov(v17, v0);
__ Tbx(v17.V16B(), v1.V16B(), v17.V16B());
__ Mov(v18, v1);
__ Tbx(v18.V16B(), v18.V16B(), v0.V16B());
__ Mov(v19, v0);
__ Tbx(v19.V16B(), v19.V16B(), v19.V16B());
__ Movi(v20.V2D(), 0x5555555555555555, 0x5555555555555555);
__ Tbx(v20.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v0.V16B());
__ Mov(v21, v0);
__ Tbx(v21.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), v4.V16B(), v21.V16B());
__ Mov(v22, v1);
__ Mov(v23, v2);
__ Mov(v24, v3);
__ Mov(v25, v4);
__ Tbx(v22.V16B(), v22.V16B(), v23.V16B(), v24.V16B(), v25.V16B(), v0.V16B());
__ Mov(v26, v0);
__ Mov(v27, v1);
__ Mov(v28, v2);
__ Mov(v29, v3);
__ Tbx(v26.V16B(), v26.V16B(), v27.V16B(), v28.V16B(), v29.V16B(),
v26.V16B());
END();
RUN();
CHECK_EQUAL_128(0xA055555555555555, 0x5555555555ADAEAF, q16);
CHECK_EQUAL_128(0xA041424334353627, 0x28291A1B1CADAEAF, q17);
CHECK_EQUAL_128(0xA0AEADACABAAA9A8, 0xA7A6A5A4A3ADAEAF, q18);
CHECK_EQUAL_128(0x0F41424334353627, 0x28291A1B1C424100, q19);
CHECK_EQUAL_128(0xA0555555D4D5D6C7, 0xC8C9BABBBCADAEAF, q20);
CHECK_EQUAL_128(0xA0414243D4D5D6C7, 0xC8C9BABBBCADAEAF, q21);
CHECK_EQUAL_128(0xA0AEADACD4D5D6C7, 0xC8C9BABBBCADAEAF, q22);
CHECK_EQUAL_128(0x0F414243C4C5C6B7, 0xB8B9AAABAC424100, q26);
}
TEST(neon_destructive_fcvtl) {
INIT_V8();
SETUP();
START();
__ Movi(v0.V2D(), 0x400000003F800000, 0xBF800000C0000000);
__ Fcvtl(v16.V2D(), v0.V2S());
__ Fcvtl2(v17.V2D(), v0.V4S());
__ Mov(v18, v0);
__ Mov(v19, v0);
__ Fcvtl(v18.V2D(), v18.V2S());
__ Fcvtl2(v19.V2D(), v19.V4S());
__ Movi(v1.V2D(), 0x40003C003C004000, 0xC000BC00BC00C000);
__ Fcvtl(v20.V4S(), v1.V4H());
__ Fcvtl2(v21.V4S(), v1.V8H());
__ Mov(v22, v1);
__ Mov(v23, v1);
__ Fcvtl(v22.V4S(), v22.V4H());
__ Fcvtl2(v23.V4S(), v23.V8H());
END();
RUN();
CHECK_EQUAL_128(0xBFF0000000000000, 0xC000000000000000, q16);
CHECK_EQUAL_128(0x4000000000000000, 0x3FF0000000000000, q17);
CHECK_EQUAL_128(0xBFF0000000000000, 0xC000000000000000, q18);
CHECK_EQUAL_128(0x4000000000000000, 0x3FF0000000000000, q19);
CHECK_EQUAL_128(0xC0000000BF800000, 0xBF800000C0000000, q20);
CHECK_EQUAL_128(0x400000003F800000, 0x3F80000040000000, q21);
CHECK_EQUAL_128(0xC0000000BF800000, 0xBF800000C0000000, q22);
CHECK_EQUAL_128(0x400000003F800000, 0x3F80000040000000, q23);
}
TEST(ldp_stp_float) {
INIT_V8();
SETUP();
float src[2] = {1.0, 2.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
CHECK_EQUAL_FP32(1.0, s31);
CHECK_EQUAL_FP32(2.0, s0);
CHECK_EQUAL_FP32(0.0, dst[0]);
CHECK_EQUAL_FP32(2.0, dst[1]);
CHECK_EQUAL_FP32(1.0, dst[2]);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
CHECK_EQUAL_64(dst_base + sizeof(dst[1]), x17);
}
TEST(ldp_stp_double) {
INIT_V8();
SETUP();
double src[2] = {1.0, 2.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
CHECK_EQUAL_FP64(1.0, d31);
CHECK_EQUAL_FP64(2.0, d0);
CHECK_EQUAL_FP64(0.0, dst[0]);
CHECK_EQUAL_FP64(2.0, dst[1]);
CHECK_EQUAL_FP64(1.0, dst[2]);
CHECK_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
CHECK_EQUAL_64(dst_base + sizeof(dst[1]), x17);
}
TEST(ldp_stp_quad) {
SETUP();
uint64_t src[4] = {0x0123456789ABCDEF, 0xAAAAAAAA55555555, 0xFEDCBA9876543210,
0x55555555AAAAAAAA};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(q31, q0, MemOperand(x16, 4 * sizeof(src[0]), PostIndex));
__ Stp(q0, q31, MemOperand(x17, 2 * sizeof(dst[1]), PreIndex));
END();
RUN();
CHECK_EQUAL_128(0xAAAAAAAA55555555, 0x0123456789ABCDEF, q31);
CHECK_EQUAL_128(0x55555555AAAAAAAA, 0xFEDCBA9876543210, q0);
CHECK_EQUAL_64(0, dst[0]);
CHECK_EQUAL_64(0, dst[1]);
CHECK_EQUAL_64(0xFEDCBA9876543210, dst[2]);
CHECK_EQUAL_64(0x55555555AAAAAAAA, dst[3]);
CHECK_EQUAL_64(0x0123456789ABCDEF, dst[4]);
CHECK_EQUAL_64(0xAAAAAAAA55555555, dst[5]);
CHECK_EQUAL_64(src_base + 4 * sizeof(src[0]), x16);
CHECK_EQUAL_64(dst_base + 2 * sizeof(dst[1]), x17);
}
TEST(ldp_stp_offset) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL,
0xFFEEDDCCBBAA9988UL};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x28, src_base + 24);
__ Mov(x19, dst_base + 56);
__ Ldp(w0, w1, MemOperand(x16));
__ Ldp(w2, w3, MemOperand(x16, 4));
__ Ldp(x4, x5, MemOperand(x16, 8));
__ Ldp(w6, w7, MemOperand(x28, -12));
__ Ldp(x8, x9, MemOperand(x28, -16));
__ Stp(w0, w1, MemOperand(x17));
__ Stp(w2, w3, MemOperand(x17, 8));
__ Stp(x4, x5, MemOperand(x17, 16));
__ Stp(w6, w7, MemOperand(x19, -24));
__ Stp(x8, x9, MemOperand(x19, -16));
END();
RUN();
CHECK_EQUAL_64(0x44556677, x0);
CHECK_EQUAL_64(0x00112233, x1);
CHECK_EQUAL_64(0x0011223344556677UL, dst[0]);
CHECK_EQUAL_64(0x00112233, x2);
CHECK_EQUAL_64(0xCCDDEEFF, x3);
CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[1]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[2]);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[3]);
CHECK_EQUAL_64(0x8899AABB, x6);
CHECK_EQUAL_64(0xBBAA9988, x7);
CHECK_EQUAL_64(0xBBAA99888899AABBUL, dst[4]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x8);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[5]);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x9);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[6]);
CHECK_EQUAL_64(src_base, x16);
CHECK_EQUAL_64(dst_base, x17);
CHECK_EQUAL_64(src_base + 24, x28);
CHECK_EQUAL_64(dst_base + 56, x19);
}
TEST(ldp_stp_offset_wide) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899AABBCCDDEEFF,
0xFFEEDDCCBBAA9988};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x20, src_base - base_offset);
__ Mov(x21, dst_base - base_offset);
__ Mov(x28, src_base + base_offset + 24);
__ Mov(x19, dst_base + base_offset + 56);
__ Ldp(w0, w1, MemOperand(x20, base_offset));
__ Ldp(w2, w3, MemOperand(x20, base_offset + 4));
__ Ldp(x4, x5, MemOperand(x20, base_offset + 8));
__ Ldp(w6, w7, MemOperand(x28, -12 - base_offset));
__ Ldp(x8, x9, MemOperand(x28, -16 - base_offset));
__ Stp(w0, w1, MemOperand(x21, base_offset));
__ Stp(w2, w3, MemOperand(x21, base_offset + 8));
__ Stp(x4, x5, MemOperand(x21, base_offset + 16));
__ Stp(w6, w7, MemOperand(x19, -24 - base_offset));
__ Stp(x8, x9, MemOperand(x19, -16 - base_offset));
END();
RUN();
CHECK_EQUAL_64(0x44556677, x0);
CHECK_EQUAL_64(0x00112233, x1);
CHECK_EQUAL_64(0x0011223344556677UL, dst[0]);
CHECK_EQUAL_64(0x00112233, x2);
CHECK_EQUAL_64(0xCCDDEEFF, x3);
CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[1]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[2]);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[3]);
CHECK_EQUAL_64(0x8899AABB, x6);
CHECK_EQUAL_64(0xBBAA9988, x7);
CHECK_EQUAL_64(0xBBAA99888899AABBUL, dst[4]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x8);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[5]);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x9);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[6]);
CHECK_EQUAL_64(src_base - base_offset, x20);
CHECK_EQUAL_64(dst_base - base_offset, x21);
CHECK_EQUAL_64(src_base + base_offset + 24, x28);
CHECK_EQUAL_64(dst_base + base_offset + 56, x19);
}
TEST(ldp_stp_preindex) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL,
0xFFEEDDCCBBAA9988UL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x28, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PreIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PreIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PreIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PreIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PreIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PreIndex));
__ Stp(x7, x6, MemOperand(x28, 8, PreIndex));
__ Mov(x22, x28);
__ Stp(x5, x4, MemOperand(x28, -8, PreIndex));
END();
RUN();
CHECK_EQUAL_64(0x00112233, x0);
CHECK_EQUAL_64(0xCCDDEEFF, x1);
CHECK_EQUAL_64(0x44556677, x2);
CHECK_EQUAL_64(0x00112233, x3);
CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[0]);
CHECK_EQUAL_64(0x0000000000112233UL, dst[1]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5);
CHECK_EQUAL_64(0x0011223344556677UL, x6);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x7);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]);
CHECK_EQUAL_64(0x0011223344556677UL, dst[4]);
CHECK_EQUAL_64(src_base, x16);
CHECK_EQUAL_64(dst_base, x17);
CHECK_EQUAL_64(dst_base + 16, x28);
CHECK_EQUAL_64(src_base + 4, x19);
CHECK_EQUAL_64(dst_base + 4, x20);
CHECK_EQUAL_64(src_base + 8, x21);
CHECK_EQUAL_64(dst_base + 24, x22);
}
TEST(ldp_stp_preindex_wide) {
INIT_V8();
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899AABBCCDDEEFF,
0xFFEEDDCCBBAA9988};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x24, src_base - base_offset);
__ Mov(x25, dst_base + base_offset);
__ Mov(x28, dst_base + base_offset + 16);
__ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PreIndex));
__ Mov(x19, x24);
__ Mov(x24, src_base - base_offset + 4);
__ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PreIndex));
__ Stp(w2, w3, MemOperand(x25, 4 - base_offset, PreIndex));
__ Mov(x20, x25);
__ Mov(x25, dst_base + base_offset + 4);
__ Mov(x24, src_base - base_offset);
__ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PreIndex));
__ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PreIndex));
__ Mov(x21, x24);
__ Mov(x24, src_base - base_offset + 8);
__ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PreIndex));
__ Stp(x7, x6, MemOperand(x28, 8 - base_offset, PreIndex));
__ Mov(x22, x28);
__ Mov(x28, dst_base + base_offset + 16 + 8);
__ Stp(x5, x4, MemOperand(x28, -8 - base_offset, PreIndex));
END();
RUN();
CHECK_EQUAL_64(0x00112233, x0);
CHECK_EQUAL_64(0xCCDDEEFF, x1);
CHECK_EQUAL_64(0x44556677, x2);
CHECK_EQUAL_64(0x00112233, x3);
CHECK_EQUAL_64(0xCCDDEEFF00112233UL, dst[0]);
CHECK_EQUAL_64(0x0000000000112233UL, dst[1]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x4);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x5);
CHECK_EQUAL_64(0x0011223344556677UL, x6);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x7);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]);
CHECK_EQUAL_64(0x0011223344556677UL, dst[4]);
CHECK_EQUAL_64(src_base, x24);
CHECK_EQUAL_64(dst_base, x25);
CHECK_EQUAL_64(dst_base + 16, x28);
CHECK_EQUAL_64(src_base + 4, x19);
CHECK_EQUAL_64(dst_base + 4, x20);
CHECK_EQUAL_64(src_base + 8, x21);
CHECK_EQUAL_64(dst_base + 24, x22);
}
TEST(ldp_stp_postindex) {
INIT_V8();
SETUP();
uint64_t src[4] = {0x0011223344556677UL, 0x8899AABBCCDDEEFFUL,
0xFFEEDDCCBBAA9988UL, 0x7766554433221100UL};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x28, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PostIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PostIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PostIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PostIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PostIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PostIndex));
__ Stp(x7, x6, MemOperand(x28, 8, PostIndex));
__ Mov(x22, x28);
__ Stp(x5, x4, MemOperand(x28, -8, PostIndex));
END();
RUN();
CHECK_EQUAL_64(0x44556677, x0);
CHECK_EQUAL_64(0x00112233, x1);
CHECK_EQUAL_64(0x00112233, x2);
CHECK_EQUAL_64(0xCCDDEEFF, x3);
CHECK_EQUAL_64(0x4455667700112233UL, dst[0]);
CHECK_EQUAL_64(0x0000000000112233UL, dst[1]);
CHECK_EQUAL_64(0x0011223344556677UL, x4);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x5);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x6);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x7);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]);
CHECK_EQUAL_64(0x0011223344556677UL, dst[4]);
CHECK_EQUAL_64(src_base, x16);
CHECK_EQUAL_64(dst_base, x17);
CHECK_EQUAL_64(dst_base + 16, x28);
CHECK_EQUAL_64(src_base + 4, x19);
CHECK_EQUAL_64(dst_base + 4, x20);
CHECK_EQUAL_64(src_base + 8, x21);
CHECK_EQUAL_64(dst_base + 24, x22);
}
TEST(ldp_stp_postindex_wide) {
INIT_V8();
SETUP();
uint64_t src[4] = {0x0011223344556677, 0x8899AABBCCDDEEFF, 0xFFEEDDCCBBAA9988,
0x7766554433221100};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x24, src_base);
__ Mov(x25, dst_base);
__ Mov(x28, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PostIndex));
__ Mov(x19, x24);
__ Sub(x24, x24, base_offset);
__ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PostIndex));
__ Stp(w2, w3, MemOperand(x25, 4 - base_offset, PostIndex));
__ Mov(x20, x25);
__ Sub(x24, x24, base_offset);
__ Add(x25, x25, base_offset);
__ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PostIndex));
__ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PostIndex));
__ Mov(x21, x24);
__ Sub(x24, x24, base_offset);
__ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PostIndex));
__ Stp(x7, x6, MemOperand(x28, 8 - base_offset, PostIndex));
__ Mov(x22, x28);
__ Add(x28, x28, base_offset);
__ Stp(x5, x4, MemOperand(x28, -8 - base_offset, PostIndex));
END();
RUN();
CHECK_EQUAL_64(0x44556677, x0);
CHECK_EQUAL_64(0x00112233, x1);
CHECK_EQUAL_64(0x00112233, x2);
CHECK_EQUAL_64(0xCCDDEEFF, x3);
CHECK_EQUAL_64(0x4455667700112233UL, dst[0]);
CHECK_EQUAL_64(0x0000000000112233UL, dst[1]);
CHECK_EQUAL_64(0x0011223344556677UL, x4);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x5);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, x6);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, x7);
CHECK_EQUAL_64(0xFFEEDDCCBBAA9988UL, dst[2]);
CHECK_EQUAL_64(0x8899AABBCCDDEEFFUL, dst[3]);
CHECK_EQUAL_64(0x0011223344556677UL, dst[4]);
CHECK_EQUAL_64(src_base + base_offset, x24);
CHECK_EQUAL_64(dst_base - base_offset, x25);
CHECK_EQUAL_64(dst_base - base_offset + 16, x28);
CHECK_EQUAL_64(src_base + base_offset + 4, x19);
CHECK_EQUAL_64(dst_base - base_offset + 4, x20);
CHECK_EQUAL_64(src_base + base_offset + 8, x21);
CHECK_EQUAL_64(dst_base - base_offset + 24, x22);
}
TEST(ldp_sign_extend) {
INIT_V8();
SETUP();
uint32_t src[2] = {0x80000000, 0x7FFFFFFF};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldpsw(x0, x1, MemOperand(x24));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFF80000000UL, x0);
CHECK_EQUAL_64(0x000000007FFFFFFFUL, x1);
}
TEST(ldur_stur) {
INIT_V8();
SETUP();
int64_t src[2] = {0x0123456789ABCDEFUL, 0x0123456789ABCDEFUL};
int64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x28, dst_base);
__ Mov(x19, src_base + 16);
__ Mov(x20, dst_base + 32);
__ Mov(x21, dst_base + 40);
__ Ldr(w0, MemOperand(x17, 1));
__ Str(w0, MemOperand(x28, 2));
__ Ldr(x1, MemOperand(x17, 3));
__ Str(x1, MemOperand(x28, 9));
__ Ldr(w2, MemOperand(x19, -9));
__ Str(w2, MemOperand(x20, -5));
__ Ldrb(w3, MemOperand(x19, -1));
__ Strb(w3, MemOperand(x21, -1));
END();
RUN();
CHECK_EQUAL_64(0x6789ABCD, x0);
CHECK_EQUAL_64(0x6789ABCD0000L, dst[0]);
CHECK_EQUAL_64(0xABCDEF0123456789L, x1);
CHECK_EQUAL_64(0xCDEF012345678900L, dst[1]);
CHECK_EQUAL_64(0x000000AB, dst[2]);
CHECK_EQUAL_64(0xABCDEF01, x2);
CHECK_EQUAL_64(0x00ABCDEF01000000L, dst[3]);
CHECK_EQUAL_64(0x00000001, x3);
CHECK_EQUAL_64(0x0100000000000000L, dst[4]);
CHECK_EQUAL_64(src_base, x17);
CHECK_EQUAL_64(dst_base, x28);
CHECK_EQUAL_64(src_base + 16, x19);
CHECK_EQUAL_64(dst_base + 32, x20);
}
TEST(ldr_pcrel_large_offset) {
INIT_V8();
SETUP_SIZE(1 * MB);
START();
__ Ldr(x1, isolate->factory()->undefined_value());
{
v8::internal::PatchingAssembler::BlockPoolsScope scope(&masm);
int start = __ pc_offset();
while (__ pc_offset() - start < 600 * KB) {
__ Nop();
}
}
__ Ldr(x2, isolate->factory()->undefined_value());
END();
RUN();
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x1);
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x2);
}
TEST(ldr_literal) {
INIT_V8();
SETUP();
START();
__ Ldr(x2, isolate->factory()->undefined_value());
END();
RUN();
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x2);
}
#ifdef DEBUG
// These tests rely on functions available in debug mode.
enum LiteralPoolEmitOutcome { EmitExpected, NoEmitExpected };
enum LiteralPoolEmissionAlignment { EmitAtUnaligned, EmitAtAligned };
static void LdrLiteralRangeHelper(
size_t range, LiteralPoolEmitOutcome outcome,
LiteralPoolEmissionAlignment unaligned_emission) {
SETUP_SIZE(static_cast<int>(range + 1024));
const size_t first_pool_entries = 2;
const size_t first_pool_size_bytes = first_pool_entries * kInt64Size;
START();
// Force a pool dump so the pool starts off empty.
__ ForceConstantPoolEmissionWithJump();
CHECK_CONSTANT_POOL_SIZE(0);
// Emit prepadding to influence alignment of the pool.
bool currently_aligned = IsAligned(__ pc_offset(), kInt64Size);
if ((unaligned_emission == EmitAtUnaligned && currently_aligned) ||
(unaligned_emission == EmitAtAligned && !currently_aligned)) {
__ Nop();
}
int initial_pc_offset = __ pc_offset();
__ Ldr(x0, isolate->factory()->undefined_value());
__ Ldr(x1, isolate->factory()->the_hole_value());
CHECK_CONSTANT_POOL_SIZE(first_pool_size_bytes);
size_t expected_pool_size = 0;
auto PoolSizeAt = [&](int pc_offset) {
// To determine padding, consider the size of the prologue of the pool,
// and the jump around the pool, which we always need.
size_t prologue_size = 2 * kInstrSize + kInstrSize;
size_t pc = pc_offset + prologue_size;
const size_t padding = IsAligned(pc, kInt64Size) ? 0 : kInt32Size;
CHECK_EQ(padding == 0, unaligned_emission == EmitAtAligned);
return prologue_size + first_pool_size_bytes + padding;
};
int pc_offset_before_emission = -1;
bool pool_was_emitted = false;
while (__ pc_offset() - initial_pc_offset < static_cast<intptr_t>(range)) {
pc_offset_before_emission = __ pc_offset() + kInstrSize;
__ Nop();
if (__ GetConstantPoolEntriesSizeForTesting() == 0) {
pool_was_emitted = true;
break;
}
}
if (outcome == EmitExpected) {
if (!pool_was_emitted) {
FATAL(
"Pool was not emitted up to pc_offset %d which corresponds to a "
"distance to the first constant of %d bytes",
__ pc_offset(), __ pc_offset() - initial_pc_offset);
}
// Check that the size of the emitted constant pool is as expected.
expected_pool_size = PoolSizeAt(pc_offset_before_emission);
CHECK_EQ(pc_offset_before_emission + expected_pool_size, __ pc_offset());
} else {
CHECK_EQ(outcome, NoEmitExpected);
if (pool_was_emitted) {
FATAL("Pool was unexpectedly emitted at pc_offset %d ",
pc_offset_before_emission);
}
CHECK_CONSTANT_POOL_SIZE(first_pool_size_bytes);
CHECK_EQ(pc_offset_before_emission, __ pc_offset());
}
// Force a pool flush to check that a second pool functions correctly.
__ ForceConstantPoolEmissionWithJump();
CHECK_CONSTANT_POOL_SIZE(0);
// These loads should be after the pool (and will require a new one).
const int second_pool_entries = 2;
__ Ldr(x4, isolate->factory()->true_value());
__ Ldr(x5, isolate->factory()->false_value());
CHECK_CONSTANT_POOL_SIZE(second_pool_entries * kInt64Size);
END();
if (outcome == EmitExpected) {
Address pool_start = code->InstructionStart() + pc_offset_before_emission;
Instruction* branch = reinterpret_cast<Instruction*>(pool_start);
CHECK(branch->IsImmBranch());
CHECK_EQ(expected_pool_size, branch->ImmPCOffset());
Instruction* marker =
reinterpret_cast<Instruction*>(pool_start + kInstrSize);
CHECK(marker->IsLdrLiteralX());
size_t pool_data_start_offset = pc_offset_before_emission + kInstrSize;
size_t padding =
IsAligned(pool_data_start_offset, kInt64Size) ? 0 : kInt32Size;
size_t marker_size = kInstrSize;
CHECK_EQ((first_pool_size_bytes + marker_size + padding) / kInt32Size,
marker->ImmLLiteral());
}
RUN();
// Check that the literals loaded correctly.
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->undefined_value(), x0);
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->the_hole_value(), x1);
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->true_value(), x4);
CHECK_FULL_HEAP_OBJECT_IN_REGISTER(isolate->factory()->false_value(), x5);
}
TEST(ldr_literal_range_max_dist_emission_1) {
INIT_V8();
LdrLiteralRangeHelper(
MacroAssembler::GetApproxMaxDistToConstPoolForTesting() +
MacroAssembler::GetCheckConstPoolIntervalForTesting(),
EmitExpected, EmitAtAligned);
}
TEST(ldr_literal_range_max_dist_emission_2) {
INIT_V8();
LdrLiteralRangeHelper(
MacroAssembler::GetApproxMaxDistToConstPoolForTesting() +
MacroAssembler::GetCheckConstPoolIntervalForTesting(),
EmitExpected, EmitAtUnaligned);
}
TEST(ldr_literal_range_max_dist_no_emission_1) {
INIT_V8();
LdrLiteralRangeHelper(
MacroAssembler::GetApproxMaxDistToConstPoolForTesting() -
MacroAssembler::GetCheckConstPoolIntervalForTesting(),
NoEmitExpected, EmitAtUnaligned);
}
TEST(ldr_literal_range_max_dist_no_emission_2) {
INIT_V8();
LdrLiteralRangeHelper(
MacroAssembler::GetApproxMaxDistToConstPoolForTesting() -
MacroAssembler::GetCheckConstPoolIntervalForTesting(),
NoEmitExpected, EmitAtAligned);
}
#endif
static const PrefetchOperation kPrfmOperations[] = {
PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
PLIL1KEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM,
PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM};
TEST(prfm_regoffset_assem) {
INIT_V8();
SETUP();
START();
// The address used in prfm doesn't have to be valid.
__ Mov(x0, 0x0123456789abcdef);
CPURegList inputs(CPURegister::kRegister, kXRegSizeInBits, 10, 18);
__ Mov(x10, 0);
__ Mov(x11, 1);
__ Mov(x12, 8);
__ Mov(x13, 255);
__ Mov(x14, -0);
__ Mov(x15, -1);
__ Mov(x16, -8);
__ Mov(x17, -255);
__ Mov(x18, 0xfedcba9876543210);
for (int op = 0; op < (1 << ImmPrefetchOperation_width); op++) {
// Unallocated prefetch operations are ignored, so test all of them.
// We have to use the Assembler directly for this.
CPURegList loop = inputs;
while (!loop.IsEmpty()) {
__ prfm(op, MemOperand(x0, Register::Create(loop.PopLowestIndex().code(),
kXRegSizeInBits)));
}
}
for (PrefetchOperation op : kPrfmOperations) {
// Also test named operations.
CPURegList loop = inputs;
while (!loop.IsEmpty()) {
Register input =
Register::Create(loop.PopLowestIndex().code(), kXRegSizeInBits);
__ prfm(op, MemOperand(x0, input, UXTW));
__ prfm(op, MemOperand(x0, input, UXTW, 3));
__ prfm(op, MemOperand(x0, input, LSL));
__ prfm(op, MemOperand(x0, input, LSL, 3));
__ prfm(op, MemOperand(x0, input, SXTW));
__ prfm(op, MemOperand(x0, input, SXTW, 3));
__ prfm(op, MemOperand(x0, input, SXTX));
__ prfm(op, MemOperand(x0, input, SXTX, 3));
}
}
END();
RUN();
}
TEST(add_sub_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1111);
__ Mov(x2, 0xFFFFFFFFFFFFFFFFL);
__ Mov(x3, 0x8000000000000000L);
__ Add(x10, x0, Operand(0x123));
__ Add(x11, x1, Operand(0x122000));
__ Add(x12, x0, Operand(0xABC << 12));
__ Add(x13, x2, Operand(1));
__ Add(w14, w0, Operand(0x123));
__ Add(w15, w1, Operand(0x122000));
__ Add(w16, w0, Operand(0xABC << 12));
__ Add(w17, w2, Operand(1));
__ Sub(x20, x0, Operand(0x1));
__ Sub(x21, x1, Operand(0x111));
__ Sub(x22, x1, Operand(0x1 << 12));
__ Sub(x23, x3, Operand(1));
__ Sub(w24, w0, Operand(0x1));
__ Sub(w25, w1, Operand(0x111));
__ Sub(w26, w1, Operand(0x1 << 12));
__ Sub(w27, w3, Operand(1));
END();
RUN();
CHECK_EQUAL_64(0x123, x10);
CHECK_EQUAL_64(0x123111, x11);
CHECK_EQUAL_64(0xABC000, x12);
CHECK_EQUAL_64(0x0, x13);
CHECK_EQUAL_32(0x123, w14);
CHECK_EQUAL_32(0x123111, w15);
CHECK_EQUAL_32(0xABC000, w16);
CHECK_EQUAL_32(0x0, w17);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x20);
CHECK_EQUAL_64(0x1000, x21);
CHECK_EQUAL_64(0x111, x22);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFL, x23);
CHECK_EQUAL_32(0xFFFFFFFF, w24);
CHECK_EQUAL_32(0x1000, w25);
CHECK_EQUAL_32(0x111, w26);
CHECK_EQUAL_32(0xFFFFFFFF, w27);
}
TEST(add_sub_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1);
__ Add(x10, x0, Operand(0x1234567890ABCDEFUL));
__ Add(x11, x1, Operand(0xFFFFFFFF));
__ Add(w12, w0, Operand(0x12345678));
__ Add(w13, w1, Operand(0xFFFFFFFF));
__ Add(w28, w0, Operand(kWMinInt));
__ Sub(w19, w0, Operand(kWMinInt));
__ Sub(x20, x0, Operand(0x1234567890ABCDEFUL));
__ Sub(w21, w0, Operand(0x12345678));
END();
RUN();
CHECK_EQUAL_64(0x1234567890ABCDEFUL, x10);
CHECK_EQUAL_64(0x100000000UL, x11);
CHECK_EQUAL_32(0x12345678, w12);
CHECK_EQUAL_64(0x0, x13);
CHECK_EQUAL_32(kWMinInt, w28);
CHECK_EQUAL_32(kWMinInt, w19);
CHECK_EQUAL_64(-0x1234567890ABCDEFLL, x20);
CHECK_EQUAL_32(-0x12345678, w21);
}
TEST(add_sub_shifted) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x2, 0xFEDCBA9876543210L);
__ Mov(x3, 0xFFFFFFFFFFFFFFFFL);
__ Add(x10, x1, Operand(x2));
__ Add(x11, x0, Operand(x1, LSL, 8));
__ Add(x12, x0, Operand(x1, LSR, 8));
__ Add(x13, x0, Operand(x1, ASR, 8));
__ Add(x14, x0, Operand(x2, ASR, 8));
__ Add(w15, w0, Operand(w1, ASR, 8));
__ Add(w28, w3, Operand(w1, ROR, 8));
__ Add(x19, x3, Operand(x1, ROR, 8));
__ Sub(x20, x3, Operand(x2));
__ Sub(x21, x3, Operand(x1, LSL, 8));
__ Sub(x22, x3, Operand(x1, LSR, 8));
__ Sub(x23, x3, Operand(x1, ASR, 8));
__ Sub(x24, x3, Operand(x2, ASR, 8));
__ Sub(w25, w3, Operand(w1, ASR, 8));
__ Sub(w26, w3, Operand(w1, ROR, 8));
__ Sub(x27, x3, Operand(x1, ROR, 8));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x10);
CHECK_EQUAL_64(0x23456789ABCDEF00L, x11);
CHECK_EQUAL_64(0x000123456789ABCDL, x12);
CHECK_EQUAL_64(0x000123456789ABCDL, x13);
CHECK_EQUAL_64(0xFFFEDCBA98765432L, x14);
CHECK_EQUAL_64(0xFF89ABCD, x15);
CHECK_EQUAL_64(0xEF89ABCC, x28);
CHECK_EQUAL_64(0xEF0123456789ABCCL, x19);
CHECK_EQUAL_64(0x0123456789ABCDEFL, x20);
CHECK_EQUAL_64(0xDCBA9876543210FFL, x21);
CHECK_EQUAL_64(0xFFFEDCBA98765432L, x22);
CHECK_EQUAL_64(0xFFFEDCBA98765432L, x23);
CHECK_EQUAL_64(0x000123456789ABCDL, x24);
CHECK_EQUAL_64(0x00765432, x25);
CHECK_EQUAL_64(0x10765432, x26);
CHECK_EQUAL_64(0x10FEDCBA98765432L, x27);
}
TEST(add_sub_extended) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x2, 0xFEDCBA9876543210L);
__ Mov(w3, 0x80);
__ Add(x10, x0, Operand(x1, UXTB, 0));
__ Add(x11, x0, Operand(x1, UXTB, 1));
__ Add(x12, x0, Operand(x1, UXTH, 2));
__ Add(x13, x0, Operand(x1, UXTW, 4));
__ Add(x14, x0, Operand(x1, SXTB, 0));
__ Add(x15, x0, Operand(x1, SXTB, 1));
__ Add(x16, x0, Operand(x1, SXTH, 2));
__ Add(x17, x0, Operand(x1, SXTW, 3));
__ Add(x4, x0, Operand(x2, SXTB, 0));
__ Add(x19, x0, Operand(x2, SXTB, 1));
__ Add(x20, x0, Operand(x2, SXTH, 2));
__ Add(x21, x0, Operand(x2, SXTW, 3));
__ Add(x22, x1, Operand(x2, SXTB, 1));
__ Sub(x23, x1, Operand(x2, SXTB, 1));
__ Add(w24, w1, Operand(w2, UXTB, 2));
__ Add(w25, w0, Operand(w1, SXTB, 0));
__ Add(w26, w0, Operand(w1, SXTB, 1));
__ Add(w27, w2, Operand(w1, SXTW, 3));
__ Add(w28, w0, Operand(w1, SXTW, 3));
__ Add(x29, x0, Operand(w1, SXTW, 3));
__ Sub(x30, x0, Operand(w3, SXTB, 1));
END();
RUN();
CHECK_EQUAL_64(0xEFL, x10);
CHECK_EQUAL_64(0x1DEL, x11);
CHECK_EQUAL_64(0x337BCL, x12);
CHECK_EQUAL_64(0x89ABCDEF0L, x13);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFEFL, x14);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFDEL, x15);
CHECK_EQUAL_64(0xFFFFFFFFFFFF37BCL, x16);
CHECK_EQUAL_64(0xFFFFFFFC4D5E6F78L, x17);
CHECK_EQUAL_64(0x10L, x4);
CHECK_EQUAL_64(0x20L, x19);
CHECK_EQUAL_64(0xC840L, x20);
CHECK_EQUAL_64(0x3B2A19080L, x21);
CHECK_EQUAL_64(0x0123456789ABCE0FL, x22);
CHECK_EQUAL_64(0x0123456789ABCDCFL, x23);
CHECK_EQUAL_32(0x89ABCE2F, w24);
CHECK_EQUAL_32(0xFFFFFFEF, w25);
CHECK_EQUAL_32(0xFFFFFFDE, w26);
CHECK_EQUAL_32(0xC3B2A188, w27);
CHECK_EQUAL_32(0x4D5E6F78, w28);
CHECK_EQUAL_64(0xFFFFFFFC4D5E6F78L, x29);
CHECK_EQUAL_64(256, x30);
}
TEST(add_sub_negative) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 4687);
__ Mov(x2, 0x1122334455667788);
__ Mov(w3, 0x11223344);
__ Mov(w4, 400000);
__ Add(x10, x0, -42);
__ Add(x11, x1, -687);
__ Add(x12, x2, -0x88);
__ Sub(x13, x0, -600);
__ Sub(x14, x1, -313);
__ Sub(x15, x2, -0x555);
__ Add(w19, w3, -0x344);
__ Add(w20, w4, -2000);
__ Sub(w21, w3, -0xBC);
__ Sub(w22, w4, -2000);
END();
RUN();
CHECK_EQUAL_64(-42, x10);
CHECK_EQUAL_64(4000, x11);
CHECK_EQUAL_64(0x1122334455667700, x12);
CHECK_EQUAL_64(600, x13);
CHECK_EQUAL_64(5000, x14);
CHECK_EQUAL_64(0x1122334455667CDD, x15);
CHECK_EQUAL_32(0x11223000, w19);
CHECK_EQUAL_32(398000, w20);
CHECK_EQUAL_32(0x11223400, w21);
CHECK_EQUAL_32(402000, w22);
}
TEST(add_sub_zero) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
Label blob1;
__ Bind(&blob1);
__ Add(x0, x0, 0);
__ Sub(x1, x1, 0);
__ Sub(x2, x2, xzr);
CHECK_EQ(0u, __ SizeOfCodeGeneratedSince(&blob1));
Label blob2;
__ Bind(&blob2);
__ Add(w3, w3, 0);
CHECK_NE(0u, __ SizeOfCodeGeneratedSince(&blob2));
Label blob3;
__ Bind(&blob3);
__ Sub(w3, w3, wzr);
CHECK_NE(0u, __ SizeOfCodeGeneratedSince(&blob3));
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(0, x1);
CHECK_EQUAL_64(0, x2);
}
TEST(preshift_immediates) {
INIT_V8();
SETUP();
START();
// Test operations involving immediates that could be generated using a
// pre-shifted encodable immediate followed by a post-shift applied to
// the arithmetic or logical operation.
// Save sp.
__ Mov(x29, sp);
// Set the registers to known values.
__ Mov(x0, 0x1000);
__ Mov(sp, 0x1000);
// Arithmetic ops.
__ Add(x1, x0, 0x1F7DE);
__ Add(w2, w0, 0xFFFFFF1);
__ Adds(x3, x0, 0x18001);
__ Adds(w4, w0, 0xFFFFFF1);
__ Add(x5, x0, 0x10100);
__ Sub(w6, w0, 0xFFFFFF1);
__ Subs(x7, x0, 0x18001);
__ Subs(w8, w0, 0xFFFFFF1);
// Logical ops.
__ And(x9, x0, 0x1F7DE);
__ Orr(w10, w0, 0xFFFFFF1);
__ Eor(x11, x0, 0x18001);
// Ops using the stack pointer.
__ Add(sp, sp, 0x1F7F0);
__ Mov(x12, sp);
__ Mov(sp, 0x1000);
__ Adds(x13, sp, 0x1F7F0);
__ Orr(sp, x0, 0x1F7F0);
__ Mov(x14, sp);
__ Mov(sp, 0x1000);
__ Add(sp, sp, 0x10100);
__ Mov(x15, sp);
// Restore sp.
__ Mov(sp, x29);
END();
RUN();
CHECK_EQUAL_64(0x1000, x0);
CHECK_EQUAL_64(0x207DE, x1);
CHECK_EQUAL_64(0x10000FF1, x2);
CHECK_EQUAL_64(0x19001, x3);
CHECK_EQUAL_64(0x10000FF1, x4);
CHECK_EQUAL_64(0x11100, x5);
CHECK_EQUAL_64(0xF000100F, x6);
CHECK_EQUAL_64(0xFFFFFFFFFFFE8FFF, x7);
CHECK_EQUAL_64(0xF000100F, x8);
CHECK_EQUAL_64(0x1000, x9);
CHECK_EQUAL_64(0xFFFFFF1, x10);
CHECK_EQUAL_64(0x207F0, x12);
CHECK_EQUAL_64(0x207F0, x13);
CHECK_EQUAL_64(0x1F7F0, x14);
CHECK_EQUAL_64(0x11100, x15);
}
TEST(claim_drop_zero) {
INIT_V8();
SETUP();
START();
Label start;
__ Bind(&start);
__ Claim(0);
__ Drop(0);
__ Claim(xzr, 8);
__ Drop(xzr, 8);
__ Claim(xzr, 0);
__ Drop(xzr, 0);
__ Claim(x7, 0);
__ Drop(x7, 0);
CHECK_EQ(0u, __ SizeOfCodeGeneratedSince(&start));
END();
RUN();
}
TEST(neg) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0xF123456789ABCDEFL);
// Immediate.
__ Neg(x1, 0x123);
__ Neg(w2, 0x123);
// Shifted.
__ Neg(x3, Operand(x0, LSL, 1));
__ Neg(w4, Operand(w0, LSL, 2));
__ Neg(x5, Operand(x0, LSR, 3));
__ Neg(w6, Operand(w0, LSR, 4));
__ Neg(x7, Operand(x0, ASR, 5));
__ Neg(w8, Operand(w0, ASR, 6));
// Extended.
__ Neg(w9, Operand(w0, UXTB));
__ Neg(x10, Operand(x0, SXTB, 1));
__ Neg(w11, Operand(w0, UXTH, 2));
__ Neg(x12, Operand(x0, SXTH, 3));
__ Neg(w13, Operand(w0, UXTW, 4));
__ Neg(x14, Operand(x0, SXTW, 4));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFFFFFFEDDUL, x1);
CHECK_EQUAL_64(0xFFFFFEDD, x2);
CHECK_EQUAL_64(0x1DB97530ECA86422UL, x3);
CHECK_EQUAL_64(0xD950C844, x4);
CHECK_EQUAL_64(0xE1DB97530ECA8643UL, x5);
CHECK_EQUAL_64(0xF7654322, x6);
CHECK_EQUAL_64(0x0076E5D4C3B2A191UL, x7);
CHECK_EQUAL_64(0x01D950C9, x8);
CHECK_EQUAL_64(0xFFFFFF11, x9);
CHECK_EQUAL_64(0x0000000000000022UL, x10);
CHECK_EQUAL_64(0xFFFCC844, x11);
CHECK_EQUAL_64(0x0000000000019088UL, x12);
CHECK_EQUAL_64(0x65432110, x13);
CHECK_EQUAL_64(0x0000000765432110UL, x14);
}
template <typename T, typename Op>
static void AdcsSbcsHelper(Op op, T left, T right, int carry, T expected,
StatusFlags expected_flags) {
int reg_size = sizeof(T) * 8;
auto left_reg = Register::Create(0, reg_size);
auto right_reg = Register::Create(1, reg_size);
auto result_reg = Register::Create(2, reg_size);
SETUP();
START();
__ Mov(left_reg, left);
__ Mov(right_reg, right);
__ Mov(x10, (carry ? CFlag : NoFlag));
__ Msr(NZCV, x10);
(masm.*op)(result_reg, left_reg, right_reg);
END();
RUN();
CHECK_EQUAL_64(left, left_reg.X());
CHECK_EQUAL_64(right, right_reg.X());
CHECK_EQUAL_64(expected, result_reg.X());
CHECK_EQUAL_NZCV(expected_flags);
}
TEST(adcs_sbcs_x) {
INIT_V8();
uint64_t inputs[] = {
0x0000000000000000, 0x0000000000000001, 0x7FFFFFFFFFFFFFFE,
0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001,
0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF,
};
static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]);
struct Expected {
uint64_t carry0_result;
StatusFlags carry0_flags;
uint64_t carry1_result;
StatusFlags carry1_flags;
};
static const Expected expected_adcs_x[input_count][input_count] = {
{{0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}},
{{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}},
{{0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0xFFFFFFFFFFFFFFFC, NVFlag, 0xFFFFFFFFFFFFFFFD, NVFlag},
{0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag}},
{{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag},
{0xFFFFFFFFFFFFFFFE, NVFlag, 0xFFFFFFFFFFFFFFFF, NVFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag}},
{{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag}},
{{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}},
{{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0xFFFFFFFFFFFFFFFC, NCFlag, 0xFFFFFFFFFFFFFFFD, NCFlag},
{0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag}},
{{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag},
{0xFFFFFFFFFFFFFFFE, NCFlag, 0xFFFFFFFFFFFFFFFF, NCFlag}}};
static const Expected expected_sbcs_x[input_count][input_count] = {
{{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag}},
{{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}},
{{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag},
{0xFFFFFFFFFFFFFFFC, NVFlag, 0xFFFFFFFFFFFFFFFD, NVFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag},
{0x7FFFFFFFFFFFFFFE, NoFlag, 0x7FFFFFFFFFFFFFFF, NoFlag}},
{{0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0xFFFFFFFFFFFFFFFE, NVFlag, 0xFFFFFFFFFFFFFFFF, NVFlag},
{0xFFFFFFFFFFFFFFFD, NVFlag, 0xFFFFFFFFFFFFFFFE, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x7FFFFFFFFFFFFFFF, NoFlag, 0x8000000000000000, NVFlag}},
{{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag}},
{{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag}},
{{0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag},
{0xFFFFFFFFFFFFFFFC, NCFlag, 0xFFFFFFFFFFFFFFFD, NCFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x7FFFFFFFFFFFFFFE, CVFlag, 0x7FFFFFFFFFFFFFFF, CVFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x7FFFFFFFFFFFFFFC, CFlag, 0x7FFFFFFFFFFFFFFD, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag},
{0xFFFFFFFFFFFFFFFE, NFlag, 0xFFFFFFFFFFFFFFFF, NFlag}},
{{0xFFFFFFFFFFFFFFFE, NCFlag, 0xFFFFFFFFFFFFFFFF, NCFlag},
{0xFFFFFFFFFFFFFFFD, NCFlag, 0xFFFFFFFFFFFFFFFE, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0x7FFFFFFFFFFFFFFF, CVFlag, 0x8000000000000000, NCFlag},
{0x7FFFFFFFFFFFFFFE, CFlag, 0x7FFFFFFFFFFFFFFF, CFlag},
{0x7FFFFFFFFFFFFFFD, CFlag, 0x7FFFFFFFFFFFFFFE, CFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xFFFFFFFFFFFFFFFF, NFlag, 0x0000000000000000, ZCFlag}}};
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected& expected = expected_adcs_x[left][right];
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected& expected = expected_sbcs_x[left][right];
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
}
TEST(adcs_sbcs_w) {
INIT_V8();
uint32_t inputs[] = {
0x00000000, 0x00000001, 0x7FFFFFFE, 0x7FFFFFFF,
0x80000000, 0x80000001, 0xFFFFFFFE, 0xFFFFFFFF,
};
static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]);
struct Expected {
uint32_t carry0_result;
StatusFlags carry0_flags;
uint32_t carry1_result;
StatusFlags carry1_flags;
};
static const Expected expected_adcs_w[input_count][input_count] = {
{{0x00000000, ZFlag, 0x00000001, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x80000000, NFlag, 0x80000001, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}},
{{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x00000002, NoFlag, 0x00000003, NoFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag}},
{{0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0xFFFFFFFC, NVFlag, 0xFFFFFFFD, NVFlag},
{0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag}},
{{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag},
{0xFFFFFFFE, NVFlag, 0xFFFFFFFF, NVFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag}},
{{0x80000000, NFlag, 0x80000001, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCVFlag, 0x00000001, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag}},
{{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000002, CVFlag, 0x00000003, CVFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag}},
{{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0xFFFFFFFC, NCFlag, 0xFFFFFFFD, NCFlag},
{0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag}},
{{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag},
{0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag},
{0xFFFFFFFE, NCFlag, 0xFFFFFFFF, NCFlag}}};
static const Expected expected_sbcs_w[input_count][input_count] = {
{{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NFlag, 0x80000001, NFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x00000000, ZFlag, 0x00000001, NoFlag}},
{{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x00000002, NoFlag, 0x00000003, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag}},
{{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag},
{0xFFFFFFFC, NVFlag, 0xFFFFFFFD, NVFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag},
{0x7FFFFFFE, NoFlag, 0x7FFFFFFF, NoFlag}},
{{0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0xFFFFFFFE, NVFlag, 0xFFFFFFFF, NVFlag},
{0xFFFFFFFD, NVFlag, 0xFFFFFFFE, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x7FFFFFFF, NoFlag, 0x80000000, NVFlag}},
{{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000000, ZCVFlag, 0x00000001, CVFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NFlag, 0x80000001, NFlag}},
{{0x80000000, NCFlag, 0x80000001, NCFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x00000002, CVFlag, 0x00000003, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag}},
{{0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag},
{0xFFFFFFFC, NCFlag, 0xFFFFFFFD, NCFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x7FFFFFFE, CVFlag, 0x7FFFFFFF, CVFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x7FFFFFFC, CFlag, 0x7FFFFFFD, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag},
{0xFFFFFFFE, NFlag, 0xFFFFFFFF, NFlag}},
{{0xFFFFFFFE, NCFlag, 0xFFFFFFFF, NCFlag},
{0xFFFFFFFD, NCFlag, 0xFFFFFFFE, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag},
{0x7FFFFFFF, CVFlag, 0x80000000, NCFlag},
{0x7FFFFFFE, CFlag, 0x7FFFFFFF, CFlag},
{0x7FFFFFFD, CFlag, 0x7FFFFFFE, CFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xFFFFFFFF, NFlag, 0x00000000, ZCFlag}}};
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected& expected = expected_adcs_w[left][right];
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected& expected = expected_sbcs_w[left][right];
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
}
TEST(adc_sbc_shift) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789ABCDEFL);
__ Mov(x3, 0xFEDCBA9876543210L);
__ Mov(x4, 0xFFFFFFFFFFFFFFFFL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x5, x2, Operand(x3));
__ Adc(x6, x0, Operand(x1, LSL, 60));
__ Sbc(x7, x4, Operand(x3, LSR, 4));
__ Adc(x8, x2, Operand(x3, ASR, 4));
__ Adc(x9, x2, Operand(x3, ROR, 8));
__ Adc(w10, w2, Operand(w3));
__ Adc(w11, w0, Operand(w1, LSL, 30));
__ Sbc(w12, w4, Operand(w3, LSR, 4));
__ Adc(w13, w2, Operand(w3, ASR, 4));
__ Adc(w14, w2, Operand(w3, ROR, 8));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x28, x2, Operand(x3));
__ Adc(x19, x0, Operand(x1, LSL, 60));
__ Sbc(x20, x4, Operand(x3, LSR, 4));
__ Adc(x21, x2, Operand(x3, ASR, 4));
__ Adc(x22, x2, Operand(x3, ROR, 8));
__ Adc(w23, w2, Operand(w3));
__ Adc(w24, w0, Operand(w1, LSL, 30));
__ Sbc(w25, w4, Operand(w3, LSR, 4));
__ Adc(w26, w2, Operand(w3, ASR, 4));
__ Adc(w27, w2, Operand(w3, ROR, 8));
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFL, x5);
CHECK_EQUAL_64(1LL << 60, x6);
CHECK_EQUAL_64(0xF0123456789ABCDDL, x7);
CHECK_EQUAL_64(0x0111111111111110L, x8);
CHECK_EQUAL_64(0x1222222222222221L, x9);
CHECK_EQUAL_32(0xFFFFFFFF, w10);
CHECK_EQUAL_32(1 << 30, w11);
CHECK_EQUAL_32(0xF89ABCDD, w12);
CHECK_EQUAL_32(0x91111110, w13);
CHECK_EQUAL_32(0x9A222221, w14);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFLL + 1, x28);
CHECK_EQUAL_64((1LL << 60) + 1, x19);
CHECK_EQUAL_64(0xF0123456789ABCDDL + 1, x20);
CHECK_EQUAL_64(0x0111111111111110L + 1, x21);
CHECK_EQUAL_64(0x1222222222222221L + 1, x22);
CHECK_EQUAL_32(0xFFFFFFFFULL + 1, w23);
CHECK_EQUAL_32((1 << 30) + 1, w24);
CHECK_EQUAL_32(0xF89ABCDD + 1, w25);
CHECK_EQUAL_32(0x91111110 + 1, w26);
CHECK_EQUAL_32(0x9A222221 + 1, w27);
}
TEST(adc_sbc_extend) {
INIT_V8();
SETUP();
START();
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789ABCDEFL);
__ Adc(x10, x1, Operand(w2, UXTB, 1));
__ Adc(x11, x1, Operand(x2, SXTH, 2));
__ Sbc(x12, x1, Operand(w2, UXTW, 4));
__ Adc(x13, x1, Operand(x2, UXTX, 4));
__ Adc(w14, w1, Operand(w2, UXTB, 1));
__ Adc(w15, w1, Operand(w2, SXTH, 2));
__ Adc(w9, w1, Operand(w2, UXTW, 4));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x20, x1, Operand(w2, UXTB, 1));
__ Adc(x21, x1, Operand(x2, SXTH, 2));
__ Sbc(x22, x1, Operand(w2, UXTW, 4));
__ Adc(x23, x1, Operand(x2, UXTX, 4));
__ Adc(w24, w1, Operand(w2, UXTB, 1));
__ Adc(w25, w1, Operand(w2, SXTH, 2));
__ Adc(w26, w1, Operand(w2, UXTW, 4));
END();
RUN();
CHECK_EQUAL_64(0x1DF, x10);
CHECK_EQUAL_64(0xFFFFFFFFFFFF37BDL, x11);
CHECK_EQUAL_64(0xFFFFFFF765432110L, x12);
CHECK_EQUAL_64(0x123456789ABCDEF1L, x13);
CHECK_EQUAL_32(0x1DF, w14);
CHECK_EQUAL_32(0xFFFF37BD, w15);
CHECK_EQUAL_32(0x9ABCDEF1, w9);
CHECK_EQUAL_64(0x1DF + 1, x20);
CHECK_EQUAL_64(0xFFFFFFFFFFFF37BDL + 1, x21);
CHECK_EQUAL_64(0xFFFFFFF765432110L + 1, x22);
CHECK_EQUAL_64(0x123456789ABCDEF1L + 1, x23);
CHECK_EQUAL_32(0x1DF + 1, w24);
CHECK_EQUAL_32(0xFFFF37BD + 1, w25);
CHECK_EQUAL_32(0x9ABCDEF1 + 1, w26);
// Check that adc correctly sets the condition flags.
START();
__ Mov(x0, 0xFF);
__ Mov(x1, 0xFFFFFFFFFFFFFFFFL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, SXTX, 1));
END();
RUN();
CHECK_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 0x7FFFFFFFFFFFFFFFL);
__ Mov(x1, 1);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, UXTB, 2));
END();
RUN();
CHECK_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 0x7FFFFFFFFFFFFFFFL);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(1));
END();
RUN();
CHECK_EQUAL_NZCV(NVFlag);
}
TEST(adc_sbc_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x7, x0, Operand(0x1234567890ABCDEFUL));
__ Adc(w8, w0, Operand(0xFFFFFFFF));
__ Sbc(x9, x0, Operand(0x1234567890ABCDEFUL));
__ Sbc(w10, w0, Operand(0xFFFFFFFF));
__ Ngc(x11, Operand(0xFFFFFFFF00000000UL));
__ Ngc(w12, Operand(0xFFFF0000));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x28, x0, Operand(0x1234567890ABCDEFUL));
__ Adc(w19, w0, Operand(0xFFFFFFFF));
__ Sbc(x20, x0, Operand(0x1234567890ABCDEFUL));
__ Sbc(w21, w0, Operand(0xFFFFFFFF));
__ Ngc(x22, Operand(0xFFFFFFFF00000000UL));
__ Ngc(w23, Operand(0xFFFF0000));
END();
RUN();
CHECK_EQUAL_64(0x1234567890ABCDEFUL, x7);
CHECK_EQUAL_64(0xFFFFFFFF, x8);
CHECK_EQUAL_64(0xEDCBA9876F543210UL, x9);
CHECK_EQUAL_64(0, x10);
CHECK_EQUAL_64(0xFFFFFFFF, x11);
CHECK_EQUAL_64(0xFFFF, x12);
CHECK_EQUAL_64(0x1234567890ABCDEFUL + 1, x28);
CHECK_EQUAL_64(0, x19);
CHECK_EQUAL_64(0xEDCBA9876F543211UL, x20);
CHECK_EQUAL_64(1, x21);
CHECK_EQUAL_64(0x100000000UL, x22);
CHECK_EQUAL_64(0x10000, x23);
}
TEST(flags) {
INIT_V8();
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111L);
__ Neg(x10, Operand(x0));
__ Neg(x11, Operand(x1));
__ Neg(w12, Operand(w1));
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Ngc(x13, Operand(x0));
// Set the C flag.
__ Cmp(x0, Operand(x0));
__ Ngc(w14, Operand(w0));
END();
RUN();
CHECK_EQUAL_64(0, x10);
CHECK_EQUAL_64(-0x1111111111111111L, x11);
CHECK_EQUAL_32(-0x11111111, w12);
CHECK_EQUAL_64(-1L, x13);
CHECK_EQUAL_32(0, w14);
START();
__ Mov(x0, 0);
__ Cmp(x0, Operand(x0));
END();
RUN();
CHECK_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Cmp(w0, Operand(w0));
END();
RUN();
CHECK_EQUAL_NZCV(ZCFlag);
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111L);
__ Cmp(x0, Operand(x1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0x11111111);
__ Cmp(w0, Operand(w1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
START();
__ Mov(x1, 0x1111111111111111L);
__ Cmp(x1, Operand(0));
END();
RUN();
CHECK_EQUAL_NZCV(CFlag);
START();
__ Mov(w1, 0x11111111);
__ Cmp(w1, Operand(0));
END();
RUN();
CHECK_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0x7FFFFFFFFFFFFFFFL);
__ Cmn(x1, Operand(x0));
END();
RUN();
CHECK_EQUAL_NZCV(NVFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0x7FFFFFFF);
__ Cmn(w1, Operand(w0));
END();
RUN();
CHECK_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0xFFFFFFFFFFFFFFFFL);
__ Cmn(x1, Operand(x0));
END();
RUN();
CHECK_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0xFFFFFFFF);
__ Cmn(w1, Operand(w0));
END();
RUN();
CHECK_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
// Clear the C flag.
__ Adds(w0, w0, Operand(0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
CHECK_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
CHECK_EQUAL_NZCV(ZCFlag);
}
TEST(cmp_shift) {
INIT_V8();
SETUP();
START();
__ Mov(x28, 0xF0000000);
__ Mov(x19, 0xF000000010000000UL);
__ Mov(x20, 0xF0000000F0000000UL);
__ Mov(x21, 0x7800000078000000UL);
__ Mov(x22, 0x3C0000003C000000UL);
__ Mov(x23, 0x8000000780000000UL);
__ Mov(x24, 0x0000000F00000000UL);
__ Mov(x25, 0x00000003C0000000UL);
__ Mov(x26, 0x8000000780000000UL);
__ Mov(x27, 0xC0000003);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x20, Operand(x22, LSL, 2));
__ Mrs(x1, NZCV);
__ Cmp(w19, Operand(w23, LSR, 3));
__ Mrs(x2, NZCV);
__ Cmp(x28, Operand(x24, LSR, 4));
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w25, ASR, 2));
__ Mrs(x4, NZCV);
__ Cmp(x20, Operand(x26, ASR, 3));
__ Mrs(x5, NZCV);
__ Cmp(w27, Operand(w22, ROR, 28));
__ Mrs(x6, NZCV);
__ Cmp(x20, Operand(x21, ROR, 31));
__ Mrs(x7, NZCV);
END();
RUN();
CHECK_EQUAL_32(ZCFlag, w0);
CHECK_EQUAL_32(ZCFlag, w1);
CHECK_EQUAL_32(ZCFlag, w2);
CHECK_EQUAL_32(ZCFlag, w3);
CHECK_EQUAL_32(ZCFlag, w4);
CHECK_EQUAL_32(ZCFlag, w5);
CHECK_EQUAL_32(ZCFlag, w6);
CHECK_EQUAL_32(ZCFlag, w7);
}
TEST(cmp_extend) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x23, 0xFF);
__ Mov(x24, 0xFFFFFFFFFFFFFFFEUL);
__ Mov(x25, 0xFFFF);
__ Mov(x26, 0xFFFFFFFF);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x22, Operand(x23, SXTB, 0));
__ Mrs(x1, NZCV);
__ Cmp(x24, Operand(x23, SXTB, 1));
__ Mrs(x2, NZCV);
__ Cmp(x24, Operand(x23, UXTB, 1));
__ Mrs(x3, NZCV);
__ Cmp(w22, Operand(w25, UXTH));
__ Mrs(x4, NZCV);
__ Cmp(x22, Operand(x25, SXTH));
__ Mrs(x5, NZCV);
__ Cmp(x22, Operand(x26, UXTW));
__ Mrs(x6, NZCV);
__ Cmp(x24, Operand(x26, SXTW, 1));
__ Mrs(x7, NZCV);
END();
RUN();
CHECK_EQUAL_32(ZCFlag, w0);
CHECK_EQUAL_32(ZCFlag, w1);
CHECK_EQUAL_32(ZCFlag, w2);
CHECK_EQUAL_32(NCFlag, w3);
CHECK_EQUAL_32(NCFlag, w4);
CHECK_EQUAL_32(ZCFlag, w5);
CHECK_EQUAL_32(NCFlag, w6);
CHECK_EQUAL_32(ZCFlag, w7);
}
TEST(ccmp) {
INIT_V8();
SETUP();
START();
__ Mov(w16, 0);
__ Mov(w17, 1);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, ne);
__ Mrs(x3, NZCV);
__ ccmp(x16, x16, NZCVFlag, al);
__ Mrs(x4, NZCV);
__ ccmp(x16, x16, NZCVFlag, nv);
__ Mrs(x5, NZCV);
END();
RUN();
CHECK_EQUAL_32(NFlag, w0);
CHECK_EQUAL_32(NCFlag, w1);
CHECK_EQUAL_32(NoFlag, w2);
CHECK_EQUAL_32(NZCVFlag, w3);
CHECK_EQUAL_32(ZCFlag, w4);
CHECK_EQUAL_32(ZCFlag, w5);
}
TEST(ccmp_wide_imm) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x20, Operand(0xFFFFFFFFFFFFFFFFUL), NZCVFlag, eq);
__ Mrs(x1, NZCV);
END();
RUN();
CHECK_EQUAL_32(NFlag, w0);
CHECK_EQUAL_32(NoFlag, w1);
}
TEST(ccmp_shift_extend) {
INIT_V8();
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xFFFFFFFFFFFFFFFFUL);
__ Mov(x23, 0xFF);
__ Mov(x24, 0xFFFFFFFFFFFFFFFEUL);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq);
__ Mrs(x1, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq);
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne);
__ Mrs(x4, NZCV);
END();
RUN();
CHECK_EQUAL_32(ZCFlag, w0);
CHECK_EQUAL_32(ZCFlag, w1);
CHECK_EQUAL_32(ZCFlag, w2);
CHECK_EQUAL_32(NCFlag, w3);
CHECK_EQUAL_32(NZCVFlag, w4);
}
TEST(csel) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x24, 0x0000000F0000000FUL);
__ Mov(x25, 0x0000001F0000001FUL);
__ Mov(x26, 0);
__ Mov(x27, 0);
__ Cmp(w16, 0);
__ Csel(w0, w24, w25, eq);
__ Csel(w1, w24, w25, ne);
__ Csinc(w2, w24, w25, mi);
__ Csinc(w3, w24, w25, pl);
__ csel(w13, w24, w25, al);
__ csel(x14, x24, x25, nv);
__ Cmp(x16, 1);
__ Csinv(x4, x24, x25, gt);
__ Csinv(x5, x24, x25, le);
__ Csneg(x6, x24, x25, hs);
__ Csneg(x7, x24, x25, lo);
__ Cset(w8, ne);
__ Csetm(w9, ne);
__ Cinc(x10, x25, ne);
__ Cinv(x11, x24, ne);
__ Cneg(x12, x24, ne);
__ csel(w15, w24, w25, al);
__ csel(x28, x24, x25, nv);
__ CzeroX(x24, ne);
__ CzeroX(x25, eq);
__ CmovX(x26, x25, ne);
__ CmovX(x27, x25, eq);
END();
RUN();
CHECK_EQUAL_64(0x0000000F, x0);
CHECK_EQUAL_64(0x0000001F, x1);
CHECK_EQUAL_64(0x00000020, x2);
CHECK_EQUAL_64(0x0000000F, x3);
CHECK_EQUAL_64(0xFFFFFFE0FFFFFFE0UL, x4);
CHECK_EQUAL_64(0x0000000F0000000FUL, x5);
CHECK_EQUAL_64(0xFFFFFFE0FFFFFFE1UL, x6);
CHECK_EQUAL_64(0x0000000F0000000FUL, x7);
CHECK_EQUAL_64(0x00000001, x8);
CHECK_EQUAL_64(0xFFFFFFFF, x9);
CHECK_EQUAL_64(0x0000001F00000020UL, x10);
CHECK_EQUAL_64(0xFFFFFFF0FFFFFFF0UL, x11);
CHECK_EQUAL_64(0xFFFFFFF0FFFFFFF1UL, x12);
CHECK_EQUAL_64(0x0000000F, x13);
CHECK_EQUAL_64(0x0000000F0000000FUL, x14);
CHECK_EQUAL_64(0x0000000F, x15);
CHECK_EQUAL_64(0x0000000F0000000FUL, x28);
CHECK_EQUAL_64(0, x24);
CHECK_EQUAL_64(0x0000001F0000001FUL, x25);
CHECK_EQUAL_64(0x0000001F0000001FUL, x26);
CHECK_EQUAL_64(0, x27);
}
TEST(csel_imm) {
INIT_V8();
SETUP();
START();
__ Mov(x28, 0);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000UL);
__ Cmp(x28, Operand(0));
__ Csel(w0, w19, -2, ne);
__ Csel(w1, w19, -1, ne);
__ Csel(w2, w19, 0, ne);
__ Csel(w3, w19, 1, ne);
__ Csel(w4, w19, 2, ne);
__ Csel(w5, w19, Operand(w19, ASR, 31), ne);
__ Csel(w6, w19, Operand(w19, ROR, 1), ne);
__ Csel(w7, w19, 3, eq);
__ Csel(x8, x20, -2, ne);
__ Csel(x9, x20, -1, ne);
__ Csel(x10, x20, 0, ne);
__ Csel(x11, x20, 1, ne);
__ Csel(x12, x20, 2, ne);
__ Csel(x13, x20, Operand(x20, ASR, 63), ne);
__ Csel(x14, x20, Operand(x20, ROR, 1), ne);
__ Csel(x15, x20, 3, eq);
END();
RUN();
CHECK_EQUAL_32(-2, w0);
CHECK_EQUAL_32(-1, w1);
CHECK_EQUAL_32(0, w2);
CHECK_EQUAL_32(1, w3);
CHECK_EQUAL_32(2, w4);
CHECK_EQUAL_32(-1, w5);
CHECK_EQUAL_32(0x40000000, w6);
CHECK_EQUAL_32(0x80000000, w7);
CHECK_EQUAL_64(-2, x8);
CHECK_EQUAL_64(-1, x9);
CHECK_EQUAL_64(0, x10);
CHECK_EQUAL_64(1, x11);
CHECK_EQUAL_64(2, x12);
CHECK_EQUAL_64(-1, x13);
CHECK_EQUAL_64(0x4000000000000000UL, x14);
CHECK_EQUAL_64(0x8000000000000000UL, x15);
}
TEST(lslv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789ABCDEFUL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ lslv(x0, x0, xzr);
__ Lsl(x16, x0, x1);
__ Lsl(x17, x0, x2);
__ Lsl(x28, x0, x3);
__ Lsl(x19, x0, x4);
__ Lsl(x20, x0, x5);
__ Lsl(x21, x0, x6);
__ Lsl(w22, w0, w1);
__ Lsl(w23, w0, w2);
__ Lsl(w24, w0, w3);
__ Lsl(w25, w0, w4);
__ Lsl(w26, w0, w5);
__ Lsl(w27, w0, w6);
END();
RUN();
CHECK_EQUAL_64(value, x0);
CHECK_EQUAL_64(value << (shift[0] & 63), x16);
CHECK_EQUAL_64(value << (shift[1] & 63), x17);
CHECK_EQUAL_64(value << (shift[2] & 63), x28);
CHECK_EQUAL_64(value << (shift[3] & 63), x19);
CHECK_EQUAL_64(value << (shift[4] & 63), x20);
CHECK_EQUAL_64(value << (shift[5] & 63), x21);
CHECK_EQUAL_32(value << (shift[0] & 31), w22);
CHECK_EQUAL_32(value << (shift[1] & 31), w23);
CHECK_EQUAL_32(value << (shift[2] & 31), w24);
CHECK_EQUAL_32(value << (shift[3] & 31), w25);
CHECK_EQUAL_32(value << (shift[4] & 31), w26);
CHECK_EQUAL_32(value << (shift[5] & 31), w27);
}
TEST(lsrv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789ABCDEFUL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ lsrv(x0, x0, xzr);
__ Lsr(x16, x0, x1);
__ Lsr(x17, x0, x2);
__ Lsr(x28, x0, x3);
__ Lsr(x19, x0, x4);
__ Lsr(x20, x0, x5);
__ Lsr(x21, x0, x6);
__ Lsr(w22, w0, w1);
__ Lsr(w23, w0, w2);
__ Lsr(w24, w0, w3);
__ Lsr(w25, w0, w4);
__ Lsr(w26, w0, w5);
__ Lsr(w27, w0, w6);
END();
RUN();
CHECK_EQUAL_64(value, x0);
CHECK_EQUAL_64(value >> (shift[0] & 63), x16);
CHECK_EQUAL_64(value >> (shift[1] & 63), x17);
CHECK_EQUAL_64(value >> (shift[2] & 63), x28);
CHECK_EQUAL_64(value >> (shift[3] & 63), x19);
CHECK_EQUAL_64(value >> (shift[4] & 63), x20);
CHECK_EQUAL_64(value >> (shift[5] & 63), x21);
value &= 0xFFFFFFFFUL;
CHECK_EQUAL_32(value >> (shift[0] & 31), w22);
CHECK_EQUAL_32(value >> (shift[1] & 31), w23);
CHECK_EQUAL_32(value >> (shift[2] & 31), w24);
CHECK_EQUAL_32(value >> (shift[3] & 31), w25);
CHECK_EQUAL_32(value >> (shift[4] & 31), w26);
CHECK_EQUAL_32(value >> (shift[5] & 31), w27);
}
TEST(asrv) {
INIT_V8();
SETUP();
int64_t value = 0xFEDCBA98FEDCBA98UL;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ asrv(x0, x0, xzr);
__ Asr(x16, x0, x1);
__ Asr(x17, x0, x2);
__ Asr(x28, x0, x3);
__ Asr(x19, x0, x4);
__ Asr(x20, x0, x5);
__ Asr(x21, x0, x6);
__ Asr(w22, w0, w1);
__ Asr(w23, w0, w2);
__ Asr(w24, w0, w3);
__ Asr(w25, w0, w4);
__ Asr(w26, w0, w5);
__ Asr(w27, w0, w6);
END();
RUN();
CHECK_EQUAL_64(value, x0);
CHECK_EQUAL_64(value >> (shift[0] & 63), x16);
CHECK_EQUAL_64(value >> (shift[1] & 63), x17);
CHECK_EQUAL_64(value >> (shift[2] & 63), x28);
CHECK_EQUAL_64(value >> (shift[3] & 63), x19);
CHECK_EQUAL_64(value >> (shift[4] & 63), x20);
CHECK_EQUAL_64(value >> (shift[5] & 63), x21);
int32_t value32 = static_cast<int32_t>(value & 0xFFFFFFFFUL);
CHECK_EQUAL_32(value32 >> (shift[0] & 31), w22);
CHECK_EQUAL_32(value32 >> (shift[1] & 31), w23);
CHECK_EQUAL_32(value32 >> (shift[2] & 31), w24);
CHECK_EQUAL_32(value32 >> (shift[3] & 31), w25);
CHECK_EQUAL_32(value32 >> (shift[4] & 31), w26);
CHECK_EQUAL_32(value32 >> (shift[5] & 31), w27);
}
TEST(rorv) {
INIT_V8();
SETUP();
uint64_t value = 0x0123456789ABCDEFUL;
int shift[] = {4, 8, 12, 16, 24, 36};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
__ rorv(x0, x0, xzr);
__ Ror(x16, x0, x1);
__ Ror(x17, x0, x2);
__ Ror(x28, x0, x3);
__ Ror(x19, x0, x4);
__ Ror(x20, x0, x5);
__ Ror(x21, x0, x6);
__ Ror(w22, w0, w1);
__ Ror(w23, w0, w2);
__ Ror(w24, w0, w3);
__ Ror(w25, w0, w4);
__ Ror(w26, w0, w5);
__ Ror(w27, w0, w6);
END();
RUN();
CHECK_EQUAL_64(value, x0);
CHECK_EQUAL_64(0xF0123456789ABCDEUL, x16);
CHECK_EQUAL_64(0xEF0123456789ABCDUL, x17);
CHECK_EQUAL_64(0xDEF0123456789ABCUL, x28);
CHECK_EQUAL_64(0xCDEF0123456789ABUL, x19);
CHECK_EQUAL_64(0xABCDEF0123456789UL, x20);
CHECK_EQUAL_64(0x789ABCDEF0123456UL, x21);
CHECK_EQUAL_32(0xF89ABCDE, w22);
CHECK_EQUAL_32(0xEF89ABCD, w23);
CHECK_EQUAL_32(0xDEF89ABC, w24);
CHECK_EQUAL_32(0xCDEF89AB, w25);
CHECK_EQUAL_32(0xABCDEF89, w26);
CHECK_EQUAL_32(0xF89ABCDE, w27);
}
TEST(bfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x10, 0x8888888888888888L);
__ Mov(x11, 0x8888888888888888L);
__ Mov(x12, 0x8888888888888888L);
__ Mov(x13, 0x8888888888888888L);
__ Mov(w20, 0x88888888);
__ Mov(w21, 0x88888888);
__ bfm(x10, x1, 16, 31);
__ bfm(x11, x1, 32, 15);
__ bfm(w20, w1, 16, 23);
__ bfm(w21, w1, 24, 15);
// Aliases.
__ Bfi(x12, x1, 16, 8);
__ Bfxil(x13, x1, 16, 8);
END();
RUN();
CHECK_EQUAL_64(0x88888888888889ABL, x10);
CHECK_EQUAL_64(0x8888CDEF88888888L, x11);
CHECK_EQUAL_32(0x888888AB, w20);
CHECK_EQUAL_32(0x88CDEF88, w21);
CHECK_EQUAL_64(0x8888888888EF8888L, x12);
CHECK_EQUAL_64(0x88888888888888ABL, x13);
}
TEST(sbfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x2, 0xFEDCBA9876543210L);
__ sbfm(x10, x1, 16, 31);
__ sbfm(x11, x1, 32, 15);
__ sbfm(x12, x1, 32, 47);
__ sbfm(x13, x1, 48, 35);
__ sbfm(w14, w1, 16, 23);
__ sbfm(w15, w1, 24, 15);
__ sbfm(w16, w2, 16, 23);
__ sbfm(w17, w2, 24, 15);
// Aliases.
__ Asr(x3, x1, 32);
__ Asr(x19, x2, 32);
__ Sbfiz(x20, x1, 8, 16);
__ Sbfiz(x21, x2, 8, 16);
__ Sbfx(x22, x1, 8, 16);
__ Sbfx(x23, x2, 8, 16);
__ Sxtb(x24, w1);
__ Sxtb(x25, x2);
__ Sxth(x26, w1);
__ Sxth(x27, x2);
__ Sxtw(x28, w1);
__ Sxtw(x29, x2);
END();
RUN();
CHECK_EQUAL_64(0xFFFFFFFFFFFF89ABL, x10);
CHECK_EQUAL_64(0xFFFFCDEF00000000L, x11);
CHECK_EQUAL_64(0x4567L, x12);
CHECK_EQUAL_64(0x789ABCDEF0000L, x13);
CHECK_EQUAL_32(0xFFFFFFAB, w14);
CHECK_EQUAL_32(0xFFCDEF00, w15);
CHECK_EQUAL_32(0x54, w16);
CHECK_EQUAL_32(0x00321000, w17);
CHECK_EQUAL_64(0x01234567L, x3);
CHECK_EQUAL_64(0xFFFFFFFFFEDCBA98L, x19);
CHECK_EQUAL_64(0xFFFFFFFFFFCDEF00L, x20);
CHECK_EQUAL_64(0x321000L, x21);
CHECK_EQUAL_64(0xFFFFFFFFFFFFABCDL, x22);
CHECK_EQUAL_64(0x5432L, x23);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFEFL, x24);
CHECK_EQUAL_64(0x10, x25);
CHECK_EQUAL_64(0xFFFFFFFFFFFFCDEFL, x26);
CHECK_EQUAL_64(0x3210, x27);
CHECK_EQUAL_64(0xFFFFFFFF89ABCDEFL, x28);
CHECK_EQUAL_64(0x76543210, x29);
}
TEST(ubfm) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x2, 0xFEDCBA9876543210L);
__ Mov(x10, 0x8888888888888888L);
__ Mov(x11, 0x8888888888888888L);
__ ubfm(x10, x1, 16, 31);
__ ubfm(x11, x1, 32, 15);
__ ubfm(x12, x1, 32, 47);
__ ubfm(x13, x1, 48, 35);
__ ubfm(w25, w1, 16, 23);
__ ubfm(w26, w1, 24, 15);
__ ubfm(w27, w2, 16, 23);
__ ubfm(w28, w2, 24, 15);
// Aliases
__ Lsl(x15, x1, 63);
__ Lsl(x16, x1, 0);
__ Lsr(x17, x1, 32);
__ Ubfiz(x3, x1, 8, 16);
__ Ubfx(x19, x1, 8, 16);
__ Uxtb(x20, x1);
__ Uxth(x21, x1);
__ Uxtw(x22, x1);
END();
RUN();
CHECK_EQUAL_64(0x00000000000089ABL, x10);
CHECK_EQUAL_64(0x0000CDEF00000000L, x11);
CHECK_EQUAL_64(0x4567L, x12);
CHECK_EQUAL_64(0x789ABCDEF0000L, x13);
CHECK_EQUAL_32(0x000000AB, w25);
CHECK_EQUAL_32(0x00CDEF00, w26);
CHECK_EQUAL_32(0x54, w27);
CHECK_EQUAL_32(0x00321000, w28);
CHECK_EQUAL_64(0x8000000000000000L, x15);
CHECK_EQUAL_64(0x0123456789ABCDEFL, x16);
CHECK_EQUAL_64(0x01234567L, x17);
CHECK_EQUAL_64(0xCDEF00L, x3);
CHECK_EQUAL_64(0xABCDL, x19);
CHECK_EQUAL_64(0xEFL, x20);
CHECK_EQUAL_64(0xCDEFL, x21);
CHECK_EQUAL_64(0x89ABCDEFL, x22);
}
TEST(extr) {
INIT_V8();
SETUP();
START();
__ Mov(x1, 0x0123456789ABCDEFL);
__ Mov(x2, 0xFEDCBA9876543210L);
__ Extr(w10, w1, w2, 0);
__ Extr(x11, x1, x2, 0);
__ Extr(w12, w1, w2, 1);
__ Extr(x13, x2, x1, 2);
__ Ror(w20, w1, 0);
__ Ror(x21, x1, 0);
__ Ror(w22, w2, 17);
__ Ror(w23, w1, 31);
__ Ror(x24, x2, 1);
__ Ror(x25, x1, 63);
END();
RUN();
CHECK_EQUAL_64(0x76543210, x10);
CHECK_EQUAL_64(0xFEDCBA9876543210L, x11);
CHECK_EQUAL_64(0xBB2A1908, x12);
CHECK_EQUAL_64(0x0048D159E26AF37BUL, x13);
CHECK_EQUAL_64(0x89ABCDEF, x20);
CHECK_EQUAL_64(0x0123456789ABCDEFL, x21);
CHECK_EQUAL_64(0x19083B2A, x22);
CHECK_EQUAL_64(0x13579BDF, x23);
CHECK_EQUAL_64(0x7F6E5D4C3B2A1908UL, x24);
CHECK_EQUAL_64(0x02468ACF13579BDEUL, x25);
}
TEST(fmov_imm) {
INIT_V8();
SETUP();
START();
__ Fmov(s11, 1.0);
__ Fmov(d22, -13.0);
__ Fmov(s1, 255.0);
__ Fmov(d2, 12.34567);
__ Fmov(s3, 0.0);
__ Fmov(d4, 0.0);
__ Fmov(s5, kFP32PositiveInfinity);
__ Fmov(d6, kFP64NegativeInfinity);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s11);
CHECK_EQUAL_FP64(-13.0, d22);
CHECK_EQUAL_FP32(255.0, s1);
CHECK_EQUAL_FP64(12.34567, d2);
CHECK_EQUAL_FP32(0.0, s3);
CHECK_EQUAL_FP64(0.0, d4);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d6);
}
TEST(fmov_reg) {
INIT_V8();
SETUP();
START();
__ Fmov(s20, 1.0);
__ Fmov(w10, s20);
__ Fmov(s30, w10);
__ Fmov(s5, s20);
__ Fmov(d1, -13.0);
__ Fmov(x1, d1);
__ Fmov(d2, x1);
__ Fmov(d4, d1);
__ Fmov(d6, bit_cast<double>(0x0123456789ABCDEFL));
__ Fmov(s6, s6);
END();
RUN();
CHECK_EQUAL_32(bit_cast<uint32_t>(1.0f), w10);
CHECK_EQUAL_FP32(1.0, s30);
CHECK_EQUAL_FP32(1.0, s5);
CHECK_EQUAL_64(bit_cast<uint64_t>(-13.0), x1);
CHECK_EQUAL_FP64(-13.0, d2);
CHECK_EQUAL_FP64(-13.0, d4);
CHECK_EQUAL_FP32(bit_cast<float>(0x89ABCDEF), s6);
}
TEST(fadd) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fadd(s0, s17, s18);
__ Fadd(s1, s18, s19);
__ Fadd(s2, s14, s18);
__ Fadd(s3, s15, s18);
__ Fadd(s4, s16, s18);
__ Fadd(s5, s15, s16);
__ Fadd(s6, s16, s15);
__ Fadd(d7, d30, d31);
__ Fadd(d8, d29, d31);
__ Fadd(d9, d26, d31);
__ Fadd(d10, d27, d31);
__ Fadd(d11, d28, d31);
__ Fadd(d12, d27, d28);
__ Fadd(d13, d28, d27);
END();
RUN();
CHECK_EQUAL_FP32(4.25, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(1.0, s2);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s3);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s4);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s5);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s6);
CHECK_EQUAL_FP64(0.25, d7);
CHECK_EQUAL_FP64(2.25, d8);
CHECK_EQUAL_FP64(2.25, d9);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d10);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d11);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
}
TEST(fsub) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fsub(s0, s17, s18);
__ Fsub(s1, s18, s19);
__ Fsub(s2, s14, s18);
__ Fsub(s3, s18, s15);
__ Fsub(s4, s18, s16);
__ Fsub(s5, s15, s15);
__ Fsub(s6, s16, s16);
__ Fsub(d7, d30, d31);
__ Fsub(d8, d29, d31);
__ Fsub(d9, d26, d31);
__ Fsub(d10, d31, d27);
__ Fsub(d11, d31, d28);
__ Fsub(d12, d27, d27);
__ Fsub(d13, d28, d28);
END();
RUN();
CHECK_EQUAL_FP32(2.25, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(-1.0, s2);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s3);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s4);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s5);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s6);
CHECK_EQUAL_FP64(-4.25, d7);
CHECK_EQUAL_FP64(-2.25, d8);
CHECK_EQUAL_FP64(-2.25, d9);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
}
TEST(fmul) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 0.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fmul(s0, s17, s18);
__ Fmul(s1, s18, s19);
__ Fmul(s2, s14, s14);
__ Fmul(s3, s15, s20);
__ Fmul(s4, s16, s20);
__ Fmul(s5, s15, s19);
__ Fmul(s6, s19, s16);
__ Fmul(d7, d30, d31);
__ Fmul(d8, d29, d31);
__ Fmul(d9, d26, d26);
__ Fmul(d10, d27, d30);
__ Fmul(d11, d28, d30);
__ Fmul(d12, d27, d29);
__ Fmul(d13, d29, d28);
END();
RUN();
CHECK_EQUAL_FP32(6.5, s0);
CHECK_EQUAL_FP32(0.0, s1);
CHECK_EQUAL_FP32(0.0, s2);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s3);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s4);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s5);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s6);
CHECK_EQUAL_FP64(-4.5, d7);
CHECK_EQUAL_FP64(0.0, d8);
CHECK_EQUAL_FP64(0.0, d9);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
}
static void FmaddFmsubHelper(double n, double m, double a,
double fmadd, double fmsub,
double fnmadd, double fnmsub) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
__ Fmadd(d28, d0, d1, d2);
__ Fmsub(d29, d0, d1, d2);
__ Fnmadd(d30, d0, d1, d2);
__ Fnmsub(d31, d0, d1, d2);
END();
RUN();
CHECK_EQUAL_FP64(fmadd, d28);
CHECK_EQUAL_FP64(fmsub, d29);
CHECK_EQUAL_FP64(fnmadd, d30);
CHECK_EQUAL_FP64(fnmsub, d31);
}
TEST(fmadd_fmsub_double) {
INIT_V8();
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// TODO(jbramley): Add tests to check behaviour against a hardware trace.
// Basic operation.
FmaddFmsubHelper(1.0, 2.0, 3.0, 5.0, 1.0, -5.0, -1.0);
FmaddFmsubHelper(-1.0, 2.0, 3.0, 1.0, 5.0, -1.0, -5.0);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0, +0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(-0.0, +0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
FmaddFmsubHelper(+0.0, -0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(+0.0, -0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
// Check NaN generation.
FmaddFmsubHelper(kFP64PositiveInfinity, 0.0, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0.0, kFP64PositiveInfinity, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 1.0, kFP64PositiveInfinity,
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP64DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP64NegativeInfinity, 1.0, kFP64PositiveInfinity,
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // -inf + ( inf * 1) = NaN
kFP64NegativeInfinity); // -inf + (-inf * 1) = -inf
}
static void FmaddFmsubHelper(float n, float m, float a,
float fmadd, float fmsub,
float fnmadd, float fnmsub) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
__ Fmadd(s28, s0, s1, s2);
__ Fmsub(s29, s0, s1, s2);
__ Fnmadd(s30, s0, s1, s2);
__ Fnmsub(s31, s0, s1, s2);
END();
RUN();
CHECK_EQUAL_FP32(fmadd, s28);
CHECK_EQUAL_FP32(fmsub, s29);
CHECK_EQUAL_FP32(fnmadd, s30);
CHECK_EQUAL_FP32(fnmsub, s31);
}
TEST(fmadd_fmsub_float) {
INIT_V8();
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// TODO(jbramley): Add tests to check behaviour against a hardware trace.
// Basic operation.
FmaddFmsubHelper(1.0f, 2.0f, 3.0f, 5.0f, 1.0f, -5.0f, -1.0f);
FmaddFmsubHelper(-1.0f, 2.0f, 3.0f, 1.0f, 5.0f, -1.0f, -5.0f);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0f, +0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, +0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
// Check NaN generation.
FmaddFmsubHelper(kFP32PositiveInfinity, 0.0f, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0.0f, kFP32PositiveInfinity, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 1.0f, kFP32PositiveInfinity,
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP32DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP32NegativeInfinity, 1.0f, kFP32PositiveInfinity,
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // -inf + ( inf * 1) = NaN
kFP32NegativeInfinity); // -inf + (-inf * 1) = -inf
}
TEST(fmadd_fmsub_double_nans) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double s1 = bit_cast<double>(0x7FF5555511111111);
double s2 = bit_cast<double>(0x7FF5555522222222);
double sa = bit_cast<double>(0x7FF55555AAAAAAAA);
double q1 = bit_cast<double>(0x7FFAAAAA11111111);
double q2 = bit_cast<double>(0x7FFAAAAA22222222);
double qa = bit_cast<double>(0x7FFAAAAAAAAAAAAA);
CHECK(IsSignallingNaN(s1));
CHECK(IsSignallingNaN(s2));
CHECK(IsSignallingNaN(sa));
CHECK(IsQuietNaN(q1));
CHECK(IsQuietNaN(q2));
CHECK(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
double s1_proc = bit_cast<double>(0x7FFD555511111111);
double s2_proc = bit_cast<double>(0x7FFD555522222222);
double sa_proc = bit_cast<double>(0x7FFD5555AAAAAAAA);
double q1_proc = q1;
double q2_proc = q2;
double qa_proc = qa;
CHECK(IsQuietNaN(s1_proc));
CHECK(IsQuietNaN(s2_proc));
CHECK(IsQuietNaN(sa_proc));
CHECK(IsQuietNaN(q1_proc));
CHECK(IsQuietNaN(q2_proc));
CHECK(IsQuietNaN(qa_proc));
// Negated NaNs as it would be done on ARMv8 hardware.
double s1_proc_neg = bit_cast<double>(0xFFFD555511111111);
double sa_proc_neg = bit_cast<double>(0xFFFD5555AAAAAAAA);
double q1_proc_neg = bit_cast<double>(0xFFFAAAAA11111111);
double qa_proc_neg = bit_cast<double>(0xFFFAAAAAAAAAAAAA);
CHECK(IsQuietNaN(s1_proc_neg));
CHECK(IsQuietNaN(sa_proc_neg));
CHECK(IsQuietNaN(q1_proc_neg));
CHECK(IsQuietNaN(qa_proc_neg));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP64PositiveInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0, kFP64NegativeInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64NegativeInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
}
TEST(fmadd_fmsub_float_nans) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float s1 = bit_cast<float>(0x7F951111);
float s2 = bit_cast<float>(0x7F952222);
float sa = bit_cast<float>(0x7F95AAAA);
float q1 = bit_cast<float>(0x7FEA1111);
float q2 = bit_cast<float>(0x7FEA2222);
float qa = bit_cast<float>(0x7FEAAAAA);
CHECK(IsSignallingNaN(s1));
CHECK(IsSignallingNaN(s2));
CHECK(IsSignallingNaN(sa));
CHECK(IsQuietNaN(q1));
CHECK(IsQuietNaN(q2));
CHECK(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
float s1_proc = bit_cast<float>(0x7FD51111);
float s2_proc = bit_cast<float>(0x7FD52222);
float sa_proc = bit_cast<float>(0x7FD5AAAA);
float q1_proc = q1;
float q2_proc = q2;
float qa_proc = qa;
CHECK(IsQuietNaN(s1_proc));
CHECK(IsQuietNaN(s2_proc));
CHECK(IsQuietNaN(sa_proc));
CHECK(IsQuietNaN(q1_proc));
CHECK(IsQuietNaN(q2_proc));
CHECK(IsQuietNaN(qa_proc));
// Negated NaNs as it would be done on ARMv8 hardware.
float s1_proc_neg = bit_cast<float>(0xFFD51111);
float sa_proc_neg = bit_cast<float>(0xFFD5AAAA);
float q1_proc_neg = bit_cast<float>(0xFFEA1111);
float qa_proc_neg = bit_cast<float>(0xFFEAAAAA);
CHECK(IsQuietNaN(s1_proc_neg));
CHECK(IsQuietNaN(sa_proc_neg));
CHECK(IsQuietNaN(q1_proc_neg));
CHECK(IsQuietNaN(qa_proc_neg));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP32PositiveInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0, kFP32NegativeInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32NegativeInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
}
TEST(fdiv) {
INIT_V8();
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 2.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fdiv(s0, s17, s18);
__ Fdiv(s1, s18, s19);
__ Fdiv(s2, s14, s18);
__ Fdiv(s3, s18, s15);
__ Fdiv(s4, s18, s16);
__ Fdiv(s5, s15, s16);
__ Fdiv(s6, s14, s14);
__ Fdiv(d7, d31, d30);
__ Fdiv(d8, d29, d31);
__ Fdiv(d9, d26, d31);
__ Fdiv(d10, d31, d27);
__ Fdiv(d11, d31, d28);
__ Fdiv(d12, d28, d27);
__ Fdiv(d13, d29, d29);
END();
RUN();
CHECK_EQUAL_FP32(1.625f, s0);
CHECK_EQUAL_FP32(1.0f, s1);
CHECK_EQUAL_FP32(-0.0f, s2);
CHECK_EQUAL_FP32(0.0f, s3);
CHECK_EQUAL_FP32(-0.0f, s4);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s5);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s6);
CHECK_EQUAL_FP64(-1.125, d7);
CHECK_EQUAL_FP64(0.0, d8);
CHECK_EQUAL_FP64(-0.0, d9);
CHECK_EQUAL_FP64(0.0, d10);
CHECK_EQUAL_FP64(-0.0, d11);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
}
static float MinMaxHelper(float n,
float m,
bool min,
float quiet_nan_substitute = 0.0) {
uint32_t raw_n = bit_cast<uint32_t>(n);
uint32_t raw_m = bit_cast<uint32_t>(m);
if (std::isnan(n) && ((raw_n & kSQuietNanMask) == 0)) {
// n is signalling NaN.
return bit_cast<float>(raw_n | static_cast<uint32_t>(kSQuietNanMask));
} else if (std::isnan(m) && ((raw_m & kSQuietNanMask) == 0)) {
// m is signalling NaN.
return bit_cast<float>(raw_m | static_cast<uint32_t>(kSQuietNanMask));
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fminf(n, m) : fmaxf(n, m);
}
static double MinMaxHelper(double n,
double m,
bool min,
double quiet_nan_substitute = 0.0) {
uint64_t raw_n = bit_cast<uint64_t>(n);
uint64_t raw_m = bit_cast<uint64_t>(m);
if (std::isnan(n) && ((raw_n & kDQuietNanMask) == 0)) {
// n is signalling NaN.
return bit_cast<double>(raw_n | kDQuietNanMask);
} else if (std::isnan(m) && ((raw_m & kDQuietNanMask) == 0)) {
// m is signalling NaN.
return bit_cast<double>(raw_m | kDQuietNanMask);
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fmin(n, m) : fmax(n, m);
}
static void FminFmaxDoubleHelper(double n, double m, double min, double max,
double minnm, double maxnm) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmin(d28, d0, d1);
__ Fmax(d29, d0, d1);
__ Fminnm(d30, d0, d1);
__ Fmaxnm(d31, d0, d1);
END();
RUN();
CHECK_EQUAL_FP64(min, d28);
CHECK_EQUAL_FP64(max, d29);
CHECK_EQUAL_FP64(minnm, d30);
CHECK_EQUAL_FP64(maxnm, d31);
}
TEST(fmax_fmin_d) {
INIT_V8();
// Use non-standard NaNs to check that the payload bits are preserved.
double snan = bit_cast<double>(0x7FF5555512345678);
double qnan = bit_cast<double>(0x7FFAAAAA87654321);
double snan_processed = bit_cast<double>(0x7FFD555512345678);
double qnan_processed = qnan;
CHECK(IsSignallingNaN(snan));
CHECK(IsQuietNaN(qnan));
CHECK(IsQuietNaN(snan_processed));
CHECK(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0);
FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1);
FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity);
FminFmaxDoubleHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0,
-DBL_MAX, -DBL_MIN, -1.0, -0.0,
kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64QuietNaN, kFP64SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
double n = inputs[in];
for (int im = 0; im < count; im++) {
double m = inputs[im];
FminFmaxDoubleHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP64PositiveInfinity),
MinMaxHelper(n, m, false, kFP64NegativeInfinity));
}
}
}
static void FminFmaxFloatHelper(float n, float m, float min, float max,
float minnm, float maxnm) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmin(s28, s0, s1);
__ Fmax(s29, s0, s1);
__ Fminnm(s30, s0, s1);
__ Fmaxnm(s31, s0, s1);
END();
RUN();
CHECK_EQUAL_FP32(min, s28);
CHECK_EQUAL_FP32(max, s29);
CHECK_EQUAL_FP32(minnm, s30);
CHECK_EQUAL_FP32(maxnm, s31);
}
TEST(fmax_fmin_s) {
INIT_V8();
// Use non-standard NaNs to check that the payload bits are preserved.
float snan = bit_cast<float>(0x7F951234);
float qnan = bit_cast<float>(0x7FEA8765);
float snan_processed = bit_cast<float>(0x7FD51234);
float qnan_processed = qnan;
CHECK(IsSignallingNaN(snan));
CHECK(IsQuietNaN(qnan));
CHECK(IsQuietNaN(snan_processed));
CHECK(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxFloatHelper(0, 0, 0, 0, 0, 0);
FminFmaxFloatHelper(0, 1, 0, 1, 0, 1);
FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity);
FminFmaxFloatHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0,
-FLT_MAX, -FLT_MIN, -1.0, -0.0,
kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32QuietNaN, kFP32SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
float n = inputs[in];
for (int im = 0; im < count; im++) {
float m = inputs[im];
FminFmaxFloatHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP32PositiveInfinity),
MinMaxHelper(n, m, false, kFP32NegativeInfinity));
}
}
}
TEST(fccmp) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 0.5);
__ Fmov(d18, -0.5);
__ Fmov(d19, -1.0);
__ Mov(x20, 0);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, NoFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, VFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CFlag, ge);
__ Mrs(x2, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CVFlag, lt);
__ Mrs(x3, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZFlag, le);
__ Mrs(x4, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZVFlag, gt);
__ Mrs(x5, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, ZCVFlag, ls);
__ Mrs(x6, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, NFlag, hi);
__ Mrs(x7, NZCV);
__ fccmp(s16, s16, NFlag, al);
__ Mrs(x8, NZCV);
__ fccmp(d18, d18, NFlag, nv);
__ Mrs(x9, NZCV);
END();
RUN();
CHECK_EQUAL_32(ZCFlag, w0);
CHECK_EQUAL_32(VFlag, w1);
CHECK_EQUAL_32(NFlag, w2);
CHECK_EQUAL_32(CVFlag, w3);
CHECK_EQUAL_32(ZCFlag, w4);
CHECK_EQUAL_32(ZVFlag, w5);
CHECK_EQUAL_32(CFlag, w6);
CHECK_EQUAL_32(NFlag, w7);
CHECK_EQUAL_32(ZCFlag, w8);
CHECK_EQUAL_32(ZCFlag, w9);
}
TEST(fcmp) {
INIT_V8();
SETUP();
START();
// Some of these tests require a floating-point scratch register assigned to
// the macro assembler, but most do not.
{
// We're going to mess around with the available scratch registers in this
// test. A UseScratchRegisterScope will make sure that they are restored to
// the default values once we're finished.
UseScratchRegisterScope temps(&masm);
masm.FPTmpList()->set_list(0);
__ Fmov(s8, 0.0);
__ Fmov(s9, 0.5);
__ Mov(w19, 0x7F800001); // Single precision NaN.
__ Fmov(s18, w19);
__ Fcmp(s8, s8);
__ Mrs(x0, NZCV);
__ Fcmp(s8, s9);
__ Mrs(x1, NZCV);
__ Fcmp(s9, s8);
__ Mrs(x2, NZCV);
__ Fcmp(s8, s18);
__ Mrs(x3, NZCV);
__ Fcmp(s18, s18);
__ Mrs(x4, NZCV);
__ Fcmp(s8, 0.0);
__ Mrs(x5, NZCV);
masm.FPTmpList()->set_list(d0.bit());
__ Fcmp(s8, 255.0);
masm.FPTmpList()->set_list(0);
__ Mrs(x6, NZCV);
__ Fmov(d19, 0.0);
__ Fmov(d20, 0.5);
__ Mov(x21, 0x7FF0000000000001UL); // Double precision NaN.
__ Fmov(d21, x21);
__ Fcmp(d19, d19);
__ Mrs(x10, NZCV);
__ Fcmp(d19, d20);
__ Mrs(x11, NZCV);
__ Fcmp(d20, d19);
__ Mrs(x12, NZCV);
__ Fcmp(d19, d21);
__ Mrs(x13, NZCV);
__ Fcmp(d21, d21);
__ Mrs(x14, NZCV);
__ Fcmp(d19, 0.0);
__ Mrs(x15, NZCV);
masm.FPTmpList()->set_list(d0.bit());
__ Fcmp(d19, 12.3456);
masm.FPTmpList()->set_list(0);
__ Mrs(x16, NZCV);
}
END();
RUN();
CHECK_EQUAL_32(ZCFlag, w0);
CHECK_EQUAL_32(NFlag, w1);
CHECK_EQUAL_32(CFlag, w2);
CHECK_EQUAL_32(CVFlag, w3);
CHECK_EQUAL_32(CVFlag, w4);
CHECK_EQUAL_32(ZCFlag, w5);
CHECK_EQUAL_32(NFlag, w6);
CHECK_EQUAL_32(ZCFlag, w10);
CHECK_EQUAL_32(NFlag, w11);
CHECK_EQUAL_32(CFlag, w12);
CHECK_EQUAL_32(CVFlag, w13);
CHECK_EQUAL_32(CVFlag, w14);
CHECK_EQUAL_32(ZCFlag, w15);
CHECK_EQUAL_32(NFlag, w16);
}
TEST(fcsel) {
INIT_V8();
SETUP();
START();
__ Mov(x16, 0);
__ Fmov(s16, 1.0);
__ Fmov(s17, 2.0);
__ Fmov(d18, 3.0);
__ Fmov(d19, 4.0);
__ Cmp(x16, 0);
__ Fcsel(s0, s16, s17, eq);
__ Fcsel(s1, s16, s17, ne);
__ Fcsel(d2, d18, d19, eq);
__ Fcsel(d3, d18, d19, ne);
__ fcsel(s4, s16, s17, al);
__ fcsel(d5, d18, d19, nv);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(2.0, s1);
CHECK_EQUAL_FP64(3.0, d2);
CHECK_EQUAL_FP64(4.0, d3);
CHECK_EQUAL_FP32(1.0, s4);
CHECK_EQUAL_FP64(3.0, d5);
}
TEST(fneg) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 0.0);
__ Fmov(s18, kFP32PositiveInfinity);
__ Fmov(d19, 1.0);
__ Fmov(d20, 0.0);
__ Fmov(d21, kFP64PositiveInfinity);
__ Fneg(s0, s16);
__ Fneg(s1, s0);
__ Fneg(s2, s17);
__ Fneg(s3, s2);
__ Fneg(s4, s18);
__ Fneg(s5, s4);
__ Fneg(d6, d19);
__ Fneg(d7, d6);
__ Fneg(d8, d20);
__ Fneg(d9, d8);
__ Fneg(d10, d21);
__ Fneg(d11, d10);
END();
RUN();
CHECK_EQUAL_FP32(-1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(-0.0, s2);
CHECK_EQUAL_FP32(0.0, s3);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s4);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5);
CHECK_EQUAL_FP64(-1.0, d6);
CHECK_EQUAL_FP64(1.0, d7);
CHECK_EQUAL_FP64(-0.0, d8);
CHECK_EQUAL_FP64(0.0, d9);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d10);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d11);
}
TEST(fabs) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, -1.0);
__ Fmov(s17, -0.0);
__ Fmov(s18, kFP32NegativeInfinity);
__ Fmov(d19, -1.0);
__ Fmov(d20, -0.0);
__ Fmov(d21, kFP64NegativeInfinity);
__ Fabs(s0, s16);
__ Fabs(s1, s0);
__ Fabs(s2, s17);
__ Fabs(s3, s18);
__ Fabs(d4, d19);
__ Fabs(d5, d4);
__ Fabs(d6, d20);
__ Fabs(d7, d21);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(0.0, s2);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s3);
CHECK_EQUAL_FP64(1.0, d4);
CHECK_EQUAL_FP64(1.0, d5);
CHECK_EQUAL_FP64(0.0, d6);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d7);
}
TEST(fsqrt) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 1.0);
__ Fmov(s18, 0.25);
__ Fmov(s19, 65536.0);
__ Fmov(s20, -0.0);
__ Fmov(s21, kFP32PositiveInfinity);
__ Fmov(s22, -1.0);
__ Fmov(d23, 0.0);
__ Fmov(d24, 1.0);
__ Fmov(d25, 0.25);
__ Fmov(d26, 4294967296.0);
__ Fmov(d27, -0.0);
__ Fmov(d28, kFP64PositiveInfinity);
__ Fmov(d29, -1.0);
__ Fsqrt(s0, s16);
__ Fsqrt(s1, s17);
__ Fsqrt(s2, s18);
__ Fsqrt(s3, s19);
__ Fsqrt(s4, s20);
__ Fsqrt(s5, s21);
__ Fsqrt(s6, s22);
__ Fsqrt(d7, d23);
__ Fsqrt(d8, d24);
__ Fsqrt(d9, d25);
__ Fsqrt(d10, d26);
__ Fsqrt(d11, d27);
__ Fsqrt(d12, d28);
__ Fsqrt(d13, d29);
END();
RUN();
CHECK_EQUAL_FP32(0.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(0.5, s2);
CHECK_EQUAL_FP32(256.0, s3);
CHECK_EQUAL_FP32(-0.0, s4);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s5);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s6);
CHECK_EQUAL_FP64(0.0, d7);
CHECK_EQUAL_FP64(1.0, d8);
CHECK_EQUAL_FP64(0.5, d9);
CHECK_EQUAL_FP64(65536.0, d10);
CHECK_EQUAL_FP64(-0.0, d11);
CHECK_EQUAL_FP64(kFP32PositiveInfinity, d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
}
TEST(frinta) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frinta(s0, s16);
__ Frinta(s1, s17);
__ Frinta(s2, s18);
__ Frinta(s3, s19);
__ Frinta(s4, s20);
__ Frinta(s5, s21);
__ Frinta(s6, s22);
__ Frinta(s7, s23);
__ Frinta(s8, s24);
__ Frinta(s9, s25);
__ Frinta(s10, s26);
__ Frinta(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frinta(d12, d16);
__ Frinta(d13, d17);
__ Frinta(d14, d18);
__ Frinta(d15, d19);
__ Frinta(d16, d20);
__ Frinta(d17, d21);
__ Frinta(d18, d22);
__ Frinta(d19, d23);
__ Frinta(d20, d24);
__ Frinta(d21, d25);
__ Frinta(d22, d26);
__ Frinta(d23, d27);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(2.0, s2);
CHECK_EQUAL_FP32(2.0, s3);
CHECK_EQUAL_FP32(3.0, s4);
CHECK_EQUAL_FP32(-2.0, s5);
CHECK_EQUAL_FP32(-3.0, s6);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8);
CHECK_EQUAL_FP32(0.0, s9);
CHECK_EQUAL_FP32(-0.0, s10);
CHECK_EQUAL_FP32(-0.0, s11);
CHECK_EQUAL_FP64(1.0, d12);
CHECK_EQUAL_FP64(1.0, d13);
CHECK_EQUAL_FP64(2.0, d14);
CHECK_EQUAL_FP64(2.0, d15);
CHECK_EQUAL_FP64(3.0, d16);
CHECK_EQUAL_FP64(-2.0, d17);
CHECK_EQUAL_FP64(-3.0, d18);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20);
CHECK_EQUAL_FP64(0.0, d21);
CHECK_EQUAL_FP64(-0.0, d22);
CHECK_EQUAL_FP64(-0.0, d23);
}
TEST(frintm) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintm(s0, s16);
__ Frintm(s1, s17);
__ Frintm(s2, s18);
__ Frintm(s3, s19);
__ Frintm(s4, s20);
__ Frintm(s5, s21);
__ Frintm(s6, s22);
__ Frintm(s7, s23);
__ Frintm(s8, s24);
__ Frintm(s9, s25);
__ Frintm(s10, s26);
__ Frintm(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintm(d12, d16);
__ Frintm(d13, d17);
__ Frintm(d14, d18);
__ Frintm(d15, d19);
__ Frintm(d16, d20);
__ Frintm(d17, d21);
__ Frintm(d18, d22);
__ Frintm(d19, d23);
__ Frintm(d20, d24);
__ Frintm(d21, d25);
__ Frintm(d22, d26);
__ Frintm(d23, d27);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(1.0, s2);
CHECK_EQUAL_FP32(1.0, s3);
CHECK_EQUAL_FP32(2.0, s4);
CHECK_EQUAL_FP32(-2.0, s5);
CHECK_EQUAL_FP32(-3.0, s6);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8);
CHECK_EQUAL_FP32(0.0, s9);
CHECK_EQUAL_FP32(-0.0, s10);
CHECK_EQUAL_FP32(-1.0, s11);
CHECK_EQUAL_FP64(1.0, d12);
CHECK_EQUAL_FP64(1.0, d13);
CHECK_EQUAL_FP64(1.0, d14);
CHECK_EQUAL_FP64(1.0, d15);
CHECK_EQUAL_FP64(2.0, d16);
CHECK_EQUAL_FP64(-2.0, d17);
CHECK_EQUAL_FP64(-3.0, d18);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20);
CHECK_EQUAL_FP64(0.0, d21);
CHECK_EQUAL_FP64(-0.0, d22);
CHECK_EQUAL_FP64(-1.0, d23);
}
TEST(frintn) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintn(s0, s16);
__ Frintn(s1, s17);
__ Frintn(s2, s18);
__ Frintn(s3, s19);
__ Frintn(s4, s20);
__ Frintn(s5, s21);
__ Frintn(s6, s22);
__ Frintn(s7, s23);
__ Frintn(s8, s24);
__ Frintn(s9, s25);
__ Frintn(s10, s26);
__ Frintn(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintn(d12, d16);
__ Frintn(d13, d17);
__ Frintn(d14, d18);
__ Frintn(d15, d19);
__ Frintn(d16, d20);
__ Frintn(d17, d21);
__ Frintn(d18, d22);
__ Frintn(d19, d23);
__ Frintn(d20, d24);
__ Frintn(d21, d25);
__ Frintn(d22, d26);
__ Frintn(d23, d27);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(2.0, s2);
CHECK_EQUAL_FP32(2.0, s3);
CHECK_EQUAL_FP32(2.0, s4);
CHECK_EQUAL_FP32(-2.0, s5);
CHECK_EQUAL_FP32(-2.0, s6);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8);
CHECK_EQUAL_FP32(0.0, s9);
CHECK_EQUAL_FP32(-0.0, s10);
CHECK_EQUAL_FP32(-0.0, s11);
CHECK_EQUAL_FP64(1.0, d12);
CHECK_EQUAL_FP64(1.0, d13);
CHECK_EQUAL_FP64(2.0, d14);
CHECK_EQUAL_FP64(2.0, d15);
CHECK_EQUAL_FP64(2.0, d16);
CHECK_EQUAL_FP64(-2.0, d17);
CHECK_EQUAL_FP64(-2.0, d18);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20);
CHECK_EQUAL_FP64(0.0, d21);
CHECK_EQUAL_FP64(-0.0, d22);
CHECK_EQUAL_FP64(-0.0, d23);
}
TEST(frintp) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintp(s0, s16);
__ Frintp(s1, s17);
__ Frintp(s2, s18);
__ Frintp(s3, s19);
__ Frintp(s4, s20);
__ Frintp(s5, s21);
__ Frintp(s6, s22);
__ Frintp(s7, s23);
__ Frintp(s8, s24);
__ Frintp(s9, s25);
__ Frintp(s10, s26);
__ Frintp(s11, s27);
__ Fmov(d16, -0.5);
__ Fmov(d17, -0.8);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintp(d12, d16);
__ Frintp(d13, d17);
__ Frintp(d14, d18);
__ Frintp(d15, d19);
__ Frintp(d16, d20);
__ Frintp(d17, d21);
__ Frintp(d18, d22);
__ Frintp(d19, d23);
__ Frintp(d20, d24);
__ Frintp(d21, d25);
__ Frintp(d22, d26);
__ Frintp(d23, d27);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(2.0, s1);
CHECK_EQUAL_FP32(2.0, s2);
CHECK_EQUAL_FP32(2.0, s3);
CHECK_EQUAL_FP32(3.0, s4);
CHECK_EQUAL_FP32(-1.0, s5);
CHECK_EQUAL_FP32(-2.0, s6);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8);
CHECK_EQUAL_FP32(0.0, s9);
CHECK_EQUAL_FP32(-0.0, s10);
CHECK_EQUAL_FP32(-0.0, s11);
CHECK_EQUAL_FP64(-0.0, d12);
CHECK_EQUAL_FP64(-0.0, d13);
CHECK_EQUAL_FP64(2.0, d14);
CHECK_EQUAL_FP64(2.0, d15);
CHECK_EQUAL_FP64(3.0, d16);
CHECK_EQUAL_FP64(-1.0, d17);
CHECK_EQUAL_FP64(-2.0, d18);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d19);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d20);
CHECK_EQUAL_FP64(0.0, d21);
CHECK_EQUAL_FP64(-0.0, d22);
CHECK_EQUAL_FP64(-0.0, d23);
}
TEST(frintz) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Frintz(s0, s16);
__ Frintz(s1, s17);
__ Frintz(s2, s18);
__ Frintz(s3, s19);
__ Frintz(s4, s20);
__ Frintz(s5, s21);
__ Frintz(s6, s22);
__ Frintz(s7, s23);
__ Frintz(s8, s24);
__ Frintz(s9, s25);
__ Frintz(s10, s26);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Frintz(d11, d16);
__ Frintz(d12, d17);
__ Frintz(d13, d18);
__ Frintz(d14, d19);
__ Frintz(d15, d20);
__ Frintz(d16, d21);
__ Frintz(d17, d22);
__ Frintz(d18, d23);
__ Frintz(d19, d24);
__ Frintz(d20, d25);
__ Frintz(d21, d26);
END();
RUN();
CHECK_EQUAL_FP32(1.0, s0);
CHECK_EQUAL_FP32(1.0, s1);
CHECK_EQUAL_FP32(1.0, s2);
CHECK_EQUAL_FP32(1.0, s3);
CHECK_EQUAL_FP32(2.0, s4);
CHECK_EQUAL_FP32(-1.0, s5);
CHECK_EQUAL_FP32(-2.0, s6);
CHECK_EQUAL_FP32(kFP32PositiveInfinity, s7);
CHECK_EQUAL_FP32(kFP32NegativeInfinity, s8);
CHECK_EQUAL_FP32(0.0, s9);
CHECK_EQUAL_FP32(-0.0, s10);
CHECK_EQUAL_FP64(1.0, d11);
CHECK_EQUAL_FP64(1.0, d12);
CHECK_EQUAL_FP64(1.0, d13);
CHECK_EQUAL_FP64(1.0, d14);
CHECK_EQUAL_FP64(2.0, d15);
CHECK_EQUAL_FP64(-1.0, d16);
CHECK_EQUAL_FP64(-2.0, d17);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d18);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d19);
CHECK_EQUAL_FP64(0.0, d20);
CHECK_EQUAL_FP64(-0.0, d21);
}
TEST(fcvt_ds) {
INIT_V8();
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, FLT_MAX);
__ Fmov(s28, FLT_MIN);
__ Fmov(s29, bit_cast<float>(0x7FC12345)); // Quiet NaN.
__ Fmov(s30, bit_cast<float>(0x7F812345)); // Signalling NaN.
__ Fcvt(d0, s16);
__ Fcvt(d1, s17);
__ Fcvt(d2, s18);
__ Fcvt(d3, s19);
__ Fcvt(d4, s20);
__ Fcvt(d5, s21);
__ Fcvt(d6, s22);
__ Fcvt(d7, s23);
__ Fcvt(d8, s24);
__ Fcvt(d9, s25);
__ Fcvt(d10, s26);
__ Fcvt(d11, s27);
__ Fcvt(d12, s28);
__ Fcvt(d13, s29);
__ Fcvt(d14, s30);
END();
RUN();
CHECK_EQUAL_FP64(1.0f, d0);
CHECK_EQUAL_FP64(1.1f, d1);
CHECK_EQUAL_FP64(1.5f, d2);
CHECK_EQUAL_FP64(1.9f, d3);
CHECK_EQUAL_FP64(2.5f, d4);
CHECK_EQUAL_FP64(-1.5f, d5);
CHECK_EQUAL_FP64(-2.5f, d6);
CHECK_EQUAL_FP64(kFP64PositiveInfinity, d7);
CHECK_EQUAL_FP64(kFP64NegativeInfinity, d8);
CHECK_EQUAL_FP64(0.0f, d9);
CHECK_EQUAL_FP64(-0.0f, d10);
CHECK_EQUAL_FP64(FLT_MAX, d11);
CHECK_EQUAL_FP64(FLT_MIN, d12);
// Check that the NaN payload is preserved according to ARM64 conversion
// rules:
// - The sign bit is preserved.
// - The top bit of the mantissa is forced to 1 (making it a quiet NaN).
// - The remaining mantissa bits are copied until they run out.
// - The low-order bits that haven't already been assigned are set to 0.
CHECK_EQUAL_FP64(bit_cast<double>(0x7FF82468A0000000), d13);
CHECK_EQUAL_FP64(bit_cast<double>(0x7FF82468A0000000), d14);
}
TEST(fcvt_sd) {
INIT_V8();
// There are a huge number of corner-cases to check, so this test iterates
// through a list. The list is then negated and checked again (since the sign
// is irrelevant in ties-to-even rounding), so the list shouldn't include any
// negative values.
//
// Note that this test only checks ties-to-even rounding, because that is all
// that the simulator supports.
struct {
double in;
float expected;
} test[] = {
// Check some simple conversions.
{0.0, 0.0f},
{1.0, 1.0f},
{1.5, 1.5f},
{2.0, 2.0f},
{FLT_MAX, FLT_MAX},
// - The smallest normalized float.
{pow(2.0, -126), powf(2, -126)},
// - Normal floats that need (ties-to-even) rounding.
// For normalized numbers:
// bit 29 (0x0000000020000000) is the lowest-order bit which will
// fit in the float's mantissa.
{bit_cast<double>(0x3FF0000000000000), bit_cast<float>(0x3F800000)},
{bit_cast<double>(0x3FF0000000000001), bit_cast<float>(0x3F800000)},
{bit_cast<double>(0x3FF0000010000000), bit_cast<float>(0x3F800000)},
{bit_cast<double>(0x3FF0000010000001), bit_cast<float>(0x3F800001)},
{bit_cast<double>(0x3FF0000020000000), bit_cast<float>(0x3F800001)},
{bit_cast<double>(0x3FF0000020000001), bit_cast<float>(0x3F800001)},
{bit_cast<double>(0x3FF0000030000000), bit_cast<float>(0x3F800002)},
{bit_cast<double>(0x3FF0000030000001), bit_cast<float>(0x3F800002)},
{bit_cast<double>(0x3FF0000040000000), bit_cast<float>(0x3F800002)},
{bit_cast<double>(0x3FF0000040000001), bit_cast<float>(0x3F800002)},
{bit_cast<double>(0x3FF0000050000000), bit_cast<float>(0x3F800002)},
{bit_cast<double>(0x3FF0000050000001), bit_cast<float>(0x3F800003)},
{bit_cast<double>(0x3FF0000060000000), bit_cast<float>(0x3F800003)},
// - A mantissa that overflows into the exponent during rounding.
{bit_cast<double>(0x3FEFFFFFF0000000), bit_cast<float>(0x3F800000)},
// - The largest double that rounds to a normal float.
{bit_cast<double>(0x47EFFFFFEFFFFFFF), bit_cast<float>(0x7F7FFFFF)},
// Doubles that are too big for a float.
{kFP64PositiveInfinity, kFP32PositiveInfinity},
{DBL_MAX, kFP32PositiveInfinity},
// - The smallest exponent that's too big for a float.
{pow(2.0, 128), kFP32PositiveInfinity},
// - This exponent is in range, but the value rounds to infinity.
{bit_cast<double>(0x47EFFFFFF0000000), kFP32PositiveInfinity},
// Doubles that are too small for a float.
// - The smallest (subnormal) double.
{DBL_MIN, 0.0},
// - The largest double which is too small for a subnormal float.
{bit_cast<double>(0x3690000000000000), bit_cast<float>(0x00000000)},
// Normal doubles that become subnormal floats.
// - The largest subnormal float.
{bit_cast<double>(0x380FFFFFC0000000), bit_cast<float>(0x007FFFFF)},
// - The smallest subnormal float.
{bit_cast<double>(0x36A0000000000000), bit_cast<float>(0x00000001)},
// - Subnormal floats that need (ties-to-even) rounding.
// For these subnormals:
// bit 34 (0x0000000400000000) is the lowest-order bit which will
// fit in the float's mantissa.
{bit_cast<double>(0x37C159E000000000), bit_cast<float>(0x00045678)},
{bit_cast<double>(0x37C159E000000001), bit_cast<float>(0x00045678)},
{bit_cast<double>(0x37C159E200000000), bit_cast<float>(0x00045678)},
{bit_cast<double>(0x37C159E200000001), bit_cast<float>(0x00045679)},
{bit_cast<double>(0x37C159E400000000), bit_cast<float>(0x00045679)},
{bit_cast<double>(0x37C159E400000001), bit_cast<float>(0x00045679)},
{bit_cast<double>(0x37C159E600000000), bit_cast<float>(0x0004567A)},
{bit_cast<double>(0x37C159E600000001), bit_cast<float>(0x0004567A)},
{bit_cast<double>(0x37C159E800000000), bit_cast<float>(0x0004567A)},
{bit_cast<double>(0x37C159E800000001), bit_cast<float>(0x0004567A)},
{bit_cast<double>(0x37C159EA00000000), bit_cast<float>(0x0004567A)},
{bit_cast<double>(0x37C159EA00000001), bit_cast<float>(0x0004567B)},
{bit_cast<double>(0x37C159EC00000000), bit_cast<float>(0x0004567B)},
// - The smallest double which rounds up to become a subnormal float.
{bit_cast<double>(0x3690000000000001), bit_cast<float>(0x00000001)},
// Check NaN payload preservation.
{bit_cast<double>(0x7FF82468A0000000), bit_cast<float>(0x7FC12345)},
{bit_cast<double>(0x7FF82468BFFFFFFF), bit_cast<float>(0x7FC12345)},
// - Signalling NaNs become quiet NaNs.
{bit_cast<double>(0x7FF02468A0000000), bit_cast<float>(0x7FC12345)},
{bit_cast<double>(0x7FF02468BFFFFFFF), bit_cast<float>(0x7FC12345)},
{bit_cast<double>(0x7FF000001FFFFFFF), bit_cast<float>(0x7FC00000)},
};
int count = sizeof(test) / sizeof(test[0]);
for (int i = 0; i < count; i++) {
double in = test[i].in;
float expected = test[i].expected;
// We only expect positive input.
CHECK_EQ(std::signbit(in), 0);
CHECK_EQ(std::signbit(expected), 0);
SETUP();
START();
__ Fmov(d10, in);
__ Fcvt(s20, d10);
__ Fmov(d11, -in);
__ Fcvt(s21, d11);
END();
RUN();
CHECK_EQUAL_FP32(expected, s20);
CHECK_EQUAL_FP32(-expected, s21);
}
}
TEST(fcvtas) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 2.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtas(w0, s0);
__ Fcvtas(w1, s1);
__ Fcvtas(w2, s2);
__ Fcvtas(w3, s3);
__ Fcvtas(w4, s4);
__ Fcvtas(w5, s5);
__ Fcvtas(w6, s6);
__ Fcvtas(w7, s7);
__ Fcvtas(w8, d8);
__ Fcvtas(w9, d9);
__ Fcvtas(w10, d10);
__ Fcvtas(w11, d11);
__ Fcvtas(w12, d12);
__ Fcvtas(w13, d13);
__ Fcvtas(w14, d14);
__ Fcvtas(w15, d15);
__ Fcvtas(x17, s17);
__ Fcvtas(x19, s19);
__ Fcvtas(x20, s20);
__ Fcvtas(x21, s21);
__ Fcvtas(x22, s22);
__ Fcvtas(x23, s23);
__ Fcvtas(x24, d24);
__ Fcvtas(x25, d25);
__ Fcvtas(x26, d26);
__ Fcvtas(x27, d27);
__ Fcvtas(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtas(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtas(x29, d29);
__ Fcvtas(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(3, x2);
CHECK_EQUAL_64(0xFFFFFFFD, x3);
CHECK_EQUAL_64(0x7FFFFFFF, x4);
CHECK_EQUAL_64(0x80000000, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0x80000080, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(3, x10);
CHECK_EQUAL_64(0xFFFFFFFD, x11);
CHECK_EQUAL_64(0x7FFFFFFF, x12);
CHECK_EQUAL_64(0x80000000, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x80000001, x15);
CHECK_EQUAL_64(3, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFDUL, x19);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x8000000000000000UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x8000008000000000UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(3, x25);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFDUL, x26);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0x8000000000000000UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x8000000000000400UL, x30);
}
TEST(fcvtau) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xFFFFFF00); // Largest float < UINT32_MAX.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xFFFFFFFE);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 2.5);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xFFFFFF0000000000UL); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xFFFFFFFFFFFFF800UL); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000UL);
__ Fcvtau(w0, s0);
__ Fcvtau(w1, s1);
__ Fcvtau(w2, s2);
__ Fcvtau(w3, s3);
__ Fcvtau(w4, s4);
__ Fcvtau(w5, s5);
__ Fcvtau(w6, s6);
__ Fcvtau(w8, d8);
__ Fcvtau(w9, d9);
__ Fcvtau(w10, d10);
__ Fcvtau(w11, d11);
__ Fcvtau(w12, d12);
__ Fcvtau(w13, d13);
__ Fcvtau(w14, d14);
__ Fcvtau(w15, d15);
__ Fcvtau(x16, s16);
__ Fcvtau(x17, s17);
__ Fcvtau(x7, s18);
__ Fcvtau(x19, s19);
__ Fcvtau(x20, s20);
__ Fcvtau(x21, s21);
__ Fcvtau(x22, s22);
__ Fcvtau(x24, d24);
__ Fcvtau(x25, d25);
__ Fcvtau(x26, d26);
__ Fcvtau(x27, d27);
__ Fcvtau(x28, d28);
__ Fcvtau(x29, d29);
__ Fcvtau(w30, s30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(3, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(0xFFFFFFFF, x4);
CHECK_EQUAL_64(0, x5);
CHECK_EQUAL_64(0xFFFFFF00, x6);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(3, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0xFFFFFFFF, x12);
CHECK_EQUAL_64(0, x13);
CHECK_EQUAL_64(0xFFFFFFFE, x14);
CHECK_EQUAL_64(1, x16);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(3, x7);
CHECK_EQUAL_64(0, x19);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0, x21);
CHECK_EQUAL_64(0xFFFFFF0000000000UL, x22);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(3, x25);
CHECK_EQUAL_64(0, x26);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0, x28);
CHECK_EQUAL_64(0xFFFFFFFFFFFFF800UL, x29);
CHECK_EQUAL_64(0xFFFFFFFF, x30);
}
TEST(fcvtms) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 1.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtms(w0, s0);
__ Fcvtms(w1, s1);
__ Fcvtms(w2, s2);
__ Fcvtms(w3, s3);
__ Fcvtms(w4, s4);
__ Fcvtms(w5, s5);
__ Fcvtms(w6, s6);
__ Fcvtms(w7, s7);
__ Fcvtms(w8, d8);
__ Fcvtms(w9, d9);
__ Fcvtms(w10, d10);
__ Fcvtms(w11, d11);
__ Fcvtms(w12, d12);
__ Fcvtms(w13, d13);
__ Fcvtms(w14, d14);
__ Fcvtms(w15, d15);
__ Fcvtms(x17, s17);
__ Fcvtms(x19, s19);
__ Fcvtms(x20, s20);
__ Fcvtms(x21, s21);
__ Fcvtms(x22, s22);
__ Fcvtms(x23, s23);
__ Fcvtms(x24, d24);
__ Fcvtms(x25, d25);
__ Fcvtms(x26, d26);
__ Fcvtms(x27, d27);
__ Fcvtms(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtms(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtms(x29, d29);
__ Fcvtms(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0xFFFFFFFE, x3);
CHECK_EQUAL_64(0x7FFFFFFF, x4);
CHECK_EQUAL_64(0x80000000, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0x80000080, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(1, x10);
CHECK_EQUAL_64(0xFFFFFFFE, x11);
CHECK_EQUAL_64(0x7FFFFFFF, x12);
CHECK_EQUAL_64(0x80000000, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x80000001, x15);
CHECK_EQUAL_64(1, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x19);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x8000000000000000UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x8000008000000000UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(1, x25);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x26);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0x8000000000000000UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x8000000000000400UL, x30);
}
TEST(fcvtmu) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 1.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtmu(w0, s0);
__ Fcvtmu(w1, s1);
__ Fcvtmu(w2, s2);
__ Fcvtmu(w3, s3);
__ Fcvtmu(w4, s4);
__ Fcvtmu(w5, s5);
__ Fcvtmu(w6, s6);
__ Fcvtmu(w7, s7);
__ Fcvtmu(w8, d8);
__ Fcvtmu(w9, d9);
__ Fcvtmu(w10, d10);
__ Fcvtmu(w11, d11);
__ Fcvtmu(w12, d12);
__ Fcvtmu(w13, d13);
__ Fcvtmu(w14, d14);
__ Fcvtmu(w15, d15);
__ Fcvtmu(x17, s17);
__ Fcvtmu(x19, s19);
__ Fcvtmu(x20, s20);
__ Fcvtmu(x21, s21);
__ Fcvtmu(x22, s22);
__ Fcvtmu(x23, s23);
__ Fcvtmu(x24, d24);
__ Fcvtmu(x25, d25);
__ Fcvtmu(x26, d26);
__ Fcvtmu(x27, d27);
__ Fcvtmu(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtmu(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtmu(x29, d29);
__ Fcvtmu(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(0xFFFFFFFF, x4);
CHECK_EQUAL_64(0, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(1, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0xFFFFFFFF, x12);
CHECK_EQUAL_64(0, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x0, x15);
CHECK_EQUAL_64(1, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0x0UL, x19);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x0UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x0UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(1, x25);
CHECK_EQUAL_64(0x0UL, x26);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0x0UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x0UL, x30);
}
TEST(fcvtn) {
INIT_V8();
SETUP();
START();
double src[2] = {1.0f, 1.0f};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
__ Mov(x0, src_base);
__ Ldr(q0, MemOperand(x0, 0));
__ Fcvtn(q0.V2S(), q0.V2D());
END();
RUN();
// Ensure top half is cleared.
CHECK_EQUAL_128(0, 0x3f800000'3f800000, q0);
}
TEST(fcvtns) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 1.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtns(w0, s0);
__ Fcvtns(w1, s1);
__ Fcvtns(w2, s2);
__ Fcvtns(w3, s3);
__ Fcvtns(w4, s4);
__ Fcvtns(w5, s5);
__ Fcvtns(w6, s6);
__ Fcvtns(w7, s7);
__ Fcvtns(w8, d8);
__ Fcvtns(w9, d9);
__ Fcvtns(w10, d10);
__ Fcvtns(w11, d11);
__ Fcvtns(w12, d12);
__ Fcvtns(w13, d13);
__ Fcvtns(w14, d14);
__ Fcvtns(w15, d15);
__ Fcvtns(x17, s17);
__ Fcvtns(x19, s19);
__ Fcvtns(x20, s20);
__ Fcvtns(x21, s21);
__ Fcvtns(x22, s22);
__ Fcvtns(x23, s23);
__ Fcvtns(x24, d24);
__ Fcvtns(x25, d25);
__ Fcvtns(x26, d26);
__ Fcvtns(x27, d27);
// __ Fcvtns(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtns(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtns(x29, d29);
__ Fcvtns(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(2, x2);
CHECK_EQUAL_64(0xFFFFFFFE, x3);
CHECK_EQUAL_64(0x7FFFFFFF, x4);
CHECK_EQUAL_64(0x80000000, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0x80000080, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(2, x10);
CHECK_EQUAL_64(0xFFFFFFFE, x11);
CHECK_EQUAL_64(0x7FFFFFFF, x12);
CHECK_EQUAL_64(0x80000000, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x80000001, x15);
CHECK_EQUAL_64(2, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x19);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x8000000000000000UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x8000008000000000UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(2, x25);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFEUL, x26);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27);
// CHECK_EQUAL_64(0x8000000000000000UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x8000000000000400UL, x30);
}
TEST(fcvtnu) {
INIT_V8();
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xFFFFFF00); // Largest float < UINT32_MAX.
__ Fmov(s7, 1.5);
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xFFFFFFFE);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xFFFFFF0000000000UL); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xFFFFFFFFFFFFF800UL); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000UL);
__ Fcvtnu(w0, s0);
__ Fcvtnu(w1, s1);
__ Fcvtnu(w2, s2);
__ Fcvtnu(w3, s3);
__ Fcvtnu(w4, s4);
__ Fcvtnu(w5, s5);
__ Fcvtnu(w6, s6);
__ Fcvtnu(x7, s7);
__ Fcvtnu(w8, d8);
__ Fcvtnu(w9, d9);
__ Fcvtnu(w10, d10);
__ Fcvtnu(w11, d11);
__ Fcvtnu(w12, d12);
__ Fcvtnu(w13, d13);
__ Fcvtnu(w14, d14);
__ Fcvtnu(w15, d15);
__ Fcvtnu(x16, s16);
__ Fcvtnu(x17, s17);
__ Fcvtnu(x19, s19);
__ Fcvtnu(x20, s20);
__ Fcvtnu(x21, s21);
__ Fcvtnu(x22, s22);
__ Fcvtnu(x24, d24);
__ Fcvtnu(x25, d25);
__ Fcvtnu(x26, d26);
__ Fcvtnu(x27, d27);
// __ Fcvtnu(x28, d28);
__ Fcvtnu(x29, d29);
__ Fcvtnu(w30, s30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(2, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(0xFFFFFFFF, x4);
CHECK_EQUAL_64(0, x5);
CHECK_EQUAL_64(0xFFFFFF00, x6);
CHECK_EQUAL_64(2, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(2, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0xFFFFFFFF, x12);
CHECK_EQUAL_64(0, x13);
CHECK_EQUAL_64(0xFFFFFFFE, x14);
CHECK_EQUAL_64(1, x16);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0, x19);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0, x21);
CHECK_EQUAL_64(0xFFFFFF0000000000UL, x22);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(2, x25);
CHECK_EQUAL_64(0, x26);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27);
// CHECK_EQUAL_64(0, x28);
CHECK_EQUAL_64(0xFFFFFFFFFFFFF800UL, x29);
CHECK_EQUAL_64(0xFFFFFFFF, x30);
}
TEST(fcvtzs) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 1.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzs(w0, s0);
__ Fcvtzs(w1, s1);
__ Fcvtzs(w2, s2);
__ Fcvtzs(w3, s3);
__ Fcvtzs(w4, s4);
__ Fcvtzs(w5, s5);
__ Fcvtzs(w6, s6);
__ Fcvtzs(w7, s7);
__ Fcvtzs(w8, d8);
__ Fcvtzs(w9, d9);
__ Fcvtzs(w10, d10);
__ Fcvtzs(w11, d11);
__ Fcvtzs(w12, d12);
__ Fcvtzs(w13, d13);
__ Fcvtzs(w14, d14);
__ Fcvtzs(w15, d15);
__ Fcvtzs(x17, s17);
__ Fcvtzs(x19, s19);
__ Fcvtzs(x20, s20);
__ Fcvtzs(x21, s21);
__ Fcvtzs(x22, s22);
__ Fcvtzs(x23, s23);
__ Fcvtzs(x24, d24);
__ Fcvtzs(x25, d25);
__ Fcvtzs(x26, d26);
__ Fcvtzs(x27, d27);
__ Fcvtzs(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtmu(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtzs(x29, d29);
__ Fcvtzs(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0xFFFFFFFF, x3);
CHECK_EQUAL_64(0x7FFFFFFF, x4);
CHECK_EQUAL_64(0x80000000, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0x80000080, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(1, x10);
CHECK_EQUAL_64(0xFFFFFFFF, x11);
CHECK_EQUAL_64(0x7FFFFFFF, x12);
CHECK_EQUAL_64(0x80000000, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x80000001, x15);
CHECK_EQUAL_64(1, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x19);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x8000000000000000UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x8000008000000000UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(1, x25);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x26);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0x8000000000000000UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x8000000000000400UL, x30);
}
static void FjcvtzsHelper(uint64_t value, uint64_t expected,
uint32_t expected_z) {
SETUP();
START();
__ Fmov(d0, bit_cast<double>(value));
__ Fjcvtzs(w0, d0);
__ Mrs(x1, NZCV);
END();
if (CpuFeatures::IsSupported(JSCVT)) {
RUN();
CHECK_EQUAL_64(expected, x0);
CHECK_EQUAL_32(expected_z, w1);
}
}
TEST(fjcvtzs) {
// Simple values.
FjcvtzsHelper(0x0000000000000000, 0, ZFlag); // 0.0
FjcvtzsHelper(0x0010000000000000, 0, NoFlag); // The smallest normal value.
FjcvtzsHelper(0x3fdfffffffffffff, 0, NoFlag); // The value just below 0.5.
FjcvtzsHelper(0x3fe0000000000000, 0, NoFlag); // 0.5
FjcvtzsHelper(0x3fe0000000000001, 0, NoFlag); // The value just above 0.5.
FjcvtzsHelper(0x3fefffffffffffff, 0, NoFlag); // The value just below 1.0.
FjcvtzsHelper(0x3ff0000000000000, 1, ZFlag); // 1.0
FjcvtzsHelper(0x3ff0000000000001, 1, NoFlag); // The value just above 1.0.
FjcvtzsHelper(0x3ff8000000000000, 1, NoFlag); // 1.5
FjcvtzsHelper(0x4024000000000000, 10, ZFlag); // 10
FjcvtzsHelper(0x7fefffffffffffff, 0, NoFlag); // The largest finite value.
// Infinity.
FjcvtzsHelper(0x7ff0000000000000, 0, NoFlag);
// NaNs.
// - Quiet NaNs
FjcvtzsHelper(0x7ff923456789abcd, 0, NoFlag);
FjcvtzsHelper(0x7ff8000000000000, 0, NoFlag);
// - Signalling NaNs
FjcvtzsHelper(0x7ff123456789abcd, 0, NoFlag);
FjcvtzsHelper(0x7ff0000000000001, 0, NoFlag);
// Subnormals.
// - A recognisable bit pattern.
FjcvtzsHelper(0x000123456789abcd, 0, NoFlag);
// - The largest subnormal value.
FjcvtzsHelper(0x000fffffffffffff, 0, NoFlag);
// - The smallest subnormal value.
FjcvtzsHelper(0x0000000000000001, 0, NoFlag);
// The same values again, but negated.
FjcvtzsHelper(0x8000000000000000, 0, NoFlag);
FjcvtzsHelper(0x8010000000000000, 0, NoFlag);
FjcvtzsHelper(0xbfdfffffffffffff, 0, NoFlag);
FjcvtzsHelper(0xbfe0000000000000, 0, NoFlag);
FjcvtzsHelper(0xbfe0000000000001, 0, NoFlag);
FjcvtzsHelper(0xbfefffffffffffff, 0, NoFlag);
FjcvtzsHelper(0xbff0000000000000, 0xffffffff, ZFlag);
FjcvtzsHelper(0xbff0000000000001, 0xffffffff, NoFlag);
FjcvtzsHelper(0xbff8000000000000, 0xffffffff, NoFlag);
FjcvtzsHelper(0xc024000000000000, 0xfffffff6, ZFlag);
FjcvtzsHelper(0xffefffffffffffff, 0, NoFlag);
FjcvtzsHelper(0xfff0000000000000, 0, NoFlag);
FjcvtzsHelper(0xfff923456789abcd, 0, NoFlag);
FjcvtzsHelper(0xfff8000000000000, 0, NoFlag);
FjcvtzsHelper(0xfff123456789abcd, 0, NoFlag);
FjcvtzsHelper(0xfff0000000000001, 0, NoFlag);
FjcvtzsHelper(0x800123456789abcd, 0, NoFlag);
FjcvtzsHelper(0x800fffffffffffff, 0, NoFlag);
FjcvtzsHelper(0x8000000000000001, 0, NoFlag);
// Test floating-point numbers of every possible exponent, most of the
// expected values are zero but there is a range of exponents where the
// results are shifted parts of this mantissa.
uint64_t mantissa = 0x0001234567890abc;
// Between an exponent of 0 and 52, only some of the top bits of the
// mantissa are above the decimal position of doubles so the mantissa is
// shifted to the right down to just those top bits. Above 52, all bits
// of the mantissa are shifted left above the decimal position until it
// reaches 52 + 64 where all the bits are shifted out of the range of 64-bit
// integers.
int first_exp_boundary = 52;
int second_exp_boundary = first_exp_boundary + 64;
for (int exponent = 0; exponent < 2048; exponent++) {
int e = exponent - 1023;
uint64_t expected = 0;
if (e < 0) {
expected = 0;
} else if (e <= first_exp_boundary) {
expected = (UINT64_C(1) << e) | (mantissa >> (52 - e));
expected &= 0xffffffff;
} else if (e < second_exp_boundary) {
expected = (mantissa << (e - 52)) & 0xffffffff;
} else {
expected = 0;
}
uint64_t value = (static_cast<uint64_t>(exponent) << 52) | mantissa;
FjcvtzsHelper(value, expected, NoFlag);
FjcvtzsHelper(value | kDSignMask, (-expected) & 0xffffffff, NoFlag);
}
}
TEST(fcvtzu) {
INIT_V8();
SETUP();
int64_t scratch = 0;
uintptr_t scratch_base = reinterpret_cast<uintptr_t>(&scratch);
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7FFFFF80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s16, 1.5);
__ Fmov(s17, 1.1);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7FFFFF8000000000UL); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7FFFFFFFFFFFFC00UL); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzu(w0, s0);
__ Fcvtzu(w1, s1);
__ Fcvtzu(w2, s2);
__ Fcvtzu(w3, s3);
__ Fcvtzu(w4, s4);
__ Fcvtzu(w5, s5);
__ Fcvtzu(w6, s6);
__ Fcvtzu(w7, s7);
__ Fcvtzu(w8, d8);
__ Fcvtzu(w9, d9);
__ Fcvtzu(w10, d10);
__ Fcvtzu(w11, d11);
__ Fcvtzu(w12, d12);
__ Fcvtzu(w13, d13);
__ Fcvtzu(w14, d14);
__ Fcvtzu(w15, d15);
__ Fcvtzu(x17, s17);
__ Fcvtzu(x19, s19);
__ Fcvtzu(x20, s20);
__ Fcvtzu(x21, s21);
__ Fcvtzu(x22, s22);
__ Fcvtzu(x23, s23);
__ Fcvtzu(x24, d24);
__ Fcvtzu(x25, d25);
__ Fcvtzu(x26, d26);
__ Fcvtzu(x27, d27);
__ Fcvtzu(x28, d28);
// Save results to the scratch memory, for those that don't fit in registers.
__ Mov(x30, scratch_base);
__ Fcvtzu(x29, s16);
__ Str(x29, MemOperand(x30));
__ Fcvtzu(x29, d29);
__ Fcvtzu(x30, d30);
END();
RUN();
CHECK_EQUAL_64(1, x0);
CHECK_EQUAL_64(1, x1);
CHECK_EQUAL_64(1, x2);
CHECK_EQUAL_64(0, x3);
CHECK_EQUAL_64(0xFFFFFFFF, x4);
CHECK_EQUAL_64(0, x5);
CHECK_EQUAL_64(0x7FFFFF80, x6);
CHECK_EQUAL_64(0, x7);
CHECK_EQUAL_64(1, x8);
CHECK_EQUAL_64(1, x9);
CHECK_EQUAL_64(1, x10);
CHECK_EQUAL_64(0, x11);
CHECK_EQUAL_64(0xFFFFFFFF, x12);
CHECK_EQUAL_64(0, x13);
CHECK_EQUAL_64(0x7FFFFFFE, x14);
CHECK_EQUAL_64(0x0, x15);
CHECK_EQUAL_64(1, scratch);
CHECK_EQUAL_64(1, x17);
CHECK_EQUAL_64(0x0UL, x19);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x20);
CHECK_EQUAL_64(0x0UL, x21);
CHECK_EQUAL_64(0x7FFFFF8000000000UL, x22);
CHECK_EQUAL_64(0x0UL, x23);
CHECK_EQUAL_64(1, x24);
CHECK_EQUAL_64(1, x25);
CHECK_EQUAL_64(0x0UL, x26);
CHECK_EQUAL_64(0xFFFFFFFFFFFFFFFFUL, x27);
CHECK_EQUAL_64(0x0UL, x28);
CHECK_EQUAL_64(0x7FFFFFFFFFFFFC00UL, x29);
CHECK_EQUAL_64(0x0UL, x30);
}
// Test that scvtf and ucvtf can convert the 64-bit input into the expected
// value. All possible values of 'fbits' are tested. The expected value is
// modified accordingly in each case.
//
// The expected value is specified as the bit encoding of the expected double
// produced by scvtf (expected_scvtf_bits) as well as ucvtf
// (expected_ucvtf_bits).
//
// Where the input value is representable by int32_t or uint32_t, conversions
// from W registers will also be tested.
static void TestUScvtfHelper(uint64_t in,
uint64_t expected_scvtf_bits,
uint64_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xFFFFFFFF;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7FFFFFFF;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
double results_scvtf_x[65];
double results_ucvtf_x[65];
double results_scvtf_w[33];
double results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSizeInBits);
// Test integer conversions.
__ Scvtf(d0, x10);
__ Ucvtf(d1, x10);
__ Scvtf(d2, w11);
__ Ucvtf(d3, w11);
__ Str(d0, MemOperand(x0));
__ Str(d1, MemOperand(x1));
__ Str(d2, MemOperand(x2));
__ Str(d3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Scvtf(d2, w11, fbits);
__ Ucvtf(d3, w11, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSize));
__ Str(d1, MemOperand(x1, fbits * kDRegSize));
__ Str(d2, MemOperand(x2, fbits * kDRegSize));
__ Str(d3, MemOperand(x3, fbits * kDRegSize));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSize));
__ Str(d1, MemOperand(x1, fbits * kDRegSize));
}
END();
RUN();
// Check the results.
double expected_scvtf_base = bit_cast<double>(expected_scvtf_bits);
double expected_ucvtf_base = bit_cast<double>(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
double expected_scvtf = expected_scvtf_base / pow(2.0, fbits);
double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits);
CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]);
}
for (int fbits = 33; fbits <= 64; fbits++) {
double expected_scvtf = expected_scvtf_base / pow(2.0, fbits);
double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits);
CHECK_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
CHECK_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
}
}
TEST(scvtf_ucvtf_double) {
INIT_V8();
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000);
TestUScvtfHelper(0x0000000000000001, 0x3FF0000000000000, 0x3FF0000000000000);
TestUScvtfHelper(0x0000000040000000, 0x41D0000000000000, 0x41D0000000000000);
TestUScvtfHelper(0x0000000100000000, 0x41F0000000000000, 0x41F0000000000000);
TestUScvtfHelper(0x4000000000000000, 0x43D0000000000000, 0x43D0000000000000);
// Test mantissa extremities.
TestUScvtfHelper(0x4000000000000400, 0x43D0000000000001, 0x43D0000000000001);
// The largest int32_t that fits in a double.
TestUScvtfHelper(0x000000007FFFFFFF, 0x41DFFFFFFFC00000, 0x41DFFFFFFFC00000);
// Values that would be negative if treated as an int32_t.
TestUScvtfHelper(0x00000000FFFFFFFF, 0x41EFFFFFFFE00000, 0x41EFFFFFFFE00000);
TestUScvtfHelper(0x0000000080000000, 0x41E0000000000000, 0x41E0000000000000);
TestUScvtfHelper(0x0000000080000001, 0x41E0000000200000, 0x41E0000000200000);
// The largest int64_t that fits in a double.
TestUScvtfHelper(0x7FFFFFFFFFFFFC00, 0x43DFFFFFFFFFFFFF, 0x43DFFFFFFFFFFFFF);
// Check for bit pattern reproduction.
TestUScvtfHelper(0x0123456789ABCDE0, 0x43723456789ABCDE, 0x43723456789ABCDE);
TestUScvtfHelper(0x0000000012345678, 0x41B2345678000000, 0x41B2345678000000);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtfHelper(0xFFFFFFFFC0000000, 0xC1D0000000000000, 0x43EFFFFFFFF80000);
TestUScvtfHelper(0xFFFFFFFF00000000, 0xC1F0000000000000, 0x43EFFFFFFFE00000);
TestUScvtfHelper(0xC000000000000000, 0xC3D0000000000000, 0x43E8000000000000);
// Conversions which require rounding.
TestUScvtfHelper(0x1000000000000000, 0x43B0000000000000, 0x43B0000000000000);
TestUScvtfHelper(0x1000000000000001, 0x43B0000000000000, 0x43B0000000000000);
TestUScvtfHelper(0x1000000000000080, 0x43B0000000000000, 0x43B0000000000000);
TestUScvtfHelper(0x1000000000000081, 0x43B0000000000001, 0x43B0000000000001);
TestUScvtfHelper(0x1000000000000100, 0x43B0000000000001, 0x43B0000000000001);
TestUScvtfHelper(0x1000000000000101, 0x43B0000000000001, 0x43B0000000000001);
TestUScvtfHelper(0x1000000000000180, 0x43B0000000000002, 0x43B0000000000002);
TestUScvtfHelper(0x1000000000000181, 0x43B0000000000002, 0x43B0000000000002);
TestUScvtfHelper(0x1000000000000200, 0x43B0000000000002, 0x43B0000000000002);
TestUScvtfHelper(0x1000000000000201, 0x43B0000000000002, 0x43B0000000000002);
TestUScvtfHelper(0x1000000000000280, 0x43B0000000000002, 0x43B0000000000002);
TestUScvtfHelper(0x1000000000000281, 0x43B0000000000003, 0x43B0000000000003);
TestUScvtfHelper(0x1000000000000300, 0x43B0000000000003, 0x43B0000000000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtfHelper(0x8000000000000000, 0xC3E0000000000000, 0x43E0000000000000);
TestUScvtfHelper(0x8000000000000001, 0xC3E0000000000000, 0x43E0000000000000);
TestUScvtfHelper(0x8000000000000200, 0xC3E0000000000000, 0x43E0000000000000);
TestUScvtfHelper(0x8000000000000201, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000000);
TestUScvtfHelper(0x8000000000000400, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000000);
TestUScvtfHelper(0x8000000000000401, 0xC3DFFFFFFFFFFFFF, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000600, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000601, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000800, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000801, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000A00, 0xC3DFFFFFFFFFFFFE, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000A01, 0xC3DFFFFFFFFFFFFD, 0x43E0000000000001);
TestUScvtfHelper(0x8000000000000C00, 0xC3DFFFFFFFFFFFFD, 0x43E0000000000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtfHelper(0x7FFFFFFFFFFFFE00, 0x43E0000000000000, 0x43E0000000000000);
TestUScvtfHelper(0x7FFFFFFFFFFFFFFF, 0x43E0000000000000, 0x43E0000000000000);
TestUScvtfHelper(0xFFFFFFFFFFFFFC00, 0xC090000000000000, 0x43F0000000000000);
TestUScvtfHelper(0xFFFFFFFFFFFFFFFF, 0xBFF0000000000000, 0x43F0000000000000);
}
// The same as TestUScvtfHelper, but convert to floats.
static void TestUScvtf32Helper(uint64_t in,
uint32_t expected_scvtf_bits,
uint32_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xFFFFFFFF;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7FFFFFFF;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
float results_scvtf_x[65];
float results_ucvtf_x[65];
float results_scvtf_w[33];
float results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSizeInBits);
// Test integer conversions.
__ Scvtf(s0, x10);
__ Ucvtf(s1, x10);
__ Scvtf(s2, w11);
__ Ucvtf(s3, w11);
__ Str(s0, MemOperand(x0));
__ Str(s1, MemOperand(x1));
__ Str(s2, MemOperand(x2));
__ Str(s3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Scvtf(s2, w11, fbits);
__ Ucvtf(s3, w11, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSize));
__ Str(s1, MemOperand(x1, fbits * kSRegSize));
__ Str(s2, MemOperand(x2, fbits * kSRegSize));
__ Str(s3, MemOperand(x3, fbits * kSRegSize));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSize));
__ Str(s1, MemOperand(x1, fbits * kSRegSize));
}
END();
RUN();
// Check the results.
float expected_scvtf_base = bit_cast<float>(expected_scvtf_bits);
float expected_ucvtf_base = bit_cast<float>(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
float expected_scvtf = expected_scvtf_base / powf(2, fbits);
float expected_ucvtf = expected_ucvtf_base / powf(2, fbits);
CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]);
}
for (int fbits = 33; fbits <= 64; fbits++) {
float expected_scvtf = expected_scvtf_base / powf(2, fbits);
float expected_ucvtf = expected_ucvtf_base / powf(2, fbits);
CHECK_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
CHECK_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
}
}
TEST(scvtf_ucvtf_float) {
INIT_V8();
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000);
TestUScvtf32Helper(0x0000000000000001, 0x3F800000, 0x3F800000);
TestUScvtf32Helper(0x0000000040000000, 0x4E800000, 0x4E800000);
TestUScvtf32Helper(0x0000000100000000, 0x4F800000, 0x4F800000);
TestUScvtf32Helper(0x4000000000000000, 0x5E800000, 0x5E800000);
// Test mantissa extremities.
TestUScvtf32Helper(0x0000000000800001, 0x4B000001, 0x4B000001);
TestUScvtf32Helper(0x4000008000000000, 0x5E800001, 0x5E800001);
// The largest int32_t that fits in a float.
TestUScvtf32Helper(0x000000007FFFFF80, 0x4EFFFFFF, 0x4EFFFFFF);
// Values that would be negative if treated as an int32_t.
TestUScvtf32Helper(0x00000000FFFFFF00, 0x4F7FFFFF, 0x4F7FFFFF);
TestUScvtf32Helper(0x0000000080000000, 0x4F000000, 0x4F000000);
TestUScvtf32Helper(0x0000000080000100, 0x4F000001, 0x4F000001);
// The largest int64_t that fits in a float.
TestUScvtf32Helper(0x7FFFFF8000000000, 0x5EFFFFFF, 0x5EFFFFFF);
// Check for bit pattern reproduction.
TestUScvtf32Helper(0x0000000000876543, 0x4B076543, 0x4B076543);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtf32Helper(0xFFFFFC0000000000, 0xD4800000, 0x5F7FFFFC);
TestUScvtf32Helper(0xC000000000000000, 0xDE800000, 0x5F400000);
// Conversions which require rounding.
TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003);
TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtf32Helper(0x8000000000000000, 0xDF000000, 0x5F000000);
TestUScvtf32Helper(0x8000000000000001, 0xDF000000, 0x5F000000);
TestUScvtf32Helper(0x8000004000000000, 0xDF000000, 0x5F000000);
TestUScvtf32Helper(0x8000004000000001, 0xDEFFFFFF, 0x5F000000);
TestUScvtf32Helper(0x8000008000000000, 0xDEFFFFFF, 0x5F000000);
TestUScvtf32Helper(0x8000008000000001, 0xDEFFFFFF, 0x5F000001);
TestUScvtf32Helper(0x800000C000000000, 0xDEFFFFFE, 0x5F000001);
TestUScvtf32Helper(0x800000C000000001, 0xDEFFFFFE, 0x5F000001);
TestUScvtf32Helper(0x8000010000000000, 0xDEFFFFFE, 0x5F000001);
TestUScvtf32Helper(0x8000010000000001, 0xDEFFFFFE, 0x5F000001);
TestUScvtf32Helper(0x8000014000000000, 0xDEFFFFFE, 0x5F000001);
TestUScvtf32Helper(0x8000014000000001, 0xDEFFFFFD, 0x5F000001);
TestUScvtf32Helper(0x8000018000000000, 0xDEFFFFFD, 0x5F000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtf32Helper(0x000000007FFFFFC0, 0x4F000000, 0x4F000000);
TestUScvtf32Helper(0x000000007FFFFFFF, 0x4F000000, 0x4F000000);
TestUScvtf32Helper(0x00000000FFFFFF80, 0x4F800000, 0x4F800000);
TestUScvtf32Helper(0x00000000FFFFFFFF, 0x4F800000, 0x4F800000);
TestUScvtf32Helper(0x7FFFFFC000000000, 0x5F000000, 0x5F000000);
TestUScvtf32Helper(0x7FFFFFFFFFFFFFFF, 0x5F000000, 0x5F000000);
TestUScvtf32Helper(0xFFFFFF8000000000, 0xD3000000, 0x5F800000);
TestUScvtf32Helper(0xFFFFFFFFFFFFFFFF, 0xBF800000, 0x5F800000);
}
TEST(system_mrs) {
INIT_V8();
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
__ Mov(w2, 0x80000000);
// Set the Z and C flags.
__ Cmp(w0, w0);
__ Mrs(x3, NZCV);
// Set the N flag.
__ Cmp(w0, w1);
__ Mrs(x4, NZCV);
// Set the Z, C and V flags.
__ Adds(w0, w2, w2);
__ Mrs(x5, NZCV);
// Read the default FPCR.
__ Mrs(x6, FPCR);
END();
RUN();
// NZCV
CHECK_EQUAL_32(ZCFlag, w3);
CHECK_EQUAL_32(NFlag, w4);
CHECK_EQUAL_32(ZCVFlag, w5);
// FPCR
// The default FPCR on Linux-based platforms is 0.
CHECK_EQUAL_32(0, w6);
}
TEST(system_msr) {
INIT_V8();
// All FPCR fields that must be implemented: AHP, DN, FZ, RMode
const uint64_t fpcr_core = 0x07C00000;
// All FPCR fields (including fields which may be read-as-zero):
// Stride, FZ16, Len
// IDE, IXE, UFE, OFE, DZE, IOE
const uint64_t fpcr_all = fpcr_core | 0x003F9F00;
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0x7FFFFFFF);
__ Mov(x7, 0);
__ Mov(x10, NVFlag);
__ Cmp(w0, w0); // Set Z and C.
__ Msr(NZCV, x10); // Set N and V.
// The Msr should have overwritten every flag set by the Cmp.
__ Cinc(x7, x7, mi); // N
__ Cinc(x7, x7, ne); // !Z
__ Cinc(x7, x7, lo); // !C
__ Cinc(x7, x7, vs); // V
__ Mov(x10, ZCFlag);
__ Cmn(w1, w1); // Set N and V.
__ Msr(NZCV, x10); // Set Z and C.
// The Msr should have overwritten every flag set by the Cmn.
__ Cinc(x7, x7, pl); // !N
__ Cinc(x7, x7, eq); // Z
__ Cinc(x7, x7, hs); // C
__ Cinc(x7, x7, vc); // !V
// All core FPCR fields must be writable.
__ Mov(x8, fpcr_core);
__ Msr(FPCR, x8);
__ Mrs(x8, FPCR);
// All FPCR fields, including optional ones. This part of the test doesn't
// achieve much other than ensuring that supported fields can be cleared by
// the next test.
__ Mov(x9, fpcr_all);
__ Msr(FPCR, x9);
__ Mrs(x9, FPCR);
__ And(x9, x9, fpcr_core);
// The undefined bits must ignore writes.
// It's conceivable that a future version of the architecture could use these
// fields (making this test fail), but in the meantime this is a useful test
// for the simulator.
__ Mov(x10, ~fpcr_all);
__ Msr(FPCR, x10);
__ Mrs(x10, FPCR);
END();
RUN();
// We should have incremented x7 (from 0) exactly 8 times.
CHECK_EQUAL_64(8, x7);
CHECK_EQUAL_64(fpcr_core, x8);
CHECK_EQUAL_64(fpcr_core, x9);
CHECK_EQUAL_64(0, x10);
}
TEST(system_pauth_b) {
i::FLAG_sim_abort_on_bad_auth = false;
SETUP();
START();
// Exclude x16 and x17 from the scratch register list so we can use
// Pac/Autib1716 safely.
UseScratchRegisterScope temps(&masm);
temps.Exclude(x16, x17);
temps.Include(x10, x11);
// Backup stack pointer.
__ Mov(x20, sp);
// Modifiers
__ Mov(x16, 0x477d469dec0b8768);
__ Mov(sp, 0x477d469dec0b8760);
// Generate PACs using the 3 system instructions.
__ Mov(x17, 0x0000000012345678);
__ Pacib1716();
__ Mov(x0, x17);
__ Mov(lr, 0x0000000012345678);
__ Pacibsp();
__ Mov(x2, lr);
// Authenticate the pointers above.
__ Mov(x17, x0);
__ Autib1716();
__ Mov(x3, x17);
__ Mov(lr, x2);
__ Autibsp();
__ Mov(x5, lr);
// Attempt to authenticate incorrect pointers.
__ Mov(x17, x2);
__ Autib1716();
__ Mov(x6, x17);
__ Mov(lr, x0);
__ Autibsp();
__ Mov(x8, lr);
// Restore stack pointer.
__ Mov(sp, x20);
// Mask out just the PAC code bits.
__ And(x0, x0, 0x007f000000000000);
__ And(x2, x2, 0x007f000000000000);
END();
// TODO(all): test on real hardware when available
#ifdef USE_SIMULATOR
RUN();
// Check PAC codes have been generated and aren't equal.
// NOTE: with a different ComputePAC implementation, there may be a collision.
CHECK_NE(0, core.xreg(2));
CHECK_NOT_ZERO_AND_NOT_EQUAL_64(x0, x2);
// Pointers correctly authenticated.
CHECK_EQUAL_64(0x0000000012345678, x3);
CHECK_EQUAL_64(0x0000000012345678, x5);
// Pointers corrupted after failing to authenticate.
CHECK_EQUAL_64(0x0040000012345678, x6);
CHECK_EQUAL_64(0x0040000012345678, x8);
#endif // USE_SIMULATOR
}
TEST(system) {
INIT_V8();
SETUP();
RegisterDump before;
START();
before.Dump(&masm);
__ Nop();
__ Csdb();
END();
RUN();
CHECK_EQUAL_REGISTERS(before);
CHECK_EQUAL_NZCV(before.flags_nzcv());
}
TEST(zero_dest) {
INIT_V8();
SETUP();
RegisterDump before;
START();
// Preserve the system stack pointer, in case we clobber it.
__ Mov(x30, sp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101UL;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (int i = 2; i < x30.code(); i++) {
// Skip x18, the platform register.
if (i == 18) continue;
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should be NOPs in these forms, but have
// alternate forms which can write into the stack pointer.
__ add(xzr, x0, x1);
__ add(xzr, x1, xzr);
__ add(xzr, xzr, x1);
__ and_(xzr, x0, x2);
__ and_(xzr, x2, xzr);
__ and_(xzr, xzr, x2);
__ bic(xzr, x0, x3);
__ bic(xzr, x3, xzr);
__ bic(xzr, xzr, x3);
__ eon(xzr, x0, x4);
__ eon(xzr, x4, xzr);
__ eon(xzr, xzr, x4);
__ eor(xzr, x0, x5);
__ eor(xzr, x5, xzr);
__ eor(xzr, xzr, x5);
__ orr(xzr, x0, x6);
__ orr(xzr, x6, xzr);
__ orr(xzr, xzr, x6);
__ sub(xzr, x0, x7);
__ sub(xzr, x7, xzr);
__ sub(xzr, xzr, x7);
// Swap the saved system stack pointer with the real one. If sp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that sp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, sp);
__ Mov(sp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
CHECK_EQUAL_REGISTERS(before);
CHECK_EQUAL_NZCV(before.flags_nzcv());
}
TEST(zero_dest_setflags) {
INIT_V8();
SETUP();
RegisterDump before;
START();
// Preserve the system stack pointer, in case we clobber it.
__ Mov(x30, sp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101UL;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (int i = 2; i < 30; i++) {
// Skip x18, the platform register.
if (i == 18) continue;
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should only write to the flags in these forms,
// but have alternate forms which can write into the stack pointer.
__ adds(xzr, x0, Operand(x1, UXTX));
__ adds(xzr, x1, Operand(xzr, UXTX));
__ adds(xzr, x1, 1234);
__ adds(xzr, x0, x1);
__ adds(xzr, x1, xzr);
__ adds(xzr, xzr, x1);
__ ands(xzr, x2, ~0xF);
__ ands(xzr, xzr, ~0xF);
__ ands(xzr, x0, x2);
__ ands(xzr, x2, xzr);
__ ands(xzr, xzr, x2);
__ bics(xzr, x3, ~0xF);
__ bics(xzr, xzr, ~0xF);
__ bics(xzr, x0, x3);
__ bics(xzr, x3, xzr);
__ bics(xzr, xzr, x3);
__ subs(xzr, x0, Operand(x3, UXTX));
__ subs(xzr, x3, Operand(xzr, UXTX));
__ subs(xzr, x3, 1234);
__ subs(xzr, x0, x3);
__ subs(xzr, x3, xzr);
__ subs(xzr, xzr, x3);
// Swap the saved system stack pointer with the real one. If sp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that sp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, sp);
__ Mov(sp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
CHECK_EQUAL_REGISTERS(before);
}
TEST(register_bit) {
// No code generation takes place in this test, so no need to setup and
// teardown.
// Simple tests.
CHECK_EQ(x0.bit(), 1ULL << 0);
CHECK_EQ(x1.bit(), 1ULL << 1);
CHECK_EQ(x10.bit(), 1ULL << 10);
// AAPCS64 definitions.
CHECK_EQ(fp.bit(), 1ULL << kFramePointerRegCode);
CHECK_EQ(lr.bit(), 1ULL << kLinkRegCode);
// Fixed (hardware) definitions.
CHECK_EQ(xzr.bit(), 1ULL << kZeroRegCode);
// Internal ABI definitions.
CHECK_EQ(sp.bit(), 1ULL << kSPRegInternalCode);
CHECK_NE(sp.bit(), xzr.bit());
// xn.bit() == wn.bit() at all times, for the same n.
CHECK_EQ(x0.bit(), w0.bit());
CHECK_EQ(x1.bit(), w1.bit());
CHECK_EQ(x10.bit(), w10.bit());
CHECK_EQ(xzr.bit(), wzr.bit());
CHECK_EQ(sp.bit(), wsp.bit());
}
TEST(peek_poke_simple) {
INIT_V8();
SETUP();
START();
static const RegList x0_to_x3 = x0.bit() | x1.bit() | x2.bit() | x3.bit();
static const RegList x10_to_x13 =
x10.bit() | x11.bit() | x12.bit() | x13.bit();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(4);
// Simple exchange.
// After this test:
// x0-x3 should be unchanged.
// w10-w13 should contain the lower words of x0-x3.
__ Poke(x0, 0);
__ Poke(x1, 8);
__ Poke(x2, 16);
__ Poke(x3, 24);
Clobber(&masm, x0_to_x3);
__ Peek(x0, 0);
__ Peek(x1, 8);
__ Peek(x2, 16);
__ Peek(x3, 24);
__ Poke(w0, 0);
__ Poke(w1, 4);
__ Poke(w2, 8);
__ Poke(w3, 12);
Clobber(&masm, x10_to_x13);
__ Peek(w10, 0);
__ Peek(w11, 4);
__ Peek(w12, 8);
__ Peek(w13, 12);
__ Drop(4);
END();
RUN();
CHECK_EQUAL_64(literal_base * 1, x0);
CHECK_EQUAL_64(literal_base * 2, x1);
CHECK_EQUAL_64(literal_base * 3, x2);
CHECK_EQUAL_64(literal_base * 4, x3);
CHECK_EQUAL_64((literal_base * 1) & 0xFFFFFFFF, x10);
CHECK_EQUAL_64((literal_base * 2) & 0xFFFFFFFF, x11);
CHECK_EQUAL_64((literal_base * 3) & 0xFFFFFFFF, x12);
CHECK_EQUAL_64((literal_base * 4) & 0xFFFFFFFF, x13);
}
TEST(peek_poke_unaligned) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Add(x4, x3, x0);
__ Add(x5, x4, x0);
__ Add(x6, x5, x0);
__ Claim(4);
// Unaligned exchanges.
// After this test:
// x0-x6 should be unchanged.
// w10-w12 should contain the lower words of x0-x2.
__ Poke(x0, 1);
Clobber(&masm, x0.bit());
__ Peek(x0, 1);
__ Poke(x1, 2);
Clobber(&masm, x1.bit());
__ Peek(x1, 2);
__ Poke(x2, 3);
Clobber(&masm, x2.bit());
__ Peek(x2, 3);
__ Poke(x3, 4);
Clobber(&masm, x3.bit());
__ Peek(x3, 4);
__ Poke(x4, 5);
Clobber(&masm, x4.bit());
__ Peek(x4, 5);
__ Poke(x5, 6);
Clobber(&masm, x5.bit());
__ Peek(x5, 6);
__ Poke(x6, 7);
Clobber(&masm, x6.bit());
__ Peek(x6, 7);
__ Poke(w0, 1);
Clobber(&masm, w10.bit());
__ Peek(w10, 1);
__ Poke(w1, 2);
Clobber(&masm, w11.bit());
__ Peek(w11, 2);
__ Poke(w2, 3);
Clobber(&masm, w12.bit());
__ Peek(w12, 3);
__ Drop(4);
END();
RUN();
CHECK_EQUAL_64(literal_base * 1, x0);
CHECK_EQUAL_64(literal_base * 2, x1);
CHECK_EQUAL_64(literal_base * 3, x2);
CHECK_EQUAL_64(literal_base * 4, x3);
CHECK_EQUAL_64(literal_base * 5, x4);
CHECK_EQUAL_64(literal_base * 6, x5);
CHECK_EQUAL_64(literal_base * 7, x6);
CHECK_EQUAL_64((literal_base * 1) & 0xFFFFFFFF, x10);
CHECK_EQUAL_64((literal_base * 2) & 0xFFFFFFFF, x11);
CHECK_EQUAL_64((literal_base * 3) & 0xFFFFFFFF, x12);
}
TEST(peek_poke_endianness) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Claim(4);
// Endianness tests.
// After this section:
// x4 should match x0[31:0]:x0[63:32]
// w5 should match w1[15:0]:w1[31:16]
__ Poke(x0, 0);
__ Poke(x0, 8);
__ Peek(x4, 4);
__ Poke(w1, 0);
__ Poke(w1, 4);
__ Peek(w5, 2);
__ Drop(4);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32);
uint64_t x5_expected =
((x1_expected << 16) & 0xFFFF0000) | ((x1_expected >> 16) & 0x0000FFFF);
CHECK_EQUAL_64(x0_expected, x0);
CHECK_EQUAL_64(x1_expected, x1);
CHECK_EQUAL_64(x4_expected, x4);
CHECK_EQUAL_64(x5_expected, x5);
}
TEST(peek_poke_mixed) {
INIT_V8();
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(4);
// Mix with other stack operations.
// After this section:
// x0-x3 should be unchanged.
// x6 should match x1[31:0]:x0[63:32]
// w7 should match x1[15:0]:x0[63:48]
__ Poke(x1, 8);
__ Poke(x0, 0);
{
__ Peek(x6, 4);
__ Peek(w7, 6);
__ Poke(xzr, 0); // Clobber the space we're about to drop.
__ Poke(xzr, 8); // Clobber the space we're about to drop.
__ Drop(2);
__ Poke(x3, 8);
__ Poke(x2, 0);
__ Claim(2);
__ Poke(x0, 0);
__ Poke(x1, 8);
}
__ Pop(x0, x1, x2, x3);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x2_expected = literal_base * 3;
uint64_t x3_expected = literal_base * 4;
uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32);
uint64_t x7_expected =
((x1_expected << 16) & 0xFFFF0000) | ((x0_expected >> 48) & 0x0000FFFF);
CHECK_EQUAL_64(x0_expected, x0);
CHECK_EQUAL_64(x1_expected, x1);
CHECK_EQUAL_64(x2_expected, x2);
CHECK_EQUAL_64(x3_expected, x3);
CHECK_EQUAL_64(x6_expected, x6);
CHECK_EQUAL_64(x7_expected, x7);
}
// This enum is used only as an argument to the push-pop test helpers.
enum PushPopMethod {
// Push or Pop using the Push and Pop methods, with blocks of up to four
// registers. (Smaller blocks will be used if necessary.)
PushPopByFour,
// Use Push<Size>RegList and Pop<Size>RegList to transfer the registers.
PushPopRegList
};
// The maximum number of registers that can be used by the PushPop* tests,
// where a reg_count field is provided.
static int const kPushPopMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Push <reg_count> registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> registers to restore the original contents.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopSimpleHelper(int reg_count, int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// Registers in the TmpList can be used by the macro assembler for debug code
// (for example in 'Pop'), so we can't use them here.
// x18 is reserved for the platform register.
// For simplicity, exclude LR as well, as we would need to sign it when
// pushing it. This also ensures that the list has an even number of elements,
// which is needed for alignment.
RegList allowed = ~(masm.TmpList()->list() | x18.bit() | lr.bit());
if (reg_count == kPushPopMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfRegisters);
}
DCHECK_EQ(reg_count % 2, 0);
// Work out which registers to use, based on reg_size.
auto r = CreateRegisterArray<Register, kNumberOfRegisters>();
auto x = CreateRegisterArray<Register, kNumberOfRegisters>();
RegList list = PopulateRegisterArray(nullptr, x.data(), r.data(), reg_size,
reg_count, allowed);
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
{
int i;
// Initialize the registers.
for (i = 0; i < reg_count; i++) {
// Always write into the X register, to ensure that the upper word is
// properly ignored by Push when testing W registers.
if (!x[i].IsZero()) {
__ Mov(x[i], literal_base * i);
}
}
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push<TurboAssembler::kDontStoreLR>(r[i - 1], r[i - 2], r[i - 3],
r[i - 4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(r[2], r[1], r[0]); break;
case 2: __ Push(r[1], r[0]); break;
case 1: __ Push(r[0]); break;
default:
CHECK_EQ(i, 0);
break;
}
break;
case PushPopRegList:
__ PushSizeRegList<TurboAssembler::kDontStoreLR>(list, reg_size);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
Clobber(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop<TurboAssembler::kDontLoadLR>(r[i], r[i + 1], r[i + 2],
r[i + 3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(r[i], r[i+1], r[i+2]); break;
case 2: __ Pop(r[i], r[i+1]); break;
case 1: __ Pop(r[i]); break;
default:
CHECK_EQ(i, reg_count);
break;
}
break;
case PushPopRegList:
__ PopSizeRegList<TurboAssembler::kDontLoadLR>(list, reg_size);
break;
}
}
END();
RUN();
// Check that the register contents were preserved.
// Always use CHECK_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size));
for (int i = 0; i < reg_count; i++) {
if (x[i].IsZero()) {
CHECK_EQUAL_64(0, x[i]);
} else {
CHECK_EQUAL_64(literal_base * i, x[i]);
}
}
}
TEST(push_pop_simple_32) {
INIT_V8();
for (int count = 0; count < kPushPopMaxRegCount; count += 4) {
PushPopSimpleHelper(count, kWRegSizeInBits, PushPopByFour, PushPopByFour);
PushPopSimpleHelper(count, kWRegSizeInBits, PushPopByFour, PushPopRegList);
PushPopSimpleHelper(count, kWRegSizeInBits, PushPopRegList, PushPopByFour);
PushPopSimpleHelper(count, kWRegSizeInBits, PushPopRegList, PushPopRegList);
}
// Skip testing kPushPopMaxRegCount, as we exclude the temporary registers
// and we end up with a number of registers that is not a multiple of four and
// is not supported for pushing.
}
TEST(push_pop_simple_64) {
INIT_V8();
for (int count = 0; count <= 8; count += 2) {
PushPopSimpleHelper(count, kXRegSizeInBits, PushPopByFour, PushPopByFour);
PushPopSimpleHelper(count, kXRegSizeInBits, PushPopByFour, PushPopRegList);
PushPopSimpleHelper(count, kXRegSizeInBits, PushPopRegList, PushPopByFour);
PushPopSimpleHelper(count, kXRegSizeInBits, PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopByFour,
PushPopByFour);
PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopByFour,
PushPopRegList);
PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopRegList,
PushPopByFour);
PushPopSimpleHelper(kPushPopMaxRegCount, kXRegSizeInBits, PushPopRegList,
PushPopRegList);
}
// The maximum number of registers that can be used by the PushPopFP* tests,
// where a reg_count field is provided.
static int const kPushPopFPMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Push <reg_count> FP registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> FP registers to restore the original contents.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopFPSimpleHelper(int reg_count, int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// We can use any floating-point register. None of them are reserved for
// debug code, for example.
static RegList const allowed = ~0;
if (reg_count == kPushPopFPMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfVRegisters);
}
// Work out which registers to use, based on reg_size.
auto v = CreateRegisterArray<VRegister, kNumberOfRegisters>();
auto d = CreateRegisterArray<VRegister, kNumberOfRegisters>();
RegList list = PopulateVRegisterArray(nullptr, d.data(), v.data(), reg_size,
reg_count, allowed);
// The literal base is chosen to have two useful properties:
// * When multiplied (using an integer) by small values (such as a register
// index), this value is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
// * It is never a floating-point NaN, and will therefore always compare
// equal to itself.
uint64_t literal_base = 0x0100001000100101UL;
{
int i;
// Initialize the registers, using X registers to load the literal.
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (i = 0; i < reg_count; i++) {
// Always write into the D register, to ensure that the upper word is
// properly ignored by Push when testing S registers.
__ Fmov(d[i], x0);
// Calculate the next literal.
__ Add(x0, x0, x1);
}
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push(v[i-1], v[i-2], v[i-3], v[i-4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(v[2], v[1], v[0]); break;
case 2: __ Push(v[1], v[0]); break;
case 1: __ Push(v[0]); break;
default:
CHECK_EQ(i, 0);
break;
}
break;
case PushPopRegList:
__ PushSizeRegList(list, reg_size, CPURegister::kVRegister);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
ClobberFP(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop(v[i], v[i+1], v[i+2], v[i+3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(v[i], v[i+1], v[i+2]); break;
case 2: __ Pop(v[i], v[i+1]); break;
case 1: __ Pop(v[i]); break;
default:
CHECK_EQ(i, reg_count);
break;
}
break;
case PushPopRegList:
__ PopSizeRegList(list, reg_size, CPURegister::kVRegister);
break;
}
}
END();
RUN();
// Check that the register contents were preserved.
// Always use CHECK_EQUAL_FP64, even when testing S registers, so we can
// test that the upper word was properly cleared by Pop.
literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size));
for (int i = 0; i < reg_count; i++) {
uint64_t literal = literal_base * i;
double expected;
memcpy(&expected, &literal, sizeof(expected));
CHECK_EQUAL_FP64(expected, d[i]);
}
}
TEST(push_pop_fp_simple_32) {
INIT_V8();
for (int count = 0; count <= 8; count += 4) {
PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopByFour, PushPopByFour);
PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopByFour,
PushPopRegList);
PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopRegList,
PushPopByFour);
PushPopFPSimpleHelper(count, kSRegSizeInBits, PushPopRegList,
PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopByFour,
PushPopByFour);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopByFour,
PushPopRegList);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopRegList,
PushPopByFour);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kSRegSizeInBits, PushPopRegList,
PushPopRegList);
}
TEST(push_pop_fp_simple_64) {
INIT_V8();
for (int count = 0; count <= 8; count += 2) {
PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopByFour, PushPopByFour);
PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopByFour,
PushPopRegList);
PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopRegList,
PushPopByFour);
PushPopFPSimpleHelper(count, kDRegSizeInBits, PushPopRegList,
PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopByFour,
PushPopByFour);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopByFour,
PushPopRegList);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopRegList,
PushPopByFour);
PushPopFPSimpleHelper(kPushPopFPMaxRegCount, kDRegSizeInBits, PushPopRegList,
PushPopRegList);
}
// Push and pop data using an overlapping combination of Push/Pop and
// RegList-based methods.
static void PushPopMixedMethodsHelper(int reg_size) {
SETUP();
// Registers in the TmpList can be used by the macro assembler for debug code
// (for example in 'Pop'), so we can't use them here.
static RegList const allowed = ~(masm.TmpList()->list());
// Work out which registers to use, based on reg_size.
auto r = CreateRegisterArray<Register, 10>();
auto x = CreateRegisterArray<Register, 10>();
PopulateRegisterArray(nullptr, x.data(), r.data(), reg_size, 10, allowed);
// Calculate some handy register lists.
RegList r0_to_r3 = 0;
for (int i = 0; i <= 3; i++) {
r0_to_r3 |= x[i].bit();
}
RegList r4_to_r5 = 0;
for (int i = 4; i <= 5; i++) {
r4_to_r5 |= x[i].bit();
}
RegList r6_to_r9 = 0;
for (int i = 6; i <= 9; i++) {
r6_to_r9 |= x[i].bit();
}
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101UL;
START();
{
__ Mov(x[3], literal_base * 3);
__ Mov(x[2], literal_base * 2);
__ Mov(x[1], literal_base * 1);
__ Mov(x[0], literal_base * 0);
__ PushSizeRegList(r0_to_r3, reg_size);
__ Push(r[3], r[2]);
Clobber(&masm, r0_to_r3);
__ PopSizeRegList(r0_to_r3, reg_size);
__ Push(r[2], r[1], r[3], r[0]);
Clobber(&masm, r4_to_r5);
__ Pop(r[4], r[5]);
Clobber(&masm, r6_to_r9);
__ Pop(r[6], r[7], r[8], r[9]);
}
END();
RUN();
// Always use CHECK_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xFFFFFFFFFFFFFFFFUL >> (64 - reg_size));
CHECK_EQUAL_64(literal_base * 3, x[9]);
CHECK_EQUAL_64(literal_base * 2, x[8]);
CHECK_EQUAL_64(literal_base * 0, x[7]);
CHECK_EQUAL_64(literal_base * 3, x[6]);
CHECK_EQUAL_64(literal_base * 1, x[5]);
CHECK_EQUAL_64(literal_base * 2, x[4]);
}
TEST(push_pop_mixed_methods_64) {
INIT_V8();
PushPopMixedMethodsHelper(kXRegSizeInBits);
}
TEST(push_pop) {
INIT_V8();
SETUP();
START();
__ Mov(x3, 0x3333333333333333UL);
__ Mov(x2, 0x2222222222222222UL);
__ Mov(x1, 0x1111111111111111UL);
__ Mov(x0, 0x0000000000000000UL);
__ Claim(2);
__ PushXRegList(x0.bit() | x1.bit() | x2.bit() | x3.bit());
__ Push(x3, x2);
__ PopXRegList(x0.bit() | x1.bit() | x2.bit() | x3.bit());
__ Push(x2, x1, x3, x0);
__ Pop(x4, x5);
__ Pop(x6, x7, x8, x9);
__ Claim(2);
__ PushWRegList(w0.bit() | w1.bit() | w2.bit() | w3.bit());
__ Push(w3, w1, w2, w0);
__ PopWRegList(w10.bit() | w11.bit() | w12.bit() | w13.bit());
__ Pop(w14, w15, w16, w17);
__ Claim(2);
__ Push(w2, w2, w1, w1);
__ Push(x3, x3);
__ Pop(w30, w19, w20, w21);
__ Pop(x22, x23);
__ Claim(2);
__ PushXRegList(x1.bit() | x22.bit());
__ PopXRegList(x24.bit() | x26.bit());
__ Claim(2);
__ PushWRegList(w1.bit() | w2.bit() | w4.bit() | w22.bit());
__ PopWRegList(w25.bit() | w27.bit() | w28.bit() | w29.bit());
__ Claim(2);
__ PushXRegList(0);
__ PopXRegList(0);
// Don't push/pop x18 (platform register) or lr
RegList all_regs = 0xFFFFFFFF & ~(x18.bit() | lr.bit());
__ PushXRegList<TurboAssembler::kDontStoreLR>(all_regs);
__ PopXRegList<TurboAssembler::kDontLoadLR>(all_regs);
__ Drop(12);
END();
RUN();
CHECK_EQUAL_64(0x1111111111111111UL, x3);
CHECK_EQUAL_64(0x0000000000000000UL, x2);
CHECK_EQUAL_64(0x3333333333333333UL, x1);
CHECK_EQUAL_64(0x2222222222222222UL, x0);
CHECK_EQUAL_64(0x3333333333333333UL, x9);
CHECK_EQUAL_64(0x2222222222222222UL, x8);
CHECK_EQUAL_64(0x0000000000000000UL, x7);
CHECK_EQUAL_64(0x3333333333333333UL, x6);
CHECK_EQUAL_64(0x1111111111111111UL, x5);
CHECK_EQUAL_64(0x2222222222222222UL, x4);
CHECK_EQUAL_32(0x11111111U, w13);
CHECK_EQUAL_32(0x33333333U, w12);
CHECK_EQUAL_32(0x00000000U, w11);
CHECK_EQUAL_32(0x22222222U, w10);
CHECK_EQUAL_32(0x11111111U, w17);
CHECK_EQUAL_32(0x00000000U, w16);
CHECK_EQUAL_32(0x33333333U, w15);
CHECK_EQUAL_32(0x22222222U, w14);
CHECK_EQUAL_32(0x11111111U, w30);
CHECK_EQUAL_32(0x11111111U, w19);
CHECK_EQUAL_32(0x11111111U, w20);
CHECK_EQUAL_32(0x11111111U, w21);
CHECK_EQUAL_64(0x3333333333333333UL, x22);
CHECK_EQUAL_64(0x0000000000000000UL, x23);
CHECK_EQUAL_64(0x3333333333333333UL, x24);
CHECK_EQUAL_64(0x3333333333333333UL, x26);
CHECK_EQUAL_32(0x33333333U, w25);
CHECK_EQUAL_32(0x00000000U, w27);
CHECK_EQUAL_32(0x22222222U, w28);
CHECK_EQUAL_32(0x33333333U, w29);
}
TEST(copy_slots_down) {
INIT_V8();
SETUP();
const uint64_t ones = 0x1111111111111111UL;
const uint64_t twos = 0x2222222222222222UL;
const uint64_t threes = 0x3333333333333333UL;
const uint64_t fours = 0x4444444444444444UL;
START();
// Test copying 12 slots down one slot.
__ Mov(x1, ones);
__ Mov(x2, twos);
__ Mov(x3, threes);
__ Mov(x4, fours);
__ Push(x1, x2, x3, x4);
__ Push(x1, x2, x1, x2);
__ Push(x3, x4, x3, x4);
__ Push(xzr, xzr);
__ Mov(x5, 1);
__ Mov(x6, 2);
__ Mov(x7, 12);
__ CopySlots(x5, x6, x7);
__ Pop(xzr, x4, x5, x6);
__ Pop(x7, x8, x9, x10);
__ Pop(x11, x12, x13, x14);
__ Pop(x15, xzr);
// Test copying one slot down one slot.
__ Push(x1, xzr, xzr, xzr);
__ Mov(x1, 2);
__ Mov(x2, 3);
__ Mov(x3, 1);
__ CopySlots(x1, x2, x3);
__ Drop(2);
__ Pop(x0, xzr);
END();
RUN();
CHECK_EQUAL_64(fours, x4);
CHECK_EQUAL_64(threes, x5);
CHECK_EQUAL_64(fours, x6);
CHECK_EQUAL_64(threes, x7);
CHECK_EQUAL_64(twos, x8);
CHECK_EQUAL_64(ones, x9);
CHECK_EQUAL_64(twos, x10);
CHECK_EQUAL_64(ones, x11);
CHECK_EQUAL_64(fours, x12);
CHECK_EQUAL_64(threes, x13);
CHECK_EQUAL_64(twos, x14);
CHECK_EQUAL_64(ones, x15);
CHECK_EQUAL_64(ones, x0);
}
TEST(copy_slots_up) {
INIT_V8();
SETUP();
const uint64_t ones = 0x1111111111111111UL;
const uint64_t twos = 0x2222222222222222UL;
const uint64_t threes = 0x3333333333333333UL;
START();
__ Mov(x1, ones);
__ Mov(x2, twos);
__ Mov(x3, threes);
// Test copying one slot to the next slot higher in memory.
__ Push(xzr, x1);
__ Mov(x5, 1);
__ Mov(x6, 0);
__ Mov(x7, 1);
__ CopySlots(x5, x6, x7);
__ Pop(xzr, x10);
// Test copying two slots to the next two slots higher in memory.
__ Push(xzr, xzr);
__ Push(x1, x2);
__ Mov(x5, 2);
__ Mov(x6, 0);
__ Mov(x7, 2);
__ CopySlots(x5, x6, x7);
__ Drop(2);
__ Pop(x11, x12);
// Test copying three slots to the next three slots higher in memory.
__ Push(xzr, xzr, xzr, x1);
__ Push(x2, x3);
__ Mov(x5, 3);
__ Mov(x6, 0);
__ Mov(x7, 3);
__ CopySlots(x5, x6, x7);
__ Drop(2);
__ Pop(xzr, x0, x1, x2);
END();
RUN();
CHECK_EQUAL_64(ones, x10);
CHECK_EQUAL_64(twos, x11);
CHECK_EQUAL_64(ones, x12);
CHECK_EQUAL_64(threes, x0);
CHECK_EQUAL_64(twos, x1);
CHECK_EQUAL_64(ones, x2);
}
TEST(copy_double_words_downwards_even) {
INIT_V8();
SETUP();
const uint64_t ones = 0x1111111111111111UL;
const uint64_t twos = 0x2222222222222222UL;
const uint64_t threes = 0x3333333333333333UL;
const uint64_t fours = 0x4444444444444444UL;
START();
// Test copying 12 slots up one slot.
__ Mov(x1, ones);
__ Mov(x2, twos);
__ Mov(x3, threes);
__ Mov(x4, fours);
__ Push(xzr, xzr);
__ Push(x1, x2, x3, x4);
__ Push(x1, x2, x1, x2);
__ Push(x3, x4, x3, x4);
__ SlotAddress(x5, 12);
__ SlotAddress(x6, 11);
__ Mov(x7, 12);
__ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst);
__ Pop(xzr, x4, x5, x6);
__ Pop(x7, x8, x9, x10);
__ Pop(x11, x12, x13, x14);
__ Pop(x15, xzr);
END();
RUN();
CHECK_EQUAL_64(ones, x15);
CHECK_EQUAL_64(twos, x14);
CHECK_EQUAL_64(threes, x13);
CHECK_EQUAL_64(fours, x12);
CHECK_EQUAL_64(ones, x11);
CHECK_EQUAL_64(twos, x10);
CHECK_EQUAL_64(ones, x9);
CHECK_EQUAL_64(twos, x8);
CHECK_EQUAL_64(threes, x7);
CHECK_EQUAL_64(fours, x6);
CHECK_EQUAL_64(threes, x5);
CHECK_EQUAL_64(fours, x4);
}
TEST(copy_double_words_downwards_odd) {
INIT_V8();
SETUP();
const uint64_t ones = 0x1111111111111111UL;
const uint64_t twos = 0x2222222222222222UL;
const uint64_t threes = 0x3333333333333333UL;
const uint64_t fours = 0x4444444444444444UL;
const uint64_t fives = 0x5555555555555555UL;
START();
// Test copying 13 slots up one slot.
__ Mov(x1, ones);
__ Mov(x2, twos);
__ Mov(x3, threes);
__ Mov(x4, fours);
__ Mov(x5, fives);
__ Push(xzr, x5);
__ Push(x1, x2, x3, x4);
__ Push(x1, x2, x1, x2);
__ Push(x3, x4, x3, x4);
__ SlotAddress(x5, 13);
__ SlotAddress(x6, 12);
__ Mov(x7, 13);
__ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst);
__ Pop(xzr, x4);
__ Pop(x5, x6, x7, x8);
__ Pop(x9, x10, x11, x12);
__ Pop(x13, x14, x15, x16);
END();
RUN();
CHECK_EQUAL_64(fives, x16);
CHECK_EQUAL_64(ones, x15);
CHECK_EQUAL_64(twos, x14);
CHECK_EQUAL_64(threes, x13);
CHECK_EQUAL_64(fours, x12);
CHECK_EQUAL_64(ones, x11);
CHECK_EQUAL_64(twos, x10);
CHECK_EQUAL_64(ones, x9);
CHECK_EQUAL_64(twos, x8);
CHECK_EQUAL_64(threes, x7);
CHECK_EQUAL_64(fours, x6);
CHECK_EQUAL_64(threes, x5);
CHECK_EQUAL_64(fours, x4);
}
TEST(copy_noop) {
INIT_V8();
SETUP();
const uint64_t ones = 0x1111111111111111UL;
const uint64_t twos = 0x2222222222222222UL;
const uint64_t threes = 0x3333333333333333UL;
const uint64_t fours = 0x4444444444444444UL;
const uint64_t fives = 0x5555555555555555UL;
START();
__ Mov(x1, ones);
__ Mov(x2, twos);
__ Mov(x3, threes);
__ Mov(x4, fours);
__ Mov(x5, fives);
__ Push(xzr, x5, x5, xzr);
__ Push(x3, x4, x3, x4);
__ Push(x1, x2, x1, x2);
__ Push(x1, x2, x3, x4);
// src < dst, count == 0
__ SlotAddress(x5, 3);
__ SlotAddress(x6, 2);
__ Mov(x7, 0);
__ CopyDoubleWords(x5, x6, x7, TurboAssembler::kSrcLessThanDst);
// dst < src, count == 0
__ SlotAddress(x5, 2);
__ SlotAddress(x6, 3);
__ Mov(x7, 0);
__ CopyDoubleWords(x5, x6, x7, TurboAssembler::kDstLessThanSrc);
__ Pop(x1, x2, x3, x4);
__ Pop(x5, x6, x7, x8);
__ Pop(x9, x10, x11, x12);
__ Pop(x13, x14, x15, x16);
END();
RUN();
CHECK_EQUAL_64(fours, x1);
CHECK_EQUAL_64(threes, x2);
CHECK_EQUAL_64(twos, x3);
CHECK_EQUAL_64(ones, x4);
CHECK_EQUAL_64(twos, x5);
CHECK_EQUAL_64(ones, x6);
CHECK_EQUAL_64(twos, x7);
CHECK_EQUAL_64(ones, x8);
CHECK_EQUAL_64(fours, x9);
CHECK_EQUAL_64(threes, x10);
CHECK_EQUAL_64(fours, x11);
CHECK_EQUAL_64(threes, x12);
CHECK_EQUAL_64(0, x13);
CHECK_EQUAL_64(fives, x14);
CHECK_EQUAL_64(fives, x15);
CHECK_EQUAL_64(0, x16);
}
TEST(noreg) {
// This test doesn't generate any code, but it verifies some invariants
// related to NoReg.
CHECK_EQ(NoReg, NoVReg);
CHECK_EQ(NoVReg, NoReg);
CHECK_EQ(NoReg, NoCPUReg);
CHECK_EQ(NoCPUReg, NoReg);
CHECK_EQ(NoVReg, NoCPUReg);
CHECK_EQ(NoCPUReg, NoVReg);
CHECK(NoReg.IsNone());
CHECK(NoVReg.IsNone());
CHECK(NoCPUReg.IsNone());
}
TEST(vreg) {
// This test doesn't generate any code, but it verifies
// Helper functions and methods pertaining to VRegister logic.
CHECK_EQ(8U, RegisterSizeInBitsFromFormat(kFormatB));
CHECK_EQ(16U, RegisterSizeInBitsFromFormat(kFormatH));
CHECK_EQ(32U, RegisterSizeInBitsFromFormat(kFormatS));
CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormatD));
CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat8B));
CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat4H));
CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat2S));
CHECK_EQ(64U, RegisterSizeInBitsFromFormat(kFormat1D));
CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat16B));
CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat8H));
CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat4S));
CHECK_EQ(128U, RegisterSizeInBitsFromFormat(kFormat2D));
CHECK_EQ(16, LaneCountFromFormat(kFormat16B));
CHECK_EQ(8, LaneCountFromFormat(kFormat8B));
CHECK_EQ(8, LaneCountFromFormat(kFormat8H));
CHECK_EQ(4, LaneCountFromFormat(kFormat4H));
CHECK_EQ(4, LaneCountFromFormat(kFormat4S));
CHECK_EQ(2, LaneCountFromFormat(kFormat2S));
CHECK_EQ(2, LaneCountFromFormat(kFormat2D));
CHECK_EQ(1, LaneCountFromFormat(kFormat1D));
CHECK_EQ(1, LaneCountFromFormat(kFormatB));
CHECK_EQ(1, LaneCountFromFormat(kFormatH));
CHECK_EQ(1, LaneCountFromFormat(kFormatS));
CHECK_EQ(1, LaneCountFromFormat(kFormatD));
CHECK(!IsVectorFormat(kFormatB));
CHECK(!IsVectorFormat(kFormatH));
CHECK(!IsVectorFormat(kFormatS));
CHECK(!IsVectorFormat(kFormatD));
CHECK(IsVectorFormat(kFormat16B));
CHECK(IsVectorFormat(kFormat8B));
CHECK(IsVectorFormat(kFormat8H));
CHECK(IsVectorFormat(kFormat4H));
CHECK(IsVectorFormat(kFormat4S));
CHECK(IsVectorFormat(kFormat2S));
CHECK(IsVectorFormat(kFormat2D));
CHECK(IsVectorFormat(kFormat1D));
CHECK(!d0.Is8B());
CHECK(!d0.Is16B());
CHECK(!d0.Is4H());
CHECK(!d0.Is8H());
CHECK(!d0.Is2S());
CHECK(!d0.Is4S());
CHECK(d0.Is1D());
CHECK(!d0.Is1S());
CHECK(!d0.Is1H());
CHECK(!d0.Is1B());
CHECK(!d0.IsVector());
CHECK(d0.IsScalar());
CHECK(d0.IsFPRegister());
CHECK(!d0.IsW());
CHECK(!d0.IsX());
CHECK(d0.IsV());
CHECK(!d0.IsB());
CHECK(!d0.IsH());
CHECK(!d0.IsS());
CHECK(d0.IsD());
CHECK(!d0.IsQ());
CHECK(!s0.Is8B());
CHECK(!s0.Is16B());
CHECK(!s0.Is4H());
CHECK(!s0.Is8H());
CHECK(!s0.Is2S());
CHECK(!s0.Is4S());
CHECK(!s0.Is1D());
CHECK(s0.Is1S());
CHECK(!s0.Is1H());
CHECK(!s0.Is1B());
CHECK(!s0.IsVector());
CHECK(s0.IsScalar());
CHECK(s0.IsFPRegister());
CHECK(!s0.IsW());
CHECK(!s0.IsX());
CHECK(s0.IsV());
CHECK(!s0.IsB());
CHECK(!s0.IsH());
CHECK(s0.IsS());
CHECK(!s0.IsD());
CHECK(!s0.IsQ());
CHECK(!h0.Is8B());
CHECK(!h0.Is16B());
CHECK(!h0.Is4H());
CHECK(!h0.Is8H());
CHECK(!h0.Is2S());
CHECK(!h0.Is4S());
CHECK(!h0.Is1D());
CHECK(!h0.Is1S());
CHECK(h0.Is1H());
CHECK(!h0.Is1B());
CHECK(!h0.IsVector());
CHECK(h0.IsScalar());
CHECK(!h0.IsFPRegister());
CHECK(!h0.IsW());
CHECK(!h0.IsX());
CHECK(h0.IsV());
CHECK(!h0.IsB());
CHECK(h0.IsH());
CHECK(!h0.IsS());
CHECK(!h0.IsD());
CHECK(!h0.IsQ());
CHECK(!b0.Is8B());
CHECK(!b0.Is16B());
CHECK(!b0.Is4H());
CHECK(!b0.Is8H());
CHECK(!b0.Is2S());
CHECK(!b0.Is4S());
CHECK(!b0.Is1D());
CHECK(!b0.Is1S());
CHECK(!b0.Is1H());
CHECK(b0.Is1B());
CHECK(!b0.IsVector());
CHECK(b0.IsScalar());
CHECK(!b0.IsFPRegister());
CHECK(!b0.IsW());
CHECK(!b0.IsX());
CHECK(b0.IsV());
CHECK(b0.IsB());
CHECK(!b0.IsH());
CHECK(!b0.IsS());
CHECK(!b0.IsD());
CHECK(!b0.IsQ());
CHECK(!q0.Is8B());
CHECK(!q0.Is16B());
CHECK(!q0.Is4H());
CHECK(!q0.Is8H());
CHECK(!q0.Is2S());
CHECK(!q0.Is4S());
CHECK(!q0.Is1D());
CHECK(!q0.Is2D());
CHECK(!q0.Is1S());
CHECK(!q0.Is1H());
CHECK(!q0.Is1B());
CHECK(!q0.IsVector());
CHECK(q0.IsScalar());
CHECK(!q0.IsFPRegister());
CHECK(!q0.IsW());
CHECK(!q0.IsX());
CHECK(q0.IsV());
CHECK(!q0.IsB());
CHECK(!q0.IsH());
CHECK(!q0.IsS());
CHECK(!q0.IsD());
CHECK(q0.IsQ());
CHECK(w0.IsW());
CHECK(!w0.IsX());
CHECK(!w0.IsV());
CHECK(!w0.IsB());
CHECK(!w0.IsH());
CHECK(!w0.IsS());
CHECK(!w0.IsD());
CHECK(!w0.IsQ());
CHECK(!x0.IsW());
CHECK(x0.IsX());
CHECK(!x0.IsV());
CHECK(!x0.IsB());
CHECK(!x0.IsH());
CHECK(!x0.IsS());
CHECK(!x0.IsD());
CHECK(!x0.IsQ());
CHECK(v0.V().IsV());
CHECK(v0.B().IsB());
CHECK(v0.H().IsH());
CHECK(v0.D().IsD());
CHECK(v0.S().IsS());
CHECK(v0.Q().IsQ());
VRegister test_8b(VRegister::Create(0, 64, 8));
CHECK(test_8b.Is8B());
CHECK(!test_8b.Is16B());
CHECK(!test_8b.Is4H());
CHECK(!test_8b.Is8H());
CHECK(!test_8b.Is2S());
CHECK(!test_8b.Is4S());
CHECK(!test_8b.Is1D());
CHECK(!test_8b.Is2D());
CHECK(!test_8b.Is1H());
CHECK(!test_8b.Is1B());
CHECK(test_8b.IsVector());
CHECK(!test_8b.IsScalar());
CHECK(test_8b.IsFPRegister());
VRegister test_16b(VRegister::Create(0, 128, 16));
CHECK(!test_16b.Is8B());
CHECK(test_16b.Is16B());
CHECK(!test_16b.Is4H());
CHECK(!test_16b.Is8H());
CHECK(!test_16b.Is2S());
CHECK(!test_16b.Is4S());
CHECK(!test_16b.Is1D());
CHECK(!test_16b.Is2D());
CHECK(!test_16b.Is1H());
CHECK(!test_16b.Is1B());
CHECK(test_16b.IsVector());
CHECK(!test_16b.IsScalar());
CHECK(!test_16b.IsFPRegister());
VRegister test_4h(VRegister::Create(0, 64, 4));
CHECK(!test_4h.Is8B());
CHECK(!test_4h.Is16B());
CHECK(test_4h.Is4H());
CHECK(!test_4h.Is8H());
CHECK(!test_4h.Is2S());
CHECK(!test_4h.Is4S());
CHECK(!test_4h.Is1D());
CHECK(!test_4h.Is2D());
CHECK(!test_4h.Is1H());
CHECK(!test_4h.Is1B());
CHECK(test_4h.IsVector());
CHECK(!test_4h.IsScalar());
CHECK(test_4h.IsFPRegister());
VRegister test_8h(VRegister::Create(0, 128, 8));
CHECK(!test_8h.Is8B());
CHECK(!test_8h.Is16B());
CHECK(!test_8h.Is4H());
CHECK(test_8h.Is8H());
CHECK(!test_8h.Is2S());
CHECK(!test_8h.Is4S());
CHECK(!test_8h.Is1D());
CHECK(!test_8h.Is2D());
CHECK(!test_8h.Is1H());
CHECK(!test_8h.Is1B());
CHECK(test_8h.IsVector());
CHECK(!test_8h.IsScalar());
CHECK(!test_8h.IsFPRegister());
VRegister test_2s(VRegister::Create(0, 64, 2));
CHECK(!test_2s.Is8B());
CHECK(!test_2s.Is16B());
CHECK(!test_2s.Is4H());
CHECK(!test_2s.Is8H());
CHECK(test_2s.Is2S());
CHECK(!test_2s.Is4S());
CHECK(!test_2s.Is1D());
CHECK(!test_2s.Is2D());
CHECK(!test_2s.Is1H());
CHECK(!test_2s.Is1B());
CHECK(test_2s.IsVector());
CHECK(!test_2s.IsScalar());
CHECK(test_2s.IsFPRegister());
VRegister test_4s(VRegister::Create(0, 128, 4));
CHECK(!test_4s.Is8B());
CHECK(!test_4s.Is16B());
CHECK(!test_4s.Is4H());
CHECK(!test_4s.Is8H());
CHECK(!test_4s.Is2S());
CHECK(test_4s.Is4S());
CHECK(!test_4s.Is1D());
CHECK(!test_4s.Is2D());
CHECK(!test_4s.Is1S());
CHECK(!test_4s.Is1H());
CHECK(!test_4s.Is1B());
CHECK(test_4s.IsVector());
CHECK(!test_4s.IsScalar());
CHECK(!test_4s.IsFPRegister());
VRegister test_1d(VRegister::Create(0, 64, 1));
CHECK(!test_1d.Is8B());
CHECK(!test_1d.Is16B());
CHECK(!test_1d.Is4H());
CHECK(!test_1d.Is8H());
CHECK(!test_1d.Is2S());
CHECK(!test_1d.Is4S());
CHECK(test_1d.Is1D());
CHECK(!test_1d.Is2D());
CHECK(!test_1d.Is1S());
CHECK(!test_1d.Is1H());
CHECK(!test_1d.Is1B());
CHECK(!test_1d.IsVector());
CHECK(test_1d.IsScalar());
CHECK(test_1d.IsFPRegister());
VRegister test_2d(VRegister::Create(0, 128, 2));
CHECK(!test_2d.Is8B());
CHECK(!test_2d.Is16B());
CHECK(!test_2d.Is4H());
CHECK(!test_2d.Is8H());
CHECK(!test_2d.Is2S());
CHECK(!test_2d.Is4S());
CHECK(!test_2d.Is1D());
CHECK(test_2d.Is2D());
CHECK(!test_2d.Is1H());
CHECK(!test_2d.Is1B());
CHECK(test_2d.IsVector());
CHECK(!test_2d.IsScalar());
CHECK(!test_2d.IsFPRegister());
VRegister test_1s(VRegister::Create(0, 32, 1));
CHECK(!test_1s.Is8B());
CHECK(!test_1s.Is16B());
CHECK(!test_1s.Is4H());
CHECK(!test_1s.Is8H());
CHECK(!test_1s.Is2S());
CHECK(!test_1s.Is4S());
CHECK(!test_1s.Is1D());
CHECK(!test_1s.Is2D());
CHECK(test_1s.Is1S());
CHECK(!test_1s.Is1H());
CHECK(!test_1s.Is1B());
CHECK(!test_1s.IsVector());
CHECK(test_1s.IsScalar());
CHECK(test_1s.IsFPRegister());
VRegister test_1h(VRegister::Create(0, 16, 1));
CHECK(!test_1h.Is8B());
CHECK(!test_1h.Is16B());
CHECK(!test_1h.Is4H());
CHECK(!test_1h.Is8H());
CHECK(!test_1h.Is2S());
CHECK(!test_1h.Is4S());
CHECK(!test_1h.Is1D());
CHECK(!test_1h.Is2D());
CHECK(!test_1h.Is1S());
CHECK(test_1h.Is1H());
CHECK(!test_1h.Is1B());
CHECK(!test_1h.IsVector());
CHECK(test_1h.IsScalar());
CHECK(!test_1h.IsFPRegister());
VRegister test_1b(VRegister::Create(0, 8, 1));
CHECK(!test_1b.Is8B());
CHECK(!test_1b.Is16B());
CHECK(!test_1b.Is4H());
CHECK(!test_1b.Is8H());
CHECK(!test_1b.Is2S());
CHECK(!test_1b.Is4S());
CHECK(!test_1b.Is1D());
CHECK(!test_1b.Is2D());
CHECK(!test_1b.Is1S());
CHECK(!test_1b.Is1H());
CHECK(test_1b.Is1B());
CHECK(!test_1b.IsVector());
CHECK(test_1b.IsScalar());
CHECK(!test_1b.IsFPRegister());
VRegister test_breg_from_code(VRegister::BRegFromCode(0));
CHECK_EQ(test_breg_from_code.SizeInBits(), kBRegSizeInBits);
VRegister test_hreg_from_code(VRegister::HRegFromCode(0));
CHECK_EQ(test_hreg_from_code.SizeInBits(), kHRegSizeInBits);
VRegister test_sreg_from_code(VRegister::SRegFromCode(0));
CHECK_EQ(test_sreg_from_code.SizeInBits(), kSRegSizeInBits);
VRegister test_dreg_from_code(VRegister::DRegFromCode(0));
CHECK_EQ(test_dreg_from_code.SizeInBits(), kDRegSizeInBits);
VRegister test_qreg_from_code(VRegister::QRegFromCode(0));
CHECK_EQ(test_qreg_from_code.SizeInBits(), kQRegSizeInBits);
VRegister test_vreg_from_code(VRegister::VRegFromCode(0));
CHECK_EQ(test_vreg_from_code.SizeInBits(), kVRegSizeInBits);
VRegister test_v8b(VRegister::VRegFromCode(31).V8B());
CHECK_EQ(test_v8b.code(), 31);
CHECK_EQ(test_v8b.SizeInBits(), kDRegSizeInBits);
CHECK(test_v8b.IsLaneSizeB());
CHECK(!test_v8b.IsLaneSizeH());
CHECK(!test_v8b.IsLaneSizeS());
CHECK(!test_v8b.IsLaneSizeD());
CHECK_EQ(test_v8b.LaneSizeInBits(), 8U);
VRegister test_v16b(VRegister::VRegFromCode(31).V16B());
CHECK_EQ(test_v16b.code(), 31);
CHECK_EQ(test_v16b.SizeInBits(), kQRegSizeInBits);
CHECK(test_v16b.IsLaneSizeB());
CHECK(!test_v16b.IsLaneSizeH());
CHECK(!test_v16b.IsLaneSizeS());
CHECK(!test_v16b.IsLaneSizeD());
CHECK_EQ(test_v16b.LaneSizeInBits(), 8U);
VRegister test_v4h(VRegister::VRegFromCode(31).V4H());
CHECK_EQ(test_v4h.code(), 31);
CHECK_EQ(test_v4h.SizeInBits(), kDRegSizeInBits);
CHECK(!test_v4h.IsLaneSizeB());
CHECK(test_v4h.IsLaneSizeH());
CHECK(!test_v4h.IsLaneSizeS());
CHECK(!test_v4h.IsLaneSizeD());
CHECK_EQ(test_v4h.LaneSizeInBits(), 16U);
VRegister test_v8h(VRegister::VRegFromCode(31).V8H());
CHECK_EQ(test_v8h.code(), 31);
CHECK_EQ(test_v8h.SizeInBits(), kQRegSizeInBits);
CHECK(!test_v8h.IsLaneSizeB());
CHECK(test_v8h.IsLaneSizeH());
CHECK(!test_v8h.IsLaneSizeS());
CHECK(!test_v8h.IsLaneSizeD());
CHECK_EQ(test_v8h.LaneSizeInBits(), 16U);
VRegister test_v2s(VRegister::VRegFromCode(31).V2S());
CHECK_EQ(test_v2s.code(), 31);
CHECK_EQ(test_v2s.SizeInBits(), kDRegSizeInBits);
CHECK(!test_v2s.IsLaneSizeB());
CHECK(!test_v2s.IsLaneSizeH());
CHECK(test_v2s.IsLaneSizeS());
CHECK(!test_v2s.IsLaneSizeD());
CHECK_EQ(test_v2s.LaneSizeInBits(), 32U);
VRegister test_v4s(VRegister::VRegFromCode(31).V4S());
CHECK_EQ(test_v4s.code(), 31);
CHECK_EQ(test_v4s.SizeInBits(), kQRegSizeInBits);
CHECK(!test_v4s.IsLaneSizeB());
CHECK(!test_v4s.IsLaneSizeH());
CHECK(test_v4s.IsLaneSizeS());
CHECK(!test_v4s.IsLaneSizeD());
CHECK_EQ(test_v4s.LaneSizeInBits(), 32U);
VRegister test_v1d(VRegister::VRegFromCode(31).V1D());
CHECK_EQ(test_v1d.code(), 31);
CHECK_EQ(test_v1d.SizeInBits(), kDRegSizeInBits);
CHECK(!test_v1d.IsLaneSizeB());
CHECK(!test_v1d.IsLaneSizeH());
CHECK(!test_v1d.IsLaneSizeS());
CHECK(test_v1d.IsLaneSizeD());
CHECK_EQ(test_v1d.LaneSizeInBits(), 64U);
VRegister test_v2d(VRegister::VRegFromCode(31).V2D());
CHECK_EQ(test_v2d.code(), 31);
CHECK_EQ(test_v2d.SizeInBits(), kQRegSizeInBits);
CHECK(!test_v2d.IsLaneSizeB());
CHECK(!test_v2d.IsLaneSizeH());
CHECK(!test_v2d.IsLaneSizeS());
CHECK(test_v2d.IsLaneSizeD());
CHECK_EQ(test_v2d.LaneSizeInBits(), 64U);
CHECK(test_v1d.IsSameFormat(test_v1d));
CHECK(test_v2d.IsSameFormat(test_v2d));
CHECK(!test_v1d.IsSameFormat(test_v2d));
CHECK(!test_v2s.IsSameFormat(test_v2d));
}
TEST(isvalid) {
// This test doesn't generate any code, but it verifies some invariants
// related to IsValid().
CHECK(!NoReg.is_valid());
CHECK(!NoVReg.is_valid());
CHECK(!NoCPUReg.is_valid());
CHECK(x0.is_valid());
CHECK(w0.is_valid());
CHECK(x30.is_valid());
CHECK(w30.is_valid());
CHECK(xzr.is_valid());
CHECK(wzr.is_valid());
CHECK(sp.is_valid());
CHECK(wsp.is_valid());
CHECK(d0.is_valid());
CHECK(s0.is_valid());
CHECK(d31.is_valid());
CHECK(s31.is_valid());
CHECK(x0.IsRegister());
CHECK(w0.IsRegister());
CHECK(xzr.IsRegister());
CHECK(wzr.IsRegister());
CHECK(sp.IsRegister());
CHECK(wsp.IsRegister());
CHECK(!x0.IsVRegister());
CHECK(!w0.IsVRegister());
CHECK(!xzr.IsVRegister());
CHECK(!wzr.IsVRegister());
CHECK(!sp.IsVRegister());
CHECK(!wsp.IsVRegister());
CHECK(d0.IsVRegister());
CHECK(s0.IsVRegister());
CHECK(!d0.IsRegister());
CHECK(!s0.IsRegister());
// Test the same as before, but using CPURegister types. This shouldn't make
// any difference.
CHECK(static_cast<CPURegister>(x0).is_valid());
CHECK(static_cast<CPURegister>(w0).is_valid());
CHECK(static_cast<CPURegister>(x30).is_valid());
CHECK(static_cast<CPURegister>(w30).is_valid());
CHECK(static_cast<CPURegister>(xzr).is_valid());
CHECK(static_cast<CPURegister>(wzr).is_valid());
CHECK(static_cast<CPURegister>(sp).is_valid());
CHECK(static_cast<CPURegister>(wsp).is_valid());
CHECK(static_cast<CPURegister>(d0).is_valid());
CHECK(static_cast<CPURegister>(s0).is_valid());
CHECK(static_cast<CPURegister>(d31).is_valid());
CHECK(static_cast<CPURegister>(s31).is_valid());
CHECK(static_cast<CPURegister>(x0).IsRegister());
CHECK(static_cast<CPURegister>(w0).IsRegister());
CHECK(static_cast<CPURegister>(xzr).IsRegister());
CHECK(static_cast<CPURegister>(wzr).IsRegister());
CHECK(static_cast<CPURegister>(sp).IsRegister());
CHECK(static_cast<CPURegister>(wsp).IsRegister());
CHECK(!static_cast<CPURegister>(x0).IsVRegister());
CHECK(!static_cast<CPURegister>(w0).IsVRegister());
CHECK(!static_cast<CPURegister>(xzr).IsVRegister());
CHECK(!static_cast<CPURegister>(wzr).IsVRegister());
CHECK(!static_cast<CPURegister>(sp).IsVRegister());
CHECK(!static_cast<CPURegister>(wsp).IsVRegister());
CHECK(static_cast<CPURegister>(d0).IsVRegister());
CHECK(static_cast<CPURegister>(s0).IsVRegister());
CHECK(!static_cast<CPURegister>(d0).IsRegister());
CHECK(!static_cast<CPURegister>(s0).IsRegister());
}
TEST(areconsecutive) {
// This test generates no code; it just checks that AreConsecutive works.
CHECK(AreConsecutive(b0, NoVReg));
CHECK(AreConsecutive(b1, b2));
CHECK(AreConsecutive(b3, b4, b5));
CHECK(AreConsecutive(b6, b7, b8, b9));
CHECK(AreConsecutive(h10, NoVReg));
CHECK(AreConsecutive(h11, h12));
CHECK(AreConsecutive(h13, h14, h15));
CHECK(AreConsecutive(h16, h17, h18, h19));
CHECK(AreConsecutive(s20, NoVReg));
CHECK(AreConsecutive(s21, s22));
CHECK(AreConsecutive(s23, s24, s25));
CHECK(AreConsecutive(s26, s27, s28, s29));
CHECK(AreConsecutive(d30, NoVReg));
CHECK(AreConsecutive(d31, d0));
CHECK(AreConsecutive(d1, d2, d3));
CHECK(AreConsecutive(d4, d5, d6, d7));
CHECK(AreConsecutive(q8, NoVReg));
CHECK(AreConsecutive(q9, q10));
CHECK(AreConsecutive(q11, q12, q13));
CHECK(AreConsecutive(q14, q15, q16, q17));
CHECK(AreConsecutive(v18, NoVReg));
CHECK(AreConsecutive(v19, v20));
CHECK(AreConsecutive(v21, v22, v23));
CHECK(AreConsecutive(v24, v25, v26, v27));
CHECK(AreConsecutive(b29, h30));
CHECK(AreConsecutive(s31, d0, q1));
CHECK(AreConsecutive(v2, b3, h4, s5));
CHECK(AreConsecutive(b26, b27, NoVReg, NoVReg));
CHECK(AreConsecutive(h28, NoVReg, NoVReg, NoVReg));
CHECK(!AreConsecutive(b0, b2));
CHECK(!AreConsecutive(h1, h0));
CHECK(!AreConsecutive(s31, s1));
CHECK(!AreConsecutive(d12, d12));
CHECK(!AreConsecutive(q31, q1));
CHECK(!AreConsecutive(b5, b4, b3));
CHECK(!AreConsecutive(h15, h16, h15, h14));
CHECK(!AreConsecutive(s25, s24, s23, s22));
CHECK(!AreConsecutive(d5, d6, d7, d6));
CHECK(!AreConsecutive(q15, q16, q17, q6));
CHECK(!AreConsecutive(b0, b1, b3));
CHECK(!AreConsecutive(h4, h5, h6, h6));
CHECK(!AreConsecutive(d15, d16, d18, NoVReg));
CHECK(!AreConsecutive(s28, s30, NoVReg, NoVReg));
}
TEST(cpureglist_utils_x) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of X registers.
CPURegList test(x0, x1, x2, x3);
CHECK(test.IncludesAliasOf(x0));
CHECK(test.IncludesAliasOf(x1));
CHECK(test.IncludesAliasOf(x2));
CHECK(test.IncludesAliasOf(x3));
CHECK(test.IncludesAliasOf(w0));
CHECK(test.IncludesAliasOf(w1));
CHECK(test.IncludesAliasOf(w2));
CHECK(test.IncludesAliasOf(w3));
CHECK(!test.IncludesAliasOf(x4));
CHECK(!test.IncludesAliasOf(x30));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(sp));
CHECK(!test.IncludesAliasOf(w4));
CHECK(!test.IncludesAliasOf(w30));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(wsp));
CHECK(!test.IncludesAliasOf(d0));
CHECK(!test.IncludesAliasOf(d1));
CHECK(!test.IncludesAliasOf(d2));
CHECK(!test.IncludesAliasOf(d3));
CHECK(!test.IncludesAliasOf(s0));
CHECK(!test.IncludesAliasOf(s1));
CHECK(!test.IncludesAliasOf(s2));
CHECK(!test.IncludesAliasOf(s3));
CHECK(!test.IsEmpty());
CHECK_EQ(test.type(), x0.type());
CHECK_EQ(test.PopHighestIndex(), x3);
CHECK_EQ(test.PopLowestIndex(), x0);
CHECK(test.IncludesAliasOf(x1));
CHECK(test.IncludesAliasOf(x2));
CHECK(test.IncludesAliasOf(w1));
CHECK(test.IncludesAliasOf(w2));
CHECK(!test.IncludesAliasOf(x0));
CHECK(!test.IncludesAliasOf(x3));
CHECK(!test.IncludesAliasOf(w0));
CHECK(!test.IncludesAliasOf(w3));
CHECK_EQ(test.PopHighestIndex(), x2);
CHECK_EQ(test.PopLowestIndex(), x1);
CHECK(!test.IncludesAliasOf(x1));
CHECK(!test.IncludesAliasOf(x2));
CHECK(!test.IncludesAliasOf(w1));
CHECK(!test.IncludesAliasOf(w2));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_w) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of W registers.
CPURegList test(w10, w11, w12, w13);
CHECK(test.IncludesAliasOf(x10));
CHECK(test.IncludesAliasOf(x11));
CHECK(test.IncludesAliasOf(x12));
CHECK(test.IncludesAliasOf(x13));
CHECK(test.IncludesAliasOf(w10));
CHECK(test.IncludesAliasOf(w11));
CHECK(test.IncludesAliasOf(w12));
CHECK(test.IncludesAliasOf(w13));
CHECK(!test.IncludesAliasOf(x0));
CHECK(!test.IncludesAliasOf(x9));
CHECK(!test.IncludesAliasOf(x14));
CHECK(!test.IncludesAliasOf(x30));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(sp));
CHECK(!test.IncludesAliasOf(w0));
CHECK(!test.IncludesAliasOf(w9));
CHECK(!test.IncludesAliasOf(w14));
CHECK(!test.IncludesAliasOf(w30));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(wsp));
CHECK(!test.IncludesAliasOf(d10));
CHECK(!test.IncludesAliasOf(d11));
CHECK(!test.IncludesAliasOf(d12));
CHECK(!test.IncludesAliasOf(d13));
CHECK(!test.IncludesAliasOf(s10));
CHECK(!test.IncludesAliasOf(s11));
CHECK(!test.IncludesAliasOf(s12));
CHECK(!test.IncludesAliasOf(s13));
CHECK(!test.IsEmpty());
CHECK_EQ(test.type(), w10.type());
CHECK_EQ(test.PopHighestIndex(), w13);
CHECK_EQ(test.PopLowestIndex(), w10);
CHECK(test.IncludesAliasOf(x11));
CHECK(test.IncludesAliasOf(x12));
CHECK(test.IncludesAliasOf(w11));
CHECK(test.IncludesAliasOf(w12));
CHECK(!test.IncludesAliasOf(x10));
CHECK(!test.IncludesAliasOf(x13));
CHECK(!test.IncludesAliasOf(w10));
CHECK(!test.IncludesAliasOf(w13));
CHECK_EQ(test.PopHighestIndex(), w12);
CHECK_EQ(test.PopLowestIndex(), w11);
CHECK(!test.IncludesAliasOf(x11));
CHECK(!test.IncludesAliasOf(x12));
CHECK(!test.IncludesAliasOf(w11));
CHECK(!test.IncludesAliasOf(w12));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_d) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of D registers.
CPURegList test(d20, d21, d22, d23);
CHECK(test.IncludesAliasOf(d20));
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(d23));
CHECK(test.IncludesAliasOf(s20));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(test.IncludesAliasOf(s23));
CHECK(!test.IncludesAliasOf(d0));
CHECK(!test.IncludesAliasOf(d19));
CHECK(!test.IncludesAliasOf(d24));
CHECK(!test.IncludesAliasOf(d31));
CHECK(!test.IncludesAliasOf(s0));
CHECK(!test.IncludesAliasOf(s19));
CHECK(!test.IncludesAliasOf(s24));
CHECK(!test.IncludesAliasOf(s31));
CHECK(!test.IncludesAliasOf(x20));
CHECK(!test.IncludesAliasOf(x21));
CHECK(!test.IncludesAliasOf(x22));
CHECK(!test.IncludesAliasOf(x23));
CHECK(!test.IncludesAliasOf(w20));
CHECK(!test.IncludesAliasOf(w21));
CHECK(!test.IncludesAliasOf(w22));
CHECK(!test.IncludesAliasOf(w23));
CHECK(!test.IncludesAliasOf(xzr));
CHECK(!test.IncludesAliasOf(wzr));
CHECK(!test.IncludesAliasOf(sp));
CHECK(!test.IncludesAliasOf(wsp));
CHECK(!test.IsEmpty());
CHECK_EQ(test.type(), d20.type());
CHECK_EQ(test.PopHighestIndex(), d23);
CHECK_EQ(test.PopLowestIndex(), d20);
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(!test.IncludesAliasOf(d20));
CHECK(!test.IncludesAliasOf(d23));
CHECK(!test.IncludesAliasOf(s20));
CHECK(!test.IncludesAliasOf(s23));
CHECK_EQ(test.PopHighestIndex(), d22);
CHECK_EQ(test.PopLowestIndex(), d21);
CHECK(!test.IncludesAliasOf(d21));
CHECK(!test.IncludesAliasOf(d22));
CHECK(!test.IncludesAliasOf(s21));
CHECK(!test.IncludesAliasOf(s22));
CHECK(test.IsEmpty());
}
TEST(cpureglist_utils_s) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test a list of S registers.
CPURegList test(s20, s21, s22, s23);
// The type and size mechanisms are already covered, so here we just test
// that lists of S registers alias individual D registers.
CHECK(test.IncludesAliasOf(d20));
CHECK(test.IncludesAliasOf(d21));
CHECK(test.IncludesAliasOf(d22));
CHECK(test.IncludesAliasOf(d23));
CHECK(test.IncludesAliasOf(s20));
CHECK(test.IncludesAliasOf(s21));
CHECK(test.IncludesAliasOf(s22));
CHECK(test.IncludesAliasOf(s23));
}
TEST(cpureglist_utils_empty) {
// This test doesn't generate any code, but it verifies the behaviour of
// the CPURegList utility methods.
// Test an empty list.
// Empty lists can have type and size properties. Check that we can create
// them, and that they are empty.
CPURegList reg32(CPURegister::kRegister, kWRegSizeInBits, 0);
CPURegList reg64(CPURegister::kRegister, kXRegSizeInBits, 0);
CPURegList fpreg32(CPURegister::kVRegister, kSRegSizeInBits, 0);
CPURegList fpreg64(CPURegister::kVRegister, kDRegSizeInBits, 0);
CHECK(reg32.IsEmpty());
CHECK(reg64.IsEmpty());
CHECK(fpreg32.IsEmpty());
CHECK(fpreg64.IsEmpty());
CHECK(reg32.PopLowestIndex().IsNone());
CHECK(reg64.PopLowestIndex().IsNone());
CHECK(fpreg32.PopLowestIndex().IsNone());
CHECK(fpreg64.PopLowestIndex().IsNone());
CHECK(reg32.PopHighestIndex().IsNone());
CHECK(reg64.PopHighestIndex().IsNone());
CHECK(fpreg32.PopHighestIndex().IsNone());
CHECK(fpreg64.PopHighestIndex().IsNone());
CHECK(reg32.IsEmpty());
CHECK(reg64.IsEmpty());
CHECK(fpreg32.IsEmpty());
CHECK(fpreg64.IsEmpty());
}
TEST(printf) {
INIT_V8();
SETUP_SIZE(BUF_SIZE * 2);
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
RegisterDump before;
// Initialize x29 to the value of the stack pointer. We will use x29 as a
// temporary stack pointer later, and initializing it in this way allows the
// RegisterDump check to pass.
__ Mov(x29, sp);
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xFFFFFFFF);
__ Mov(w4, 0xFFFFFFFF);
__ Mov(x5, 0xFFFFFFFFFFFFFFFF);
__ Mov(x6, 0xFFFFFFFFFFFFFFFF);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789ABCDEF);
__ Fmov(d10, 42.0);
// Test with three arguments.
__ Mov(x10, 3);
__ Mov(x11, 40);
__ Mov(x12, 500);
// A single character.
__ Mov(w13, 'x');
// Check that we don't clobber any registers.
before.Dump(&masm);
__ Printf(test_plain_string); // NOLINT(runtime/printf)
__ Printf("x0: %" PRId64 ", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Printf("w5: %" PRId32 ", x5: %" PRId64"\n", w5, x5);
__ Printf("d0: %f\n", d0);
__ Printf("Test %%s: %s\n", x2);
__ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Printf("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28);
__ Printf("%g\n", d10);
__ Printf("%%%%%s%%%c%%\n", x2, w13);
// Print the stack pointer.
__ Printf("StackPointer(sp): 0x%016" PRIx64 ", 0x%08" PRIx32 "\n", sp, wsp);
// Test with three arguments.
__ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12);
// Mixed argument types.
__ Printf("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n",
w3, s1, x5, d3);
__ Printf("s1: %f, d3: %f, w3: %" PRId32 ", x5: %" PRId64 "\n",
s1, d3, w3, x5);
END();
RUN();
// We cannot easily test the output of the Printf sequences, and because
// Printf preserves all registers by default, we can't look at the number of
// bytes that were printed. However, the printf_no_preserve test should check
// that, and here we just test that we didn't clobber any registers.
CHECK_EQUAL_REGISTERS(before);
}
TEST(printf_no_preserve) {
INIT_V8();
SETUP();
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
__ PrintfNoPreserve(test_plain_string);
__ Mov(x19, x0);
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
__ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Mov(x20, x0);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
__ PrintfNoPreserve("d0: %f\n", d0);
__ Mov(x21, x0);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
__ PrintfNoPreserve("Test %%s: %s\n", x2);
__ Mov(x22, x0);
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xFFFFFFFF);
__ Mov(w4, 0xFFFFFFFF);
__ Mov(x5, 0xFFFFFFFFFFFFFFFF);
__ Mov(x6, 0xFFFFFFFFFFFFFFFF);
__ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Mov(x23, x0);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
__ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Mov(x24, x0);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789ABCDEF);
__ PrintfNoPreserve("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28);
__ Mov(x25, x0);
__ Fmov(d10, 42.0);
__ PrintfNoPreserve("%g\n", d10);
__ Mov(x26, x0);
// Test with three arguments.
__ Mov(x3, 3);
__ Mov(x4, 40);
__ Mov(x5, 500);
__ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5);
__ Mov(x27, x0);
// Mixed argument types.
__ Mov(w3, 0xFFFFFFFF);
__ Fmov(s1, 1.234);
__ Mov(x5, 0xFFFFFFFFFFFFFFFF);
__ Fmov(d3, 3.456);
__ PrintfNoPreserve("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n",
w3, s1, x5, d3);
__ Mov(x28, x0);
END();
RUN();
// We cannot easily test the exact output of the Printf sequences, but we can
// use the return code to check that the string length was correct.
// Printf with no arguments.
CHECK_EQUAL_64(strlen(test_plain_string), x19);
// x0: 1234, x1: 0x00001234
CHECK_EQUAL_64(25, x20);
// d0: 1.234000
CHECK_EQUAL_64(13, x21);
// Test %s: 'This is a substring.'
CHECK_EQUAL_64(32, x22);
// w3(uint32): 4294967295
// w4(int32): -1
// x5(uint64): 18446744073709551615
// x6(int64): -1
CHECK_EQUAL_64(23 + 14 + 33 + 14, x23);
// %f: 1.234000
// %g: 2.345
// %e: 3.456000e+00
// %E: 4.567000E+00
CHECK_EQUAL_64(13 + 10 + 17 + 17, x24);
// 0x89ABCDEF, 0x123456789ABCDEF
CHECK_EQUAL_64(30, x25);
// 42
CHECK_EQUAL_64(3, x26);
// 3=3, 4=40, 5=500
CHECK_EQUAL_64(17, x27);
// w3: 4294967295, s1: 1.234000, x5: 18446744073709551615, d3: 3.456000
CHECK_EQUAL_64(69, x28);
}
TEST(blr_lr) {
// A simple test to check that the simulator correcty handle "blr lr".
INIT_V8();
SETUP();
START();
Label target;
Label end;
__ Mov(x0, 0x0);
__ Adr(lr, &target);
__ Blr(lr);
__ Mov(x0, 0xDEADBEEF);
__ B(&end);
__ Bind(&target, BranchTargetIdentifier::kBtiCall);
__ Mov(x0, 0xC001C0DE);
__ Bind(&end);
END();
RUN();
CHECK_EQUAL_64(0xC001C0DE, x0);
}
TEST(barriers) {
// Generate all supported barriers, this is just a smoke test
INIT_V8();
SETUP();
START();
// DMB
__ Dmb(FullSystem, BarrierAll);
__ Dmb(FullSystem, BarrierReads);
__ Dmb(FullSystem, BarrierWrites);
__ Dmb(FullSystem, BarrierOther);
__ Dmb(InnerShareable, BarrierAll);
__ Dmb(InnerShareable, BarrierReads);
__ Dmb(InnerShareable, BarrierWrites);
__ Dmb(InnerShareable, BarrierOther);
__ Dmb(NonShareable, BarrierAll);
__ Dmb(NonShareable, BarrierReads);
__ Dmb(NonShareable, BarrierWrites);
__ Dmb(NonShareable, BarrierOther);
__ Dmb(OuterShareable, BarrierAll);
__ Dmb(OuterShareable, BarrierReads);
__ Dmb(OuterShareable, BarrierWrites);
__ Dmb(OuterShareable, BarrierOther);
// DSB
__ Dsb(FullSystem, BarrierAll);
__ Dsb(FullSystem, BarrierReads);
__ Dsb(FullSystem, BarrierWrites);
__ Dsb(FullSystem, BarrierOther);
__ Dsb(InnerShareable, BarrierAll);
__ Dsb(InnerShareable, BarrierReads);
__ Dsb(InnerShareable, BarrierWrites);
__ Dsb(InnerShareable, BarrierOther);
__ Dsb(NonShareable, BarrierAll);
__ Dsb(NonShareable, BarrierReads);
__ Dsb(NonShareable, BarrierWrites);
__ Dsb(NonShareable, BarrierOther);
__ Dsb(OuterShareable, BarrierAll);
__ Dsb(OuterShareable, BarrierReads);
__ Dsb(OuterShareable, BarrierWrites);
__ Dsb(OuterShareable, BarrierOther);
// ISB
__ Isb();
END();
RUN();
}
TEST(process_nan_double) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double sn = bit_cast<double>(0x7FF5555511111111);
double qn = bit_cast<double>(0x7FFAAAAA11111111);
CHECK(IsSignallingNaN(sn));
CHECK(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
double sn_proc = bit_cast<double>(0x7FFD555511111111);
double qn_proc = qn;
CHECK(IsQuietNaN(sn_proc));
CHECK(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(d0, sn);
__ Fmov(d10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(d1, d0);
__ Fabs(d2, d0);
__ Fneg(d3, d0);
// - Quiet NaN
__ Fmov(d11, d10);
__ Fabs(d12, d10);
__ Fneg(d13, d10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(d4, d0);
__ Frinta(d5, d0);
__ Frintn(d6, d0);
__ Frintz(d7, d0);
// - Quiet NaN
__ Fsqrt(d14, d10);
__ Frinta(d15, d10);
__ Frintn(d16, d10);
__ Frintz(d17, d10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint64_t qn_raw = bit_cast<uint64_t>(qn);
uint64_t sn_raw = bit_cast<uint64_t>(sn);
// - Signalling NaN
CHECK_EQUAL_FP64(sn, d1);
CHECK_EQUAL_FP64(bit_cast<double>(sn_raw & ~kDSignMask), d2);
CHECK_EQUAL_FP64(bit_cast<double>(sn_raw ^ kDSignMask), d3);
// - Quiet NaN
CHECK_EQUAL_FP64(qn, d11);
CHECK_EQUAL_FP64(bit_cast<double>(qn_raw & ~kDSignMask), d12);
CHECK_EQUAL_FP64(bit_cast<double>(qn_raw ^ kDSignMask), d13);
// - Signalling NaN
CHECK_EQUAL_FP64(sn_proc, d4);
CHECK_EQUAL_FP64(sn_proc, d5);
CHECK_EQUAL_FP64(sn_proc, d6);
CHECK_EQUAL_FP64(sn_proc, d7);
// - Quiet NaN
CHECK_EQUAL_FP64(qn_proc, d14);
CHECK_EQUAL_FP64(qn_proc, d15);
CHECK_EQUAL_FP64(qn_proc, d16);
CHECK_EQUAL_FP64(qn_proc, d17);
}
TEST(process_nan_float) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float sn = bit_cast<float>(0x7F951111);
float qn = bit_cast<float>(0x7FEA1111);
CHECK(IsSignallingNaN(sn));
CHECK(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
float sn_proc = bit_cast<float>(0x7FD51111);
float qn_proc = qn;
CHECK(IsQuietNaN(sn_proc));
CHECK(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(s0, sn);
__ Fmov(s10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(s1, s0);
__ Fabs(s2, s0);
__ Fneg(s3, s0);
// - Quiet NaN
__ Fmov(s11, s10);
__ Fabs(s12, s10);
__ Fneg(s13, s10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(s4, s0);
__ Frinta(s5, s0);
__ Frintn(s6, s0);
__ Frintz(s7, s0);
// - Quiet NaN
__ Fsqrt(s14, s10);
__ Frinta(s15, s10);
__ Frintn(s16, s10);
__ Frintz(s17, s10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint32_t qn_raw = bit_cast<uint32_t>(qn);
uint32_t sn_raw = bit_cast<uint32_t>(sn);
uint32_t sign_mask = static_cast<uint32_t>(kSSignMask);
// - Signalling NaN
CHECK_EQUAL_FP32(sn, s1);
CHECK_EQUAL_FP32(bit_cast<float>(sn_raw & ~sign_mask), s2);
CHECK_EQUAL_FP32(bit_cast<float>(sn_raw ^ sign_mask), s3);
// - Quiet NaN
CHECK_EQUAL_FP32(qn, s11);
CHECK_EQUAL_FP32(bit_cast<float>(qn_raw & ~sign_mask), s12);
CHECK_EQUAL_FP32(bit_cast<float>(qn_raw ^ sign_mask), s13);
// - Signalling NaN
CHECK_EQUAL_FP32(sn_proc, s4);
CHECK_EQUAL_FP32(sn_proc, s5);
CHECK_EQUAL_FP32(sn_proc, s6);
CHECK_EQUAL_FP32(sn_proc, s7);
// - Quiet NaN
CHECK_EQUAL_FP32(qn_proc, s14);
CHECK_EQUAL_FP32(qn_proc, s15);
CHECK_EQUAL_FP32(qn_proc, s16);
CHECK_EQUAL_FP32(qn_proc, s17);
}
static void ProcessNaNsHelper(double n, double m, double expected) {
CHECK(std::isnan(n) || std::isnan(m));
CHECK(std::isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fadd(d2, d0, d1);
__ Fsub(d3, d0, d1);
__ Fmul(d4, d0, d1);
__ Fdiv(d5, d0, d1);
__ Fmax(d6, d0, d1);
__ Fmin(d7, d0, d1);
END();
RUN();
CHECK_EQUAL_FP64(expected, d2);
CHECK_EQUAL_FP64(expected, d3);
CHECK_EQUAL_FP64(expected, d4);
CHECK_EQUAL_FP64(expected, d5);
CHECK_EQUAL_FP64(expected, d6);
CHECK_EQUAL_FP64(expected, d7);
}
TEST(process_nans_double) {
INIT_V8();
// Make sure that NaN propagation works correctly.
double sn = bit_cast<double>(0x7FF5555511111111);
double sm = bit_cast<double>(0x7FF5555522222222);
double qn = bit_cast<double>(0x7FFAAAAA11111111);
double qm = bit_cast<double>(0x7FFAAAAA22222222);
CHECK(IsSignallingNaN(sn));
CHECK(IsSignallingNaN(sm));
CHECK(IsQuietNaN(qn));
CHECK(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
double sn_proc = bit_cast<double>(0x7FFD555511111111);
double sm_proc = bit_cast<double>(0x7FFD555522222222);
double qn_proc = qn;
double qm_proc = qm;
CHECK(IsQuietNaN(sn_proc));
CHECK(IsQuietNaN(sm_proc));
CHECK(IsQuietNaN(qn_proc));
CHECK(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void ProcessNaNsHelper(float n, float m, float expected) {
CHECK(std::isnan(n) || std::isnan(m));
CHECK(std::isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fadd(s2, s0, s1);
__ Fsub(s3, s0, s1);
__ Fmul(s4, s0, s1);
__ Fdiv(s5, s0, s1);
__ Fmax(s6, s0, s1);
__ Fmin(s7, s0, s1);
END();
RUN();
CHECK_EQUAL_FP32(expected, s2);
CHECK_EQUAL_FP32(expected, s3);
CHECK_EQUAL_FP32(expected, s4);
CHECK_EQUAL_FP32(expected, s5);
CHECK_EQUAL_FP32(expected, s6);
CHECK_EQUAL_FP32(expected, s7);
}
TEST(process_nans_float) {
INIT_V8();
// Make sure that NaN propagation works correctly.
float sn = bit_cast<float>(0x7F951111);
float sm = bit_cast<float>(0x7F952222);
float qn = bit_cast<float>(0x7FEA1111);
float qm = bit_cast<float>(0x7FEA2222);
CHECK(IsSignallingNaN(sn));
CHECK(IsSignallingNaN(sm));
CHECK(IsQuietNaN(qn));
CHECK(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
float sn_proc = bit_cast<float>(0x7FD51111);
float sm_proc = bit_cast<float>(0x7FD52222);
float qn_proc = qn;
float qm_proc = qm;
CHECK(IsQuietNaN(sn_proc));
CHECK(IsQuietNaN(sm_proc));
CHECK(IsQuietNaN(qn_proc));
CHECK(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void DefaultNaNHelper(float n, float m, float a) {
CHECK(std::isnan(n) || std::isnan(m) || std::isnan(a));
bool test_1op = std::isnan(n);
bool test_2op = std::isnan(n) || std::isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(s10, s0);
__ Fabs(s11, s0);
__ Fneg(s12, s0);
// Operations that use ProcessNaN.
__ Fsqrt(s13, s0);
__ Frinta(s14, s0);
__ Frintn(s15, s0);
__ Frintz(s16, s0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(d17, s0);
}
if (test_2op) {
__ Fadd(s18, s0, s1);
__ Fsub(s19, s0, s1);
__ Fmul(s20, s0, s1);
__ Fdiv(s21, s0, s1);
__ Fmax(s22, s0, s1);
__ Fmin(s23, s0, s1);
}
__ Fmadd(s24, s0, s1, s2);
__ Fmsub(s25, s0, s1, s2);
__ Fnmadd(s26, s0, s1, s2);
__ Fnmsub(s27, s0, s1, s2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint32_t n_raw = bit_cast<uint32_t>(n);
uint32_t sign_mask = static_cast<uint32_t>(kSSignMask);
CHECK_EQUAL_FP32(n, s10);
CHECK_EQUAL_FP32(bit_cast<float>(n_raw & ~sign_mask), s11);
CHECK_EQUAL_FP32(bit_cast<float>(n_raw ^ sign_mask), s12);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s13);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s14);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s15);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s16);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d17);
}
if (test_2op) {
CHECK_EQUAL_FP32(kFP32DefaultNaN, s18);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s19);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s20);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s21);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s22);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s23);
}
CHECK_EQUAL_FP32(kFP32DefaultNaN, s24);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s25);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s26);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s27);
}
TEST(default_nan_float) {
INIT_V8();
float sn = bit_cast<float>(0x7F951111);
float sm = bit_cast<float>(0x7F952222);
float sa = bit_cast<float>(0x7F95AAAA);
float qn = bit_cast<float>(0x7FEA1111);
float qm = bit_cast<float>(0x7FEA2222);
float qa = bit_cast<float>(0x7FEAAAAA);
CHECK(IsSignallingNaN(sn));
CHECK(IsSignallingNaN(sm));
CHECK(IsSignallingNaN(sa));
CHECK(IsQuietNaN(qn));
CHECK(IsQuietNaN(qm));
CHECK(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, sm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, sa);
DefaultNaNHelper(sn, sm, 0.0f);
DefaultNaNHelper(0.0f, sm, sa);
DefaultNaNHelper(sn, 0.0f, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, qm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, qa);
DefaultNaNHelper(qn, qm, 0.0f);
DefaultNaNHelper(0.0f, qm, qa);
DefaultNaNHelper(qn, 0.0f, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
static void DefaultNaNHelper(double n, double m, double a) {
CHECK(std::isnan(n) || std::isnan(m) || std::isnan(a));
bool test_1op = std::isnan(n);
bool test_2op = std::isnan(n) || std::isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(d10, d0);
__ Fabs(d11, d0);
__ Fneg(d12, d0);
// Operations that use ProcessNaN.
__ Fsqrt(d13, d0);
__ Frinta(d14, d0);
__ Frintn(d15, d0);
__ Frintz(d16, d0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(s17, d0);
}
if (test_2op) {
__ Fadd(d18, d0, d1);
__ Fsub(d19, d0, d1);
__ Fmul(d20, d0, d1);
__ Fdiv(d21, d0, d1);
__ Fmax(d22, d0, d1);
__ Fmin(d23, d0, d1);
}
__ Fmadd(d24, d0, d1, d2);
__ Fmsub(d25, d0, d1, d2);
__ Fnmadd(d26, d0, d1, d2);
__ Fnmsub(d27, d0, d1, d2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint64_t n_raw = bit_cast<uint64_t>(n);
CHECK_EQUAL_FP64(n, d10);
CHECK_EQUAL_FP64(bit_cast<double>(n_raw & ~kDSignMask), d11);
CHECK_EQUAL_FP64(bit_cast<double>(n_raw ^ kDSignMask), d12);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d13);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d14);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d15);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d16);
CHECK_EQUAL_FP32(kFP32DefaultNaN, s17);
}
if (test_2op) {
CHECK_EQUAL_FP64(kFP64DefaultNaN, d18);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d19);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d20);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d21);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d22);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d23);
}
CHECK_EQUAL_FP64(kFP64DefaultNaN, d24);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d25);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d26);
CHECK_EQUAL_FP64(kFP64DefaultNaN, d27);
}
TEST(default_nan_double) {
INIT_V8();
double sn = bit_cast<double>(0x7FF5555511111111);
double sm = bit_cast<double>(0x7FF5555522222222);
double sa = bit_cast<double>(0x7FF55555AAAAAAAA);
double qn = bit_cast<double>(0x7FFAAAAA11111111);
double qm = bit_cast<double>(0x7FFAAAAA22222222);
double qa = bit_cast<double>(0x7FFAAAAAAAAAAAAA);
CHECK(IsSignallingNaN(sn));
CHECK(IsSignallingNaN(sm));
CHECK(IsSignallingNaN(sa));
CHECK(IsQuietNaN(qn));
CHECK(IsQuietNaN(qm));
CHECK(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0, 0.0);
DefaultNaNHelper(0.0, sm, 0.0);
DefaultNaNHelper(0.0, 0.0, sa);
DefaultNaNHelper(sn, sm, 0.0);
DefaultNaNHelper(0.0, sm, sa);
DefaultNaNHelper(sn, 0.0, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0, 0.0);
DefaultNaNHelper(0.0, qm, 0.0);
DefaultNaNHelper(0.0, 0.0, qa);
DefaultNaNHelper(qn, qm, 0.0);
DefaultNaNHelper(0.0, qm, qa);
DefaultNaNHelper(qn, 0.0, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
TEST(near_call_no_relocation) {
INIT_V8();
SETUP();
START();
Label function;
Label test;
__ B(&test);
__ Bind(&function);
__ Mov(x0, 0x1);
__ Ret();
__ Bind(&test);
__ Mov(x0, 0x0);
{
Assembler::BlockConstPoolScope scope(&masm);
int offset = (function.pos() - __ pc_offset()) / kInstrSize;
__ near_call(offset, RelocInfo::NONE);
}
END();
RUN();
CHECK_EQUAL_64(1, x0);
}
static void AbsHelperX(int64_t value) {
int64_t expected;
SETUP();
START();
Label fail;
Label done;
__ Mov(x0, 0);
__ Mov(x1, value);
if (value != kXMinInt) {
expected = std::abs(value);
Label next;
// The result is representable.
__ Abs(x10, x1);
__ Abs(x11, x1, &fail);
__ Abs(x12, x1, &fail, &next);
__ Bind(&next);
__ Abs(x13, x1, nullptr, &done);
} else {
// std::abs is undefined for kXMinInt but our implementation in the
// MacroAssembler will return kXMinInt in such a case.
expected = kXMinInt;
Label next;
// The result is not representable.
__ Abs(x10, x1);
__ Abs(x11, x1, nullptr, &fail);
__ Abs(x12, x1, &next, &fail);
__ Bind(&next);
__ Abs(x13, x1, &done);
}
__ Bind(&fail);
__ Mov(x0, -1);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_64(0, x0);
CHECK_EQUAL_64(value, x1);
CHECK_EQUAL_64(expected, x10);
CHECK_EQUAL_64(expected, x11);
CHECK_EQUAL_64(expected, x12);
CHECK_EQUAL_64(expected, x13);
}
static void AbsHelperW(int32_t value) {
int32_t expected;
SETUP();
START();
Label fail;
Label done;
__ Mov(w0, 0);
// TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL.
// Once it is fixed, we should remove the cast.
__ Mov(w1, static_cast<uint32_t>(value));
if (value != kWMinInt) {
expected = abs(value);
Label next;
// The result is representable.
__ Abs(w10, w1);
__ Abs(w11, w1, &fail);
__ Abs(w12, w1, &fail, &next);
__ Bind(&next);
__ Abs(w13, w1, nullptr, &done);
} else {
// abs is undefined for kWMinInt but our implementation in the
// MacroAssembler will return kWMinInt in such a case.
expected = kWMinInt;
Label next;
// The result is not representable.
__ Abs(w10, w1);
__ Abs(w11, w1, nullptr, &fail);
__ Abs(w12, w1, &next, &fail);
__ Bind(&next);
__ Abs(w13, w1, &done);
}
__ Bind(&fail);
__ Mov(w0, -1);
__ Bind(&done);
END();
RUN();
CHECK_EQUAL_32(0, w0);
CHECK_EQUAL_32(value, w1);
CHECK_EQUAL_32(expected, w10);
CHECK_EQUAL_32(expected, w11);
CHECK_EQUAL_32(expected, w12);
CHECK_EQUAL_32(expected, w13);
}
TEST(abs) {
INIT_V8();
AbsHelperX(0);
AbsHelperX(42);
AbsHelperX(-42);
AbsHelperX(kXMinInt);
AbsHelperX(kXMaxInt);
AbsHelperW(0);
AbsHelperW(42);
AbsHelperW(-42);
AbsHelperW(kWMinInt);
AbsHelperW(kWMaxInt);
}
TEST(pool_size) {
INIT_V8();
SETUP();
// This test does not execute any code. It only tests that the size of the
// pools is read correctly from the RelocInfo.
Label exit;
__ b(&exit);
const unsigned constant_pool_size = 312;
const unsigned veneer_pool_size = 184;
__ RecordConstPool(constant_pool_size);
for (unsigned i = 0; i < constant_pool_size / 4; ++i) {
__ dc32(0);
}
__ RecordVeneerPool(masm.pc_offset(), veneer_pool_size);
for (unsigned i = 0; i < veneer_pool_size / kInstrSize; ++i) {
__ nop();
}
__ bind(&exit);
CodeDesc desc;
masm.GetCode(isolate, &desc);
code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING)
.set_self_reference(masm.CodeObject())
.Build();
unsigned pool_count = 0;
int pool_mask = RelocInfo::ModeMask(RelocInfo::CONST_POOL) |
RelocInfo::ModeMask(RelocInfo::VENEER_POOL);
for (RelocIterator it(*code, pool_mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (RelocInfo::IsConstPool(info->rmode())) {
CHECK_EQ(info->data(), constant_pool_size);
++pool_count;
}
if (RelocInfo::IsVeneerPool(info->rmode())) {
CHECK_EQ(info->data(), veneer_pool_size);
++pool_count;
}
}
CHECK_EQ(pool_count, 2);
}
TEST(jump_tables_forward) {
// Test jump tables with forward jumps.
const int kNumCases = 512;
INIT_V8();
SETUP_SIZE(kNumCases * 5 * kInstrSize + 8192);
START();
int32_t values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
int32_t results[kNumCases];
memset(results, 0, sizeof(results));
uintptr_t results_ptr = reinterpret_cast<uintptr_t>(results);
Label loop;
Label labels[kNumCases];
Label done;
const Register& index = x0;
STATIC_ASSERT(sizeof(results[0]) == 4);
const Register& value = w1;
const Register& target = x2;
__ Mov(index, 0);
__ Mov(target, results_ptr);
__ Bind(&loop);
{
Assembler::BlockPoolsScope block_pools(&masm);
Label base;
__ Adr(x10, &base);
__ Ldr(x11, MemOperand(x10, index, LSL, kSystemPointerSizeLog2));
__ Br(x11);
__ Bind(&base);
for (int i = 0; i < kNumCases; ++i) {
__ dcptr(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ Bind(&labels[i], BranchTargetIdentifier::kBtiJump);
__ Mov(value, values[i]);
__ B(&done);
}
__ Bind(&done);
__ Str(value, MemOperand(target, 4, PostIndex));
__ Add(index, index, 1);
__ Cmp(index, kNumCases);
__ B(ne, &loop);
END();
RUN();
for (int i = 0; i < kNumCases; ++i) {
CHECK_EQ(values[i], results[i]);
}
}
TEST(jump_tables_backward) {
// Test jump tables with backward jumps.
const int kNumCases = 512;
INIT_V8();
SETUP_SIZE(kNumCases * 5 * kInstrSize + 8192);
START();
int32_t values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
int32_t results[kNumCases];
memset(results, 0, sizeof(results));
uintptr_t results_ptr = reinterpret_cast<uintptr_t>(results);
Label loop;
Label labels[kNumCases];
Label done;
const Register& index = x0;
STATIC_ASSERT(sizeof(results[0]) == 4);
const Register& value = w1;
const Register& target = x2;
__ Mov(index, 0);
__ Mov(target, results_ptr);
__ B(&loop);
for (int i = 0; i < kNumCases; ++i) {
__ Bind(&labels[i], BranchTargetIdentifier::kBtiJump);
__ Mov(value, values[i]);
__ B(&done);
}
__ Bind(&loop);
{
Assembler::BlockPoolsScope block_pools(&masm);
Label base;
__ Adr(x10, &base);
__ Ldr(x11, MemOperand(x10, index, LSL, kSystemPointerSizeLog2));
__ Br(x11);
__ Bind(&base);
for (int i = 0; i < kNumCases; ++i) {
__ dcptr(&labels[i]);
}
}
__ Bind(&done);
__ Str(value, MemOperand(target, 4, PostIndex));
__ Add(index, index, 1);
__ Cmp(index, kNumCases);
__ B(ne, &loop);
END();
RUN();
for (int i = 0; i < kNumCases; ++i) {
CHECK_EQ(values[i], results[i]);
}
}
TEST(internal_reference_linked) {
// Test internal reference when they are linked in a label chain.
INIT_V8();
SETUP();
START();
Label done;
__ Mov(x0, 0);
__ Cbnz(x0, &done);
{
Assembler::BlockPoolsScope block_pools(&masm);
Label base;
__ Adr(x10, &base);
__ Ldr(x11, MemOperand(x10));
__ Br(x11);
__ Bind(&base);
__ dcptr(&done);
}
// Dead code, just to extend the label chain.
__ B(&done);
__ dcptr(&done);
__ Tbz(x0, 1, &done);
__ Bind(&done, BranchTargetIdentifier::kBtiJump);
__ Mov(x0, 1);
END();
RUN();
CHECK_EQUAL_64(0x1, x0);
}
} // namespace internal
} // namespace v8
#undef __
#undef BUF_SIZE
#undef SETUP
#undef INIT_V8
#undef SETUP_SIZE
#undef RESET
#undef START_AFTER_RESET
#undef START
#undef RUN
#undef END
#undef CHECK_EQUAL_NZCV
#undef CHECK_EQUAL_REGISTERS
#undef CHECK_EQUAL_32
#undef CHECK_EQUAL_FP32
#undef CHECK_EQUAL_64
#undef CHECK_FULL_HEAP_OBJECT_IN_REGISTER
#undef CHECK_NOT_ZERO_AND_NOT_EQUAL_64
#undef CHECK_EQUAL_FP64
#undef CHECK_EQUAL_128
#undef CHECK_CONSTANT_POOL_SIZE