v8/test/cctest/test-macro-assembler-x64.cc
svenpanne@chromium.org f0bf110448 Make LeakSanitizer happy, part 1.
Bumped an assembler buffer on the way, it is necessary for some combinations of debugging flags.

Note that the allocation profiler still leaks, this is handled in a separate CL.

R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/152643006

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19128 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-02-06 07:16:41 +00:00

2814 lines
76 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "macro-assembler.h"
#include "factory.h"
#include "platform.h"
#include "serialize.h"
#include "cctest.h"
namespace i = v8::internal;
using i::Address;
using i::Assembler;
using i::CodeDesc;
using i::Condition;
using i::FUNCTION_CAST;
using i::HandleScope;
using i::Immediate;
using i::Isolate;
using i::Label;
using i::MacroAssembler;
using i::OS;
using i::Operand;
using i::RelocInfo;
using i::Representation;
using i::Smi;
using i::SmiIndex;
using i::byte;
using i::carry;
using i::greater;
using i::greater_equal;
using i::kIntSize;
using i::kPointerSize;
using i::kSmiTagMask;
using i::kSmiValueSize;
using i::less_equal;
using i::negative;
using i::not_carry;
using i::not_equal;
using i::equal;
using i::not_zero;
using i::positive;
using i::r11;
using i::r13;
using i::r14;
using i::r15;
using i::r8;
using i::r9;
using i::rax;
using i::rbp;
using i::rbx;
using i::rcx;
using i::rdi;
using i::rdx;
using i::rsi;
using i::rsp;
using i::times_pointer_size;
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first five arguments
// in RSI, RDI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows.
typedef int (*F0)();
#define __ masm->
static void EntryCode(MacroAssembler* masm) {
// Smi constant register is callee save.
__ push(i::kSmiConstantRegister);
__ push(i::kRootRegister);
__ InitializeSmiConstantRegister();
__ InitializeRootRegister();
}
static void ExitCode(MacroAssembler* masm) {
// Return -1 if kSmiConstantRegister was clobbered during the test.
__ Move(rdx, Smi::FromInt(1));
__ cmpq(rdx, i::kSmiConstantRegister);
__ movq(rdx, Immediate(-1));
__ cmovq(not_equal, rax, rdx);
__ pop(i::kRootRegister);
__ pop(i::kSmiConstantRegister);
}
TEST(Smi) {
// Check that C++ Smi operations work as expected.
int64_t test_numbers[] = {
0, 1, -1, 127, 128, -128, -129, 255, 256, -256, -257,
Smi::kMaxValue, static_cast<int64_t>(Smi::kMaxValue) + 1,
Smi::kMinValue, static_cast<int64_t>(Smi::kMinValue) - 1
};
int test_number_count = 15;
for (int i = 0; i < test_number_count; i++) {
int64_t number = test_numbers[i];
bool is_valid = Smi::IsValid(number);
bool is_in_range = number >= Smi::kMinValue && number <= Smi::kMaxValue;
CHECK_EQ(is_in_range, is_valid);
if (is_valid) {
Smi* smi_from_intptr = Smi::FromIntptr(number);
if (static_cast<int>(number) == number) { // Is a 32-bit int.
Smi* smi_from_int = Smi::FromInt(static_cast<int32_t>(number));
CHECK_EQ(smi_from_int, smi_from_intptr);
}
int64_t smi_value = smi_from_intptr->value();
CHECK_EQ(number, smi_value);
}
}
}
static void TestMoveSmi(MacroAssembler* masm, Label* exit, int id, Smi* value) {
__ movl(rax, Immediate(id));
__ Move(rcx, value);
__ Set(rdx, reinterpret_cast<intptr_t>(value));
__ cmpq(rcx, rdx);
__ j(not_equal, exit);
}
// Test that we can move a Smi value literally into a register.
TEST(SmiMove) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler; // Create a pointer for the __ macro.
EntryCode(masm);
Label exit;
TestMoveSmi(masm, &exit, 1, Smi::FromInt(0));
TestMoveSmi(masm, &exit, 2, Smi::FromInt(127));
TestMoveSmi(masm, &exit, 3, Smi::FromInt(128));
TestMoveSmi(masm, &exit, 4, Smi::FromInt(255));
TestMoveSmi(masm, &exit, 5, Smi::FromInt(256));
TestMoveSmi(masm, &exit, 6, Smi::FromInt(Smi::kMaxValue));
TestMoveSmi(masm, &exit, 7, Smi::FromInt(-1));
TestMoveSmi(masm, &exit, 8, Smi::FromInt(-128));
TestMoveSmi(masm, &exit, 9, Smi::FromInt(-129));
TestMoveSmi(masm, &exit, 10, Smi::FromInt(-256));
TestMoveSmi(masm, &exit, 11, Smi::FromInt(-257));
TestMoveSmi(masm, &exit, 12, Smi::FromInt(Smi::kMinValue));
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiCompare(MacroAssembler* masm, Label* exit, int id, int x, int y) {
__ Move(rcx, Smi::FromInt(x));
__ movq(r8, rcx);
__ Move(rdx, Smi::FromInt(y));
__ movq(r9, rdx);
__ SmiCompare(rcx, rdx);
if (x < y) {
__ movl(rax, Immediate(id + 1));
__ j(greater_equal, exit);
} else if (x > y) {
__ movl(rax, Immediate(id + 2));
__ j(less_equal, exit);
} else {
ASSERT_EQ(x, y);
__ movl(rax, Immediate(id + 3));
__ j(not_equal, exit);
}
__ movl(rax, Immediate(id + 4));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rdx, r9);
__ j(not_equal, exit);
if (x != y) {
__ SmiCompare(rdx, rcx);
if (y < x) {
__ movl(rax, Immediate(id + 9));
__ j(greater_equal, exit);
} else {
ASSERT(y > x);
__ movl(rax, Immediate(id + 10));
__ j(less_equal, exit);
}
} else {
__ cmpq(rcx, rcx);
__ movl(rax, Immediate(id + 11));
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
}
// Test that we can compare smis for equality (and more).
TEST(SmiCompare) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiCompare(masm, &exit, 0x10, 0, 0);
TestSmiCompare(masm, &exit, 0x20, 0, 1);
TestSmiCompare(masm, &exit, 0x30, 1, 0);
TestSmiCompare(masm, &exit, 0x40, 1, 1);
TestSmiCompare(masm, &exit, 0x50, 0, -1);
TestSmiCompare(masm, &exit, 0x60, -1, 0);
TestSmiCompare(masm, &exit, 0x70, -1, -1);
TestSmiCompare(masm, &exit, 0x80, 0, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x90, Smi::kMinValue, 0);
TestSmiCompare(masm, &exit, 0xA0, 0, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xB0, Smi::kMaxValue, 0);
TestSmiCompare(masm, &exit, 0xC0, -1, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0xD0, Smi::kMinValue, -1);
TestSmiCompare(masm, &exit, 0xE0, -1, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xF0, Smi::kMaxValue, -1);
TestSmiCompare(masm, &exit, 0x100, Smi::kMinValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x110, Smi::kMinValue, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0x120, Smi::kMaxValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x130, Smi::kMaxValue, Smi::kMaxValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
TEST(Integer32ToSmi) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ movq(rax, Immediate(1)); // Test number.
__ movl(rcx, Immediate(0));
__ Integer32ToSmi(rcx, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(0)));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(2)); // Test number.
__ movl(rcx, Immediate(1024));
__ Integer32ToSmi(rcx, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(1024)));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(3)); // Test number.
__ movl(rcx, Immediate(-1));
__ Integer32ToSmi(rcx, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(-1)));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(4)); // Test number.
__ movl(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(rcx, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(Smi::kMaxValue)));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(5)); // Test number.
__ movl(rcx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(rcx, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(Smi::kMinValue)));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Different target register.
__ movq(rax, Immediate(6)); // Test number.
__ movl(rcx, Immediate(0));
__ Integer32ToSmi(r8, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(0)));
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(7)); // Test number.
__ movl(rcx, Immediate(1024));
__ Integer32ToSmi(r8, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(1024)));
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(8)); // Test number.
__ movl(rcx, Immediate(-1));
__ Integer32ToSmi(r8, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(-1)));
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(9)); // Test number.
__ movl(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(r8, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(Smi::kMaxValue)));
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(10)); // Test number.
__ movl(rcx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(r8, rcx);
__ Set(rdx, reinterpret_cast<intptr_t>(Smi::FromInt(Smi::kMinValue)));
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestI64PlusConstantToSmi(MacroAssembler* masm,
Label* exit,
int id,
int64_t x,
int y) {
int64_t result = x + y;
ASSERT(Smi::IsValid(result));
__ movl(rax, Immediate(id));
__ Move(r8, Smi::FromInt(static_cast<int>(result)));
__ movq(rcx, x);
__ movq(r11, rcx);
__ Integer64PlusConstantToSmi(rdx, rcx, y);
__ cmpq(rdx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ Integer64PlusConstantToSmi(rcx, rcx, y);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
TEST(Integer64PlusConstantToSmi) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
int64_t twice_max = static_cast<int64_t>(Smi::kMaxValue) * 2;
TestI64PlusConstantToSmi(masm, &exit, 0x10, 0, 0);
TestI64PlusConstantToSmi(masm, &exit, 0x20, 0, 1);
TestI64PlusConstantToSmi(masm, &exit, 0x30, 1, 0);
TestI64PlusConstantToSmi(masm, &exit, 0x40, Smi::kMaxValue - 5, 5);
TestI64PlusConstantToSmi(masm, &exit, 0x50, Smi::kMinValue + 5, 5);
TestI64PlusConstantToSmi(masm, &exit, 0x60, twice_max, -Smi::kMaxValue);
TestI64PlusConstantToSmi(masm, &exit, 0x70, -twice_max, Smi::kMaxValue);
TestI64PlusConstantToSmi(masm, &exit, 0x80, 0, Smi::kMinValue);
TestI64PlusConstantToSmi(masm, &exit, 0x90, 0, Smi::kMaxValue);
TestI64PlusConstantToSmi(masm, &exit, 0xA0, Smi::kMinValue, 0);
TestI64PlusConstantToSmi(masm, &exit, 0xB0, Smi::kMaxValue, 0);
TestI64PlusConstantToSmi(masm, &exit, 0xC0, twice_max, Smi::kMinValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
TEST(SmiCheck) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Condition cond;
__ movl(rax, Immediate(1)); // Test number.
// CheckSmi
__ movl(rcx, Immediate(0));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(-1));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
// CheckPositiveSmi
__ incq(rax);
__ movl(rcx, Immediate(0));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckNonNegativeSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckNonNegativeSmi(rcx); // "zero" non-smi.
__ j(cond, &exit);
__ incq(rax);
__ movq(rcx, Immediate(-1));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckNonNegativeSmi(rcx); // Negative smis are not positive.
__ j(cond, &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckNonNegativeSmi(rcx); // Most negative smi is not positive.
__ j(cond, &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckNonNegativeSmi(rcx); // "Negative" non-smi.
__ j(cond, &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckNonNegativeSmi(rcx); // Most positive smi is positive.
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckNonNegativeSmi(rcx); // "Positive" non-smi.
__ j(cond, &exit);
// CheckIsMinSmi
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckIsMinSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movq(rcx, Immediate(0));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckIsMinSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckIsMinSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMinValue + 1));
__ Integer32ToSmi(rcx, rcx);
cond = masm->CheckIsMinSmi(rcx);
__ j(cond, &exit);
// CheckBothSmi
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMaxValue));
__ Integer32ToSmi(rcx, rcx);
__ movq(rdx, Immediate(Smi::kMinValue));
__ Integer32ToSmi(rdx, rdx);
cond = masm->CheckBothSmi(rcx, rdx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckBothSmi(rcx, rdx);
__ j(cond, &exit);
__ incq(rax);
__ xor_(rdx, Immediate(kSmiTagMask));
cond = masm->CheckBothSmi(rcx, rdx);
__ j(cond, &exit);
__ incq(rax);
__ xor_(rcx, Immediate(kSmiTagMask));
cond = masm->CheckBothSmi(rcx, rdx);
__ j(cond, &exit);
__ incq(rax);
cond = masm->CheckBothSmi(rcx, rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
cond = masm->CheckBothSmi(rdx, rdx);
__ j(cond, &exit);
// CheckInteger32ValidSmiValue
__ incq(rax);
__ movq(rcx, Immediate(0));
cond = masm->CheckInteger32ValidSmiValue(rax);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ movq(rcx, Immediate(-1));
cond = masm->CheckInteger32ValidSmiValue(rax);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMaxValue));
cond = masm->CheckInteger32ValidSmiValue(rax);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ movq(rcx, Immediate(Smi::kMinValue));
cond = masm->CheckInteger32ValidSmiValue(rax);
__ j(NegateCondition(cond), &exit);
// Success
__ xor_(rax, rax);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiNeg(MacroAssembler* masm, Label* exit, int id, int x) {
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
if (x == Smi::kMinValue || x == 0) {
// Negation fails.
__ movl(rax, Immediate(id + 8));
__ SmiNeg(r9, rcx, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiNeg(rcx, rcx, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
} else {
Label smi_ok, smi_ok2;
int result = -x;
__ movl(rax, Immediate(id));
__ Move(r8, Smi::FromInt(result));
__ SmiNeg(r9, rcx, &smi_ok);
__ jmp(exit);
__ bind(&smi_ok);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiNeg(rcx, rcx, &smi_ok2);
__ jmp(exit);
__ bind(&smi_ok2);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
}
TEST(SmiNeg) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiNeg(masm, &exit, 0x10, 0);
TestSmiNeg(masm, &exit, 0x20, 1);
TestSmiNeg(masm, &exit, 0x30, -1);
TestSmiNeg(masm, &exit, 0x40, 127);
TestSmiNeg(masm, &exit, 0x50, 65535);
TestSmiNeg(masm, &exit, 0x60, Smi::kMinValue);
TestSmiNeg(masm, &exit, 0x70, Smi::kMaxValue);
TestSmiNeg(masm, &exit, 0x80, -Smi::kMaxValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
static void SmiAddTest(MacroAssembler* masm,
Label* exit,
int id,
int first,
int second) {
__ movl(rcx, Immediate(first));
__ Integer32ToSmi(rcx, rcx);
__ movl(rdx, Immediate(second));
__ Integer32ToSmi(rdx, rdx);
__ movl(r8, Immediate(first + second));
__ Integer32ToSmi(r8, r8);
__ movl(rax, Immediate(id)); // Test number.
__ SmiAdd(r9, rcx, rdx, exit);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ SmiAdd(rcx, rcx, rdx, exit);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ movl(rcx, Immediate(first));
__ Integer32ToSmi(rcx, rcx);
__ incq(rax);
__ SmiAddConstant(r9, rcx, Smi::FromInt(second));
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ SmiAddConstant(rcx, rcx, Smi::FromInt(second));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ movl(rcx, Immediate(first));
__ Integer32ToSmi(rcx, rcx);
i::SmiOperationExecutionMode mode;
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_OVERFLOW);
__ incq(rax);
__ SmiAddConstant(r9, rcx, Smi::FromInt(second), mode, exit);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ SmiAddConstant(rcx, rcx, Smi::FromInt(second), mode, exit);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ movl(rcx, Immediate(first));
__ Integer32ToSmi(rcx, rcx);
mode.RemoveAll();
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_NO_OVERFLOW);
Label done;
__ incq(rax);
__ SmiAddConstant(rcx, rcx, Smi::FromInt(second), mode, &done);
__ jmp(exit);
__ bind(&done);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
static void SmiAddOverflowTest(MacroAssembler* masm,
Label* exit,
int id,
int x) {
// Adds a Smi to x so that the addition overflows.
ASSERT(x != 0); // Can't overflow by adding a Smi.
int y_max = (x > 0) ? (Smi::kMaxValue + 0) : (Smi::kMinValue - x - 1);
int y_min = (x > 0) ? (Smi::kMaxValue - x + 1) : (Smi::kMinValue + 0);
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx); // Store original Smi value of x in r11.
__ Move(rdx, Smi::FromInt(y_min));
{
Label overflow_ok;
__ SmiAdd(r9, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiAdd(rcx, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
i::SmiOperationExecutionMode mode;
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_OVERFLOW);
__ movq(rcx, r11);
{
Label overflow_ok;
__ incq(rax);
__ SmiAddConstant(r9, rcx, Smi::FromInt(y_min), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiAddConstant(rcx, rcx, Smi::FromInt(y_min), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
__ Move(rdx, Smi::FromInt(y_max));
{
Label overflow_ok;
__ incq(rax);
__ SmiAdd(r9, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiAdd(rcx, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
__ movq(rcx, r11);
{
Label overflow_ok;
__ incq(rax);
__ SmiAddConstant(r9, rcx, Smi::FromInt(y_max), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
mode.RemoveAll();
mode.Add(i::BAILOUT_ON_OVERFLOW);
{
Label overflow_ok;
__ incq(rax);
__ SmiAddConstant(rcx, rcx, Smi::FromInt(y_max), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(equal, exit);
}
}
TEST(SmiAdd) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 3,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
// No-overflow tests.
SmiAddTest(masm, &exit, 0x10, 1, 2);
SmiAddTest(masm, &exit, 0x20, 1, -2);
SmiAddTest(masm, &exit, 0x30, -1, 2);
SmiAddTest(masm, &exit, 0x40, -1, -2);
SmiAddTest(masm, &exit, 0x50, 0x1000, 0x2000);
SmiAddTest(masm, &exit, 0x60, Smi::kMinValue, 5);
SmiAddTest(masm, &exit, 0x70, Smi::kMaxValue, -5);
SmiAddTest(masm, &exit, 0x80, Smi::kMaxValue, Smi::kMinValue);
SmiAddOverflowTest(masm, &exit, 0x90, -1);
SmiAddOverflowTest(masm, &exit, 0xA0, 1);
SmiAddOverflowTest(masm, &exit, 0xB0, 1024);
SmiAddOverflowTest(masm, &exit, 0xC0, Smi::kMaxValue);
SmiAddOverflowTest(masm, &exit, 0xD0, -2);
SmiAddOverflowTest(masm, &exit, 0xE0, -42000);
SmiAddOverflowTest(masm, &exit, 0xF0, Smi::kMinValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
static void SmiSubTest(MacroAssembler* masm,
Label* exit,
int id,
int first,
int second) {
__ Move(rcx, Smi::FromInt(first));
__ Move(rdx, Smi::FromInt(second));
__ Move(r8, Smi::FromInt(first - second));
__ movl(rax, Immediate(id)); // Test 0.
__ SmiSub(r9, rcx, rdx, exit);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax); // Test 1.
__ SmiSub(rcx, rcx, rdx, exit);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ Move(rcx, Smi::FromInt(first));
__ incq(rax); // Test 2.
__ SmiSubConstant(r9, rcx, Smi::FromInt(second));
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax); // Test 3.
__ SmiSubConstant(rcx, rcx, Smi::FromInt(second));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
i::SmiOperationExecutionMode mode;
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_OVERFLOW);
__ Move(rcx, Smi::FromInt(first));
__ incq(rax); // Test 4.
__ SmiSubConstant(rcx, rcx, Smi::FromInt(second), mode, exit);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ Move(rcx, Smi::FromInt(first));
__ incq(rax); // Test 5.
__ SmiSubConstant(r9, rcx, Smi::FromInt(second), mode, exit);
__ cmpq(r9, r8);
__ j(not_equal, exit);
mode.RemoveAll();
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_NO_OVERFLOW);
__ Move(rcx, Smi::FromInt(first));
Label done;
__ incq(rax); // Test 6.
__ SmiSubConstant(rcx, rcx, Smi::FromInt(second), mode, &done);
__ jmp(exit);
__ bind(&done);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
static void SmiSubOverflowTest(MacroAssembler* masm,
Label* exit,
int id,
int x) {
// Subtracts a Smi from x so that the subtraction overflows.
ASSERT(x != -1); // Can't overflow by subtracting a Smi.
int y_max = (x < 0) ? (Smi::kMaxValue + 0) : (Smi::kMinValue + 0);
int y_min = (x < 0) ? (Smi::kMaxValue + x + 2) : (Smi::kMinValue + x);
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx); // Store original Smi value of x in r11.
__ Move(rdx, Smi::FromInt(y_min));
{
Label overflow_ok;
__ SmiSub(r9, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiSub(rcx, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
i::SmiOperationExecutionMode mode;
mode.Add(i::PRESERVE_SOURCE_REGISTER);
mode.Add(i::BAILOUT_ON_OVERFLOW);
__ movq(rcx, r11);
{
Label overflow_ok;
__ incq(rax);
__ SmiSubConstant(r9, rcx, Smi::FromInt(y_min), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiSubConstant(rcx, rcx, Smi::FromInt(y_min), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
__ Move(rdx, Smi::FromInt(y_max));
{
Label overflow_ok;
__ incq(rax);
__ SmiSub(r9, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
{
Label overflow_ok;
__ incq(rax);
__ SmiSub(rcx, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
__ movq(rcx, r11);
{
Label overflow_ok;
__ incq(rax);
__ SmiSubConstant(rcx, rcx, Smi::FromInt(y_max), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
mode.RemoveAll();
mode.Add(i::BAILOUT_ON_OVERFLOW);
__ movq(rcx, r11);
{
Label overflow_ok;
__ incq(rax);
__ SmiSubConstant(rcx, rcx, Smi::FromInt(y_max), mode, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(equal, exit);
}
}
TEST(SmiSub) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 4,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
SmiSubTest(masm, &exit, 0x10, 1, 2);
SmiSubTest(masm, &exit, 0x20, 1, -2);
SmiSubTest(masm, &exit, 0x30, -1, 2);
SmiSubTest(masm, &exit, 0x40, -1, -2);
SmiSubTest(masm, &exit, 0x50, 0x1000, 0x2000);
SmiSubTest(masm, &exit, 0x60, Smi::kMinValue, -5);
SmiSubTest(masm, &exit, 0x70, Smi::kMaxValue, 5);
SmiSubTest(masm, &exit, 0x80, -Smi::kMaxValue, Smi::kMinValue);
SmiSubTest(masm, &exit, 0x90, 0, Smi::kMaxValue);
SmiSubOverflowTest(masm, &exit, 0xA0, 1);
SmiSubOverflowTest(masm, &exit, 0xB0, 1024);
SmiSubOverflowTest(masm, &exit, 0xC0, Smi::kMaxValue);
SmiSubOverflowTest(masm, &exit, 0xD0, -2);
SmiSubOverflowTest(masm, &exit, 0xE0, -42000);
SmiSubOverflowTest(masm, &exit, 0xF0, Smi::kMinValue);
SmiSubOverflowTest(masm, &exit, 0x100, 0);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiMul(MacroAssembler* masm, Label* exit, int id, int x, int y) {
int64_t result = static_cast<int64_t>(x) * static_cast<int64_t>(y);
bool negative_zero = (result == 0) && (x < 0 || y < 0);
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ Move(rdx, Smi::FromInt(y));
if (Smi::IsValid(result) && !negative_zero) {
__ movl(rax, Immediate(id));
__ Move(r8, Smi::FromIntptr(result));
__ SmiMul(r9, rcx, rdx, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ SmiMul(rcx, rcx, rdx, exit);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
} else {
__ movl(rax, Immediate(id + 8));
Label overflow_ok, overflow_ok2;
__ SmiMul(r9, rcx, rdx, &overflow_ok);
__ jmp(exit);
__ bind(&overflow_ok);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiMul(rcx, rcx, rdx, &overflow_ok2);
__ jmp(exit);
__ bind(&overflow_ok2);
// 31-bit version doesn't preserve rcx on failure.
// __ incq(rax);
// __ cmpq(r11, rcx);
// __ j(not_equal, exit);
}
}
TEST(SmiMul) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiMul(masm, &exit, 0x10, 0, 0);
TestSmiMul(masm, &exit, 0x20, -1, 0);
TestSmiMul(masm, &exit, 0x30, 0, -1);
TestSmiMul(masm, &exit, 0x40, -1, -1);
TestSmiMul(masm, &exit, 0x50, 0x10000, 0x10000);
TestSmiMul(masm, &exit, 0x60, 0x10000, 0xffff);
TestSmiMul(masm, &exit, 0x70, 0x10000, 0xffff);
TestSmiMul(masm, &exit, 0x80, Smi::kMaxValue, -1);
TestSmiMul(masm, &exit, 0x90, Smi::kMaxValue, -2);
TestSmiMul(masm, &exit, 0xa0, Smi::kMaxValue, 2);
TestSmiMul(masm, &exit, 0xb0, (Smi::kMaxValue / 2), 2);
TestSmiMul(masm, &exit, 0xc0, (Smi::kMaxValue / 2) + 1, 2);
TestSmiMul(masm, &exit, 0xd0, (Smi::kMinValue / 2), 2);
TestSmiMul(masm, &exit, 0xe0, (Smi::kMinValue / 2) - 1, 2);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiDiv(MacroAssembler* masm, Label* exit, int id, int x, int y) {
bool division_by_zero = (y == 0);
bool negative_zero = (x == 0 && y < 0);
#if V8_TARGET_ARCH_X64
bool overflow = (x == Smi::kMinValue && y < 0); // Safe approx. used.
#else
bool overflow = (x == Smi::kMinValue && y == -1);
#endif
bool fraction = !division_by_zero && !overflow && (x % y != 0);
__ Move(r11, Smi::FromInt(x));
__ Move(r14, Smi::FromInt(y));
if (!fraction && !overflow && !negative_zero && !division_by_zero) {
// Division succeeds
__ movq(rcx, r11);
__ movq(r15, Immediate(id));
int result = x / y;
__ Move(r8, Smi::FromInt(result));
__ SmiDiv(r9, rcx, r14, exit);
// Might have destroyed rcx and r14.
__ incq(r15);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(r15);
__ movq(rcx, r11);
__ Move(r14, Smi::FromInt(y));
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ incq(r15);
__ SmiDiv(rcx, rcx, r14, exit);
__ incq(r15);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
} else {
// Division fails.
__ movq(r15, Immediate(id + 8));
Label fail_ok, fail_ok2;
__ movq(rcx, r11);
__ SmiDiv(r9, rcx, r14, &fail_ok);
__ jmp(exit);
__ bind(&fail_ok);
__ incq(r15);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ incq(r15);
__ SmiDiv(rcx, rcx, r14, &fail_ok2);
__ jmp(exit);
__ bind(&fail_ok2);
__ incq(r15);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
}
TEST(SmiDiv) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ push(r14);
__ push(r15);
TestSmiDiv(masm, &exit, 0x10, 1, 1);
TestSmiDiv(masm, &exit, 0x20, 1, 0);
TestSmiDiv(masm, &exit, 0x30, -1, 0);
TestSmiDiv(masm, &exit, 0x40, 0, 1);
TestSmiDiv(masm, &exit, 0x50, 0, -1);
TestSmiDiv(masm, &exit, 0x60, 4, 2);
TestSmiDiv(masm, &exit, 0x70, -4, 2);
TestSmiDiv(masm, &exit, 0x80, 4, -2);
TestSmiDiv(masm, &exit, 0x90, -4, -2);
TestSmiDiv(masm, &exit, 0xa0, 3, 2);
TestSmiDiv(masm, &exit, 0xb0, 3, 4);
TestSmiDiv(masm, &exit, 0xc0, 1, Smi::kMaxValue);
TestSmiDiv(masm, &exit, 0xd0, -1, Smi::kMaxValue);
TestSmiDiv(masm, &exit, 0xe0, Smi::kMaxValue, 1);
TestSmiDiv(masm, &exit, 0xf0, Smi::kMaxValue, Smi::kMaxValue);
TestSmiDiv(masm, &exit, 0x100, Smi::kMaxValue, -Smi::kMaxValue);
TestSmiDiv(masm, &exit, 0x110, Smi::kMaxValue, -1);
TestSmiDiv(masm, &exit, 0x120, Smi::kMinValue, 1);
TestSmiDiv(masm, &exit, 0x130, Smi::kMinValue, Smi::kMinValue);
TestSmiDiv(masm, &exit, 0x140, Smi::kMinValue, -1);
__ xor_(r15, r15); // Success.
__ bind(&exit);
__ movq(rax, r15);
__ pop(r15);
__ pop(r14);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiMod(MacroAssembler* masm, Label* exit, int id, int x, int y) {
bool division_by_zero = (y == 0);
bool division_overflow = (x == Smi::kMinValue) && (y == -1);
bool fraction = !division_by_zero && !division_overflow && ((x % y) != 0);
bool negative_zero = (!fraction && x < 0);
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ Move(r14, Smi::FromInt(y));
if (!division_overflow && !negative_zero && !division_by_zero) {
// Modulo succeeds
__ movq(r15, Immediate(id));
int result = x % y;
__ Move(r8, Smi::FromInt(result));
__ SmiMod(r9, rcx, r14, exit);
__ incq(r15);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(r15);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ incq(r15);
__ SmiMod(rcx, rcx, r14, exit);
__ incq(r15);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
} else {
// Modulo fails.
__ movq(r15, Immediate(id + 8));
Label fail_ok, fail_ok2;
__ SmiMod(r9, rcx, r14, &fail_ok);
__ jmp(exit);
__ bind(&fail_ok);
__ incq(r15);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ incq(r15);
__ SmiMod(rcx, rcx, r14, &fail_ok2);
__ jmp(exit);
__ bind(&fail_ok2);
__ incq(r15);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
}
}
TEST(SmiMod) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ push(r14);
__ push(r15);
TestSmiMod(masm, &exit, 0x10, 1, 1);
TestSmiMod(masm, &exit, 0x20, 1, 0);
TestSmiMod(masm, &exit, 0x30, -1, 0);
TestSmiMod(masm, &exit, 0x40, 0, 1);
TestSmiMod(masm, &exit, 0x50, 0, -1);
TestSmiMod(masm, &exit, 0x60, 4, 2);
TestSmiMod(masm, &exit, 0x70, -4, 2);
TestSmiMod(masm, &exit, 0x80, 4, -2);
TestSmiMod(masm, &exit, 0x90, -4, -2);
TestSmiMod(masm, &exit, 0xa0, 3, 2);
TestSmiMod(masm, &exit, 0xb0, 3, 4);
TestSmiMod(masm, &exit, 0xc0, 1, Smi::kMaxValue);
TestSmiMod(masm, &exit, 0xd0, -1, Smi::kMaxValue);
TestSmiMod(masm, &exit, 0xe0, Smi::kMaxValue, 1);
TestSmiMod(masm, &exit, 0xf0, Smi::kMaxValue, Smi::kMaxValue);
TestSmiMod(masm, &exit, 0x100, Smi::kMaxValue, -Smi::kMaxValue);
TestSmiMod(masm, &exit, 0x110, Smi::kMaxValue, -1);
TestSmiMod(masm, &exit, 0x120, Smi::kMinValue, 1);
TestSmiMod(masm, &exit, 0x130, Smi::kMinValue, Smi::kMinValue);
TestSmiMod(masm, &exit, 0x140, Smi::kMinValue, -1);
__ xor_(r15, r15); // Success.
__ bind(&exit);
__ movq(rax, r15);
__ pop(r15);
__ pop(r14);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiIndex(MacroAssembler* masm, Label* exit, int id, int x) {
__ movl(rax, Immediate(id));
for (int i = 0; i < 8; i++) {
__ Move(rcx, Smi::FromInt(x));
SmiIndex index = masm->SmiToIndex(rdx, rcx, i);
ASSERT(index.reg.is(rcx) || index.reg.is(rdx));
__ shl(index.reg, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(index.reg, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToIndex(rcx, rcx, i);
ASSERT(index.reg.is(rcx));
__ shl(rcx, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToNegativeIndex(rdx, rcx, i);
ASSERT(index.reg.is(rcx) || index.reg.is(rdx));
__ shl(index.reg, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(-x) << i);
__ cmpq(index.reg, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToNegativeIndex(rcx, rcx, i);
ASSERT(index.reg.is(rcx));
__ shl(rcx, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(-x) << i);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(SmiIndex) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 5,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiIndex(masm, &exit, 0x10, 0);
TestSmiIndex(masm, &exit, 0x20, 1);
TestSmiIndex(masm, &exit, 0x30, 100);
TestSmiIndex(masm, &exit, 0x40, 1000);
TestSmiIndex(masm, &exit, 0x50, Smi::kMaxValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSelectNonSmi(MacroAssembler* masm, Label* exit, int id, int x, int y) {
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ Move(rdx, Smi::FromInt(y));
__ xor_(rdx, Immediate(kSmiTagMask));
__ SelectNonSmi(r9, rcx, rdx, exit);
__ incq(rax);
__ cmpq(r9, rdx);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
__ Move(rdx, Smi::FromInt(y));
__ xor_(rcx, Immediate(kSmiTagMask));
__ SelectNonSmi(r9, rcx, rdx, exit);
__ incq(rax);
__ cmpq(r9, rcx);
__ j(not_equal, exit);
__ incq(rax);
Label fail_ok;
__ Move(rcx, Smi::FromInt(x));
__ Move(rdx, Smi::FromInt(y));
__ xor_(rcx, Immediate(kSmiTagMask));
__ xor_(rdx, Immediate(kSmiTagMask));
__ SelectNonSmi(r9, rcx, rdx, &fail_ok);
__ jmp(exit);
__ bind(&fail_ok);
}
TEST(SmiSelectNonSmi) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSelectNonSmi(masm, &exit, 0x10, 0, 0);
TestSelectNonSmi(masm, &exit, 0x20, 0, 1);
TestSelectNonSmi(masm, &exit, 0x30, 1, 0);
TestSelectNonSmi(masm, &exit, 0x40, 0, -1);
TestSelectNonSmi(masm, &exit, 0x50, -1, 0);
TestSelectNonSmi(masm, &exit, 0x60, -1, -1);
TestSelectNonSmi(masm, &exit, 0x70, 1, 1);
TestSelectNonSmi(masm, &exit, 0x80, Smi::kMinValue, Smi::kMaxValue);
TestSelectNonSmi(masm, &exit, 0x90, Smi::kMinValue, Smi::kMinValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiAnd(MacroAssembler* masm, Label* exit, int id, int x, int y) {
int result = x & y;
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ Move(rdx, Smi::FromInt(y));
__ Move(r8, Smi::FromInt(result));
__ SmiAnd(r9, rcx, rdx);
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiAnd(rcx, rcx, rdx);
__ cmpq(r8, rcx);
__ j(not_equal, exit);
__ movq(rcx, r11);
__ incq(rax);
__ SmiAndConstant(r9, rcx, Smi::FromInt(y));
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiAndConstant(rcx, rcx, Smi::FromInt(y));
__ cmpq(r8, rcx);
__ j(not_equal, exit);
}
TEST(SmiAnd) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiAnd(masm, &exit, 0x10, 0, 0);
TestSmiAnd(masm, &exit, 0x20, 0, 1);
TestSmiAnd(masm, &exit, 0x30, 1, 0);
TestSmiAnd(masm, &exit, 0x40, 0, -1);
TestSmiAnd(masm, &exit, 0x50, -1, 0);
TestSmiAnd(masm, &exit, 0x60, -1, -1);
TestSmiAnd(masm, &exit, 0x70, 1, 1);
TestSmiAnd(masm, &exit, 0x80, Smi::kMinValue, Smi::kMaxValue);
TestSmiAnd(masm, &exit, 0x90, Smi::kMinValue, Smi::kMinValue);
TestSmiAnd(masm, &exit, 0xA0, Smi::kMinValue, -1);
TestSmiAnd(masm, &exit, 0xB0, Smi::kMinValue, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiOr(MacroAssembler* masm, Label* exit, int id, int x, int y) {
int result = x | y;
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ Move(rdx, Smi::FromInt(y));
__ Move(r8, Smi::FromInt(result));
__ SmiOr(r9, rcx, rdx);
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiOr(rcx, rcx, rdx);
__ cmpq(r8, rcx);
__ j(not_equal, exit);
__ movq(rcx, r11);
__ incq(rax);
__ SmiOrConstant(r9, rcx, Smi::FromInt(y));
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiOrConstant(rcx, rcx, Smi::FromInt(y));
__ cmpq(r8, rcx);
__ j(not_equal, exit);
}
TEST(SmiOr) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiOr(masm, &exit, 0x10, 0, 0);
TestSmiOr(masm, &exit, 0x20, 0, 1);
TestSmiOr(masm, &exit, 0x30, 1, 0);
TestSmiOr(masm, &exit, 0x40, 0, -1);
TestSmiOr(masm, &exit, 0x50, -1, 0);
TestSmiOr(masm, &exit, 0x60, -1, -1);
TestSmiOr(masm, &exit, 0x70, 1, 1);
TestSmiOr(masm, &exit, 0x80, Smi::kMinValue, Smi::kMaxValue);
TestSmiOr(masm, &exit, 0x90, Smi::kMinValue, Smi::kMinValue);
TestSmiOr(masm, &exit, 0xA0, Smi::kMinValue, -1);
TestSmiOr(masm, &exit, 0xB0, 0x05555555, 0x01234567);
TestSmiOr(masm, &exit, 0xC0, 0x05555555, 0x0fedcba9);
TestSmiOr(masm, &exit, 0xD0, Smi::kMinValue, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiXor(MacroAssembler* masm, Label* exit, int id, int x, int y) {
int result = x ^ y;
__ movl(rax, Immediate(id));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ Move(rdx, Smi::FromInt(y));
__ Move(r8, Smi::FromInt(result));
__ SmiXor(r9, rcx, rdx);
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiXor(rcx, rcx, rdx);
__ cmpq(r8, rcx);
__ j(not_equal, exit);
__ movq(rcx, r11);
__ incq(rax);
__ SmiXorConstant(r9, rcx, Smi::FromInt(y));
__ cmpq(r8, r9);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiXorConstant(rcx, rcx, Smi::FromInt(y));
__ cmpq(r8, rcx);
__ j(not_equal, exit);
}
TEST(SmiXor) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiXor(masm, &exit, 0x10, 0, 0);
TestSmiXor(masm, &exit, 0x20, 0, 1);
TestSmiXor(masm, &exit, 0x30, 1, 0);
TestSmiXor(masm, &exit, 0x40, 0, -1);
TestSmiXor(masm, &exit, 0x50, -1, 0);
TestSmiXor(masm, &exit, 0x60, -1, -1);
TestSmiXor(masm, &exit, 0x70, 1, 1);
TestSmiXor(masm, &exit, 0x80, Smi::kMinValue, Smi::kMaxValue);
TestSmiXor(masm, &exit, 0x90, Smi::kMinValue, Smi::kMinValue);
TestSmiXor(masm, &exit, 0xA0, Smi::kMinValue, -1);
TestSmiXor(masm, &exit, 0xB0, 0x5555555, 0x01234567);
TestSmiXor(masm, &exit, 0xC0, 0x5555555, 0x0fedcba9);
TestSmiXor(masm, &exit, 0xD0, Smi::kMinValue, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiNot(MacroAssembler* masm, Label* exit, int id, int x) {
int result = ~x;
__ movl(rax, Immediate(id));
__ Move(r8, Smi::FromInt(result));
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ SmiNot(r9, rcx);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx);
__ j(not_equal, exit);
__ incq(rax);
__ SmiNot(rcx, rcx);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
TEST(SmiNot) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiNot(masm, &exit, 0x10, 0);
TestSmiNot(masm, &exit, 0x20, 1);
TestSmiNot(masm, &exit, 0x30, -1);
TestSmiNot(masm, &exit, 0x40, 127);
TestSmiNot(masm, &exit, 0x50, 65535);
TestSmiNot(masm, &exit, 0x60, Smi::kMinValue);
TestSmiNot(masm, &exit, 0x70, Smi::kMaxValue);
TestSmiNot(masm, &exit, 0x80, 0x05555555);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiShiftLeft(MacroAssembler* masm, Label* exit, int id, int x) {
const int shifts[] = { 0, 1, 7, 24, kSmiValueSize - 1};
const int kNumShifts = 5;
__ movl(rax, Immediate(id));
for (int i = 0; i < kNumShifts; i++) {
// rax == id + i * 10.
int shift = shifts[i];
int result = x << shift;
CHECK(Smi::IsValid(result));
__ Move(r8, Smi::FromInt(result));
__ Move(rcx, Smi::FromInt(x));
__ SmiShiftLeftConstant(r9, rcx, shift);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
__ SmiShiftLeftConstant(rcx, rcx, shift);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(rcx, Smi::FromInt(shift));
__ SmiShiftLeft(r9, rdx, rcx);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(r11, Smi::FromInt(shift));
__ SmiShiftLeft(r9, rdx, r11);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(r11, Smi::FromInt(shift));
__ SmiShiftLeft(rdx, rdx, r11);
__ incq(rax);
__ cmpq(rdx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(SmiShiftLeft) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 7,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiShiftLeft(masm, &exit, 0x10, 0);
TestSmiShiftLeft(masm, &exit, 0x50, 1);
TestSmiShiftLeft(masm, &exit, 0x90, 127);
TestSmiShiftLeft(masm, &exit, 0xD0, 65535);
TestSmiShiftLeft(masm, &exit, 0x110, Smi::kMaxValue);
TestSmiShiftLeft(masm, &exit, 0x150, Smi::kMinValue);
TestSmiShiftLeft(masm, &exit, 0x190, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiShiftLogicalRight(MacroAssembler* masm,
Label* exit,
int id,
int x) {
const int shifts[] = { 0, 1, 7, 24, kSmiValueSize - 1};
const int kNumShifts = 5;
__ movl(rax, Immediate(id));
for (int i = 0; i < kNumShifts; i++) {
int shift = shifts[i];
intptr_t result = static_cast<unsigned int>(x) >> shift;
if (Smi::IsValid(result)) {
__ Move(r8, Smi::FromInt(static_cast<int>(result)));
__ Move(rcx, Smi::FromInt(x));
__ SmiShiftLogicalRightConstant(r9, rcx, shift, exit);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(rcx, Smi::FromInt(shift));
__ SmiShiftLogicalRight(r9, rdx, rcx, exit);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(r11, Smi::FromInt(shift));
__ SmiShiftLogicalRight(r9, rdx, r11, exit);
__ incq(rax);
__ cmpq(r9, r8);
__ j(not_equal, exit);
__ incq(rax);
} else {
// Cannot happen with long smis.
Label fail_ok;
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ SmiShiftLogicalRightConstant(r9, rcx, shift, &fail_ok);
__ jmp(exit);
__ bind(&fail_ok);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ incq(rax);
__ Move(r8, Smi::FromInt(shift));
Label fail_ok3;
__ SmiShiftLogicalRight(r9, rcx, r8, &fail_ok3);
__ jmp(exit);
__ bind(&fail_ok3);
__ incq(rax);
__ cmpq(rcx, r11);
__ j(not_equal, exit);
__ addq(rax, Immediate(3));
}
}
}
TEST(SmiShiftLogicalRight) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 5,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiShiftLogicalRight(masm, &exit, 0x10, 0);
TestSmiShiftLogicalRight(masm, &exit, 0x30, 1);
TestSmiShiftLogicalRight(masm, &exit, 0x50, 127);
TestSmiShiftLogicalRight(masm, &exit, 0x70, 65535);
TestSmiShiftLogicalRight(masm, &exit, 0x90, Smi::kMaxValue);
TestSmiShiftLogicalRight(masm, &exit, 0xB0, Smi::kMinValue);
TestSmiShiftLogicalRight(masm, &exit, 0xD0, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestSmiShiftArithmeticRight(MacroAssembler* masm,
Label* exit,
int id,
int x) {
const int shifts[] = { 0, 1, 7, 24, kSmiValueSize - 1};
const int kNumShifts = 5;
__ movl(rax, Immediate(id));
for (int i = 0; i < kNumShifts; i++) {
int shift = shifts[i];
// Guaranteed arithmetic shift.
int result = (x < 0) ? ~((~x) >> shift) : (x >> shift);
__ Move(r8, Smi::FromInt(result));
__ Move(rcx, Smi::FromInt(x));
__ SmiShiftArithmeticRightConstant(rcx, rcx, shift);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rdx, Smi::FromInt(x));
__ Move(r11, Smi::FromInt(shift));
__ SmiShiftArithmeticRight(rdx, rdx, r11);
__ cmpq(rdx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(SmiShiftArithmeticRight) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 3,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiShiftArithmeticRight(masm, &exit, 0x10, 0);
TestSmiShiftArithmeticRight(masm, &exit, 0x20, 1);
TestSmiShiftArithmeticRight(masm, &exit, 0x30, 127);
TestSmiShiftArithmeticRight(masm, &exit, 0x40, 65535);
TestSmiShiftArithmeticRight(masm, &exit, 0x50, Smi::kMaxValue);
TestSmiShiftArithmeticRight(masm, &exit, 0x60, Smi::kMinValue);
TestSmiShiftArithmeticRight(masm, &exit, 0x70, -1);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
void TestPositiveSmiPowerUp(MacroAssembler* masm, Label* exit, int id, int x) {
ASSERT(x >= 0);
int powers[] = { 0, 1, 2, 3, 8, 16, 24, 31 };
int power_count = 8;
__ movl(rax, Immediate(id));
for (int i = 0; i < power_count; i++) {
int power = powers[i];
intptr_t result = static_cast<intptr_t>(x) << power;
__ Set(r8, result);
__ Move(rcx, Smi::FromInt(x));
__ movq(r11, rcx);
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rcx, power);
__ cmpq(rdx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(r11, rcx); // rcx unchanged.
__ j(not_equal, exit);
__ incq(rax);
__ PositiveSmiTimesPowerOfTwoToInteger64(rcx, rcx, power);
__ cmpq(rdx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(PositiveSmiTimesPowerOfTwoToInteger64) {
i::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 4,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestPositiveSmiPowerUp(masm, &exit, 0x20, 0);
TestPositiveSmiPowerUp(masm, &exit, 0x40, 1);
TestPositiveSmiPowerUp(masm, &exit, 0x60, 127);
TestPositiveSmiPowerUp(masm, &exit, 0x80, 128);
TestPositiveSmiPowerUp(masm, &exit, 0xA0, 255);
TestPositiveSmiPowerUp(masm, &exit, 0xC0, 256);
TestPositiveSmiPowerUp(masm, &exit, 0x100, 65535);
TestPositiveSmiPowerUp(masm, &exit, 0x120, 65536);
TestPositiveSmiPowerUp(masm, &exit, 0x140, Smi::kMaxValue);
__ xor_(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
TEST(OperandOffset) {
i::V8::Initialize(NULL);
uint32_t data[256];
for (uint32_t i = 0; i < 256; i++) { data[i] = i * 0x01010101; }
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer =
static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler;
Label exit;
EntryCode(masm);
__ push(r13);
__ push(r14);
__ push(rbx);
__ push(rbp);
__ push(Immediate(0x100)); // <-- rbp
__ movq(rbp, rsp);
__ push(Immediate(0x101));
__ push(Immediate(0x102));
__ push(Immediate(0x103));
__ push(Immediate(0x104));
__ push(Immediate(0x105)); // <-- rbx
__ push(Immediate(0x106));
__ push(Immediate(0x107));
__ push(Immediate(0x108));
__ push(Immediate(0x109)); // <-- rsp
// rbp = rsp[9]
// r15 = rsp[3]
// rbx = rsp[5]
// r13 = rsp[7]
__ lea(r14, Operand(rsp, 3 * kPointerSize));
__ lea(r13, Operand(rbp, -3 * kPointerSize));
__ lea(rbx, Operand(rbp, -5 * kPointerSize));
__ movl(rcx, Immediate(2));
__ Move(r8, reinterpret_cast<Address>(&data[128]), RelocInfo::NONE64);
__ movl(rax, Immediate(1));
Operand sp0 = Operand(rsp, 0);
// Test 1.
__ movl(rdx, sp0); // Sanity check.
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
// Test 2.
// Zero to non-zero displacement.
__ movl(rdx, Operand(sp0, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2 = Operand(rsp, 2 * kPointerSize);
// Test 3.
__ movl(rdx, sp2); // Sanity check.
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2c2 = Operand(rsp, rcx, times_pointer_size, 2 * kPointerSize);
// Test 6.
__ movl(rdx, sp2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2c2, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2c2, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp0 = Operand(rbp, 0);
// Test 9.
__ movl(rdx, bp0); // Sanity check.
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
// Zero to non-zero displacement.
__ movl(rdx, Operand(bp0, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2 = Operand(rbp, -2 * kPointerSize);
// Test 11.
__ movl(rdx, bp2); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bp2, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2c4 = Operand(rbp, rcx, times_pointer_size, -4 * kPointerSize);
// Test 14:
__ movl(rdx, bp2c4); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx0 = Operand(rbx, 0);
// Test 17.
__ movl(rdx, bx0); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, 5 * kPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, -4 * kPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2 = Operand(rbx, 2 * kPointerSize);
// Test 20.
__ movl(rdx, bx2); // Sanity check.
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x101));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bx2, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2c2 = Operand(rbx, rcx, times_pointer_size, -2 * kPointerSize);
// Test 23.
__ movl(rdx, bx2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, 2 * kPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, -2 * kPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand r80 = Operand(r8, 0);
// Test 26.
__ movl(rdx, r80); // Sanity check.
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x78787878));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x40404040));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
Operand r88 = Operand(r8, 8 * kIntSize);
// Test 31.
__ movl(rdx, r88); // Sanity check.
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x90909090));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x48484848));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
Operand r864 = Operand(r8, 64 * kIntSize);
// Test 36.
__ movl(rdx, r864); // Sanity check.
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -8 * kIntSize));
__ cmpl(rdx, Immediate(0xB8B8B8B8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 8 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 32 * kIntSize));
__ cmpl(rdx, Immediate(0xE0E0E0E0));
__ j(not_equal, &exit);
__ incq(rax);
// 32-bit offset to 8-bit offset.
__ movl(rdx, Operand(r864, -60 * kIntSize));
__ cmpl(rdx, Immediate(0x84848484));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 60 * kIntSize));
__ cmpl(rdx, Immediate(0xFCFCFCFC));
__ j(not_equal, &exit);
__ incq(rax);
// Test unaligned offsets.
// Test 43.
__ movl(rdx, Operand(r80, 2));
__ cmpl(rdx, Immediate(0x81818080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -2));
__ cmpl(rdx, Immediate(0x80807F7F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 126));
__ cmpl(rdx, Immediate(0xA0A09F9F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -126));
__ cmpl(rdx, Immediate(0x61616060));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 254));
__ cmpl(rdx, Immediate(0xC0C0BFBF));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -254));
__ cmpl(rdx, Immediate(0x41414040));
__ j(not_equal, &exit);
__ incq(rax);
// Success.
__ movl(rax, Immediate(0));
__ bind(&exit);
__ lea(rsp, Operand(rbp, kPointerSize));
__ pop(rbp);
__ pop(rbx);
__ pop(r14);
__ pop(r13);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
TEST(LoadAndStoreWithRepresentation) {
v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
MacroAssembler assembler(isolate, buffer, static_cast<int>(actual_size));
MacroAssembler* masm = &assembler; // Create a pointer for the __ macro.
EntryCode(masm);
__ subq(rsp, Immediate(1 * kPointerSize));
Label exit;
// Test 1.
__ movq(rax, Immediate(1)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movq(rcx, Immediate(-1));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::UInteger8());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(255));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::UInteger8());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 2.
__ movq(rax, Immediate(2)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ Set(rcx, V8_2PART_UINT64_C(0xdeadbeaf, 12345678));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::Smi());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ Set(rdx, V8_2PART_UINT64_C(0xdeadbeaf, 12345678));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::Smi());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 3.
__ movq(rax, Immediate(3)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movq(rcx, Immediate(-1));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::Integer32());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(-1));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::Integer32());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 4.
__ movq(rax, Immediate(4)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movl(rcx, Immediate(0x44332211));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::HeapObject());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(0x44332211));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::HeapObject());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 5.
__ movq(rax, Immediate(5)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ Set(rcx, V8_2PART_UINT64_C(0x12345678, deadbeaf));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::Tagged());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ Set(rdx, V8_2PART_UINT64_C(0x12345678, deadbeaf));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::Tagged());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 6.
__ movq(rax, Immediate(6)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ Set(rcx, V8_2PART_UINT64_C(0x11223344, 55667788));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::External());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ Set(rdx, V8_2PART_UINT64_C(0x11223344, 55667788));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::External());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 7.
__ movq(rax, Immediate(7)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movq(rcx, Immediate(-1));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::Integer8());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(255));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::Integer8());
__ movq(rcx, Immediate(-1));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 8.
__ movq(rax, Immediate(8)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movq(rcx, Immediate(-1));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::Integer16());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(65535));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::Integer16());
__ movq(rcx, Immediate(-1));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test 9.
__ movq(rax, Immediate(9)); // Test number.
__ movq(Operand(rsp, 0 * kPointerSize), Immediate(0));
__ movq(rcx, Immediate(-1));
__ Store(Operand(rsp, 0 * kPointerSize), rcx, Representation::UInteger16());
__ movq(rcx, Operand(rsp, 0 * kPointerSize));
__ movl(rdx, Immediate(65535));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ Load(rdx, Operand(rsp, 0 * kPointerSize), Representation::UInteger16());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ xor_(rax, rax); // Success.
__ bind(&exit);
__ addq(rsp, Immediate(1 * kPointerSize));
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(&desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(0, result);
}
#undef __