3d062847a4
R=machenbach@chromium.org Review URL: https://codereview.chromium.org/98893002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18188 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
188 lines
6.1 KiB
JavaScript
188 lines
6.1 KiB
JavaScript
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Test Math.sin and Math.cos.
|
|
|
|
// Flags: --allow-natives-syntax
|
|
|
|
assertEquals("-Infinity", String(1/Math.sin(-0)));
|
|
assertEquals(1, Math.cos(-0));
|
|
assertEquals("-Infinity", String(1/Math.tan(-0)));
|
|
|
|
// Assert that minus zero does not cause deopt.
|
|
function no_deopt_on_minus_zero(x) {
|
|
return Math.sin(x) + Math.cos(x) + Math.tan(x);
|
|
}
|
|
|
|
no_deopt_on_minus_zero(1);
|
|
no_deopt_on_minus_zero(1);
|
|
%OptimizeFunctionOnNextCall(no_deopt_on_minus_zero);
|
|
no_deopt_on_minus_zero(-0);
|
|
assertOptimized(no_deopt_on_minus_zero);
|
|
|
|
|
|
function sinTest() {
|
|
assertEquals(0, Math.sin(0));
|
|
assertEquals(1, Math.sin(Math.PI / 2));
|
|
}
|
|
|
|
function cosTest() {
|
|
assertEquals(1, Math.cos(0));
|
|
assertEquals(-1, Math.cos(Math.PI));
|
|
}
|
|
|
|
sinTest();
|
|
cosTest();
|
|
|
|
// By accident, the slow case for sine and cosine were both sine at
|
|
// some point. This is a regression test for that issue.
|
|
var x = Math.pow(2, 30);
|
|
assertTrue(Math.sin(x) != Math.cos(x));
|
|
|
|
// Ensure that sine and log are not the same.
|
|
x = 0.5;
|
|
assertTrue(Math.sin(x) != Math.log(x));
|
|
|
|
// Test against approximation by series.
|
|
var factorial = [1];
|
|
var accuracy = 50;
|
|
for (var i = 1; i < accuracy; i++) {
|
|
factorial[i] = factorial[i-1] * i;
|
|
}
|
|
|
|
// We sum up in the reverse order for higher precision, as we expect the terms
|
|
// to grow smaller for x reasonably close to 0.
|
|
function precision_sum(array) {
|
|
var result = 0;
|
|
while (array.length > 0) {
|
|
result += array.pop();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
function sin(x) {
|
|
var sign = 1;
|
|
var x2 = x*x;
|
|
var terms = [];
|
|
for (var i = 1; i < accuracy; i += 2) {
|
|
terms.push(sign * x / factorial[i]);
|
|
x *= x2;
|
|
sign *= -1;
|
|
}
|
|
return precision_sum(terms);
|
|
}
|
|
|
|
function cos(x) {
|
|
var sign = -1;
|
|
var x2 = x*x;
|
|
x = x2;
|
|
var terms = [1];
|
|
for (var i = 2; i < accuracy; i += 2) {
|
|
terms.push(sign * x / factorial[i]);
|
|
x *= x2;
|
|
sign *= -1;
|
|
}
|
|
return precision_sum(terms);
|
|
}
|
|
|
|
function abs_error(fun, ref, x) {
|
|
return Math.abs(ref(x) - fun(x));
|
|
}
|
|
|
|
var test_inputs = [];
|
|
for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
|
|
var epsilon = 0.0000001;
|
|
|
|
test_inputs.push(0);
|
|
test_inputs.push(0 + epsilon);
|
|
test_inputs.push(0 - epsilon);
|
|
test_inputs.push(Math.PI/2);
|
|
test_inputs.push(Math.PI/2 + epsilon);
|
|
test_inputs.push(Math.PI/2 - epsilon);
|
|
test_inputs.push(Math.PI);
|
|
test_inputs.push(Math.PI + epsilon);
|
|
test_inputs.push(Math.PI - epsilon);
|
|
test_inputs.push(- 2*Math.PI);
|
|
test_inputs.push(- 2*Math.PI + epsilon);
|
|
test_inputs.push(- 2*Math.PI - epsilon);
|
|
|
|
var squares = [];
|
|
for (var i = 0; i < test_inputs.length; i++) {
|
|
var x = test_inputs[i];
|
|
var err_sin = abs_error(Math.sin, sin, x);
|
|
var err_cos = abs_error(Math.cos, cos, x)
|
|
assertEqualsDelta(0, err_sin, 1E-13);
|
|
assertEqualsDelta(0, err_cos, 1E-13);
|
|
squares.push(err_sin*err_sin + err_cos*err_cos);
|
|
}
|
|
|
|
// Sum squares up by adding them pairwise, to avoid losing precision.
|
|
while (squares.length > 1) {
|
|
var reduced = [];
|
|
if (squares.length % 2 == 1) reduced.push(squares.pop());
|
|
// Remaining number of elements is even.
|
|
while(squares.length > 1) reduced.push(squares.pop() + squares.pop());
|
|
squares = reduced;
|
|
}
|
|
|
|
var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
|
|
assertEqualsDelta(0, err_rms, 1E-14);
|
|
|
|
assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
|
|
assertEquals(0, Math.sin("0x00000"));
|
|
assertEquals(1, Math.cos("0x00000"));
|
|
assertTrue(isNaN(Math.sin(Infinity)));
|
|
assertTrue(isNaN(Math.cos("-Infinity")));
|
|
assertEquals("Infinity", String(Math.tan(Math.PI/2)));
|
|
assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
|
|
assertEquals("-Infinity", String(1/Math.sin("-0")));
|
|
|
|
// Assert that the remainder after division by pi is reasonably precise.
|
|
function assertError(expected, x, epsilon) {
|
|
assertTrue(Math.abs(x - expected) < epsilon);
|
|
}
|
|
|
|
assertEqualsDelta(0.9367521275331447, Math.cos(1e06), 1e-15);
|
|
assertEqualsDelta(0.8731196226768560, Math.cos(1e10), 1e-08);
|
|
assertEqualsDelta(0.9367521275331447, Math.cos(-1e06), 1e-15);
|
|
assertEqualsDelta(0.8731196226768560, Math.cos(-1e10), 1e-08);
|
|
assertEqualsDelta(-0.3499935021712929, Math.sin(1e06), 1e-15);
|
|
assertEqualsDelta(-0.4875060250875106, Math.sin(1e10), 1e-08);
|
|
assertEqualsDelta(0.3499935021712929, Math.sin(-1e06), 1e-15);
|
|
assertEqualsDelta(0.4875060250875106, Math.sin(-1e10), 1e-08);
|
|
assertEqualsDelta(0.7796880066069787, Math.sin(1e16), 1e-05);
|
|
assertEqualsDelta(-0.6261681981330861, Math.cos(1e16), 1e-05);
|
|
|
|
// Assert that remainder calculation terminates.
|
|
for (var i = -1024; i < 1024; i++) {
|
|
assertFalse(isNaN(Math.sin(Math.pow(2, i))));
|
|
}
|
|
|
|
assertFalse(isNaN(Math.cos(1.57079632679489700)));
|
|
assertFalse(isNaN(Math.cos(-1e-100)));
|
|
assertFalse(isNaN(Math.cos(-1e-323)));
|