v8/src/factory.h
Michael Stanton c142994f74 Flesh out vector ic state query and set mechanisms.
The IC system now fully integrates the vector concept and can
handle loads and keyed loads vector-based.

BUG=
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/754303003

Cr-Commit-Position: refs/heads/master@{#25552}
2014-11-27 16:36:40 +00:00

736 lines
30 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_FACTORY_H_
#define V8_FACTORY_H_
#include "src/isolate.h"
namespace v8 {
namespace internal {
class FeedbackVectorSpec;
// Interface for handle based allocation.
class Factory FINAL {
public:
Handle<Oddball> NewOddball(Handle<Map> map,
const char* to_string,
Handle<Object> to_number,
byte kind);
// Allocates a fixed array initialized with undefined values.
Handle<FixedArray> NewFixedArray(
int size,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new fixed array with non-existing entries (the hole).
Handle<FixedArray> NewFixedArrayWithHoles(
int size,
PretenureFlag pretenure = NOT_TENURED);
// Allocates an uninitialized fixed array. It must be filled by the caller.
Handle<FixedArray> NewUninitializedFixedArray(int size);
// Allocate a new uninitialized fixed double array.
// The function returns a pre-allocated empty fixed array for capacity = 0,
// so the return type must be the general fixed array class.
Handle<FixedArrayBase> NewFixedDoubleArray(
int size,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new fixed double array with hole values.
Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
int size,
PretenureFlag pretenure = NOT_TENURED);
Handle<ConstantPoolArray> NewConstantPoolArray(
const ConstantPoolArray::NumberOfEntries& small);
Handle<ConstantPoolArray> NewExtendedConstantPoolArray(
const ConstantPoolArray::NumberOfEntries& small,
const ConstantPoolArray::NumberOfEntries& extended);
Handle<OrderedHashSet> NewOrderedHashSet();
Handle<OrderedHashMap> NewOrderedHashMap();
// Create a new boxed value.
Handle<Box> NewBox(Handle<Object> value);
// Create a pre-tenured empty AccessorPair.
Handle<AccessorPair> NewAccessorPair();
// Create an empty TypeFeedbackInfo.
Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
// Finds the internalized copy for string in the string table.
// If not found, a new string is added to the table and returned.
Handle<String> InternalizeUtf8String(Vector<const char> str);
Handle<String> InternalizeUtf8String(const char* str) {
return InternalizeUtf8String(CStrVector(str));
}
Handle<String> InternalizeString(Handle<String> str);
Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
Handle<String> InternalizeOneByteString(
Handle<SeqOneByteString>, int from, int length);
Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
template<class StringTableKey>
Handle<String> InternalizeStringWithKey(StringTableKey* key);
// String creation functions. Most of the string creation functions take
// a Heap::PretenureFlag argument to optionally request that they be
// allocated in the old generation. The pretenure flag defaults to
// DONT_TENURE.
//
// Creates a new String object. There are two String encodings: one-byte and
// two-byte. One should choose between the three string factory functions
// based on the encoding of the string buffer that the string is
// initialized from.
// - ...FromOneByte initializes the string from a buffer that is Latin1
// encoded (it does not check that the buffer is Latin1 encoded) and
// the result will be Latin1 encoded.
// - ...FromUtf8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all ASCII characters, the result
// will be Latin1 encoded, otherwise it will converted to two-byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all Latin1 characters, the result
// will be converted to Latin1, otherwise it will be left as two-byte.
//
// One-byte strings are pretenured when used as keys in the SourceCodeCache.
MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
Vector<const uint8_t> str,
PretenureFlag pretenure = NOT_TENURED);
template <size_t N>
inline Handle<String> NewStringFromStaticChars(
const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
DCHECK(N == StrLength(str) + 1);
return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
.ToHandleChecked();
}
inline Handle<String> NewStringFromAsciiChecked(
const char* str,
PretenureFlag pretenure = NOT_TENURED) {
return NewStringFromOneByte(
OneByteVector(str), pretenure).ToHandleChecked();
}
// Allocates and fully initializes a String. There are two String encodings:
// one-byte and two-byte. One should choose between the threestring
// allocation functions based on the encoding of the string buffer used to
// initialized the string.
// - ...FromOneByte initializes the string from a buffer that is Latin1
// encoded (it does not check that the buffer is Latin1 encoded) and the
// result will be Latin1 encoded.
// - ...FromUTF8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all ASCII characters, the result
// will be Latin1 encoded, otherwise it will converted to two-byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all Latin1 characters, the
// result will be converted to Latin1, otherwise it will be left as
// two-byte.
// TODO(dcarney): remove this function.
MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
Vector<const char> str,
PretenureFlag pretenure = NOT_TENURED) {
return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
}
// UTF8 strings are pretenured when used for regexp literal patterns and
// flags in the parser.
MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
Vector<const char> str,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
Vector<const uc16> str,
PretenureFlag pretenure = NOT_TENURED);
// Allocates an internalized string in old space based on the character
// stream.
MUST_USE_RESULT Handle<String> NewInternalizedStringFromUtf8(
Vector<const char> str,
int chars,
uint32_t hash_field);
MUST_USE_RESULT Handle<String> NewOneByteInternalizedString(
Vector<const uint8_t> str, uint32_t hash_field);
MUST_USE_RESULT Handle<String> NewOneByteInternalizedSubString(
Handle<SeqOneByteString> string, int offset, int length,
uint32_t hash_field);
MUST_USE_RESULT Handle<String> NewTwoByteInternalizedString(
Vector<const uc16> str,
uint32_t hash_field);
MUST_USE_RESULT Handle<String> NewInternalizedStringImpl(
Handle<String> string, int chars, uint32_t hash_field);
// Compute the matching internalized string map for a string if possible.
// Empty handle is returned if string is in new space or not flattened.
MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
Handle<String> string);
// Allocates and partially initializes an one-byte or two-byte String. The
// characters of the string are uninitialized. Currently used in regexp code
// only, where they are pretenured.
MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
// Creates a single character string where the character has given code.
// A cache is used for Latin1 codes.
Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
// Create a new cons string object which consists of a pair of strings.
MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
Handle<String> right);
// Create a new string object which holds a proper substring of a string.
Handle<String> NewProperSubString(Handle<String> str,
int begin,
int end);
// Create a new string object which holds a substring of a string.
Handle<String> NewSubString(Handle<String> str, int begin, int end) {
if (begin == 0 && end == str->length()) return str;
return NewProperSubString(str, begin, end);
}
// Creates a new external String object. There are two String encodings
// in the system: one-byte and two-byte. Unlike other String types, it does
// not make sense to have a UTF-8 factory function for external strings,
// because we cannot change the underlying buffer. Note that these strings
// are backed by a string resource that resides outside the V8 heap.
MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource);
MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource);
// Create a symbol.
Handle<Symbol> NewSymbol();
Handle<Symbol> NewPrivateSymbol();
Handle<Symbol> NewPrivateOwnSymbol();
// Create a global (but otherwise uninitialized) context.
Handle<Context> NewNativeContext();
// Create a script context.
Handle<Context> NewScriptContext(Handle<JSFunction> function,
Handle<ScopeInfo> scope_info);
// Create an empty script context table.
Handle<ScriptContextTable> NewScriptContextTable();
// Create a module context.
Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
// Create a function context.
Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
// Create a catch context.
Handle<Context> NewCatchContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<String> name,
Handle<Object> thrown_object);
// Create a 'with' context.
Handle<Context> NewWithContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<JSReceiver> extension);
// Create a block context.
Handle<Context> NewBlockContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info);
// Allocate a new struct. The struct is pretenured (allocated directly in
// the old generation).
Handle<Struct> NewStruct(InstanceType type);
Handle<CodeCache> NewCodeCache();
Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
int aliased_context_slot);
Handle<DeclaredAccessorDescriptor> NewDeclaredAccessorDescriptor();
Handle<DeclaredAccessorInfo> NewDeclaredAccessorInfo();
Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo();
Handle<Script> NewScript(Handle<String> source);
// Foreign objects are pretenured when allocated by the bootstrapper.
Handle<Foreign> NewForeign(Address addr,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new foreign object. The foreign is pretenured (allocated
// directly in the old generation).
Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
Handle<ByteArray> NewByteArray(int length,
PretenureFlag pretenure = NOT_TENURED);
Handle<ExternalArray> NewExternalArray(
int length,
ExternalArrayType array_type,
void* external_pointer,
PretenureFlag pretenure = NOT_TENURED);
Handle<FixedTypedArrayBase> NewFixedTypedArray(
int length,
ExternalArrayType array_type,
PretenureFlag pretenure = NOT_TENURED);
Handle<Cell> NewCell(Handle<Object> value);
Handle<PropertyCell> NewPropertyCellWithHole();
Handle<PropertyCell> NewPropertyCell(Handle<Object> value);
Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
// Allocate a tenured AllocationSite. It's payload is null.
Handle<AllocationSite> NewAllocationSite();
Handle<Map> NewMap(
InstanceType type,
int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
Handle<HeapObject> NewFillerObject(int size,
bool double_align,
AllocationSpace space);
Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
Handle<JSObject> CopyJSObject(Handle<JSObject> object);
Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
Handle<AllocationSite> site);
Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map);
Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
// This method expects a COW array in new space, and creates a copy
// of it in old space.
Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
Handle<FixedDoubleArray> CopyFixedDoubleArray(
Handle<FixedDoubleArray> array);
Handle<ConstantPoolArray> CopyConstantPoolArray(
Handle<ConstantPoolArray> array);
// Numbers (e.g. literals) are pretenured by the parser.
// The return value may be a smi or a heap number.
Handle<Object> NewNumber(double value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromInt(int32_t value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromUint(uint32_t value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromSize(size_t value,
PretenureFlag pretenure = NOT_TENURED) {
if (Smi::IsValid(static_cast<intptr_t>(value))) {
return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
isolate());
}
return NewNumber(static_cast<double>(value), pretenure);
}
Handle<HeapNumber> NewHeapNumber(double value,
MutableMode mode = IMMUTABLE,
PretenureFlag pretenure = NOT_TENURED);
// These objects are used by the api to create env-independent data
// structures in the heap.
inline Handle<JSObject> NewNeanderObject() {
return NewJSObjectFromMap(neander_map());
}
Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
PretenureFlag pretenure = NOT_TENURED);
// JSObject that should have a memento pointing to the allocation site.
Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
Handle<AllocationSite> site);
// Global objects are pretenured and initialized based on a constructor.
Handle<GlobalObject> NewGlobalObject(Handle<JSFunction> constructor);
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObjectFromMap(
Handle<Map> map,
PretenureFlag pretenure = NOT_TENURED,
bool allocate_properties = true,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
// JS modules are pretenured.
Handle<JSModule> NewJSModule(Handle<Context> context,
Handle<ScopeInfo> scope_info);
// JS arrays are pretenured when allocated by the parser.
// Create a JSArray with no elements.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind,
PretenureFlag pretenure = NOT_TENURED);
// Create a JSArray with a specified length and elements initialized
// according to the specified mode.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSArray> NewJSArray(
int capacity,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
PretenureFlag pretenure = NOT_TENURED) {
if (capacity != 0) {
elements_kind = GetHoleyElementsKind(elements_kind);
}
return NewJSArray(elements_kind, 0, capacity,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
}
// Create a JSArray with the given elements.
Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements,
ElementsKind elements_kind,
int length,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
PretenureFlag pretenure = NOT_TENURED) {
return NewJSArrayWithElements(
elements, elements_kind, elements->length(), pretenure);
}
void NewJSArrayStorage(
Handle<JSArray> array,
int length,
int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
Handle<JSArrayBuffer> NewJSArrayBuffer();
Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type);
// Creates a new JSTypedArray with the specified buffer.
Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length);
Handle<JSDataView> NewJSDataView();
Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length);
// TODO(aandrey): Maybe these should take table, index and kind arguments.
Handle<JSMapIterator> NewJSMapIterator();
Handle<JSSetIterator> NewJSSetIterator();
// Allocates a Harmony proxy.
Handle<JSProxy> NewJSProxy(Handle<Object> handler, Handle<Object> prototype);
// Allocates a Harmony function proxy.
Handle<JSProxy> NewJSFunctionProxy(Handle<Object> handler,
Handle<Object> call_trap,
Handle<Object> construct_trap,
Handle<Object> prototype);
// Reinitialize an JSGlobalProxy based on a constructor. The object
// must have the same size as objects allocated using the
// constructor. The object is reinitialized and behaves as an
// object that has been freshly allocated using the constructor.
void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
Handle<JSFunction> constructor);
// Change the type of the argument into a JS object/function and reinitialize.
void BecomeJSObject(Handle<JSProxy> object);
void BecomeJSFunction(Handle<JSProxy> object);
Handle<JSFunction> NewFunction(Handle<String> name,
Handle<Code> code,
Handle<Object> prototype,
bool read_only_prototype = false);
Handle<JSFunction> NewFunction(Handle<String> name);
Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
Handle<Code> code);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> function_info,
Handle<Context> context,
PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
Handle<Object> prototype, InstanceType type,
int instance_size,
bool read_only_prototype = false,
bool install_constructor = false);
Handle<JSFunction> NewFunction(Handle<String> name,
Handle<Code> code,
InstanceType type,
int instance_size);
// Create a serialized scope info.
Handle<ScopeInfo> NewScopeInfo(int length);
// Create an External object for V8's external API.
Handle<JSObject> NewExternal(void* value);
// The reference to the Code object is stored in self_reference.
// This allows generated code to reference its own Code object
// by containing this handle.
Handle<Code> NewCode(const CodeDesc& desc,
Code::Flags flags,
Handle<Object> self_reference,
bool immovable = false,
bool crankshafted = false,
int prologue_offset = Code::kPrologueOffsetNotSet,
bool is_debug = false);
Handle<Code> CopyCode(Handle<Code> code);
Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
// Interface for creating error objects.
MaybeHandle<Object> NewError(const char* maker, const char* message,
Handle<JSArray> args);
Handle<String> EmergencyNewError(const char* message, Handle<JSArray> args);
MaybeHandle<Object> NewError(const char* maker, const char* message,
Vector<Handle<Object> > args);
MaybeHandle<Object> NewError(const char* message,
Vector<Handle<Object> > args);
MaybeHandle<Object> NewError(Handle<String> message);
MaybeHandle<Object> NewError(const char* constructor, Handle<String> message);
MaybeHandle<Object> NewTypeError(const char* message,
Vector<Handle<Object> > args);
MaybeHandle<Object> NewTypeError(Handle<String> message);
MaybeHandle<Object> NewRangeError(const char* message,
Vector<Handle<Object> > args);
MaybeHandle<Object> NewRangeError(Handle<String> message);
MaybeHandle<Object> NewInvalidStringLengthError() {
return NewRangeError("invalid_string_length",
HandleVector<Object>(NULL, 0));
}
MaybeHandle<Object> NewSyntaxError(const char* message, Handle<JSArray> args);
MaybeHandle<Object> NewSyntaxError(Handle<String> message);
MaybeHandle<Object> NewReferenceError(const char* message,
Vector<Handle<Object> > args);
MaybeHandle<Object> NewReferenceError(const char* message,
Handle<JSArray> args);
MaybeHandle<Object> NewReferenceError(Handle<String> message);
MaybeHandle<Object> NewEvalError(const char* message,
Vector<Handle<Object> > args);
Handle<String> NumberToString(Handle<Object> number,
bool check_number_string_cache = true);
Handle<String> Uint32ToString(uint32_t value) {
return NumberToString(NewNumberFromUint(value));
}
enum ApiInstanceType {
JavaScriptObjectType,
GlobalObjectType,
GlobalProxyType
};
Handle<JSFunction> CreateApiFunction(
Handle<FunctionTemplateInfo> data,
Handle<Object> prototype,
ApiInstanceType type = JavaScriptObjectType);
Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
// Installs interceptors on the instance. 'desc' is a function template,
// and instance is an object instance created by the function of this
// function template.
MUST_USE_RESULT MaybeHandle<FunctionTemplateInfo> ConfigureInstance(
Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance);
#define ROOT_ACCESSOR(type, name, camel_name) \
inline Handle<type> name() { \
return Handle<type>(bit_cast<type**>( \
&isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
inline Handle<Map> name##_map() { \
return Handle<Map>(bit_cast<Map**>( \
&isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
}
STRUCT_LIST(STRUCT_MAP_ACCESSOR)
#undef STRUCT_MAP_ACCESSOR
#define STRING_ACCESSOR(name, str) \
inline Handle<String> name() { \
return Handle<String>(bit_cast<String**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
#undef STRING_ACCESSOR
#define SYMBOL_ACCESSOR(name) \
inline Handle<Symbol> name() { \
return Handle<Symbol>(bit_cast<Symbol**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
#define SYMBOL_ACCESSOR(name, varname, description) \
inline Handle<Symbol> name() { \
return Handle<Symbol>(bit_cast<Symbol**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
inline void set_string_table(Handle<StringTable> table) {
isolate()->heap()->set_string_table(*table);
}
Handle<String> hidden_string() {
return Handle<String>(&isolate()->heap()->hidden_string_);
}
// Allocates a new SharedFunctionInfo object.
Handle<SharedFunctionInfo> NewSharedFunctionInfo(
Handle<String> name, int number_of_literals, FunctionKind kind,
Handle<Code> code, Handle<ScopeInfo> scope_info,
Handle<TypeFeedbackVector> feedback_vector);
Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
MaybeHandle<Code> code);
// Allocate a new type feedback vector
Handle<TypeFeedbackVector> NewTypeFeedbackVector(
const FeedbackVectorSpec& spec);
// Allocates a new JSMessageObject object.
Handle<JSMessageObject> NewJSMessageObject(
Handle<String> type,
Handle<JSArray> arguments,
int start_position,
int end_position,
Handle<Object> script,
Handle<Object> stack_frames);
Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
// Return a map for given number of properties using the map cache in the
// native context.
Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
int number_of_properties,
bool* is_result_from_cache);
// Creates a new FixedArray that holds the data associated with the
// atom regexp and stores it in the regexp.
void SetRegExpAtomData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
Handle<Object> match_pattern);
// Creates a new FixedArray that holds the data associated with the
// irregexp regexp and stores it in the regexp.
void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
int capture_count);
// Returns the value for a known global constant (a property of the global
// object which is neither configurable nor writable) like 'undefined'.
// Returns a null handle when the given name is unknown.
Handle<Object> GlobalConstantFor(Handle<String> name);
// Converts the given boolean condition to JavaScript boolean value.
Handle<Object> ToBoolean(bool value);
private:
Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
// Creates a heap object based on the map. The fields of the heap object are
// not initialized by New<>() functions. It's the responsibility of the caller
// to do that.
template<typename T>
Handle<T> New(Handle<Map> map, AllocationSpace space);
template<typename T>
Handle<T> New(Handle<Map> map,
AllocationSpace space,
Handle<AllocationSite> allocation_site);
// Creates a code object that is not yet fully initialized yet.
inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
// Attempt to find the number in a small cache. If we finds it, return
// the string representation of the number. Otherwise return undefined.
Handle<Object> GetNumberStringCache(Handle<Object> number);
// Update the cache with a new number-string pair.
void SetNumberStringCache(Handle<Object> number, Handle<String> string);
// Initializes a function with a shared part and prototype.
// Note: this code was factored out of NewFunction such that other parts of
// the VM could use it. Specifically, a function that creates instances of
// type JS_FUNCTION_TYPE benefit from the use of this function.
inline void InitializeFunction(Handle<JSFunction> function,
Handle<SharedFunctionInfo> info,
Handle<Context> context);
// Creates a function initialized with a shared part.
Handle<JSFunction> NewFunction(Handle<Map> map,
Handle<SharedFunctionInfo> info,
Handle<Context> context,
PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunction(Handle<Map> map,
Handle<String> name,
MaybeHandle<Code> maybe_code);
// Reinitialize a JSProxy into an (empty) JS object of respective type and
// size, but keeping the original prototype. The receiver must have at least
// the size of the new object. The object is reinitialized and behaves as an
// object that has been freshly allocated.
void ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type, int size);
};
} } // namespace v8::internal
#endif // V8_FACTORY_H_