7f8a3d803c
R=svenpanne@chromium.org BUG= Review URL: https://chromiumcodereview.appspot.com/15691017 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14919 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
662 lines
25 KiB
C++
662 lines
25 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "codegen.h"
|
|
#include "deoptimizer.h"
|
|
#include "full-codegen.h"
|
|
#include "safepoint-table.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
const int Deoptimizer::table_entry_size_ = 16;
|
|
|
|
|
|
int Deoptimizer::patch_size() {
|
|
const int kCallInstructionSizeInWords = 3;
|
|
return kCallInstructionSizeInWords * Assembler::kInstrSize;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeFunctionWithPreparedFunctionList(
|
|
JSFunction* function) {
|
|
Isolate* isolate = function->GetIsolate();
|
|
HandleScope scope(isolate);
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
ASSERT(function->IsOptimized());
|
|
ASSERT(function->FunctionsInFunctionListShareSameCode());
|
|
|
|
// Get the optimized code.
|
|
Code* code = function->code();
|
|
Address code_start_address = code->instruction_start();
|
|
|
|
// The optimized code is going to be patched, so we cannot use it any more.
|
|
function->shared()->EvictFromOptimizedCodeMap(code, "deoptimized function");
|
|
|
|
// Invalidate the relocation information, as it will become invalid by the
|
|
// code patching below, and is not needed any more.
|
|
code->InvalidateRelocation();
|
|
|
|
// For each LLazyBailout instruction insert a call to the corresponding
|
|
// deoptimization entry.
|
|
DeoptimizationInputData* deopt_data =
|
|
DeoptimizationInputData::cast(code->deoptimization_data());
|
|
#ifdef DEBUG
|
|
Address prev_call_address = NULL;
|
|
#endif
|
|
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
|
|
if (deopt_data->Pc(i)->value() == -1) continue;
|
|
Address call_address = code_start_address + deopt_data->Pc(i)->value();
|
|
Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
|
|
// We need calls to have a predictable size in the unoptimized code, but
|
|
// this is optimized code, so we don't have to have a predictable size.
|
|
int call_size_in_bytes =
|
|
MacroAssembler::CallSizeNotPredictableCodeSize(deopt_entry,
|
|
RelocInfo::NONE32);
|
|
int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize;
|
|
ASSERT(call_size_in_bytes % Assembler::kInstrSize == 0);
|
|
ASSERT(call_size_in_bytes <= patch_size());
|
|
CodePatcher patcher(call_address, call_size_in_words);
|
|
patcher.masm()->Call(deopt_entry, RelocInfo::NONE32);
|
|
ASSERT(prev_call_address == NULL ||
|
|
call_address >= prev_call_address + patch_size());
|
|
ASSERT(call_address + patch_size() <= code->instruction_end());
|
|
#ifdef DEBUG
|
|
prev_call_address = call_address;
|
|
#endif
|
|
}
|
|
|
|
// Add the deoptimizing code to the list.
|
|
DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
node->set_next(data->deoptimizing_code_list_);
|
|
data->deoptimizing_code_list_ = node;
|
|
|
|
// We might be in the middle of incremental marking with compaction.
|
|
// Tell collector to treat this code object in a special way and
|
|
// ignore all slots that might have been recorded on it.
|
|
isolate->heap()->mark_compact_collector()->InvalidateCode(code);
|
|
|
|
ReplaceCodeForRelatedFunctions(function, code);
|
|
|
|
if (FLAG_trace_deopt) {
|
|
PrintF("[forced deoptimization: ");
|
|
function->PrintName();
|
|
PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function));
|
|
}
|
|
}
|
|
|
|
|
|
static const int32_t kBranchBeforeInterrupt = 0x5a000004;
|
|
|
|
// The back edge bookkeeping code matches the pattern:
|
|
//
|
|
// <decrement profiling counter>
|
|
// 2a 00 00 01 bpl ok
|
|
// e5 9f c? ?? ldr ip, [pc, <interrupt stub address>]
|
|
// e1 2f ff 3c blx ip
|
|
// ok-label
|
|
//
|
|
// We patch the code to the following form:
|
|
//
|
|
// <decrement profiling counter>
|
|
// e1 a0 00 00 mov r0, r0 (NOP)
|
|
// e5 9f c? ?? ldr ip, [pc, <on-stack replacement address>]
|
|
// e1 2f ff 3c blx ip
|
|
// ok-label
|
|
|
|
void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
ASSERT(!InterruptCodeIsPatched(unoptimized_code,
|
|
pc_after,
|
|
interrupt_code,
|
|
replacement_code));
|
|
static const int kInstrSize = Assembler::kInstrSize;
|
|
// Turn the jump into nops.
|
|
CodePatcher patcher(pc_after - 3 * kInstrSize, 1);
|
|
patcher.masm()->nop();
|
|
// Replace the call address.
|
|
uint32_t interrupt_address_offset = Memory::uint16_at(pc_after -
|
|
2 * kInstrSize) & 0xfff;
|
|
Address interrupt_address_pointer = pc_after + interrupt_address_offset;
|
|
Memory::uint32_at(interrupt_address_pointer) =
|
|
reinterpret_cast<uint32_t>(replacement_code->entry());
|
|
|
|
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
|
|
unoptimized_code, pc_after - 2 * kInstrSize, replacement_code);
|
|
}
|
|
|
|
|
|
void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
ASSERT(InterruptCodeIsPatched(unoptimized_code,
|
|
pc_after,
|
|
interrupt_code,
|
|
replacement_code));
|
|
static const int kInstrSize = Assembler::kInstrSize;
|
|
// Restore the original jump.
|
|
CodePatcher patcher(pc_after - 3 * kInstrSize, 1);
|
|
patcher.masm()->b(4 * kInstrSize, pl); // ok-label is 4 instructions later.
|
|
ASSERT_EQ(kBranchBeforeInterrupt,
|
|
Memory::int32_at(pc_after - 3 * kInstrSize));
|
|
// Restore the original call address.
|
|
uint32_t interrupt_address_offset = Memory::uint16_at(pc_after -
|
|
2 * kInstrSize) & 0xfff;
|
|
Address interrupt_address_pointer = pc_after + interrupt_address_offset;
|
|
Memory::uint32_at(interrupt_address_pointer) =
|
|
reinterpret_cast<uint32_t>(interrupt_code->entry());
|
|
|
|
interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
|
|
unoptimized_code, pc_after - 2 * kInstrSize, interrupt_code);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
|
|
Address pc_after,
|
|
Code* interrupt_code,
|
|
Code* replacement_code) {
|
|
static const int kInstrSize = Assembler::kInstrSize;
|
|
ASSERT(Memory::int32_at(pc_after - kInstrSize) == kBlxIp);
|
|
|
|
uint32_t interrupt_address_offset =
|
|
Memory::uint16_at(pc_after - 2 * kInstrSize) & 0xfff;
|
|
Address interrupt_address_pointer = pc_after + interrupt_address_offset;
|
|
|
|
if (Assembler::IsNop(Assembler::instr_at(pc_after - 3 * kInstrSize))) {
|
|
ASSERT(Assembler::IsLdrPcImmediateOffset(
|
|
Assembler::instr_at(pc_after - 2 * kInstrSize)));
|
|
ASSERT(reinterpret_cast<uint32_t>(replacement_code->entry()) ==
|
|
Memory::uint32_at(interrupt_address_pointer));
|
|
return true;
|
|
} else {
|
|
ASSERT(Assembler::IsLdrPcImmediateOffset(
|
|
Assembler::instr_at(pc_after - 2 * kInstrSize)));
|
|
ASSERT_EQ(kBranchBeforeInterrupt,
|
|
Memory::int32_at(pc_after - 3 * kInstrSize));
|
|
ASSERT(reinterpret_cast<uint32_t>(interrupt_code->entry()) ==
|
|
Memory::uint32_at(interrupt_address_pointer));
|
|
return false;
|
|
}
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
|
|
ByteArray* translations = data->TranslationByteArray();
|
|
int length = data->DeoptCount();
|
|
for (int i = 0; i < length; i++) {
|
|
if (data->AstId(i) == ast_id) {
|
|
TranslationIterator it(translations, data->TranslationIndex(i)->value());
|
|
int value = it.Next();
|
|
ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
|
|
// Read the number of frames.
|
|
value = it.Next();
|
|
if (value == 1) return i;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DoComputeOsrOutputFrame() {
|
|
DeoptimizationInputData* data = DeoptimizationInputData::cast(
|
|
compiled_code_->deoptimization_data());
|
|
unsigned ast_id = data->OsrAstId()->value();
|
|
|
|
int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
|
|
unsigned translation_index = data->TranslationIndex(bailout_id)->value();
|
|
ByteArray* translations = data->TranslationByteArray();
|
|
|
|
TranslationIterator iterator(translations, translation_index);
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator.Next());
|
|
ASSERT(Translation::BEGIN == opcode);
|
|
USE(opcode);
|
|
int count = iterator.Next();
|
|
iterator.Skip(1); // Drop JS frame count.
|
|
ASSERT(count == 1);
|
|
USE(count);
|
|
|
|
opcode = static_cast<Translation::Opcode>(iterator.Next());
|
|
USE(opcode);
|
|
ASSERT(Translation::JS_FRAME == opcode);
|
|
unsigned node_id = iterator.Next();
|
|
USE(node_id);
|
|
ASSERT(node_id == ast_id);
|
|
int closure_id = iterator.Next();
|
|
USE(closure_id);
|
|
ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
|
|
unsigned height = iterator.Next();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
USE(height_in_bytes);
|
|
|
|
unsigned fixed_size = ComputeFixedSize(function_);
|
|
unsigned input_frame_size = input_->GetFrameSize();
|
|
ASSERT(fixed_size + height_in_bytes == input_frame_size);
|
|
|
|
unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
|
|
unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
|
|
unsigned outgoing_size = outgoing_height * kPointerSize;
|
|
unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
|
|
ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call.
|
|
|
|
if (FLAG_trace_osr) {
|
|
PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
|
|
reinterpret_cast<intptr_t>(function_));
|
|
PrintFunctionName();
|
|
PrintF(" => node=%u, frame=%d->%d]\n",
|
|
ast_id,
|
|
input_frame_size,
|
|
output_frame_size);
|
|
}
|
|
|
|
// There's only one output frame in the OSR case.
|
|
output_count_ = 1;
|
|
output_ = new FrameDescription*[1];
|
|
output_[0] = new(output_frame_size) FrameDescription(
|
|
output_frame_size, function_);
|
|
output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
|
|
|
|
// Clear the incoming parameters in the optimized frame to avoid
|
|
// confusing the garbage collector.
|
|
unsigned output_offset = output_frame_size - kPointerSize;
|
|
int parameter_count = function_->shared()->formal_parameter_count() + 1;
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_[0]->SetFrameSlot(output_offset, 0);
|
|
output_offset -= kPointerSize;
|
|
}
|
|
|
|
// Translate the incoming parameters. This may overwrite some of the
|
|
// incoming argument slots we've just cleared.
|
|
int input_offset = input_frame_size - kPointerSize;
|
|
bool ok = true;
|
|
int limit = input_offset - (parameter_count * kPointerSize);
|
|
while (ok && input_offset > limit) {
|
|
ok = DoOsrTranslateCommand(&iterator, &input_offset);
|
|
}
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, and the function. Set them up explicitly.
|
|
for (int i = StandardFrameConstants::kCallerPCOffset;
|
|
ok && i >= StandardFrameConstants::kMarkerOffset;
|
|
i -= kPointerSize) {
|
|
uint32_t input_value = input_->GetFrameSlot(input_offset);
|
|
if (FLAG_trace_osr) {
|
|
const char* name = "UNKNOWN";
|
|
switch (i) {
|
|
case StandardFrameConstants::kCallerPCOffset:
|
|
name = "caller's pc";
|
|
break;
|
|
case StandardFrameConstants::kCallerFPOffset:
|
|
name = "fp";
|
|
break;
|
|
case StandardFrameConstants::kContextOffset:
|
|
name = "context";
|
|
break;
|
|
case StandardFrameConstants::kMarkerOffset:
|
|
name = "function";
|
|
break;
|
|
}
|
|
PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
|
|
output_offset,
|
|
input_value,
|
|
input_offset,
|
|
name);
|
|
}
|
|
|
|
output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
|
|
input_offset -= kPointerSize;
|
|
output_offset -= kPointerSize;
|
|
}
|
|
|
|
// Translate the rest of the frame.
|
|
while (ok && input_offset >= 0) {
|
|
ok = DoOsrTranslateCommand(&iterator, &input_offset);
|
|
}
|
|
|
|
// If translation of any command failed, continue using the input frame.
|
|
if (!ok) {
|
|
delete output_[0];
|
|
output_[0] = input_;
|
|
output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
|
|
} else {
|
|
// Set up the frame pointer and the context pointer.
|
|
output_[0]->SetRegister(fp.code(), input_->GetRegister(fp.code()));
|
|
output_[0]->SetRegister(cp.code(), input_->GetRegister(cp.code()));
|
|
|
|
unsigned pc_offset = data->OsrPcOffset()->value();
|
|
uint32_t pc = reinterpret_cast<uint32_t>(
|
|
compiled_code_->entry() + pc_offset);
|
|
output_[0]->SetPc(pc);
|
|
}
|
|
Code* continuation = isolate_->builtins()->builtin(Builtins::kNotifyOSR);
|
|
output_[0]->SetContinuation(
|
|
reinterpret_cast<uint32_t>(continuation->entry()));
|
|
|
|
if (FLAG_trace_osr) {
|
|
PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
|
|
ok ? "finished" : "aborted",
|
|
reinterpret_cast<intptr_t>(function_));
|
|
PrintFunctionName();
|
|
PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
|
|
// Set the register values. The values are not important as there are no
|
|
// callee saved registers in JavaScript frames, so all registers are
|
|
// spilled. Registers fp and sp are set to the correct values though.
|
|
|
|
for (int i = 0; i < Register::kNumRegisters; i++) {
|
|
input_->SetRegister(i, i * 4);
|
|
}
|
|
input_->SetRegister(sp.code(), reinterpret_cast<intptr_t>(frame->sp()));
|
|
input_->SetRegister(fp.code(), reinterpret_cast<intptr_t>(frame->fp()));
|
|
for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
|
|
input_->SetDoubleRegister(i, 0.0);
|
|
}
|
|
|
|
// Fill the frame content from the actual data on the frame.
|
|
for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
|
|
input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::SetPlatformCompiledStubRegisters(
|
|
FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
|
|
ApiFunction function(descriptor->deoptimization_handler_);
|
|
ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_);
|
|
intptr_t handler = reinterpret_cast<intptr_t>(xref.address());
|
|
int params = descriptor->register_param_count_;
|
|
if (descriptor->stack_parameter_count_ != NULL) {
|
|
params++;
|
|
}
|
|
output_frame->SetRegister(r0.code(), params);
|
|
output_frame->SetRegister(r1.code(), handler);
|
|
}
|
|
|
|
|
|
void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
|
|
for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) {
|
|
double double_value = input_->GetDoubleRegister(i);
|
|
output_frame->SetDoubleRegister(i, double_value);
|
|
}
|
|
}
|
|
|
|
|
|
bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
|
|
// There is no dynamic alignment padding on ARM in the input frame.
|
|
return false;
|
|
}
|
|
|
|
|
|
#define __ masm()->
|
|
|
|
// This code tries to be close to ia32 code so that any changes can be
|
|
// easily ported.
|
|
void Deoptimizer::EntryGenerator::Generate() {
|
|
GeneratePrologue();
|
|
|
|
// Save all general purpose registers before messing with them.
|
|
const int kNumberOfRegisters = Register::kNumRegisters;
|
|
|
|
// Everything but pc, lr and ip which will be saved but not restored.
|
|
RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit();
|
|
|
|
const int kDoubleRegsSize =
|
|
kDoubleSize * DwVfpRegister::kMaxNumAllocatableRegisters;
|
|
|
|
// Save all allocatable VFP registers before messing with them.
|
|
ASSERT(kDoubleRegZero.code() == 14);
|
|
ASSERT(kScratchDoubleReg.code() == 15);
|
|
|
|
// Check CPU flags for number of registers, setting the Z condition flag.
|
|
__ CheckFor32DRegs(ip);
|
|
|
|
// Push registers d0-d13, and possibly d16-d31, on the stack.
|
|
// If d16-d31 are not pushed, decrease the stack pointer instead.
|
|
__ vstm(db_w, sp, d16, d31, ne);
|
|
__ sub(sp, sp, Operand(16 * kDoubleSize), LeaveCC, eq);
|
|
__ vstm(db_w, sp, d0, d13);
|
|
|
|
// Push all 16 registers (needed to populate FrameDescription::registers_).
|
|
// TODO(1588) Note that using pc with stm is deprecated, so we should perhaps
|
|
// handle this a bit differently.
|
|
__ stm(db_w, sp, restored_regs | sp.bit() | lr.bit() | pc.bit());
|
|
|
|
const int kSavedRegistersAreaSize =
|
|
(kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;
|
|
|
|
// Get the bailout id from the stack.
|
|
__ ldr(r2, MemOperand(sp, kSavedRegistersAreaSize));
|
|
|
|
// Get the address of the location in the code object if possible (r3) (return
|
|
// address for lazy deoptimization) and compute the fp-to-sp delta in
|
|
// register r4.
|
|
if (type() == EAGER || type() == SOFT) {
|
|
__ mov(r3, Operand::Zero());
|
|
// Correct one word for bailout id.
|
|
__ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
|
|
} else if (type() == OSR) {
|
|
__ mov(r3, lr);
|
|
// Correct one word for bailout id.
|
|
__ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
|
|
} else {
|
|
__ mov(r3, lr);
|
|
// Correct two words for bailout id and return address.
|
|
__ add(r4, sp, Operand(kSavedRegistersAreaSize + (2 * kPointerSize)));
|
|
}
|
|
__ sub(r4, fp, r4);
|
|
|
|
// Allocate a new deoptimizer object.
|
|
// Pass four arguments in r0 to r3 and fifth argument on stack.
|
|
__ PrepareCallCFunction(6, r5);
|
|
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ mov(r1, Operand(type())); // bailout type,
|
|
// r2: bailout id already loaded.
|
|
// r3: code address or 0 already loaded.
|
|
__ str(r4, MemOperand(sp, 0 * kPointerSize)); // Fp-to-sp delta.
|
|
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
|
|
__ str(r5, MemOperand(sp, 1 * kPointerSize)); // Isolate.
|
|
// Call Deoptimizer::New().
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm());
|
|
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
|
|
}
|
|
|
|
// Preserve "deoptimizer" object in register r0 and get the input
|
|
// frame descriptor pointer to r1 (deoptimizer->input_);
|
|
__ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
|
|
|
|
// Copy core registers into FrameDescription::registers_[kNumRegisters].
|
|
ASSERT(Register::kNumRegisters == kNumberOfRegisters);
|
|
for (int i = 0; i < kNumberOfRegisters; i++) {
|
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
|
__ ldr(r2, MemOperand(sp, i * kPointerSize));
|
|
__ str(r2, MemOperand(r1, offset));
|
|
}
|
|
|
|
// Copy VFP registers to
|
|
// double_registers_[DoubleRegister::kMaxNumAllocatableRegisters]
|
|
int double_regs_offset = FrameDescription::double_registers_offset();
|
|
for (int i = 0; i < DwVfpRegister::kMaxNumAllocatableRegisters; ++i) {
|
|
int dst_offset = i * kDoubleSize + double_regs_offset;
|
|
int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize;
|
|
__ vldr(d0, sp, src_offset);
|
|
__ vstr(d0, r1, dst_offset);
|
|
}
|
|
|
|
// Remove the bailout id, eventually return address, and the saved registers
|
|
// from the stack.
|
|
if (type() == EAGER || type() == SOFT || type() == OSR) {
|
|
__ add(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
|
|
} else {
|
|
__ add(sp, sp, Operand(kSavedRegistersAreaSize + (2 * kPointerSize)));
|
|
}
|
|
|
|
// Compute a pointer to the unwinding limit in register r2; that is
|
|
// the first stack slot not part of the input frame.
|
|
__ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset()));
|
|
__ add(r2, r2, sp);
|
|
|
|
// Unwind the stack down to - but not including - the unwinding
|
|
// limit and copy the contents of the activation frame to the input
|
|
// frame description.
|
|
__ add(r3, r1, Operand(FrameDescription::frame_content_offset()));
|
|
Label pop_loop;
|
|
Label pop_loop_header;
|
|
__ b(&pop_loop_header);
|
|
__ bind(&pop_loop);
|
|
__ pop(r4);
|
|
__ str(r4, MemOperand(r3, 0));
|
|
__ add(r3, r3, Operand(sizeof(uint32_t)));
|
|
__ bind(&pop_loop_header);
|
|
__ cmp(r2, sp);
|
|
__ b(ne, &pop_loop);
|
|
|
|
// Compute the output frame in the deoptimizer.
|
|
__ push(r0); // Preserve deoptimizer object across call.
|
|
// r0: deoptimizer object; r1: scratch.
|
|
__ PrepareCallCFunction(1, r1);
|
|
// Call Deoptimizer::ComputeOutputFrames().
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm());
|
|
__ CallCFunction(
|
|
ExternalReference::compute_output_frames_function(isolate()), 1);
|
|
}
|
|
__ pop(r0); // Restore deoptimizer object (class Deoptimizer).
|
|
|
|
// Replace the current (input) frame with the output frames.
|
|
Label outer_push_loop, inner_push_loop,
|
|
outer_loop_header, inner_loop_header;
|
|
// Outer loop state: r4 = current "FrameDescription** output_",
|
|
// r1 = one past the last FrameDescription**.
|
|
__ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset()));
|
|
__ ldr(r4, MemOperand(r0, Deoptimizer::output_offset())); // r4 is output_.
|
|
__ add(r1, r4, Operand(r1, LSL, 2));
|
|
__ jmp(&outer_loop_header);
|
|
__ bind(&outer_push_loop);
|
|
// Inner loop state: r2 = current FrameDescription*, r3 = loop index.
|
|
__ ldr(r2, MemOperand(r4, 0)); // output_[ix]
|
|
__ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset()));
|
|
__ jmp(&inner_loop_header);
|
|
__ bind(&inner_push_loop);
|
|
__ sub(r3, r3, Operand(sizeof(uint32_t)));
|
|
__ add(r6, r2, Operand(r3));
|
|
__ ldr(r7, MemOperand(r6, FrameDescription::frame_content_offset()));
|
|
__ push(r7);
|
|
__ bind(&inner_loop_header);
|
|
__ cmp(r3, Operand::Zero());
|
|
__ b(ne, &inner_push_loop); // test for gt?
|
|
__ add(r4, r4, Operand(kPointerSize));
|
|
__ bind(&outer_loop_header);
|
|
__ cmp(r4, r1);
|
|
__ b(lt, &outer_push_loop);
|
|
|
|
// Check CPU flags for number of registers, setting the Z condition flag.
|
|
__ CheckFor32DRegs(ip);
|
|
|
|
__ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
|
|
int src_offset = FrameDescription::double_registers_offset();
|
|
for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; ++i) {
|
|
if (i == kDoubleRegZero.code()) continue;
|
|
if (i == kScratchDoubleReg.code()) continue;
|
|
|
|
const DwVfpRegister reg = DwVfpRegister::from_code(i);
|
|
__ vldr(reg, r1, src_offset, i < 16 ? al : ne);
|
|
src_offset += kDoubleSize;
|
|
}
|
|
|
|
// Push state, pc, and continuation from the last output frame.
|
|
if (type() != OSR) {
|
|
__ ldr(r6, MemOperand(r2, FrameDescription::state_offset()));
|
|
__ push(r6);
|
|
}
|
|
|
|
__ ldr(r6, MemOperand(r2, FrameDescription::pc_offset()));
|
|
__ push(r6);
|
|
__ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset()));
|
|
__ push(r6);
|
|
|
|
// Push the registers from the last output frame.
|
|
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
|
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
|
__ ldr(r6, MemOperand(r2, offset));
|
|
__ push(r6);
|
|
}
|
|
|
|
// Restore the registers from the stack.
|
|
__ ldm(ia_w, sp, restored_regs); // all but pc registers.
|
|
__ pop(ip); // remove sp
|
|
__ pop(ip); // remove lr
|
|
|
|
__ InitializeRootRegister();
|
|
|
|
__ pop(ip); // remove pc
|
|
__ pop(r7); // get continuation, leave pc on stack
|
|
__ pop(lr);
|
|
__ Jump(r7);
|
|
__ stop("Unreachable.");
|
|
}
|
|
|
|
|
|
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
|
|
// Create a sequence of deoptimization entries. Note that any
|
|
// registers may be still live.
|
|
Label done;
|
|
for (int i = 0; i < count(); i++) {
|
|
int start = masm()->pc_offset();
|
|
USE(start);
|
|
if (type() == EAGER || type() == SOFT) {
|
|
__ nop();
|
|
} else {
|
|
// Emulate ia32 like call by pushing return address to stack.
|
|
__ push(lr);
|
|
}
|
|
__ mov(ip, Operand(i));
|
|
__ push(ip);
|
|
__ b(&done);
|
|
ASSERT(masm()->pc_offset() - start == table_entry_size_);
|
|
}
|
|
__ bind(&done);
|
|
}
|
|
|
|
#undef __
|
|
|
|
} } // namespace v8::internal
|