82b8e23bc1
This pure refactoring is needed for another upcoming CL. Note that the actual names are still a bit confusing, because this is still a kind of swiss-army-knife-field. :-/ R=bmeurer@chromium.org Review URL: https://codereview.chromium.org/52633003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@17472 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
10452 lines
393 KiB
C++
10452 lines
393 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_OBJECTS_H_
|
|
#define V8_OBJECTS_H_
|
|
|
|
#include "allocation.h"
|
|
#include "assert-scope.h"
|
|
#include "builtins.h"
|
|
#include "elements-kind.h"
|
|
#include "flags.h"
|
|
#include "list.h"
|
|
#include "property-details.h"
|
|
#include "smart-pointers.h"
|
|
#include "unicode-inl.h"
|
|
#if V8_TARGET_ARCH_ARM
|
|
#include "arm/constants-arm.h"
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "mips/constants-mips.h"
|
|
#endif
|
|
#include "v8checks.h"
|
|
#include "zone.h"
|
|
|
|
|
|
//
|
|
// Most object types in the V8 JavaScript are described in this file.
|
|
//
|
|
// Inheritance hierarchy:
|
|
// - MaybeObject (an object or a failure)
|
|
// - Failure (immediate for marking failed operation)
|
|
// - Object
|
|
// - Smi (immediate small integer)
|
|
// - HeapObject (superclass for everything allocated in the heap)
|
|
// - JSReceiver (suitable for property access)
|
|
// - JSObject
|
|
// - JSArray
|
|
// - JSArrayBuffer
|
|
// - JSArrayBufferView
|
|
// - JSTypedArray
|
|
// - JSDataView
|
|
// - JSSet
|
|
// - JSMap
|
|
// - JSWeakCollection
|
|
// - JSWeakMap
|
|
// - JSWeakSet
|
|
// - JSRegExp
|
|
// - JSFunction
|
|
// - JSGeneratorObject
|
|
// - JSModule
|
|
// - GlobalObject
|
|
// - JSGlobalObject
|
|
// - JSBuiltinsObject
|
|
// - JSGlobalProxy
|
|
// - JSValue
|
|
// - JSDate
|
|
// - JSMessageObject
|
|
// - JSProxy
|
|
// - JSFunctionProxy
|
|
// - FixedArrayBase
|
|
// - ByteArray
|
|
// - FixedArray
|
|
// - DescriptorArray
|
|
// - HashTable
|
|
// - Dictionary
|
|
// - StringTable
|
|
// - CompilationCacheTable
|
|
// - CodeCacheHashTable
|
|
// - MapCache
|
|
// - Context
|
|
// - JSFunctionResultCache
|
|
// - ScopeInfo
|
|
// - TransitionArray
|
|
// - FixedDoubleArray
|
|
// - ExternalArray
|
|
// - ExternalPixelArray
|
|
// - ExternalByteArray
|
|
// - ExternalUnsignedByteArray
|
|
// - ExternalShortArray
|
|
// - ExternalUnsignedShortArray
|
|
// - ExternalIntArray
|
|
// - ExternalUnsignedIntArray
|
|
// - ExternalFloatArray
|
|
// - Name
|
|
// - String
|
|
// - SeqString
|
|
// - SeqOneByteString
|
|
// - SeqTwoByteString
|
|
// - SlicedString
|
|
// - ConsString
|
|
// - ExternalString
|
|
// - ExternalAsciiString
|
|
// - ExternalTwoByteString
|
|
// - InternalizedString
|
|
// - SeqInternalizedString
|
|
// - SeqOneByteInternalizedString
|
|
// - SeqTwoByteInternalizedString
|
|
// - ConsInternalizedString
|
|
// - ExternalInternalizedString
|
|
// - ExternalAsciiInternalizedString
|
|
// - ExternalTwoByteInternalizedString
|
|
// - Symbol
|
|
// - HeapNumber
|
|
// - Cell
|
|
// - PropertyCell
|
|
// - Code
|
|
// - Map
|
|
// - Oddball
|
|
// - Foreign
|
|
// - SharedFunctionInfo
|
|
// - Struct
|
|
// - Box
|
|
// - DeclaredAccessorDescriptor
|
|
// - AccessorInfo
|
|
// - DeclaredAccessorInfo
|
|
// - ExecutableAccessorInfo
|
|
// - AccessorPair
|
|
// - AccessCheckInfo
|
|
// - InterceptorInfo
|
|
// - CallHandlerInfo
|
|
// - TemplateInfo
|
|
// - FunctionTemplateInfo
|
|
// - ObjectTemplateInfo
|
|
// - Script
|
|
// - SignatureInfo
|
|
// - TypeSwitchInfo
|
|
// - DebugInfo
|
|
// - BreakPointInfo
|
|
// - CodeCache
|
|
//
|
|
// Formats of Object*:
|
|
// Smi: [31 bit signed int] 0
|
|
// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
|
|
// Failure: [30 bit signed int] 11
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
enum KeyedAccessStoreMode {
|
|
STANDARD_STORE,
|
|
STORE_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_NO_TRANSITION,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
|
|
STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
|
|
STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
|
|
STORE_NO_TRANSITION_HANDLE_COW
|
|
};
|
|
|
|
|
|
static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
|
|
STANDARD_STORE;
|
|
STATIC_ASSERT(STANDARD_STORE == 0);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
|
|
STORE_TRANSITION_SMI_TO_OBJECT);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
|
|
STORE_TRANSITION_SMI_TO_DOUBLE);
|
|
STATIC_ASSERT(kGrowICDelta ==
|
|
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
|
|
STORE_TRANSITION_DOUBLE_TO_OBJECT);
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetGrowStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
|
|
store_mode = static_cast<KeyedAccessStoreMode>(
|
|
static_cast<int>(store_mode) + kGrowICDelta);
|
|
}
|
|
return store_mode;
|
|
}
|
|
|
|
|
|
static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode > STANDARD_STORE &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
|
|
store_mode != STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
|
|
|
|
static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
|
|
KeyedAccessStoreMode store_mode) {
|
|
if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
|
|
return store_mode;
|
|
}
|
|
if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
|
|
return STORE_AND_GROW_NO_TRANSITION;
|
|
}
|
|
return STANDARD_STORE;
|
|
}
|
|
|
|
|
|
static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
|
|
return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
|
|
store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
|
|
}
|
|
|
|
|
|
// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
|
|
enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
|
|
|
|
|
|
// Indicates whether a value can be loaded as a constant.
|
|
enum StoreMode {
|
|
ALLOW_AS_CONSTANT,
|
|
FORCE_FIELD
|
|
};
|
|
|
|
|
|
// PropertyNormalizationMode is used to specify whether to keep
|
|
// inobject properties when normalizing properties of a JSObject.
|
|
enum PropertyNormalizationMode {
|
|
CLEAR_INOBJECT_PROPERTIES,
|
|
KEEP_INOBJECT_PROPERTIES
|
|
};
|
|
|
|
|
|
// NormalizedMapSharingMode is used to specify whether a map may be shared
|
|
// by different objects with normalized properties.
|
|
enum NormalizedMapSharingMode {
|
|
UNIQUE_NORMALIZED_MAP,
|
|
SHARED_NORMALIZED_MAP
|
|
};
|
|
|
|
|
|
// Indicates whether a get method should implicitly create the object looked up.
|
|
enum CreationFlag {
|
|
ALLOW_CREATION,
|
|
OMIT_CREATION
|
|
};
|
|
|
|
|
|
// Indicates whether transitions can be added to a source map or not.
|
|
enum TransitionFlag {
|
|
INSERT_TRANSITION,
|
|
OMIT_TRANSITION
|
|
};
|
|
|
|
|
|
enum DebugExtraICState {
|
|
DEBUG_BREAK,
|
|
DEBUG_PREPARE_STEP_IN
|
|
};
|
|
|
|
|
|
// Indicates whether the transition is simple: the target map of the transition
|
|
// either extends the current map with a new property, or it modifies the
|
|
// property that was added last to the current map.
|
|
enum SimpleTransitionFlag {
|
|
SIMPLE_TRANSITION,
|
|
FULL_TRANSITION
|
|
};
|
|
|
|
|
|
// Indicates whether we are only interested in the descriptors of a particular
|
|
// map, or in all descriptors in the descriptor array.
|
|
enum DescriptorFlag {
|
|
ALL_DESCRIPTORS,
|
|
OWN_DESCRIPTORS
|
|
};
|
|
|
|
// The GC maintains a bit of information, the MarkingParity, which toggles
|
|
// from odd to even and back every time marking is completed. Incremental
|
|
// marking can visit an object twice during a marking phase, so algorithms that
|
|
// that piggy-back on marking can use the parity to ensure that they only
|
|
// perform an operation on an object once per marking phase: they record the
|
|
// MarkingParity when they visit an object, and only re-visit the object when it
|
|
// is marked again and the MarkingParity changes.
|
|
enum MarkingParity {
|
|
NO_MARKING_PARITY,
|
|
ODD_MARKING_PARITY,
|
|
EVEN_MARKING_PARITY
|
|
};
|
|
|
|
// Instance size sentinel for objects of variable size.
|
|
const int kVariableSizeSentinel = 0;
|
|
|
|
const int kStubMajorKeyBits = 6;
|
|
const int kStubMinorKeyBits = kBitsPerInt - kSmiTagSize - kStubMajorKeyBits;
|
|
|
|
// All Maps have a field instance_type containing a InstanceType.
|
|
// It describes the type of the instances.
|
|
//
|
|
// As an example, a JavaScript object is a heap object and its map
|
|
// instance_type is JS_OBJECT_TYPE.
|
|
//
|
|
// The names of the string instance types are intended to systematically
|
|
// mirror their encoding in the instance_type field of the map. The default
|
|
// encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII
|
|
// encoding is mentioned explicitly in the name. Likewise, the default
|
|
// representation is considered sequential. It is not mentioned in the
|
|
// name. The other representations (e.g. CONS, EXTERNAL) are explicitly
|
|
// mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
|
|
// string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
|
|
//
|
|
// NOTE: The following things are some that depend on the string types having
|
|
// instance_types that are less than those of all other types:
|
|
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
|
|
// Object::IsString.
|
|
//
|
|
// NOTE: Everything following JS_VALUE_TYPE is considered a
|
|
// JSObject for GC purposes. The first four entries here have typeof
|
|
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
|
|
#define INSTANCE_TYPE_LIST(V) \
|
|
V(STRING_TYPE) \
|
|
V(ASCII_STRING_TYPE) \
|
|
V(CONS_STRING_TYPE) \
|
|
V(CONS_ASCII_STRING_TYPE) \
|
|
V(SLICED_STRING_TYPE) \
|
|
V(SLICED_ASCII_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_TYPE) \
|
|
V(EXTERNAL_ASCII_STRING_TYPE) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ASCII_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE) \
|
|
V(ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(CONS_INTERNALIZED_STRING_TYPE) \
|
|
V(CONS_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
|
|
\
|
|
V(SYMBOL_TYPE) \
|
|
V(MAP_TYPE) \
|
|
V(CODE_TYPE) \
|
|
V(ODDBALL_TYPE) \
|
|
V(CELL_TYPE) \
|
|
V(PROPERTY_CELL_TYPE) \
|
|
\
|
|
V(HEAP_NUMBER_TYPE) \
|
|
V(FOREIGN_TYPE) \
|
|
V(BYTE_ARRAY_TYPE) \
|
|
V(FREE_SPACE_TYPE) \
|
|
/* Note: the order of these external array */ \
|
|
/* types is relied upon in */ \
|
|
/* Object::IsExternalArray(). */ \
|
|
V(EXTERNAL_BYTE_ARRAY_TYPE) \
|
|
V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) \
|
|
V(EXTERNAL_SHORT_ARRAY_TYPE) \
|
|
V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) \
|
|
V(EXTERNAL_INT_ARRAY_TYPE) \
|
|
V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) \
|
|
V(EXTERNAL_FLOAT_ARRAY_TYPE) \
|
|
V(EXTERNAL_DOUBLE_ARRAY_TYPE) \
|
|
V(EXTERNAL_PIXEL_ARRAY_TYPE) \
|
|
V(FILLER_TYPE) \
|
|
\
|
|
V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
|
|
V(DECLARED_ACCESSOR_INFO_TYPE) \
|
|
V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
|
|
V(ACCESSOR_PAIR_TYPE) \
|
|
V(ACCESS_CHECK_INFO_TYPE) \
|
|
V(INTERCEPTOR_INFO_TYPE) \
|
|
V(CALL_HANDLER_INFO_TYPE) \
|
|
V(FUNCTION_TEMPLATE_INFO_TYPE) \
|
|
V(OBJECT_TEMPLATE_INFO_TYPE) \
|
|
V(SIGNATURE_INFO_TYPE) \
|
|
V(TYPE_SWITCH_INFO_TYPE) \
|
|
V(ALLOCATION_MEMENTO_TYPE) \
|
|
V(ALLOCATION_SITE_TYPE) \
|
|
V(SCRIPT_TYPE) \
|
|
V(CODE_CACHE_TYPE) \
|
|
V(POLYMORPHIC_CODE_CACHE_TYPE) \
|
|
V(TYPE_FEEDBACK_INFO_TYPE) \
|
|
V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
|
|
V(BOX_TYPE) \
|
|
\
|
|
V(FIXED_ARRAY_TYPE) \
|
|
V(FIXED_DOUBLE_ARRAY_TYPE) \
|
|
V(CONSTANT_POOL_ARRAY_TYPE) \
|
|
V(SHARED_FUNCTION_INFO_TYPE) \
|
|
\
|
|
V(JS_MESSAGE_OBJECT_TYPE) \
|
|
\
|
|
V(JS_VALUE_TYPE) \
|
|
V(JS_DATE_TYPE) \
|
|
V(JS_OBJECT_TYPE) \
|
|
V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
|
|
V(JS_GENERATOR_OBJECT_TYPE) \
|
|
V(JS_MODULE_TYPE) \
|
|
V(JS_GLOBAL_OBJECT_TYPE) \
|
|
V(JS_BUILTINS_OBJECT_TYPE) \
|
|
V(JS_GLOBAL_PROXY_TYPE) \
|
|
V(JS_ARRAY_TYPE) \
|
|
V(JS_ARRAY_BUFFER_TYPE) \
|
|
V(JS_TYPED_ARRAY_TYPE) \
|
|
V(JS_DATA_VIEW_TYPE) \
|
|
V(JS_PROXY_TYPE) \
|
|
V(JS_SET_TYPE) \
|
|
V(JS_MAP_TYPE) \
|
|
V(JS_WEAK_MAP_TYPE) \
|
|
V(JS_WEAK_SET_TYPE) \
|
|
V(JS_REGEXP_TYPE) \
|
|
\
|
|
V(JS_FUNCTION_TYPE) \
|
|
V(JS_FUNCTION_PROXY_TYPE) \
|
|
V(DEBUG_INFO_TYPE) \
|
|
V(BREAK_POINT_INFO_TYPE)
|
|
|
|
|
|
// Since string types are not consecutive, this macro is used to
|
|
// iterate over them.
|
|
#define STRING_TYPE_LIST(V) \
|
|
V(STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
string, \
|
|
String) \
|
|
V(ASCII_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
ascii_string, \
|
|
AsciiString) \
|
|
V(CONS_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_string, \
|
|
ConsString) \
|
|
V(CONS_ASCII_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_ascii_string, \
|
|
ConsAsciiString) \
|
|
V(SLICED_STRING_TYPE, \
|
|
SlicedString::kSize, \
|
|
sliced_string, \
|
|
SlicedString) \
|
|
V(SLICED_ASCII_STRING_TYPE, \
|
|
SlicedString::kSize, \
|
|
sliced_ascii_string, \
|
|
SlicedAsciiString) \
|
|
V(EXTERNAL_STRING_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_string, \
|
|
ExternalString) \
|
|
V(EXTERNAL_ASCII_STRING_TYPE, \
|
|
ExternalAsciiString::kSize, \
|
|
external_ascii_string, \
|
|
ExternalAsciiString) \
|
|
V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_string_with_one_bytei_data, \
|
|
ExternalStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_STRING_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_string, \
|
|
ShortExternalString) \
|
|
V(SHORT_EXTERNAL_ASCII_STRING_TYPE, \
|
|
ExternalAsciiString::kShortSize, \
|
|
short_external_ascii_string, \
|
|
ShortExternalAsciiString) \
|
|
V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_string_with_one_byte_data, \
|
|
ShortExternalStringWithOneByteData) \
|
|
\
|
|
V(INTERNALIZED_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
internalized_string, \
|
|
InternalizedString) \
|
|
V(ASCII_INTERNALIZED_STRING_TYPE, \
|
|
kVariableSizeSentinel, \
|
|
ascii_internalized_string, \
|
|
AsciiInternalizedString) \
|
|
V(CONS_INTERNALIZED_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_internalized_string, \
|
|
ConsInternalizedString) \
|
|
V(CONS_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ConsString::kSize, \
|
|
cons_ascii_internalized_string, \
|
|
ConsAsciiInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_internalized_string, \
|
|
ExternalInternalizedString) \
|
|
V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ExternalAsciiString::kSize, \
|
|
external_ascii_internalized_string, \
|
|
ExternalAsciiInternalizedString) \
|
|
V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kSize, \
|
|
external_internalized_string_with_one_byte_data, \
|
|
ExternalInternalizedStringWithOneByteData) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_internalized_string, \
|
|
ShortExternalInternalizedString) \
|
|
V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \
|
|
ExternalAsciiString::kShortSize, \
|
|
short_external_ascii_internalized_string, \
|
|
ShortExternalAsciiInternalizedString) \
|
|
V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
|
|
ExternalTwoByteString::kShortSize, \
|
|
short_external_internalized_string_with_one_byte_data, \
|
|
ShortExternalInternalizedStringWithOneByteData) \
|
|
|
|
// A struct is a simple object a set of object-valued fields. Including an
|
|
// object type in this causes the compiler to generate most of the boilerplate
|
|
// code for the class including allocation and garbage collection routines,
|
|
// casts and predicates. All you need to define is the class, methods and
|
|
// object verification routines. Easy, no?
|
|
//
|
|
// Note that for subtle reasons related to the ordering or numerical values of
|
|
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
|
|
// manually.
|
|
#define STRUCT_LIST_ALL(V) \
|
|
V(BOX, Box, box) \
|
|
V(DECLARED_ACCESSOR_DESCRIPTOR, \
|
|
DeclaredAccessorDescriptor, \
|
|
declared_accessor_descriptor) \
|
|
V(DECLARED_ACCESSOR_INFO, DeclaredAccessorInfo, declared_accessor_info) \
|
|
V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, executable_accessor_info)\
|
|
V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
|
|
V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
|
|
V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
|
|
V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
|
|
V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
|
|
V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
|
|
V(SIGNATURE_INFO, SignatureInfo, signature_info) \
|
|
V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
|
|
V(SCRIPT, Script, script) \
|
|
V(ALLOCATION_SITE, AllocationSite, allocation_site) \
|
|
V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
|
|
V(CODE_CACHE, CodeCache, code_cache) \
|
|
V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
|
|
V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
|
|
V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry)
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
#define STRUCT_LIST_DEBUGGER(V) \
|
|
V(DEBUG_INFO, DebugInfo, debug_info) \
|
|
V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
|
|
#else
|
|
#define STRUCT_LIST_DEBUGGER(V)
|
|
#endif
|
|
|
|
#define STRUCT_LIST(V) \
|
|
STRUCT_LIST_ALL(V) \
|
|
STRUCT_LIST_DEBUGGER(V)
|
|
|
|
// We use the full 8 bits of the instance_type field to encode heap object
|
|
// instance types. The high-order bit (bit 7) is set if the object is not a
|
|
// string, and cleared if it is a string.
|
|
const uint32_t kIsNotStringMask = 0x80;
|
|
const uint32_t kStringTag = 0x0;
|
|
const uint32_t kNotStringTag = 0x80;
|
|
|
|
// Bit 6 indicates that the object is an internalized string (if set) or not.
|
|
// Bit 7 has to be clear as well.
|
|
const uint32_t kIsNotInternalizedMask = 0x40;
|
|
const uint32_t kNotInternalizedTag = 0x40;
|
|
const uint32_t kInternalizedTag = 0x0;
|
|
|
|
// If bit 7 is clear then bit 2 indicates whether the string consists of
|
|
// two-byte characters or one-byte characters.
|
|
const uint32_t kStringEncodingMask = 0x4;
|
|
const uint32_t kTwoByteStringTag = 0x0;
|
|
const uint32_t kOneByteStringTag = 0x4;
|
|
|
|
// If bit 7 is clear, the low-order 2 bits indicate the representation
|
|
// of the string.
|
|
const uint32_t kStringRepresentationMask = 0x03;
|
|
enum StringRepresentationTag {
|
|
kSeqStringTag = 0x0,
|
|
kConsStringTag = 0x1,
|
|
kExternalStringTag = 0x2,
|
|
kSlicedStringTag = 0x3
|
|
};
|
|
const uint32_t kIsIndirectStringMask = 0x1;
|
|
const uint32_t kIsIndirectStringTag = 0x1;
|
|
STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0);
|
|
STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0);
|
|
STATIC_ASSERT(
|
|
(kConsStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
|
|
STATIC_ASSERT(
|
|
(kSlicedStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
|
|
|
|
// Use this mask to distinguish between cons and slice only after making
|
|
// sure that the string is one of the two (an indirect string).
|
|
const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask) && kSlicedNotConsMask != 0);
|
|
|
|
// If bit 7 is clear, then bit 3 indicates whether this two-byte
|
|
// string actually contains one byte data.
|
|
const uint32_t kOneByteDataHintMask = 0x08;
|
|
const uint32_t kOneByteDataHintTag = 0x08;
|
|
|
|
// If bit 7 is clear and string representation indicates an external string,
|
|
// then bit 4 indicates whether the data pointer is cached.
|
|
const uint32_t kShortExternalStringMask = 0x10;
|
|
const uint32_t kShortExternalStringTag = 0x10;
|
|
|
|
|
|
// A ConsString with an empty string as the right side is a candidate
|
|
// for being shortcut by the garbage collector unless it is internalized.
|
|
// It's not common to have non-flat internalized strings, so we do not
|
|
// shortcut them thereby avoiding turning internalized strings into strings.
|
|
// See heap.cc and mark-compact.cc.
|
|
const uint32_t kShortcutTypeMask =
|
|
kIsNotStringMask |
|
|
kIsNotInternalizedMask |
|
|
kStringRepresentationMask;
|
|
const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
|
|
|
|
|
|
enum InstanceType {
|
|
// String types.
|
|
INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag
|
|
| kInternalizedTag,
|
|
ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kSeqStringTag
|
|
| kInternalizedTag,
|
|
CONS_INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kConsStringTag
|
|
| kInternalizedTag,
|
|
CONS_ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kConsStringTag
|
|
| kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kExternalStringTag
|
|
| kInternalizedTag,
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag
|
|
| kExternalStringTag | kInternalizedTag,
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kShortExternalStringTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE =
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kShortExternalStringTag
|
|
| kInternalizedTag,
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kShortExternalStringTag | kInternalizedTag,
|
|
|
|
STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
ASCII_STRING_TYPE = ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
CONS_STRING_TYPE = CONS_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
CONS_ASCII_STRING_TYPE =
|
|
CONS_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
|
|
SLICED_STRING_TYPE =
|
|
kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
SLICED_ASCII_STRING_TYPE =
|
|
kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
|
|
EXTERNAL_STRING_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_ASCII_STRING_TYPE =
|
|
EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_ASCII_STRING_TYPE =
|
|
SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
|
|
SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
|
|
SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE
|
|
| kNotInternalizedTag,
|
|
|
|
// Non-string names
|
|
SYMBOL_TYPE = kNotStringTag, // LAST_NAME_TYPE, FIRST_NONSTRING_TYPE
|
|
|
|
// Objects allocated in their own spaces (never in new space).
|
|
MAP_TYPE,
|
|
CODE_TYPE,
|
|
ODDBALL_TYPE,
|
|
CELL_TYPE,
|
|
PROPERTY_CELL_TYPE,
|
|
|
|
// "Data", objects that cannot contain non-map-word pointers to heap
|
|
// objects.
|
|
HEAP_NUMBER_TYPE,
|
|
FOREIGN_TYPE,
|
|
BYTE_ARRAY_TYPE,
|
|
FREE_SPACE_TYPE,
|
|
EXTERNAL_BYTE_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE
|
|
EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
|
|
EXTERNAL_SHORT_ARRAY_TYPE,
|
|
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
|
|
EXTERNAL_INT_ARRAY_TYPE,
|
|
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
|
|
EXTERNAL_FLOAT_ARRAY_TYPE,
|
|
EXTERNAL_DOUBLE_ARRAY_TYPE,
|
|
EXTERNAL_PIXEL_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE
|
|
FIXED_DOUBLE_ARRAY_TYPE,
|
|
CONSTANT_POOL_ARRAY_TYPE,
|
|
FILLER_TYPE, // LAST_DATA_TYPE
|
|
|
|
// Structs.
|
|
DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
|
|
DECLARED_ACCESSOR_INFO_TYPE,
|
|
EXECUTABLE_ACCESSOR_INFO_TYPE,
|
|
ACCESSOR_PAIR_TYPE,
|
|
ACCESS_CHECK_INFO_TYPE,
|
|
INTERCEPTOR_INFO_TYPE,
|
|
CALL_HANDLER_INFO_TYPE,
|
|
FUNCTION_TEMPLATE_INFO_TYPE,
|
|
OBJECT_TEMPLATE_INFO_TYPE,
|
|
SIGNATURE_INFO_TYPE,
|
|
TYPE_SWITCH_INFO_TYPE,
|
|
ALLOCATION_SITE_TYPE,
|
|
ALLOCATION_MEMENTO_TYPE,
|
|
SCRIPT_TYPE,
|
|
CODE_CACHE_TYPE,
|
|
POLYMORPHIC_CODE_CACHE_TYPE,
|
|
TYPE_FEEDBACK_INFO_TYPE,
|
|
ALIASED_ARGUMENTS_ENTRY_TYPE,
|
|
BOX_TYPE,
|
|
// The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
|
|
// is defined. However as include/v8.h contain some of the instance type
|
|
// constants always having them avoids them getting different numbers
|
|
// depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
|
|
DEBUG_INFO_TYPE,
|
|
BREAK_POINT_INFO_TYPE,
|
|
|
|
FIXED_ARRAY_TYPE,
|
|
SHARED_FUNCTION_INFO_TYPE,
|
|
|
|
JS_MESSAGE_OBJECT_TYPE,
|
|
|
|
// All the following types are subtypes of JSReceiver, which corresponds to
|
|
// objects in the JS sense. The first and the last type in this range are
|
|
// the two forms of function. This organization enables using the same
|
|
// compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
|
|
// NONCALLABLE_JS_OBJECT range.
|
|
JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
|
|
JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
|
|
|
|
JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
|
|
JS_DATE_TYPE,
|
|
JS_OBJECT_TYPE,
|
|
JS_CONTEXT_EXTENSION_OBJECT_TYPE,
|
|
JS_GENERATOR_OBJECT_TYPE,
|
|
JS_MODULE_TYPE,
|
|
JS_GLOBAL_OBJECT_TYPE,
|
|
JS_BUILTINS_OBJECT_TYPE,
|
|
JS_GLOBAL_PROXY_TYPE,
|
|
JS_ARRAY_TYPE,
|
|
JS_ARRAY_BUFFER_TYPE,
|
|
JS_TYPED_ARRAY_TYPE,
|
|
JS_DATA_VIEW_TYPE,
|
|
JS_SET_TYPE,
|
|
JS_MAP_TYPE,
|
|
JS_WEAK_MAP_TYPE,
|
|
JS_WEAK_SET_TYPE,
|
|
|
|
JS_REGEXP_TYPE,
|
|
|
|
JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
|
|
|
|
// Pseudo-types
|
|
FIRST_TYPE = 0x0,
|
|
LAST_TYPE = JS_FUNCTION_TYPE,
|
|
FIRST_NAME_TYPE = FIRST_TYPE,
|
|
LAST_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
|
|
LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
|
|
FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
|
|
// Boundaries for testing for an external array.
|
|
FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
|
|
LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_PIXEL_ARRAY_TYPE,
|
|
// Boundary for promotion to old data space/old pointer space.
|
|
LAST_DATA_TYPE = FILLER_TYPE,
|
|
// Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
|
|
// Note that there is no range for JSObject or JSProxy, since their subtypes
|
|
// are not continuous in this enum! The enum ranges instead reflect the
|
|
// external class names, where proxies are treated as either ordinary objects,
|
|
// or functions.
|
|
FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_RECEIVER_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSObject
|
|
FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
|
|
LAST_JS_OBJECT_TYPE = LAST_TYPE,
|
|
// Boundaries for testing the types represented as JSProxy
|
|
FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
|
|
LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
|
|
// Boundaries for testing whether the type is a JavaScript object.
|
|
FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
|
|
LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
|
|
// Boundaries for testing the types for which typeof is "object".
|
|
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
|
|
LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
|
|
// Note that the types for which typeof is "function" are not continuous.
|
|
// Define this so that we can put assertions on discrete checks.
|
|
NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
|
|
};
|
|
|
|
const int kExternalArrayTypeCount =
|
|
LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1;
|
|
|
|
STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
|
|
STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
|
|
STATIC_CHECK(ODDBALL_TYPE == Internals::kOddballType);
|
|
STATIC_CHECK(FOREIGN_TYPE == Internals::kForeignType);
|
|
|
|
|
|
#define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
|
|
V(FAST_ELEMENTS_SUB_TYPE) \
|
|
V(DICTIONARY_ELEMENTS_SUB_TYPE) \
|
|
V(FAST_PROPERTIES_SUB_TYPE) \
|
|
V(DICTIONARY_PROPERTIES_SUB_TYPE) \
|
|
V(MAP_CODE_CACHE_SUB_TYPE) \
|
|
V(SCOPE_INFO_SUB_TYPE) \
|
|
V(STRING_TABLE_SUB_TYPE) \
|
|
V(DESCRIPTOR_ARRAY_SUB_TYPE) \
|
|
V(TRANSITION_ARRAY_SUB_TYPE)
|
|
|
|
enum FixedArraySubInstanceType {
|
|
#define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
|
|
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
|
|
#undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
|
|
LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
|
|
};
|
|
|
|
|
|
enum CompareResult {
|
|
LESS = -1,
|
|
EQUAL = 0,
|
|
GREATER = 1,
|
|
|
|
NOT_EQUAL = GREATER
|
|
};
|
|
|
|
|
|
#define DECL_BOOLEAN_ACCESSORS(name) \
|
|
inline bool name(); \
|
|
inline void set_##name(bool value); \
|
|
|
|
|
|
#define DECL_ACCESSORS(name, type) \
|
|
inline type* name(); \
|
|
inline void set_##name(type* value, \
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
|
|
|
|
class AccessorPair;
|
|
class AllocationSite;
|
|
class AllocationSiteContext;
|
|
class DictionaryElementsAccessor;
|
|
class ElementsAccessor;
|
|
class Failure;
|
|
class FixedArrayBase;
|
|
class ObjectVisitor;
|
|
class StringStream;
|
|
class Type;
|
|
|
|
struct ValueInfo : public Malloced {
|
|
ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
|
|
InstanceType type;
|
|
Object* ptr;
|
|
const char* str;
|
|
double number;
|
|
};
|
|
|
|
|
|
// A template-ized version of the IsXXX functions.
|
|
template <class C> inline bool Is(Object* obj);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
#define DECLARE_VERIFIER(Name) void Name##Verify();
|
|
#else
|
|
#define DECLARE_VERIFIER(Name)
|
|
#endif
|
|
|
|
#ifdef OBJECT_PRINT
|
|
#define DECLARE_PRINTER(Name) void Name##Print(FILE* out = stdout);
|
|
#else
|
|
#define DECLARE_PRINTER(Name)
|
|
#endif
|
|
|
|
class MaybeObject BASE_EMBEDDED {
|
|
public:
|
|
inline bool IsFailure();
|
|
inline bool IsRetryAfterGC();
|
|
inline bool IsOutOfMemory();
|
|
inline bool IsException();
|
|
INLINE(bool IsTheHole());
|
|
INLINE(bool IsUninitialized());
|
|
inline bool ToObject(Object** obj) {
|
|
if (IsFailure()) return false;
|
|
*obj = reinterpret_cast<Object*>(this);
|
|
return true;
|
|
}
|
|
inline Failure* ToFailureUnchecked() {
|
|
ASSERT(IsFailure());
|
|
return reinterpret_cast<Failure*>(this);
|
|
}
|
|
inline Object* ToObjectUnchecked() {
|
|
// TODO(jkummerow): Turn this back into an ASSERT when we can be certain
|
|
// that it never fires in Release mode in the wild.
|
|
CHECK(!IsFailure());
|
|
return reinterpret_cast<Object*>(this);
|
|
}
|
|
inline Object* ToObjectChecked() {
|
|
CHECK(!IsFailure());
|
|
return reinterpret_cast<Object*>(this);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool To(T** obj) {
|
|
if (IsFailure()) return false;
|
|
*obj = T::cast(reinterpret_cast<Object*>(this));
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool ToHandle(Handle<T>* obj, Isolate* isolate) {
|
|
if (IsFailure()) return false;
|
|
*obj = handle(T::cast(reinterpret_cast<Object*>(this)), isolate);
|
|
return true;
|
|
}
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// Prints this object with details.
|
|
void Print();
|
|
void Print(FILE* out);
|
|
void PrintLn();
|
|
void PrintLn(FILE* out);
|
|
#endif
|
|
#ifdef VERIFY_HEAP
|
|
// Verifies the object.
|
|
void Verify();
|
|
#endif
|
|
};
|
|
|
|
|
|
#define OBJECT_TYPE_LIST(V) \
|
|
V(Smi) \
|
|
V(HeapObject) \
|
|
V(Number) \
|
|
|
|
#define HEAP_OBJECT_TYPE_LIST(V) \
|
|
V(HeapNumber) \
|
|
V(Name) \
|
|
V(UniqueName) \
|
|
V(String) \
|
|
V(SeqString) \
|
|
V(ExternalString) \
|
|
V(ConsString) \
|
|
V(SlicedString) \
|
|
V(ExternalTwoByteString) \
|
|
V(ExternalAsciiString) \
|
|
V(SeqTwoByteString) \
|
|
V(SeqOneByteString) \
|
|
V(InternalizedString) \
|
|
V(Symbol) \
|
|
\
|
|
V(ExternalArray) \
|
|
V(ExternalByteArray) \
|
|
V(ExternalUnsignedByteArray) \
|
|
V(ExternalShortArray) \
|
|
V(ExternalUnsignedShortArray) \
|
|
V(ExternalIntArray) \
|
|
V(ExternalUnsignedIntArray) \
|
|
V(ExternalFloatArray) \
|
|
V(ExternalDoubleArray) \
|
|
V(ExternalPixelArray) \
|
|
V(ByteArray) \
|
|
V(FreeSpace) \
|
|
V(JSReceiver) \
|
|
V(JSObject) \
|
|
V(JSContextExtensionObject) \
|
|
V(JSGeneratorObject) \
|
|
V(JSModule) \
|
|
V(Map) \
|
|
V(DescriptorArray) \
|
|
V(TransitionArray) \
|
|
V(DeoptimizationInputData) \
|
|
V(DeoptimizationOutputData) \
|
|
V(DependentCode) \
|
|
V(TypeFeedbackCells) \
|
|
V(FixedArray) \
|
|
V(FixedDoubleArray) \
|
|
V(ConstantPoolArray) \
|
|
V(Context) \
|
|
V(NativeContext) \
|
|
V(ScopeInfo) \
|
|
V(JSFunction) \
|
|
V(Code) \
|
|
V(Oddball) \
|
|
V(SharedFunctionInfo) \
|
|
V(JSValue) \
|
|
V(JSDate) \
|
|
V(JSMessageObject) \
|
|
V(StringWrapper) \
|
|
V(Foreign) \
|
|
V(Boolean) \
|
|
V(JSArray) \
|
|
V(JSArrayBuffer) \
|
|
V(JSArrayBufferView) \
|
|
V(JSTypedArray) \
|
|
V(JSDataView) \
|
|
V(JSProxy) \
|
|
V(JSFunctionProxy) \
|
|
V(JSSet) \
|
|
V(JSMap) \
|
|
V(JSWeakCollection) \
|
|
V(JSWeakMap) \
|
|
V(JSWeakSet) \
|
|
V(JSRegExp) \
|
|
V(HashTable) \
|
|
V(Dictionary) \
|
|
V(StringTable) \
|
|
V(JSFunctionResultCache) \
|
|
V(NormalizedMapCache) \
|
|
V(CompilationCacheTable) \
|
|
V(CodeCacheHashTable) \
|
|
V(PolymorphicCodeCacheHashTable) \
|
|
V(MapCache) \
|
|
V(Primitive) \
|
|
V(GlobalObject) \
|
|
V(JSGlobalObject) \
|
|
V(JSBuiltinsObject) \
|
|
V(JSGlobalProxy) \
|
|
V(UndetectableObject) \
|
|
V(AccessCheckNeeded) \
|
|
V(Cell) \
|
|
V(PropertyCell) \
|
|
V(ObjectHashTable) \
|
|
V(WeakHashTable)
|
|
|
|
|
|
#define ERROR_MESSAGES_LIST(V) \
|
|
V(kNoReason, "no reason") \
|
|
\
|
|
V(k32BitValueInRegisterIsNotZeroExtended, \
|
|
"32 bit value in register is not zero-extended") \
|
|
V(kAlignmentMarkerExpected, "alignment marker expected") \
|
|
V(kAllocationIsNotDoubleAligned, "Allocation is not double aligned") \
|
|
V(kAPICallReturnedInvalidObject, "API call returned invalid object") \
|
|
V(kArgumentsObjectValueInATestContext, \
|
|
"arguments object value in a test context") \
|
|
V(kArrayBoilerplateCreationFailed, "array boilerplate creation failed") \
|
|
V(kArrayIndexConstantValueTooBig, "array index constant value too big") \
|
|
V(kAssignmentToArguments, "assignment to arguments") \
|
|
V(kAssignmentToLetVariableBeforeInitialization, \
|
|
"assignment to let variable before initialization") \
|
|
V(kAssignmentToLOOKUPVariable, "assignment to LOOKUP variable") \
|
|
V(kAssignmentToParameterFunctionUsesArgumentsObject, \
|
|
"assignment to parameter, function uses arguments object") \
|
|
V(kAssignmentToParameterInArgumentsObject, \
|
|
"assignment to parameter in arguments object") \
|
|
V(kAttemptToUseUndefinedCache, "Attempt to use undefined cache") \
|
|
V(kBadValueContextForArgumentsObjectValue, \
|
|
"bad value context for arguments object value") \
|
|
V(kBadValueContextForArgumentsValue, \
|
|
"bad value context for arguments value") \
|
|
V(kBailedOutDueToDependencyChange, "bailed out due to dependency change") \
|
|
V(kBailoutWasNotPrepared, "bailout was not prepared") \
|
|
V(kBinaryStubGenerateFloatingPointCode, \
|
|
"BinaryStub_GenerateFloatingPointCode") \
|
|
V(kBothRegistersWereSmisInSelectNonSmi, \
|
|
"Both registers were smis in SelectNonSmi") \
|
|
V(kCallToAJavaScriptRuntimeFunction, \
|
|
"call to a JavaScript runtime function") \
|
|
V(kCannotTranslatePositionInChangedArea, \
|
|
"Cannot translate position in changed area") \
|
|
V(kCodeGenerationFailed, "code generation failed") \
|
|
V(kCodeObjectNotProperlyPatched, "code object not properly patched") \
|
|
V(kCompoundAssignmentToLookupSlot, "compound assignment to lookup slot") \
|
|
V(kContextAllocatedArguments, "context-allocated arguments") \
|
|
V(kDebuggerIsActive, "debugger is active") \
|
|
V(kDebuggerStatement, "DebuggerStatement") \
|
|
V(kDeclarationInCatchContext, "Declaration in catch context") \
|
|
V(kDeclarationInWithContext, "Declaration in with context") \
|
|
V(kDefaultNaNModeNotSet, "Default NaN mode not set") \
|
|
V(kDeleteWithGlobalVariable, "delete with global variable") \
|
|
V(kDeleteWithNonGlobalVariable, "delete with non-global variable") \
|
|
V(kDestinationOfCopyNotAligned, "Destination of copy not aligned") \
|
|
V(kDontDeleteCellsCannotContainTheHole, \
|
|
"DontDelete cells can't contain the hole") \
|
|
V(kDoPushArgumentNotImplementedForDoubleType, \
|
|
"DoPushArgument not implemented for double type") \
|
|
V(kEmitLoadRegisterUnsupportedDoubleImmediate, \
|
|
"EmitLoadRegister: Unsupported double immediate") \
|
|
V(kEval, "eval") \
|
|
V(kExpected0AsASmiSentinel, "Expected 0 as a Smi sentinel") \
|
|
V(kExpectedAlignmentMarker, "expected alignment marker") \
|
|
V(kExpectedAllocationSiteInCell, \
|
|
"Expected AllocationSite in property cell") \
|
|
V(kExpectedPropertyCellInRegisterA2, \
|
|
"Expected property cell in register a2") \
|
|
V(kExpectedPropertyCellInRegisterEbx, \
|
|
"Expected property cell in register ebx") \
|
|
V(kExpectedPropertyCellInRegisterRbx, \
|
|
"Expected property cell in register rbx") \
|
|
V(kExpectingAlignmentForCopyBytes, \
|
|
"Expecting alignment for CopyBytes") \
|
|
V(kExportDeclaration, "Export declaration") \
|
|
V(kExternalStringExpectedButNotFound, \
|
|
"external string expected, but not found") \
|
|
V(kFailedBailedOutLastTime, "failed/bailed out last time") \
|
|
V(kForInStatementIsNotFastCase, "ForInStatement is not fast case") \
|
|
V(kForInStatementOptimizationIsDisabled, \
|
|
"ForInStatement optimization is disabled") \
|
|
V(kForInStatementWithNonLocalEachVariable, \
|
|
"ForInStatement with non-local each variable") \
|
|
V(kForOfStatement, "ForOfStatement") \
|
|
V(kFrameIsExpectedToBeAligned, "frame is expected to be aligned") \
|
|
V(kFunctionCallsEval, "function calls eval") \
|
|
V(kFunctionIsAGenerator, "function is a generator") \
|
|
V(kFunctionWithIllegalRedeclaration, "function with illegal redeclaration") \
|
|
V(kGeneratedCodeIsTooLarge, "Generated code is too large") \
|
|
V(kGeneratorFailedToResume, "Generator failed to resume") \
|
|
V(kGenerator, "generator") \
|
|
V(kGlobalFunctionsMustHaveInitialMap, \
|
|
"Global functions must have initial map") \
|
|
V(kHeapNumberMapRegisterClobbered, "HeapNumberMap register clobbered") \
|
|
V(kImportDeclaration, "Import declaration") \
|
|
V(kImproperObjectOnPrototypeChainForStore, \
|
|
"improper object on prototype chain for store") \
|
|
V(kIndexIsNegative, "Index is negative") \
|
|
V(kIndexIsTooLarge, "Index is too large") \
|
|
V(kInlinedRuntimeFunctionClassOf, "inlined runtime function: ClassOf") \
|
|
V(kInlinedRuntimeFunctionFastAsciiArrayJoin, \
|
|
"inlined runtime function: FastAsciiArrayJoin") \
|
|
V(kInlinedRuntimeFunctionGeneratorNext, \
|
|
"inlined runtime function: GeneratorNext") \
|
|
V(kInlinedRuntimeFunctionGeneratorThrow, \
|
|
"inlined runtime function: GeneratorThrow") \
|
|
V(kInlinedRuntimeFunctionGetFromCache, \
|
|
"inlined runtime function: GetFromCache") \
|
|
V(kInlinedRuntimeFunctionIsNonNegativeSmi, \
|
|
"inlined runtime function: IsNonNegativeSmi") \
|
|
V(kInlinedRuntimeFunctionIsRegExpEquivalent, \
|
|
"inlined runtime function: IsRegExpEquivalent") \
|
|
V(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf, \
|
|
"inlined runtime function: IsStringWrapperSafeForDefaultValueOf") \
|
|
V(kInliningBailedOut, "inlining bailed out") \
|
|
V(kInputGPRIsExpectedToHaveUpper32Cleared, \
|
|
"input GPR is expected to have upper32 cleared") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCheck, \
|
|
"InstanceofStub unexpected call site cache (check)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCmp1, \
|
|
"InstanceofStub unexpected call site cache (cmp 1)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheCmp2, \
|
|
"InstanceofStub unexpected call site cache (cmp 2)") \
|
|
V(kInstanceofStubUnexpectedCallSiteCacheMov, \
|
|
"InstanceofStub unexpected call site cache (mov)") \
|
|
V(kInteger32ToSmiFieldWritingToNonSmiLocation, \
|
|
"Integer32ToSmiField writing to non-smi location") \
|
|
V(kInvalidCaptureReferenced, "Invalid capture referenced") \
|
|
V(kInvalidElementsKindForInternalArrayOrInternalPackedArray, \
|
|
"Invalid ElementsKind for InternalArray or InternalPackedArray") \
|
|
V(kInvalidHandleScopeLevel, "Invalid HandleScope level") \
|
|
V(kInvalidLeftHandSideInAssignment, "invalid left-hand side in assignment") \
|
|
V(kInvalidLhsInCompoundAssignment, "invalid lhs in compound assignment") \
|
|
V(kInvalidLhsInCountOperation, "invalid lhs in count operation") \
|
|
V(kInvalidMinLength, "Invalid min_length") \
|
|
V(kJSGlobalObjectNativeContextShouldBeANativeContext, \
|
|
"JSGlobalObject::native_context should be a native context") \
|
|
V(kJSGlobalProxyContextShouldNotBeNull, \
|
|
"JSGlobalProxy::context() should not be null") \
|
|
V(kJSObjectWithFastElementsMapHasSlowElements, \
|
|
"JSObject with fast elements map has slow elements") \
|
|
V(kLetBindingReInitialization, "Let binding re-initialization") \
|
|
V(kLiveBytesCountOverflowChunkSize, "Live Bytes Count overflow chunk size") \
|
|
V(kLiveEditFrameDroppingIsNotSupportedOnArm, \
|
|
"LiveEdit frame dropping is not supported on arm") \
|
|
V(kLiveEditFrameDroppingIsNotSupportedOnMips, \
|
|
"LiveEdit frame dropping is not supported on mips") \
|
|
V(kLiveEdit, "LiveEdit") \
|
|
V(kLookupVariableInCountOperation, \
|
|
"lookup variable in count operation") \
|
|
V(kMapIsNoLongerInEax, "Map is no longer in eax") \
|
|
V(kModuleDeclaration, "Module declaration") \
|
|
V(kModuleLiteral, "Module literal") \
|
|
V(kModulePath, "Module path") \
|
|
V(kModuleStatement, "Module statement") \
|
|
V(kModuleVariable, "Module variable") \
|
|
V(kModuleUrl, "Module url") \
|
|
V(kNativeFunctionLiteral, "Native function literal") \
|
|
V(kNoCasesLeft, "no cases left") \
|
|
V(kNoEmptyArraysHereInEmitFastAsciiArrayJoin, \
|
|
"No empty arrays here in EmitFastAsciiArrayJoin") \
|
|
V(kNonInitializerAssignmentToConst, \
|
|
"non-initializer assignment to const") \
|
|
V(kNonSmiIndex, "Non-smi index") \
|
|
V(kNonSmiKeyInArrayLiteral, "Non-smi key in array literal") \
|
|
V(kNonSmiValue, "Non-smi value") \
|
|
V(kNotEnoughVirtualRegistersForValues, \
|
|
"not enough virtual registers for values") \
|
|
V(kNotEnoughSpillSlotsForOsr, \
|
|
"not enough spill slots for OSR") \
|
|
V(kNotEnoughVirtualRegistersRegalloc, \
|
|
"not enough virtual registers (regalloc)") \
|
|
V(kObjectFoundInSmiOnlyArray, "object found in smi-only array") \
|
|
V(kObjectLiteralWithComplexProperty, \
|
|
"Object literal with complex property") \
|
|
V(kOddballInStringTableIsNotUndefinedOrTheHole, \
|
|
"oddball in string table is not undefined or the hole") \
|
|
V(kOperandIsASmiAndNotAName, "Operand is a smi and not a name") \
|
|
V(kOperandIsASmiAndNotAString, "Operand is a smi and not a string") \
|
|
V(kOperandIsASmi, "Operand is a smi") \
|
|
V(kOperandIsNotAName, "Operand is not a name") \
|
|
V(kOperandIsNotANumber, "Operand is not a number") \
|
|
V(kOperandIsNotASmi, "Operand is not a smi") \
|
|
V(kOperandIsNotAString, "Operand is not a string") \
|
|
V(kOperandIsNotSmi, "Operand is not smi") \
|
|
V(kOperandNotANumber, "Operand not a number") \
|
|
V(kOptimizedTooManyTimes, "optimized too many times") \
|
|
V(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister, \
|
|
"Out of virtual registers while trying to allocate temp register") \
|
|
V(kParseScopeError, "parse/scope error") \
|
|
V(kPossibleDirectCallToEval, "possible direct call to eval") \
|
|
V(kPropertyAllocationCountFailed, "Property allocation count failed") \
|
|
V(kReceivedInvalidReturnAddress, "Received invalid return address") \
|
|
V(kReferenceToAVariableWhichRequiresDynamicLookup, \
|
|
"reference to a variable which requires dynamic lookup") \
|
|
V(kReferenceToGlobalLexicalVariable, \
|
|
"reference to global lexical variable") \
|
|
V(kReferenceToUninitializedVariable, "reference to uninitialized variable") \
|
|
V(kRegisterDidNotMatchExpectedRoot, "Register did not match expected root") \
|
|
V(kRegisterWasClobbered, "register was clobbered") \
|
|
V(kScopedBlock, "ScopedBlock") \
|
|
V(kSmiAdditionOverflow, "Smi addition overflow") \
|
|
V(kSmiSubtractionOverflow, "Smi subtraction overflow") \
|
|
V(kStackFrameTypesMustMatch, "stack frame types must match") \
|
|
V(kSwitchStatementMixedOrNonLiteralSwitchLabels, \
|
|
"SwitchStatement: mixed or non-literal switch labels") \
|
|
V(kSwitchStatementTooManyClauses, "SwitchStatement: too many clauses") \
|
|
V(kTheInstructionShouldBeALui, "The instruction should be a lui") \
|
|
V(kTheInstructionShouldBeAnOri, "The instruction should be an ori") \
|
|
V(kTheInstructionToPatchShouldBeALoadFromPc, \
|
|
"The instruction to patch should be a load from pc") \
|
|
V(kTheInstructionToPatchShouldBeALui, \
|
|
"The instruction to patch should be a lui") \
|
|
V(kTheInstructionToPatchShouldBeAnOri, \
|
|
"The instruction to patch should be an ori") \
|
|
V(kTooManyParametersLocals, "too many parameters/locals") \
|
|
V(kTooManyParameters, "too many parameters") \
|
|
V(kTooManySpillSlotsNeededForOSR, "Too many spill slots needed for OSR") \
|
|
V(kToOperandIsDoubleRegisterUnimplemented, \
|
|
"ToOperand IsDoubleRegister unimplemented") \
|
|
V(kToOperandUnsupportedDoubleImmediate, \
|
|
"ToOperand Unsupported double immediate") \
|
|
V(kTryCatchStatement, "TryCatchStatement") \
|
|
V(kTryFinallyStatement, "TryFinallyStatement") \
|
|
V(kUnableToEncodeValueAsSmi, "Unable to encode value as smi") \
|
|
V(kUnalignedAllocationInNewSpace, "Unaligned allocation in new space") \
|
|
V(kUndefinedValueNotLoaded, "Undefined value not loaded") \
|
|
V(kUndoAllocationOfNonAllocatedMemory, \
|
|
"Undo allocation of non allocated memory") \
|
|
V(kUnexpectedAllocationTop, "Unexpected allocation top") \
|
|
V(kUnexpectedElementsKindInArrayConstructor, \
|
|
"Unexpected ElementsKind in array constructor") \
|
|
V(kUnexpectedFallthroughFromCharCodeAtSlowCase, \
|
|
"Unexpected fallthrough from CharCodeAt slow case") \
|
|
V(kUnexpectedFallthroughFromCharFromCodeSlowCase, \
|
|
"Unexpected fallthrough from CharFromCode slow case") \
|
|
V(kUnexpectedFallThroughFromStringComparison, \
|
|
"Unexpected fall-through from string comparison") \
|
|
V(kUnexpectedFallThroughInBinaryStubGenerateFloatingPointCode, \
|
|
"Unexpected fall-through in BinaryStub_GenerateFloatingPointCode") \
|
|
V(kUnexpectedFallthroughToCharCodeAtSlowCase, \
|
|
"Unexpected fallthrough to CharCodeAt slow case") \
|
|
V(kUnexpectedFallthroughToCharFromCodeSlowCase, \
|
|
"Unexpected fallthrough to CharFromCode slow case") \
|
|
V(kUnexpectedFPUStackDepthAfterInstruction, \
|
|
"Unexpected FPU stack depth after instruction") \
|
|
V(kUnexpectedInitialMapForArrayFunction1, \
|
|
"Unexpected initial map for Array function (1)") \
|
|
V(kUnexpectedInitialMapForArrayFunction2, \
|
|
"Unexpected initial map for Array function (2)") \
|
|
V(kUnexpectedInitialMapForArrayFunction, \
|
|
"Unexpected initial map for Array function") \
|
|
V(kUnexpectedInitialMapForInternalArrayFunction, \
|
|
"Unexpected initial map for InternalArray function") \
|
|
V(kUnexpectedLevelAfterReturnFromApiCall, \
|
|
"Unexpected level after return from api call") \
|
|
V(kUnexpectedNumberOfPreAllocatedPropertyFields, \
|
|
"Unexpected number of pre-allocated property fields") \
|
|
V(kUnexpectedStringFunction, "Unexpected String function") \
|
|
V(kUnexpectedStringType, "Unexpected string type") \
|
|
V(kUnexpectedStringWrapperInstanceSize, \
|
|
"Unexpected string wrapper instance size") \
|
|
V(kUnexpectedTypeForRegExpDataFixedArrayExpected, \
|
|
"Unexpected type for RegExp data, FixedArray expected") \
|
|
V(kUnexpectedUnusedPropertiesOfStringWrapper, \
|
|
"Unexpected unused properties of string wrapper") \
|
|
V(kUninitializedKSmiConstantRegister, "Uninitialized kSmiConstantRegister") \
|
|
V(kUnknown, "unknown") \
|
|
V(kUnsupportedConstCompoundAssignment, \
|
|
"unsupported const compound assignment") \
|
|
V(kUnsupportedCountOperationWithConst, \
|
|
"unsupported count operation with const") \
|
|
V(kUnsupportedDoubleImmediate, "unsupported double immediate") \
|
|
V(kUnsupportedLetCompoundAssignment, "unsupported let compound assignment") \
|
|
V(kUnsupportedLookupSlotInDeclaration, \
|
|
"unsupported lookup slot in declaration") \
|
|
V(kUnsupportedNonPrimitiveCompare, "Unsupported non-primitive compare") \
|
|
V(kUnsupportedPhiUseOfArguments, "Unsupported phi use of arguments") \
|
|
V(kUnsupportedPhiUseOfConstVariable, \
|
|
"Unsupported phi use of const variable") \
|
|
V(kUnsupportedTaggedImmediate, "unsupported tagged immediate") \
|
|
V(kVariableResolvedToWithContext, "Variable resolved to with context") \
|
|
V(kWeShouldNotHaveAnEmptyLexicalContext, \
|
|
"we should not have an empty lexical context") \
|
|
V(kWithStatement, "WithStatement") \
|
|
V(kWrongAddressOrValuePassedToRecordWrite, \
|
|
"Wrong address or value passed to RecordWrite") \
|
|
V(kYield, "Yield")
|
|
|
|
|
|
#define ERROR_MESSAGES_CONSTANTS(C, T) C,
|
|
enum BailoutReason {
|
|
ERROR_MESSAGES_LIST(ERROR_MESSAGES_CONSTANTS)
|
|
kLastErrorMessage
|
|
};
|
|
#undef ERROR_MESSAGES_CONSTANTS
|
|
|
|
|
|
const char* GetBailoutReason(BailoutReason reason);
|
|
|
|
|
|
// Object is the abstract superclass for all classes in the
|
|
// object hierarchy.
|
|
// Object does not use any virtual functions to avoid the
|
|
// allocation of the C++ vtable.
|
|
// Since Smi and Failure are subclasses of Object no
|
|
// data members can be present in Object.
|
|
class Object : public MaybeObject {
|
|
public:
|
|
// Type testing.
|
|
bool IsObject() { return true; }
|
|
|
|
#define IS_TYPE_FUNCTION_DECL(type_) inline bool Is##type_();
|
|
OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
|
|
#undef IS_TYPE_FUNCTION_DECL
|
|
|
|
inline bool IsFixedArrayBase();
|
|
inline bool IsExternal();
|
|
inline bool IsAccessorInfo();
|
|
|
|
// Returns true if this object is an instance of the specified
|
|
// function template.
|
|
inline bool IsInstanceOf(FunctionTemplateInfo* type);
|
|
|
|
inline bool IsStruct();
|
|
#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
|
|
STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
|
|
#undef DECLARE_STRUCT_PREDICATE
|
|
|
|
INLINE(bool IsSpecObject());
|
|
INLINE(bool IsSpecFunction());
|
|
|
|
// Oddball testing.
|
|
INLINE(bool IsUndefined());
|
|
INLINE(bool IsNull());
|
|
INLINE(bool IsTheHole()); // Shadows MaybeObject's implementation.
|
|
INLINE(bool IsUninitialized());
|
|
INLINE(bool IsTrue());
|
|
INLINE(bool IsFalse());
|
|
inline bool IsArgumentsMarker();
|
|
inline bool NonFailureIsHeapObject();
|
|
|
|
// Filler objects (fillers and free space objects).
|
|
inline bool IsFiller();
|
|
|
|
// Extract the number.
|
|
inline double Number();
|
|
inline bool IsNaN();
|
|
bool ToInt32(int32_t* value);
|
|
bool ToUint32(uint32_t* value);
|
|
|
|
// Indicates whether OptimalRepresentation can do its work, or whether it
|
|
// always has to return Representation::Tagged().
|
|
enum ValueType {
|
|
OPTIMAL_REPRESENTATION,
|
|
FORCE_TAGGED
|
|
};
|
|
|
|
inline Representation OptimalRepresentation(
|
|
ValueType type = OPTIMAL_REPRESENTATION) {
|
|
if (!FLAG_track_fields) return Representation::Tagged();
|
|
if (type == FORCE_TAGGED) return Representation::Tagged();
|
|
if (IsSmi()) {
|
|
return Representation::Smi();
|
|
} else if (FLAG_track_double_fields && IsHeapNumber()) {
|
|
return Representation::Double();
|
|
} else if (FLAG_track_computed_fields && IsUninitialized()) {
|
|
return Representation::None();
|
|
} else if (FLAG_track_heap_object_fields) {
|
|
ASSERT(IsHeapObject());
|
|
return Representation::HeapObject();
|
|
} else {
|
|
return Representation::Tagged();
|
|
}
|
|
}
|
|
|
|
inline bool FitsRepresentation(Representation representation) {
|
|
if (FLAG_track_fields && representation.IsNone()) {
|
|
return false;
|
|
} else if (FLAG_track_fields && representation.IsSmi()) {
|
|
return IsSmi();
|
|
} else if (FLAG_track_double_fields && representation.IsDouble()) {
|
|
return IsNumber();
|
|
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
|
return IsHeapObject();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline MaybeObject* AllocateNewStorageFor(Heap* heap,
|
|
Representation representation);
|
|
|
|
// Returns true if the object is of the correct type to be used as a
|
|
// implementation of a JSObject's elements.
|
|
inline bool HasValidElements();
|
|
|
|
inline bool HasSpecificClassOf(String* name);
|
|
|
|
MUST_USE_RESULT MaybeObject* ToObject(Isolate* isolate); // ECMA-262 9.9.
|
|
bool BooleanValue(); // ECMA-262 9.2.
|
|
|
|
// Convert to a JSObject if needed.
|
|
// native_context is used when creating wrapper object.
|
|
MUST_USE_RESULT MaybeObject* ToObject(Context* native_context);
|
|
|
|
// Converts this to a Smi if possible.
|
|
// Failure is returned otherwise.
|
|
MUST_USE_RESULT inline MaybeObject* ToSmi();
|
|
|
|
void Lookup(Name* name, LookupResult* result);
|
|
|
|
// Property access.
|
|
MUST_USE_RESULT inline MaybeObject* GetProperty(Name* key);
|
|
MUST_USE_RESULT inline MaybeObject* GetProperty(
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
// TODO(yangguo): this should eventually replace the non-handlified version.
|
|
static Handle<Object> GetPropertyWithReceiver(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
|
|
Object* receiver,
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
static Handle<Object> GetProperty(Handle<Object> object,
|
|
Handle<Name> key);
|
|
static Handle<Object> GetProperty(Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT static MaybeObject* GetPropertyOrFail(
|
|
Handle<Object> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
|
|
LookupResult* result,
|
|
Name* key,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
|
|
JSReceiver* getter);
|
|
|
|
static Handle<Object> GetElement(Isolate* isolate,
|
|
Handle<Object> object,
|
|
uint32_t index);
|
|
MUST_USE_RESULT inline MaybeObject* GetElement(Isolate* isolate,
|
|
uint32_t index);
|
|
// For use when we know that no exception can be thrown.
|
|
inline Object* GetElementNoExceptionThrown(Isolate* isolate, uint32_t index);
|
|
MUST_USE_RESULT MaybeObject* GetElementWithReceiver(Isolate* isolate,
|
|
Object* receiver,
|
|
uint32_t index);
|
|
|
|
// Return the object's prototype (might be Heap::null_value()).
|
|
Object* GetPrototype(Isolate* isolate);
|
|
|
|
// Returns the permanent hash code associated with this object depending on
|
|
// the actual object type. Might return a failure in case no hash was
|
|
// created yet or GC was caused by creation.
|
|
MUST_USE_RESULT MaybeObject* GetHash(CreationFlag flag);
|
|
|
|
// Checks whether this object has the same value as the given one. This
|
|
// function is implemented according to ES5, section 9.12 and can be used
|
|
// to implement the Harmony "egal" function.
|
|
bool SameValue(Object* other);
|
|
|
|
// Tries to convert an object to an array index. Returns true and sets
|
|
// the output parameter if it succeeds.
|
|
inline bool ToArrayIndex(uint32_t* index);
|
|
|
|
// Returns true if this is a JSValue containing a string and the index is
|
|
// < the length of the string. Used to implement [] on strings.
|
|
inline bool IsStringObjectWithCharacterAt(uint32_t index);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// Verify a pointer is a valid object pointer.
|
|
static void VerifyPointer(Object* p);
|
|
#endif
|
|
|
|
inline void VerifyApiCallResultType();
|
|
|
|
// Prints this object without details.
|
|
void ShortPrint(FILE* out = stdout);
|
|
|
|
// Prints this object without details to a message accumulator.
|
|
void ShortPrint(StringStream* accumulator);
|
|
|
|
// Casting: This cast is only needed to satisfy macros in objects-inl.h.
|
|
static Object* cast(Object* value) { return value; }
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = 0; // Object does not take up any space.
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
|
|
};
|
|
|
|
|
|
// Smi represents integer Numbers that can be stored in 31 bits.
|
|
// Smis are immediate which means they are NOT allocated in the heap.
|
|
// The this pointer has the following format: [31 bit signed int] 0
|
|
// For long smis it has the following format:
|
|
// [32 bit signed int] [31 bits zero padding] 0
|
|
// Smi stands for small integer.
|
|
class Smi: public Object {
|
|
public:
|
|
// Returns the integer value.
|
|
inline int value();
|
|
|
|
// Convert a value to a Smi object.
|
|
static inline Smi* FromInt(int value);
|
|
|
|
static inline Smi* FromIntptr(intptr_t value);
|
|
|
|
// Returns whether value can be represented in a Smi.
|
|
static inline bool IsValid(intptr_t value);
|
|
|
|
// Casting.
|
|
static inline Smi* cast(Object* object);
|
|
|
|
// Dispatched behavior.
|
|
void SmiPrint(FILE* out = stdout);
|
|
void SmiPrint(StringStream* accumulator);
|
|
|
|
DECLARE_VERIFIER(Smi)
|
|
|
|
static const int kMinValue =
|
|
(static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
|
|
static const int kMaxValue = -(kMinValue + 1);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
|
|
};
|
|
|
|
|
|
// Failure is used for reporting out of memory situations and
|
|
// propagating exceptions through the runtime system. Failure objects
|
|
// are transient and cannot occur as part of the object graph.
|
|
//
|
|
// Failures are a single word, encoded as follows:
|
|
// +-------------------------+---+--+--+
|
|
// |.........unused..........|sss|tt|11|
|
|
// +-------------------------+---+--+--+
|
|
// 7 6 4 32 10
|
|
//
|
|
//
|
|
// The low two bits, 0-1, are the failure tag, 11. The next two bits,
|
|
// 2-3, are a failure type tag 'tt' with possible values:
|
|
// 00 RETRY_AFTER_GC
|
|
// 01 EXCEPTION
|
|
// 10 INTERNAL_ERROR
|
|
// 11 OUT_OF_MEMORY_EXCEPTION
|
|
//
|
|
// The next three bits, 4-6, are an allocation space tag 'sss'. The
|
|
// allocation space tag is 000 for all failure types except
|
|
// RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are the
|
|
// allocation spaces (the encoding is found in globals.h).
|
|
|
|
// Failure type tag info.
|
|
const int kFailureTypeTagSize = 2;
|
|
const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
|
|
|
|
class Failure: public MaybeObject {
|
|
public:
|
|
// RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
|
|
enum Type {
|
|
RETRY_AFTER_GC = 0,
|
|
EXCEPTION = 1, // Returning this marker tells the real exception
|
|
// is in Isolate::pending_exception.
|
|
INTERNAL_ERROR = 2,
|
|
OUT_OF_MEMORY_EXCEPTION = 3
|
|
};
|
|
|
|
inline Type type() const;
|
|
|
|
// Returns the space that needs to be collected for RetryAfterGC failures.
|
|
inline AllocationSpace allocation_space() const;
|
|
|
|
inline bool IsInternalError() const;
|
|
inline bool IsOutOfMemoryException() const;
|
|
|
|
static inline Failure* RetryAfterGC(AllocationSpace space);
|
|
static inline Failure* RetryAfterGC(); // NEW_SPACE
|
|
static inline Failure* Exception();
|
|
static inline Failure* InternalError();
|
|
// TODO(jkummerow): The value is temporary instrumentation. Remove it
|
|
// when it has served its purpose.
|
|
static inline Failure* OutOfMemoryException(intptr_t value);
|
|
// Casting.
|
|
static inline Failure* cast(MaybeObject* object);
|
|
|
|
// Dispatched behavior.
|
|
void FailurePrint(FILE* out = stdout);
|
|
void FailurePrint(StringStream* accumulator);
|
|
|
|
DECLARE_VERIFIER(Failure)
|
|
|
|
private:
|
|
inline intptr_t value() const;
|
|
static inline Failure* Construct(Type type, intptr_t value = 0);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
|
|
};
|
|
|
|
|
|
// Heap objects typically have a map pointer in their first word. However,
|
|
// during GC other data (e.g. mark bits, forwarding addresses) is sometimes
|
|
// encoded in the first word. The class MapWord is an abstraction of the
|
|
// value in a heap object's first word.
|
|
class MapWord BASE_EMBEDDED {
|
|
public:
|
|
// Normal state: the map word contains a map pointer.
|
|
|
|
// Create a map word from a map pointer.
|
|
static inline MapWord FromMap(Map* map);
|
|
|
|
// View this map word as a map pointer.
|
|
inline Map* ToMap();
|
|
|
|
|
|
// Scavenge collection: the map word of live objects in the from space
|
|
// contains a forwarding address (a heap object pointer in the to space).
|
|
|
|
// True if this map word is a forwarding address for a scavenge
|
|
// collection. Only valid during a scavenge collection (specifically,
|
|
// when all map words are heap object pointers, i.e. not during a full GC).
|
|
inline bool IsForwardingAddress();
|
|
|
|
// Create a map word from a forwarding address.
|
|
static inline MapWord FromForwardingAddress(HeapObject* object);
|
|
|
|
// View this map word as a forwarding address.
|
|
inline HeapObject* ToForwardingAddress();
|
|
|
|
static inline MapWord FromRawValue(uintptr_t value) {
|
|
return MapWord(value);
|
|
}
|
|
|
|
inline uintptr_t ToRawValue() {
|
|
return value_;
|
|
}
|
|
|
|
private:
|
|
// HeapObject calls the private constructor and directly reads the value.
|
|
friend class HeapObject;
|
|
|
|
explicit MapWord(uintptr_t value) : value_(value) {}
|
|
|
|
uintptr_t value_;
|
|
};
|
|
|
|
|
|
// HeapObject is the superclass for all classes describing heap allocated
|
|
// objects.
|
|
class HeapObject: public Object {
|
|
public:
|
|
// [map]: Contains a map which contains the object's reflective
|
|
// information.
|
|
inline Map* map();
|
|
inline void set_map(Map* value);
|
|
// The no-write-barrier version. This is OK if the object is white and in
|
|
// new space, or if the value is an immortal immutable object, like the maps
|
|
// of primitive (non-JS) objects like strings, heap numbers etc.
|
|
inline void set_map_no_write_barrier(Map* value);
|
|
|
|
// During garbage collection, the map word of a heap object does not
|
|
// necessarily contain a map pointer.
|
|
inline MapWord map_word();
|
|
inline void set_map_word(MapWord map_word);
|
|
|
|
// The Heap the object was allocated in. Used also to access Isolate.
|
|
inline Heap* GetHeap();
|
|
|
|
// Convenience method to get current isolate.
|
|
inline Isolate* GetIsolate();
|
|
|
|
// Converts an address to a HeapObject pointer.
|
|
static inline HeapObject* FromAddress(Address address);
|
|
|
|
// Returns the address of this HeapObject.
|
|
inline Address address();
|
|
|
|
// Iterates over pointers contained in the object (including the Map)
|
|
void Iterate(ObjectVisitor* v);
|
|
|
|
// Iterates over all pointers contained in the object except the
|
|
// first map pointer. The object type is given in the first
|
|
// parameter. This function does not access the map pointer in the
|
|
// object, and so is safe to call while the map pointer is modified.
|
|
void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
|
|
|
|
// Returns the heap object's size in bytes
|
|
inline int Size();
|
|
|
|
// Given a heap object's map pointer, returns the heap size in bytes
|
|
// Useful when the map pointer field is used for other purposes.
|
|
// GC internal.
|
|
inline int SizeFromMap(Map* map);
|
|
|
|
// Returns the field at offset in obj, as a read/write Object* reference.
|
|
// Does no checking, and is safe to use during GC, while maps are invalid.
|
|
// Does not invoke write barrier, so should only be assigned to
|
|
// during marking GC.
|
|
static inline Object** RawField(HeapObject* obj, int offset);
|
|
|
|
// Adds the |code| object related to |name| to the code cache of this map. If
|
|
// this map is a dictionary map that is shared, the map copied and installed
|
|
// onto the object.
|
|
static void UpdateMapCodeCache(Handle<HeapObject> object,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
|
|
// Casting.
|
|
static inline HeapObject* cast(Object* obj);
|
|
|
|
// Return the write barrier mode for this. Callers of this function
|
|
// must be able to present a reference to an DisallowHeapAllocation
|
|
// object as a sign that they are not going to use this function
|
|
// from code that allocates and thus invalidates the returned write
|
|
// barrier mode.
|
|
inline WriteBarrierMode GetWriteBarrierMode(
|
|
const DisallowHeapAllocation& promise);
|
|
|
|
// Dispatched behavior.
|
|
void HeapObjectShortPrint(StringStream* accumulator);
|
|
#ifdef OBJECT_PRINT
|
|
void PrintHeader(FILE* out, const char* id);
|
|
#endif
|
|
DECLARE_PRINTER(HeapObject)
|
|
DECLARE_VERIFIER(HeapObject)
|
|
#ifdef VERIFY_HEAP
|
|
inline void VerifyObjectField(int offset);
|
|
inline void VerifySmiField(int offset);
|
|
|
|
// Verify a pointer is a valid HeapObject pointer that points to object
|
|
// areas in the heap.
|
|
static void VerifyHeapPointer(Object* p);
|
|
#endif
|
|
|
|
// Layout description.
|
|
// First field in a heap object is map.
|
|
static const int kMapOffset = Object::kHeaderSize;
|
|
static const int kHeaderSize = kMapOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
|
|
|
|
protected:
|
|
// helpers for calling an ObjectVisitor to iterate over pointers in the
|
|
// half-open range [start, end) specified as integer offsets
|
|
inline void IteratePointers(ObjectVisitor* v, int start, int end);
|
|
// as above, for the single element at "offset"
|
|
inline void IteratePointer(ObjectVisitor* v, int offset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a fixed size
|
|
// in which all pointer fields are located in the [start_offset, end_offset)
|
|
// interval.
|
|
template<int start_offset, int end_offset, int size>
|
|
class FixedBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
static const int kEndOffset = end_offset;
|
|
static const int kSize = size;
|
|
|
|
static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, end_offset));
|
|
}
|
|
};
|
|
|
|
|
|
// This class describes a body of an object of a variable size
|
|
// in which all pointer fields are located in the [start_offset, object_size)
|
|
// interval.
|
|
template<int start_offset>
|
|
class FlexibleBodyDescriptor {
|
|
public:
|
|
static const int kStartOffset = start_offset;
|
|
|
|
static inline void IterateBody(HeapObject* obj,
|
|
int object_size,
|
|
ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
static inline void IterateBody(HeapObject* obj, int object_size) {
|
|
StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
|
|
HeapObject::RawField(obj, object_size));
|
|
}
|
|
};
|
|
|
|
|
|
// The HeapNumber class describes heap allocated numbers that cannot be
|
|
// represented in a Smi (small integer)
|
|
class HeapNumber: public HeapObject {
|
|
public:
|
|
// [value]: number value.
|
|
inline double value();
|
|
inline void set_value(double value);
|
|
|
|
// Casting.
|
|
static inline HeapNumber* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
bool HeapNumberBooleanValue();
|
|
|
|
void HeapNumberPrint(FILE* out = stdout);
|
|
void HeapNumberPrint(StringStream* accumulator);
|
|
DECLARE_VERIFIER(HeapNumber)
|
|
|
|
inline int get_exponent();
|
|
inline int get_sign();
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
// IEEE doubles are two 32 bit words. The first is just mantissa, the second
|
|
// is a mixture of sign, exponent and mantissa. Our current platforms are all
|
|
// little endian apart from non-EABI arm which is little endian with big
|
|
// endian floating point word ordering!
|
|
static const int kMantissaOffset = kValueOffset;
|
|
static const int kExponentOffset = kValueOffset + 4;
|
|
|
|
static const int kSize = kValueOffset + kDoubleSize;
|
|
static const uint32_t kSignMask = 0x80000000u;
|
|
static const uint32_t kExponentMask = 0x7ff00000u;
|
|
static const uint32_t kMantissaMask = 0xfffffu;
|
|
static const int kMantissaBits = 52;
|
|
static const int kExponentBits = 11;
|
|
static const int kExponentBias = 1023;
|
|
static const int kExponentShift = 20;
|
|
static const int kInfinityOrNanExponent =
|
|
(kExponentMask >> kExponentShift) - kExponentBias;
|
|
static const int kMantissaBitsInTopWord = 20;
|
|
static const int kNonMantissaBitsInTopWord = 12;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
|
|
};
|
|
|
|
|
|
enum EnsureElementsMode {
|
|
DONT_ALLOW_DOUBLE_ELEMENTS,
|
|
ALLOW_COPIED_DOUBLE_ELEMENTS,
|
|
ALLOW_CONVERTED_DOUBLE_ELEMENTS
|
|
};
|
|
|
|
|
|
// Indicates whether a property should be set or (re)defined. Setting of a
|
|
// property causes attributes to remain unchanged, writability to be checked
|
|
// and callbacks to be called. Defining of a property causes attributes to
|
|
// be updated and callbacks to be overridden.
|
|
enum SetPropertyMode {
|
|
SET_PROPERTY,
|
|
DEFINE_PROPERTY
|
|
};
|
|
|
|
|
|
// Indicator for one component of an AccessorPair.
|
|
enum AccessorComponent {
|
|
ACCESSOR_GETTER,
|
|
ACCESSOR_SETTER
|
|
};
|
|
|
|
|
|
// JSReceiver includes types on which properties can be defined, i.e.,
|
|
// JSObject and JSProxy.
|
|
class JSReceiver: public HeapObject {
|
|
public:
|
|
enum DeleteMode {
|
|
NORMAL_DELETION,
|
|
STRICT_DELETION,
|
|
FORCE_DELETION
|
|
};
|
|
|
|
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
|
|
// a keyed store is of the form a[expression] = foo.
|
|
enum StoreFromKeyed {
|
|
MAY_BE_STORE_FROM_KEYED,
|
|
CERTAINLY_NOT_STORE_FROM_KEYED
|
|
};
|
|
|
|
// Internal properties (e.g. the hidden properties dictionary) might
|
|
// be added even though the receiver is non-extensible.
|
|
enum ExtensibilityCheck {
|
|
PERFORM_EXTENSIBILITY_CHECK,
|
|
OMIT_EXTENSIBILITY_CHECK
|
|
};
|
|
|
|
// Casting.
|
|
static inline JSReceiver* cast(Object* obj);
|
|
|
|
// Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
|
|
static Handle<Object> SetProperty(Handle<JSReceiver> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
StoreFromKeyed store_mode =
|
|
MAY_BE_STORE_FROM_KEYED);
|
|
static Handle<Object> SetElement(Handle<JSReceiver> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode);
|
|
|
|
// Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
|
|
static inline bool HasProperty(Handle<JSReceiver> object, Handle<Name> name);
|
|
static inline bool HasLocalProperty(Handle<JSReceiver>, Handle<Name> name);
|
|
static inline bool HasElement(Handle<JSReceiver> object, uint32_t index);
|
|
static inline bool HasLocalElement(Handle<JSReceiver> object, uint32_t index);
|
|
|
|
// Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
|
|
static Handle<Object> DeleteProperty(Handle<JSReceiver> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode = NORMAL_DELETION);
|
|
static Handle<Object> DeleteElement(Handle<JSReceiver> object,
|
|
uint32_t index,
|
|
DeleteMode mode = NORMAL_DELETION);
|
|
|
|
// Tests for the fast common case for property enumeration.
|
|
bool IsSimpleEnum();
|
|
|
|
// Returns the class name ([[Class]] property in the specification).
|
|
String* class_name();
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
inline PropertyAttributes GetPropertyAttribute(Name* name);
|
|
PropertyAttributes GetPropertyAttributeWithReceiver(JSReceiver* receiver,
|
|
Name* name);
|
|
PropertyAttributes GetLocalPropertyAttribute(Name* name);
|
|
|
|
inline PropertyAttributes GetElementAttribute(uint32_t index);
|
|
inline PropertyAttributes GetLocalElementAttribute(uint32_t index);
|
|
|
|
// Return the object's prototype (might be Heap::null_value()).
|
|
inline Object* GetPrototype();
|
|
|
|
// Return the constructor function (may be Heap::null_value()).
|
|
inline Object* GetConstructor();
|
|
|
|
// Retrieves a permanent object identity hash code. The undefined value might
|
|
// be returned in case no hash was created yet and OMIT_CREATION was used.
|
|
inline MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
|
|
|
|
// Lookup a property. If found, the result is valid and has
|
|
// detailed information.
|
|
void LocalLookup(Name* name, LookupResult* result,
|
|
bool search_hidden_prototypes = false);
|
|
void Lookup(Name* name, LookupResult* result);
|
|
|
|
protected:
|
|
Smi* GenerateIdentityHash();
|
|
|
|
static Handle<Object> SetPropertyWithDefinedSetter(Handle<JSReceiver> object,
|
|
Handle<JSReceiver> setter,
|
|
Handle<Object> value);
|
|
|
|
private:
|
|
PropertyAttributes GetPropertyAttributeForResult(JSReceiver* receiver,
|
|
LookupResult* result,
|
|
Name* name,
|
|
bool continue_search);
|
|
|
|
static Handle<Object> SetProperty(Handle<JSReceiver> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
StoreFromKeyed store_from_keyed);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
|
|
};
|
|
|
|
// The JSObject describes real heap allocated JavaScript objects with
|
|
// properties.
|
|
// Note that the map of JSObject changes during execution to enable inline
|
|
// caching.
|
|
class JSObject: public JSReceiver {
|
|
public:
|
|
// [properties]: Backing storage for properties.
|
|
// properties is a FixedArray in the fast case and a Dictionary in the
|
|
// slow case.
|
|
DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
|
|
inline void initialize_properties();
|
|
inline bool HasFastProperties();
|
|
inline NameDictionary* property_dictionary(); // Gets slow properties.
|
|
|
|
// [elements]: The elements (properties with names that are integers).
|
|
//
|
|
// Elements can be in two general modes: fast and slow. Each mode
|
|
// corrensponds to a set of object representations of elements that
|
|
// have something in common.
|
|
//
|
|
// In the fast mode elements is a FixedArray and so each element can
|
|
// be quickly accessed. This fact is used in the generated code. The
|
|
// elements array can have one of three maps in this mode:
|
|
// fixed_array_map, non_strict_arguments_elements_map or
|
|
// fixed_cow_array_map (for copy-on-write arrays). In the latter case
|
|
// the elements array may be shared by a few objects and so before
|
|
// writing to any element the array must be copied. Use
|
|
// EnsureWritableFastElements in this case.
|
|
//
|
|
// In the slow mode the elements is either a NumberDictionary, an
|
|
// ExternalArray, or a FixedArray parameter map for a (non-strict)
|
|
// arguments object.
|
|
DECL_ACCESSORS(elements, FixedArrayBase)
|
|
inline void initialize_elements();
|
|
MUST_USE_RESULT inline MaybeObject* ResetElements();
|
|
inline ElementsKind GetElementsKind();
|
|
inline ElementsAccessor* GetElementsAccessor();
|
|
// Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
|
|
inline bool HasFastSmiElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
|
|
inline bool HasFastObjectElements();
|
|
// Returns true if an object has elements of FAST_ELEMENTS or
|
|
// FAST_SMI_ONLY_ELEMENTS.
|
|
inline bool HasFastSmiOrObjectElements();
|
|
// Returns true if an object has any of the fast elements kinds.
|
|
inline bool HasFastElements();
|
|
// Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastDoubleElements();
|
|
// Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
|
|
// ElementsKind.
|
|
inline bool HasFastHoleyElements();
|
|
inline bool HasNonStrictArgumentsElements();
|
|
inline bool HasDictionaryElements();
|
|
inline bool HasExternalPixelElements();
|
|
inline bool HasExternalArrayElements();
|
|
inline bool HasExternalByteElements();
|
|
inline bool HasExternalUnsignedByteElements();
|
|
inline bool HasExternalShortElements();
|
|
inline bool HasExternalUnsignedShortElements();
|
|
inline bool HasExternalIntElements();
|
|
inline bool HasExternalUnsignedIntElements();
|
|
inline bool HasExternalFloatElements();
|
|
inline bool HasExternalDoubleElements();
|
|
bool HasFastArgumentsElements();
|
|
bool HasDictionaryArgumentsElements();
|
|
inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
|
|
|
|
inline bool ShouldTrackAllocationInfo();
|
|
|
|
inline void set_map_and_elements(
|
|
Map* map,
|
|
FixedArrayBase* value,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Requires: HasFastElements().
|
|
static Handle<FixedArray> EnsureWritableFastElements(
|
|
Handle<JSObject> object);
|
|
MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
|
|
|
|
// Collects elements starting at index 0.
|
|
// Undefined values are placed after non-undefined values.
|
|
// Returns the number of non-undefined values.
|
|
static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
// As PrepareElementsForSort, but only on objects where elements is
|
|
// a dictionary, and it will stay a dictionary.
|
|
static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
|
|
uint32_t limit);
|
|
MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
|
|
|
|
static Handle<Object> GetPropertyWithCallback(Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Object> structure,
|
|
Handle<Name> name);
|
|
|
|
static Handle<Object> SetPropertyWithCallback(
|
|
Handle<JSObject> object,
|
|
Handle<Object> structure,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
Handle<JSObject> holder,
|
|
StrictModeFlag strict_mode);
|
|
|
|
static Handle<Object> SetPropertyWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode);
|
|
|
|
static Handle<Object> SetPropertyForResult(
|
|
Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
|
|
|
|
static Handle<Object> SetLocalPropertyIgnoreAttributes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
ValueType value_type = OPTIMAL_REPRESENTATION,
|
|
StoreMode mode = ALLOW_AS_CONSTANT,
|
|
ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK);
|
|
|
|
static inline Handle<String> ExpectedTransitionKey(Handle<Map> map);
|
|
static inline Handle<Map> ExpectedTransitionTarget(Handle<Map> map);
|
|
|
|
// Try to follow an existing transition to a field with attributes NONE. The
|
|
// return value indicates whether the transition was successful.
|
|
static inline Handle<Map> FindTransitionToField(Handle<Map> map,
|
|
Handle<Name> key);
|
|
|
|
// Extend the receiver with a single fast property appeared first in the
|
|
// passed map. This also extends the property backing store if necessary.
|
|
static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
|
|
|
|
// Migrates the given object to a map whose field representations are the
|
|
// lowest upper bound of all known representations for that field.
|
|
static void MigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Migrates the given object only if the target map is already available,
|
|
// or returns an empty handle if such a map is not yet available.
|
|
static Handle<Object> TryMigrateInstance(Handle<JSObject> instance);
|
|
|
|
// Can cause GC.
|
|
MUST_USE_RESULT MaybeObject* SetLocalPropertyIgnoreAttributesTrampoline(
|
|
Name* key,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
ValueType value_type = OPTIMAL_REPRESENTATION,
|
|
StoreMode mode = ALLOW_AS_CONSTANT,
|
|
ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK);
|
|
|
|
// Retrieve a value in a normalized object given a lookup result.
|
|
// Handles the special representation of JS global objects.
|
|
Object* GetNormalizedProperty(LookupResult* result);
|
|
|
|
// Sets the property value in a normalized object given a lookup result.
|
|
// Handles the special representation of JS global objects.
|
|
static void SetNormalizedProperty(Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Object> value);
|
|
|
|
// Sets the property value in a normalized object given (key, value, details).
|
|
// Handles the special representation of JS global objects.
|
|
static void SetNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> key,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
static void OptimizeAsPrototype(Handle<JSObject> object);
|
|
|
|
// Retrieve interceptors.
|
|
InterceptorInfo* GetNamedInterceptor();
|
|
InterceptorInfo* GetIndexedInterceptor();
|
|
|
|
// Used from JSReceiver.
|
|
PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
|
|
Name* name,
|
|
bool continue_search);
|
|
PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
|
|
Name* name,
|
|
bool continue_search);
|
|
PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
|
|
Object* receiver,
|
|
LookupResult* result,
|
|
Name* name,
|
|
bool continue_search);
|
|
PropertyAttributes GetElementAttributeWithReceiver(JSReceiver* receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
|
|
// Retrieves an AccessorPair property from the given object. Might return
|
|
// undefined if the property doesn't exist or is of a different kind.
|
|
static Handle<Object> GetAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component);
|
|
|
|
// Defines an AccessorPair property on the given object.
|
|
// TODO(mstarzinger): Rename to SetAccessor() and return empty handle on
|
|
// exception instead of letting callers check for scheduled exception.
|
|
static void DefineAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control = v8::DEFAULT);
|
|
|
|
// Defines an AccessorInfo property on the given object.
|
|
static Handle<Object> SetAccessor(Handle<JSObject> object,
|
|
Handle<AccessorInfo> info);
|
|
|
|
static Handle<Object> GetPropertyWithInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
static Handle<Object> GetPropertyPostInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
MUST_USE_RESULT MaybeObject* GetLocalPropertyPostInterceptor(
|
|
Object* receiver,
|
|
Name* name,
|
|
PropertyAttributes* attributes);
|
|
|
|
// Returns true if this is an instance of an api function and has
|
|
// been modified since it was created. May give false positives.
|
|
bool IsDirty();
|
|
|
|
// If the receiver is a JSGlobalProxy this method will return its prototype,
|
|
// otherwise the result is the receiver itself.
|
|
inline Object* BypassGlobalProxy();
|
|
|
|
// Accessors for hidden properties object.
|
|
//
|
|
// Hidden properties are not local properties of the object itself.
|
|
// Instead they are stored in an auxiliary structure kept as a local
|
|
// property with a special name Heap::hidden_string(). But if the
|
|
// receiver is a JSGlobalProxy then the auxiliary object is a property
|
|
// of its prototype, and if it's a detached proxy, then you can't have
|
|
// hidden properties.
|
|
|
|
// Sets a hidden property on this object. Returns this object if successful,
|
|
// undefined if called on a detached proxy.
|
|
static Handle<Object> SetHiddenProperty(Handle<JSObject> obj,
|
|
Handle<Name> key,
|
|
Handle<Object> value);
|
|
// Returns a failure if a GC is required.
|
|
MUST_USE_RESULT MaybeObject* SetHiddenProperty(Name* key, Object* value);
|
|
// Gets the value of a hidden property with the given key. Returns the hole
|
|
// if the property doesn't exist (or if called on a detached proxy),
|
|
// otherwise returns the value set for the key.
|
|
Object* GetHiddenProperty(Name* key);
|
|
// Deletes a hidden property. Deleting a non-existing property is
|
|
// considered successful.
|
|
static void DeleteHiddenProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
// Returns true if the object has a property with the hidden string as name.
|
|
bool HasHiddenProperties();
|
|
|
|
static int GetIdentityHash(Handle<JSObject> object);
|
|
static void SetIdentityHash(Handle<JSObject> object, Smi* hash);
|
|
|
|
inline void ValidateElements();
|
|
|
|
// Makes sure that this object can contain HeapObject as elements.
|
|
static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
|
|
|
|
// Makes sure that this object can contain the specified elements.
|
|
MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
|
|
Object** elements,
|
|
uint32_t count,
|
|
EnsureElementsMode mode);
|
|
MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
|
|
FixedArrayBase* elements,
|
|
uint32_t length,
|
|
EnsureElementsMode mode);
|
|
MUST_USE_RESULT MaybeObject* EnsureCanContainElements(
|
|
Arguments* arguments,
|
|
uint32_t first_arg,
|
|
uint32_t arg_count,
|
|
EnsureElementsMode mode);
|
|
|
|
// Do we want to keep the elements in fast case when increasing the
|
|
// capacity?
|
|
bool ShouldConvertToSlowElements(int new_capacity);
|
|
// Returns true if the backing storage for the slow-case elements of
|
|
// this object takes up nearly as much space as a fast-case backing
|
|
// storage would. In that case the JSObject should have fast
|
|
// elements.
|
|
bool ShouldConvertToFastElements();
|
|
// Returns true if the elements of JSObject contains only values that can be
|
|
// represented in a FixedDoubleArray and has at least one value that can only
|
|
// be represented as a double and not a Smi.
|
|
bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements);
|
|
|
|
// Computes the new capacity when expanding the elements of a JSObject.
|
|
static int NewElementsCapacity(int old_capacity) {
|
|
// (old_capacity + 50%) + 16
|
|
return old_capacity + (old_capacity >> 1) + 16;
|
|
}
|
|
|
|
// These methods do not perform access checks!
|
|
AccessorPair* GetLocalPropertyAccessorPair(Name* name);
|
|
AccessorPair* GetLocalElementAccessorPair(uint32_t index);
|
|
|
|
MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index,
|
|
Object* value,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype);
|
|
|
|
MUST_USE_RESULT MaybeObject* SetDictionaryElement(
|
|
uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
|
|
MUST_USE_RESULT MaybeObject* SetFastDoubleElement(
|
|
uint32_t index,
|
|
Object* value,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype = true);
|
|
|
|
static Handle<Object> SetOwnElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictModeFlag strict_mode);
|
|
|
|
// Empty handle is returned if the element cannot be set to the given value.
|
|
static Handle<Object> SetElement(
|
|
Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyAttributes attr,
|
|
StrictModeFlag strict_mode,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
|
|
// A Failure object is returned if GC is needed.
|
|
MUST_USE_RESULT MaybeObject* SetElement(
|
|
uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype = true,
|
|
SetPropertyMode set_mode = SET_PROPERTY);
|
|
|
|
// Returns the index'th element.
|
|
// The undefined object if index is out of bounds.
|
|
MUST_USE_RESULT MaybeObject* GetElementWithInterceptor(Object* receiver,
|
|
uint32_t index);
|
|
|
|
enum SetFastElementsCapacitySmiMode {
|
|
kAllowSmiElements,
|
|
kForceSmiElements,
|
|
kDontAllowSmiElements
|
|
};
|
|
|
|
// Replace the elements' backing store with fast elements of the given
|
|
// capacity. Update the length for JSArrays. Returns the new backing
|
|
// store.
|
|
MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(
|
|
int capacity,
|
|
int length,
|
|
SetFastElementsCapacitySmiMode smi_mode);
|
|
MUST_USE_RESULT MaybeObject* SetFastDoubleElementsCapacityAndLength(
|
|
int capacity,
|
|
int length);
|
|
|
|
// Lookup interceptors are used for handling properties controlled by host
|
|
// objects.
|
|
inline bool HasNamedInterceptor();
|
|
inline bool HasIndexedInterceptor();
|
|
|
|
// Support functions for v8 api (needed for correct interceptor behavior).
|
|
static bool HasRealNamedProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
static bool HasRealElementProperty(Handle<JSObject> object, uint32_t index);
|
|
static bool HasRealNamedCallbackProperty(Handle<JSObject> object,
|
|
Handle<Name> key);
|
|
|
|
// Get the header size for a JSObject. Used to compute the index of
|
|
// internal fields as well as the number of internal fields.
|
|
inline int GetHeaderSize();
|
|
|
|
inline int GetInternalFieldCount();
|
|
inline int GetInternalFieldOffset(int index);
|
|
inline Object* GetInternalField(int index);
|
|
inline void SetInternalField(int index, Object* value);
|
|
inline void SetInternalField(int index, Smi* value);
|
|
|
|
// The following lookup functions skip interceptors.
|
|
void LocalLookupRealNamedProperty(Name* name, LookupResult* result);
|
|
void LookupRealNamedProperty(Name* name, LookupResult* result);
|
|
void LookupRealNamedPropertyInPrototypes(Name* name, LookupResult* result);
|
|
void LookupCallbackProperty(Name* name, LookupResult* result);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfLocalProperties(PropertyAttributes filter = NONE);
|
|
// Fill in details for properties into storage starting at the specified
|
|
// index.
|
|
void GetLocalPropertyNames(
|
|
FixedArray* storage, int index, PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of properties on this object filtering out properties
|
|
// with the specified attributes (ignoring interceptors).
|
|
int NumberOfLocalElements(PropertyAttributes filter);
|
|
// Returns the number of enumerable elements (ignoring interceptors).
|
|
int NumberOfEnumElements();
|
|
// Returns the number of elements on this object filtering out elements
|
|
// with the specified attributes (ignoring interceptors).
|
|
int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
|
|
// Count and fill in the enumerable elements into storage.
|
|
// (storage->length() == NumberOfEnumElements()).
|
|
// If storage is NULL, will count the elements without adding
|
|
// them to any storage.
|
|
// Returns the number of enumerable elements.
|
|
int GetEnumElementKeys(FixedArray* storage);
|
|
|
|
// Returns a new map with all transitions dropped from the object's current
|
|
// map and the ElementsKind set.
|
|
static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
inline MUST_USE_RESULT MaybeObject* GetElementsTransitionMap(
|
|
Isolate* isolate,
|
|
ElementsKind elements_kind);
|
|
MUST_USE_RESULT MaybeObject* GetElementsTransitionMapSlow(
|
|
ElementsKind elements_kind);
|
|
|
|
static void TransitionElementsKind(Handle<JSObject> object,
|
|
ElementsKind to_kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* TransitionElementsKind(ElementsKind to_kind);
|
|
MUST_USE_RESULT MaybeObject* UpdateAllocationSite(ElementsKind to_kind);
|
|
|
|
// TODO(mstarzinger): Both public because of ConvertAnsSetLocalProperty().
|
|
static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map);
|
|
static void GeneralizeFieldRepresentation(Handle<JSObject> object,
|
|
int modify_index,
|
|
Representation new_representation,
|
|
StoreMode store_mode);
|
|
|
|
// Convert the object to use the canonical dictionary
|
|
// representation. If the object is expected to have additional properties
|
|
// added this number can be indicated to have the backing store allocated to
|
|
// an initial capacity for holding these properties.
|
|
static void NormalizeProperties(Handle<JSObject> object,
|
|
PropertyNormalizationMode mode,
|
|
int expected_additional_properties);
|
|
|
|
// Convert and update the elements backing store to be a
|
|
// SeededNumberDictionary dictionary. Returns the backing after conversion.
|
|
static Handle<SeededNumberDictionary> NormalizeElements(
|
|
Handle<JSObject> object);
|
|
|
|
MUST_USE_RESULT MaybeObject* NormalizeElements();
|
|
|
|
// Transform slow named properties to fast variants.
|
|
static void TransformToFastProperties(Handle<JSObject> object,
|
|
int unused_property_fields);
|
|
|
|
// Access fast-case object properties at index.
|
|
MUST_USE_RESULT inline MaybeObject* FastPropertyAt(
|
|
Representation representation,
|
|
int index);
|
|
inline Object* RawFastPropertyAt(int index);
|
|
inline void FastPropertyAtPut(int index, Object* value);
|
|
|
|
// Access to in object properties.
|
|
inline int GetInObjectPropertyOffset(int index);
|
|
inline Object* InObjectPropertyAt(int index);
|
|
inline Object* InObjectPropertyAtPut(int index,
|
|
Object* value,
|
|
WriteBarrierMode mode
|
|
= UPDATE_WRITE_BARRIER);
|
|
|
|
// Set the object's prototype (only JSReceiver and null are allowed values).
|
|
static Handle<Object> SetPrototype(Handle<JSObject> object,
|
|
Handle<Object> value,
|
|
bool skip_hidden_prototypes = false);
|
|
|
|
// Initializes the body after properties slot, properties slot is
|
|
// initialized by set_properties. Fill the pre-allocated fields with
|
|
// pre_allocated_value and the rest with filler_value.
|
|
// Note: this call does not update write barrier, the caller is responsible
|
|
// to ensure that |filler_value| can be collected without WB here.
|
|
inline void InitializeBody(Map* map,
|
|
Object* pre_allocated_value,
|
|
Object* filler_value);
|
|
|
|
// Check whether this object references another object
|
|
bool ReferencesObject(Object* obj);
|
|
|
|
// Disalow further properties to be added to the object.
|
|
static Handle<Object> PreventExtensions(Handle<JSObject> object);
|
|
|
|
// ES5 Object.freeze
|
|
static Handle<Object> Freeze(Handle<JSObject> object);
|
|
|
|
// Called the first time an object is observed with ES7 Object.observe.
|
|
static void SetObserved(Handle<JSObject> object);
|
|
|
|
// Copy object.
|
|
static Handle<JSObject> Copy(Handle<JSObject> object,
|
|
Handle<AllocationSite> site);
|
|
static Handle<JSObject> Copy(Handle<JSObject> object);
|
|
static Handle<JSObject> DeepCopy(Handle<JSObject> object,
|
|
AllocationSiteContext* site_context);
|
|
static Handle<JSObject> DeepWalk(Handle<JSObject> object,
|
|
AllocationSiteContext* site_context);
|
|
|
|
// Casting.
|
|
static inline JSObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
void JSObjectShortPrint(StringStream* accumulator);
|
|
DECLARE_PRINTER(JSObject)
|
|
DECLARE_VERIFIER(JSObject)
|
|
#ifdef OBJECT_PRINT
|
|
void PrintProperties(FILE* out = stdout);
|
|
void PrintElements(FILE* out = stdout);
|
|
void PrintTransitions(FILE* out = stdout);
|
|
#endif
|
|
|
|
void PrintElementsTransition(
|
|
FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements,
|
|
ElementsKind to_kind, FixedArrayBase* to_elements);
|
|
|
|
void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
|
|
|
|
#ifdef DEBUG
|
|
// Structure for collecting spill information about JSObjects.
|
|
class SpillInformation {
|
|
public:
|
|
void Clear();
|
|
void Print();
|
|
int number_of_objects_;
|
|
int number_of_objects_with_fast_properties_;
|
|
int number_of_objects_with_fast_elements_;
|
|
int number_of_fast_used_fields_;
|
|
int number_of_fast_unused_fields_;
|
|
int number_of_slow_used_properties_;
|
|
int number_of_slow_unused_properties_;
|
|
int number_of_fast_used_elements_;
|
|
int number_of_fast_unused_elements_;
|
|
int number_of_slow_used_elements_;
|
|
int number_of_slow_unused_elements_;
|
|
};
|
|
|
|
void IncrementSpillStatistics(SpillInformation* info);
|
|
#endif
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// If a GC was caused while constructing this object, the elements pointer
|
|
// may point to a one pointer filler map. The object won't be rooted, but
|
|
// our heap verification code could stumble across it.
|
|
bool ElementsAreSafeToExamine();
|
|
#endif
|
|
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Maximal number of fast properties for the JSObject. Used to
|
|
// restrict the number of map transitions to avoid an explosion in
|
|
// the number of maps for objects used as dictionaries.
|
|
inline bool TooManyFastProperties(
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
|
|
|
|
// Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
|
|
// Also maximal value of JSArray's length property.
|
|
static const uint32_t kMaxElementCount = 0xffffffffu;
|
|
|
|
// Constants for heuristics controlling conversion of fast elements
|
|
// to slow elements.
|
|
|
|
// Maximal gap that can be introduced by adding an element beyond
|
|
// the current elements length.
|
|
static const uint32_t kMaxGap = 1024;
|
|
|
|
// Maximal length of fast elements array that won't be checked for
|
|
// being dense enough on expansion.
|
|
static const int kMaxUncheckedFastElementsLength = 5000;
|
|
|
|
// Same as above but for old arrays. This limit is more strict. We
|
|
// don't want to be wasteful with long lived objects.
|
|
static const int kMaxUncheckedOldFastElementsLength = 500;
|
|
|
|
// Note that Heap::MaxRegularSpaceAllocationSize() puts a limit on
|
|
// permissible values (see the ASSERT in heap.cc).
|
|
static const int kInitialMaxFastElementArray = 100000;
|
|
|
|
static const int kFastPropertiesSoftLimit = 12;
|
|
static const int kMaxFastProperties = 64;
|
|
static const int kMaxInstanceSize = 255 * kPointerSize;
|
|
// When extending the backing storage for property values, we increase
|
|
// its size by more than the 1 entry necessary, so sequentially adding fields
|
|
// to the same object requires fewer allocations and copies.
|
|
static const int kFieldsAdded = 3;
|
|
|
|
// Layout description.
|
|
static const int kPropertiesOffset = HeapObject::kHeaderSize;
|
|
static const int kElementsOffset = kPropertiesOffset + kPointerSize;
|
|
static const int kHeaderSize = kElementsOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object);
|
|
};
|
|
|
|
// Enqueue change record for Object.observe. May cause GC.
|
|
static void EnqueueChangeRecord(Handle<JSObject> object,
|
|
const char* type,
|
|
Handle<Name> name,
|
|
Handle<Object> old_value);
|
|
|
|
// Deliver change records to observers. May cause GC.
|
|
static void DeliverChangeRecords(Isolate* isolate);
|
|
|
|
private:
|
|
friend class DictionaryElementsAccessor;
|
|
friend class JSReceiver;
|
|
friend class Object;
|
|
|
|
// Used from Object::GetProperty().
|
|
static Handle<Object> GetPropertyWithFailedAccessCheck(
|
|
Handle<JSObject> object,
|
|
Handle<Object> receiver,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
PropertyAttributes* attributes);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
|
|
Object* structure,
|
|
uint32_t index,
|
|
Object* holder);
|
|
MUST_USE_RESULT PropertyAttributes GetElementAttributeWithInterceptor(
|
|
JSReceiver* receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
MUST_USE_RESULT PropertyAttributes GetElementAttributeWithoutInterceptor(
|
|
JSReceiver* receiver,
|
|
uint32_t index,
|
|
bool continue_search);
|
|
static Handle<Object> SetElementWithCallback(
|
|
Handle<JSObject> object,
|
|
Handle<Object> structure,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
Handle<JSObject> holder,
|
|
StrictModeFlag strict_mode);
|
|
MUST_USE_RESULT MaybeObject* SetElementWithInterceptor(
|
|
uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor(
|
|
uint32_t index,
|
|
Object* value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool check_prototype,
|
|
SetPropertyMode set_mode);
|
|
MUST_USE_RESULT MaybeObject* SetElementWithCallbackSetterInPrototypes(
|
|
uint32_t index,
|
|
Object* value,
|
|
bool* found,
|
|
StrictModeFlag strict_mode);
|
|
|
|
// Searches the prototype chain for property 'name'. If it is found and
|
|
// has a setter, invoke it and set '*done' to true. If it is found and is
|
|
// read-only, reject and set '*done' to true. Otherwise, set '*done' to
|
|
// false. Can throw and return an empty handle with '*done==true'.
|
|
static Handle<Object> SetPropertyViaPrototypes(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool* done);
|
|
static Handle<Object> SetPropertyPostInterceptor(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode);
|
|
static Handle<Object> SetPropertyUsingTransition(
|
|
Handle<JSObject> object,
|
|
LookupResult* lookup,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes);
|
|
static Handle<Object> SetPropertyWithFailedAccessCheck(
|
|
Handle<JSObject> object,
|
|
LookupResult* result,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
bool check_prototype,
|
|
StrictModeFlag strict_mode);
|
|
|
|
// Add a property to an object.
|
|
static Handle<Object> AddProperty(
|
|
Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED,
|
|
ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK,
|
|
ValueType value_type = OPTIMAL_REPRESENTATION,
|
|
StoreMode mode = ALLOW_AS_CONSTANT,
|
|
TransitionFlag flag = INSERT_TRANSITION);
|
|
|
|
// Add a constant function property to a fast-case object.
|
|
// This leaves a CONSTANT_TRANSITION in the old map, and
|
|
// if it is called on a second object with this map, a
|
|
// normal property is added instead, with a map transition.
|
|
// This avoids the creation of many maps with the same constant
|
|
// function, all orphaned.
|
|
static void AddConstantProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> constant,
|
|
PropertyAttributes attributes,
|
|
TransitionFlag flag);
|
|
|
|
// Add a property to a fast-case object.
|
|
static void AddFastProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StoreFromKeyed store_mode,
|
|
ValueType value_type,
|
|
TransitionFlag flag);
|
|
|
|
// Add a property to a fast-case object using a map transition to
|
|
// new_map.
|
|
static void AddFastPropertyUsingMap(Handle<JSObject> object,
|
|
Handle<Map> new_map,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
int field_index,
|
|
Representation representation);
|
|
|
|
// Add a property to a slow-case object.
|
|
static void AddSlowProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes);
|
|
|
|
static Handle<Object> DeleteProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeletePropertyPostInterceptor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeletePropertyWithInterceptor(Handle<JSObject> object,
|
|
Handle<Name> name);
|
|
|
|
// Deletes the named property in a normalized object.
|
|
static Handle<Object> DeleteNormalizedProperty(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
|
|
static Handle<Object> DeleteElement(Handle<JSObject> object,
|
|
uint32_t index,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeleteElementWithInterceptor(Handle<JSObject> object,
|
|
uint32_t index);
|
|
|
|
bool ReferencesObjectFromElements(FixedArray* elements,
|
|
ElementsKind kind,
|
|
Object* object);
|
|
|
|
// Returns true if most of the elements backing storage is used.
|
|
bool HasDenseElements();
|
|
|
|
// Gets the current elements capacity and the number of used elements.
|
|
void GetElementsCapacityAndUsage(int* capacity, int* used);
|
|
|
|
bool CanSetCallback(Name* name);
|
|
static void SetElementCallback(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void SetPropertyCallback(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> structure,
|
|
PropertyAttributes attributes);
|
|
static void DefineElementAccessor(Handle<JSObject> object,
|
|
uint32_t index,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control);
|
|
static Handle<AccessorPair> CreateAccessorPairFor(Handle<JSObject> object,
|
|
Handle<Name> name);
|
|
static void DefinePropertyAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
Handle<Object> getter,
|
|
Handle<Object> setter,
|
|
PropertyAttributes attributes,
|
|
v8::AccessControl access_control);
|
|
|
|
// Try to define a single accessor paying attention to map transitions.
|
|
// Returns false if this was not possible and we have to use the slow case.
|
|
static bool DefineFastAccessor(Handle<JSObject> object,
|
|
Handle<Name> name,
|
|
AccessorComponent component,
|
|
Handle<Object> accessor,
|
|
PropertyAttributes attributes);
|
|
|
|
enum InitializeHiddenProperties {
|
|
CREATE_NEW_IF_ABSENT,
|
|
ONLY_RETURN_INLINE_VALUE
|
|
};
|
|
|
|
// If create_if_absent is true, return the hash table backing store
|
|
// for hidden properties. If there is no backing store, allocate one.
|
|
// If create_if_absent is false, return the hash table backing store
|
|
// or the inline stored identity hash, whatever is found.
|
|
MUST_USE_RESULT MaybeObject* GetHiddenPropertiesHashTable(
|
|
InitializeHiddenProperties init_option);
|
|
// Set the hidden property backing store to either a hash table or
|
|
// the inline-stored identity hash.
|
|
MUST_USE_RESULT MaybeObject* SetHiddenPropertiesHashTable(
|
|
Object* value);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
|
|
};
|
|
|
|
|
|
// Common superclass for FixedArrays that allow implementations to share
|
|
// common accessors and some code paths.
|
|
class FixedArrayBase: public HeapObject {
|
|
public:
|
|
// [length]: length of the array.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
inline static FixedArrayBase* cast(Object* object);
|
|
|
|
// Layout description.
|
|
// Length is smi tagged when it is stored.
|
|
static const int kLengthOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kLengthOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class FixedDoubleArray;
|
|
class IncrementalMarking;
|
|
|
|
|
|
// FixedArray describes fixed-sized arrays with element type Object*.
|
|
class FixedArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline Object* get(int index);
|
|
// Setter that uses write barrier.
|
|
inline void set(int index, Object* value);
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Setter that doesn't need write barrier.
|
|
inline void set(int index, Smi* value);
|
|
// Setter with explicit barrier mode.
|
|
inline void set(int index, Object* value, WriteBarrierMode mode);
|
|
|
|
// Setters for frequently used oddballs located in old space.
|
|
inline void set_undefined(int index);
|
|
inline void set_null(int index);
|
|
inline void set_the_hole(int index);
|
|
|
|
inline Object** GetFirstElementAddress();
|
|
inline bool ContainsOnlySmisOrHoles();
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline Object** data_start();
|
|
|
|
// Copy operations.
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
MUST_USE_RESULT MaybeObject* CopySize(int new_length,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Add the elements of a JSArray to this FixedArray.
|
|
MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
|
|
|
|
// Compute the union of this and other.
|
|
MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
|
|
|
|
// Copy a sub array from the receiver to dest.
|
|
void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
|
|
|
|
// Garbage collection support.
|
|
static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
// Casting.
|
|
static inline FixedArray* cast(Object* obj);
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 128 * MB * kPointerSize;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedArray)
|
|
DECLARE_VERIFIER(FixedArray)
|
|
#ifdef DEBUG
|
|
// Checks if two FixedArrays have identical contents.
|
|
bool IsEqualTo(FixedArray* other);
|
|
#endif
|
|
|
|
// Swap two elements in a pair of arrays. If this array and the
|
|
// numbers array are the same object, the elements are only swapped
|
|
// once.
|
|
void SwapPairs(FixedArray* numbers, int i, int j);
|
|
|
|
// Sort prefix of this array and the numbers array as pairs wrt. the
|
|
// numbers. If the numbers array and the this array are the same
|
|
// object, the prefix of this array is sorted.
|
|
void SortPairs(FixedArray* numbers, uint32_t len);
|
|
|
|
class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
|
|
}
|
|
};
|
|
|
|
protected:
|
|
// Set operation on FixedArray without using write barriers. Can
|
|
// only be used for storing old space objects or smis.
|
|
static inline void NoWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
// Set operation on FixedArray without incremental write barrier. Can
|
|
// only be used if the object is guaranteed to be white (whiteness witness
|
|
// is present).
|
|
static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
|
|
int index,
|
|
Object* value);
|
|
|
|
private:
|
|
STATIC_CHECK(kHeaderSize == Internals::kFixedArrayHeaderSize);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
|
|
};
|
|
|
|
|
|
// FixedDoubleArray describes fixed-sized arrays with element type double.
|
|
class FixedDoubleArray: public FixedArrayBase {
|
|
public:
|
|
// Setter and getter for elements.
|
|
inline double get_scalar(int index);
|
|
inline int64_t get_representation(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, double value);
|
|
inline void set_the_hole(int index);
|
|
|
|
// Checking for the hole.
|
|
inline bool is_the_hole(int index);
|
|
|
|
// Copy operations
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
|
|
// Garbage collection support.
|
|
inline static int SizeFor(int length) {
|
|
return kHeaderSize + length * kDoubleSize;
|
|
}
|
|
|
|
// Gives access to raw memory which stores the array's data.
|
|
inline double* data_start();
|
|
|
|
// Code Generation support.
|
|
static int OffsetOfElementAt(int index) { return SizeFor(index); }
|
|
|
|
inline static bool is_the_hole_nan(double value);
|
|
inline static double hole_nan_as_double();
|
|
inline static double canonical_not_the_hole_nan_as_double();
|
|
|
|
// Casting.
|
|
static inline FixedDoubleArray* cast(Object* obj);
|
|
|
|
// Maximal allowed size, in bytes, of a single FixedDoubleArray.
|
|
// Prevents overflowing size computations, as well as extreme memory
|
|
// consumption.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximally allowed length of a FixedArray.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FixedDoubleArray)
|
|
DECLARE_VERIFIER(FixedDoubleArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
|
|
};
|
|
|
|
|
|
// ConstantPoolArray describes a fixed-sized array containing constant pool
|
|
// entires.
|
|
// The format of the pool is:
|
|
// [0]: Field holding the first index which is a pointer entry
|
|
// [1]: Field holding the first index which is a int32 entry
|
|
// [2] ... [first_ptr_index() - 1]: 64 bit entries
|
|
// [first_ptr_index()] ... [first_int32_index() - 1]: pointer entries
|
|
// [first_int32_index()] ... [length - 1]: 32 bit entries
|
|
class ConstantPoolArray: public FixedArrayBase {
|
|
public:
|
|
// Getters for the field storing the first index for different type entries.
|
|
inline int first_ptr_index();
|
|
inline int first_int64_index();
|
|
inline int first_int32_index();
|
|
|
|
// Getters for counts of different type entries.
|
|
inline int count_of_ptr_entries();
|
|
inline int count_of_int64_entries();
|
|
inline int count_of_int32_entries();
|
|
|
|
// Setter and getter for pool elements.
|
|
inline Object* get_ptr_entry(int index);
|
|
inline int64_t get_int64_entry(int index);
|
|
inline int32_t get_int32_entry(int index);
|
|
inline double get_int64_entry_as_double(int index);
|
|
|
|
inline void set(int index, Object* value);
|
|
inline void set(int index, int64_t value);
|
|
inline void set(int index, double value);
|
|
inline void set(int index, int32_t value);
|
|
|
|
// Set up initial state.
|
|
inline void SetEntryCounts(int number_of_int64_entries,
|
|
int number_of_ptr_entries,
|
|
int number_of_int32_entries);
|
|
|
|
// Copy operations
|
|
MUST_USE_RESULT inline MaybeObject* Copy();
|
|
|
|
// Garbage collection support.
|
|
inline static int SizeFor(int number_of_int64_entries,
|
|
int number_of_ptr_entries,
|
|
int number_of_int32_entries) {
|
|
return RoundUp(OffsetAt(number_of_int64_entries,
|
|
number_of_ptr_entries,
|
|
number_of_int32_entries),
|
|
kPointerSize);
|
|
}
|
|
|
|
// Code Generation support.
|
|
inline int OffsetOfElementAt(int index) {
|
|
ASSERT(index < length());
|
|
if (index >= first_int32_index()) {
|
|
return OffsetAt(count_of_int64_entries(), count_of_ptr_entries(),
|
|
index - first_int32_index());
|
|
} else if (index >= first_ptr_index()) {
|
|
return OffsetAt(count_of_int64_entries(), index - first_ptr_index(), 0);
|
|
} else {
|
|
return OffsetAt(index, 0, 0);
|
|
}
|
|
}
|
|
|
|
// Casting.
|
|
static inline ConstantPoolArray* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kFirstPointerIndexOffset = FixedArray::kHeaderSize;
|
|
static const int kFirstInt32IndexOffset =
|
|
kFirstPointerIndexOffset + kPointerSize;
|
|
static const int kFirstOffset = kFirstInt32IndexOffset + kPointerSize;
|
|
|
|
// Dispatched behavior.
|
|
void ConstantPoolIterateBody(ObjectVisitor* v);
|
|
|
|
DECLARE_PRINTER(ConstantPoolArray)
|
|
DECLARE_VERIFIER(ConstantPoolArray)
|
|
|
|
private:
|
|
inline void set_first_ptr_index(int value);
|
|
inline void set_first_int32_index(int value);
|
|
|
|
inline static int OffsetAt(int number_of_int64_entries,
|
|
int number_of_ptr_entries,
|
|
int number_of_int32_entries) {
|
|
return kFirstOffset
|
|
+ (number_of_int64_entries * kInt64Size)
|
|
+ (number_of_ptr_entries * kPointerSize)
|
|
+ (number_of_int32_entries * kInt32Size);
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolArray);
|
|
};
|
|
|
|
|
|
// DescriptorArrays are fixed arrays used to hold instance descriptors.
|
|
// The format of the these objects is:
|
|
// [0]: Number of descriptors
|
|
// [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
|
|
// [0]: pointer to fixed array with enum cache
|
|
// [1]: either Smi(0) or pointer to fixed array with indices
|
|
// [2]: first key
|
|
// [2 + number of descriptors * kDescriptorSize]: start of slack
|
|
class DescriptorArray: public FixedArray {
|
|
public:
|
|
// WhitenessWitness is used to prove that a descriptor array is white
|
|
// (unmarked), so incremental write barriers can be skipped because the
|
|
// marking invariant cannot be broken and slots pointing into evacuation
|
|
// candidates will be discovered when the object is scanned. A witness is
|
|
// always stack-allocated right after creating an array. By allocating a
|
|
// witness, incremental marking is globally disabled. The witness is then
|
|
// passed along wherever needed to statically prove that the array is known to
|
|
// be white.
|
|
class WhitenessWitness {
|
|
public:
|
|
inline explicit WhitenessWitness(FixedArray* array);
|
|
inline ~WhitenessWitness();
|
|
|
|
private:
|
|
IncrementalMarking* marking_;
|
|
};
|
|
|
|
// Returns true for both shared empty_descriptor_array and for smis, which the
|
|
// map uses to encode additional bit fields when the descriptor array is not
|
|
// yet used.
|
|
inline bool IsEmpty();
|
|
|
|
// Returns the number of descriptors in the array.
|
|
int number_of_descriptors() {
|
|
ASSERT(length() >= kFirstIndex || IsEmpty());
|
|
int len = length();
|
|
return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
|
|
}
|
|
|
|
int number_of_descriptors_storage() {
|
|
int len = length();
|
|
return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
|
|
}
|
|
|
|
int NumberOfSlackDescriptors() {
|
|
return number_of_descriptors_storage() - number_of_descriptors();
|
|
}
|
|
|
|
inline void SetNumberOfDescriptors(int number_of_descriptors);
|
|
inline int number_of_entries() { return number_of_descriptors(); }
|
|
|
|
bool HasEnumCache() {
|
|
return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
|
|
}
|
|
|
|
void CopyEnumCacheFrom(DescriptorArray* array) {
|
|
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
|
|
}
|
|
|
|
FixedArray* GetEnumCache() {
|
|
ASSERT(HasEnumCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
|
|
}
|
|
|
|
bool HasEnumIndicesCache() {
|
|
if (IsEmpty()) return false;
|
|
Object* object = get(kEnumCacheIndex);
|
|
if (object->IsSmi()) return false;
|
|
FixedArray* bridge = FixedArray::cast(object);
|
|
return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
|
|
}
|
|
|
|
FixedArray* GetEnumIndicesCache() {
|
|
ASSERT(HasEnumIndicesCache());
|
|
FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
|
|
return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
|
|
}
|
|
|
|
Object** GetEnumCacheSlot() {
|
|
ASSERT(HasEnumCache());
|
|
return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
|
|
kEnumCacheOffset);
|
|
}
|
|
|
|
void ClearEnumCache();
|
|
|
|
// Initialize or change the enum cache,
|
|
// using the supplied storage for the small "bridge".
|
|
void SetEnumCache(FixedArray* bridge_storage,
|
|
FixedArray* new_cache,
|
|
Object* new_index_cache);
|
|
|
|
// Accessors for fetching instance descriptor at descriptor number.
|
|
inline Name* GetKey(int descriptor_number);
|
|
inline Object** GetKeySlot(int descriptor_number);
|
|
inline Object* GetValue(int descriptor_number);
|
|
inline Object** GetValueSlot(int descriptor_number);
|
|
inline Object** GetDescriptorStartSlot(int descriptor_number);
|
|
inline Object** GetDescriptorEndSlot(int descriptor_number);
|
|
inline PropertyDetails GetDetails(int descriptor_number);
|
|
inline PropertyType GetType(int descriptor_number);
|
|
inline int GetFieldIndex(int descriptor_number);
|
|
inline Object* GetConstant(int descriptor_number);
|
|
inline Object* GetCallbacksObject(int descriptor_number);
|
|
inline AccessorDescriptor* GetCallbacks(int descriptor_number);
|
|
|
|
inline Name* GetSortedKey(int descriptor_number);
|
|
inline int GetSortedKeyIndex(int descriptor_number);
|
|
inline void SetSortedKey(int pointer, int descriptor_number);
|
|
inline void InitializeRepresentations(Representation representation);
|
|
inline void SetRepresentation(int descriptor_number,
|
|
Representation representation);
|
|
|
|
// Accessor for complete descriptor.
|
|
inline void Get(int descriptor_number, Descriptor* desc);
|
|
inline void Set(int descriptor_number,
|
|
Descriptor* desc,
|
|
const WhitenessWitness&);
|
|
inline void Set(int descriptor_number, Descriptor* desc);
|
|
|
|
// Append automatically sets the enumeration index. This should only be used
|
|
// to add descriptors in bulk at the end, followed by sorting the descriptor
|
|
// array.
|
|
inline void Append(Descriptor* desc, const WhitenessWitness&);
|
|
inline void Append(Descriptor* desc);
|
|
|
|
// Transfer a complete descriptor from the src descriptor array to this
|
|
// descriptor array.
|
|
void CopyFrom(int dst_index,
|
|
DescriptorArray* src,
|
|
int src_index,
|
|
const WhitenessWitness&);
|
|
static Handle<DescriptorArray> Merge(Handle<DescriptorArray> desc,
|
|
int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
Handle<DescriptorArray> other);
|
|
MUST_USE_RESULT MaybeObject* Merge(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
DescriptorArray* other);
|
|
|
|
bool IsMoreGeneralThan(int verbatim,
|
|
int valid,
|
|
int new_size,
|
|
DescriptorArray* other);
|
|
|
|
MUST_USE_RESULT MaybeObject* CopyUpTo(int enumeration_index) {
|
|
return CopyUpToAddAttributes(enumeration_index, NONE);
|
|
}
|
|
|
|
static Handle<DescriptorArray> CopyUpToAddAttributes(
|
|
Handle<DescriptorArray> desc,
|
|
int enumeration_index,
|
|
PropertyAttributes attributes);
|
|
MUST_USE_RESULT MaybeObject* CopyUpToAddAttributes(
|
|
int enumeration_index,
|
|
PropertyAttributes attributes);
|
|
|
|
// Sort the instance descriptors by the hash codes of their keys.
|
|
void Sort();
|
|
|
|
// Search the instance descriptors for given name.
|
|
INLINE(int Search(Name* name, int number_of_own_descriptors));
|
|
|
|
// As the above, but uses DescriptorLookupCache and updates it when
|
|
// necessary.
|
|
INLINE(int SearchWithCache(Name* name, Map* map));
|
|
|
|
// Allocates a DescriptorArray, but returns the singleton
|
|
// empty descriptor array object if number_of_descriptors is 0.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int number_of_descriptors,
|
|
int slack = 0);
|
|
|
|
// Casting.
|
|
static inline DescriptorArray* cast(Object* obj);
|
|
|
|
// Constant for denoting key was not found.
|
|
static const int kNotFound = -1;
|
|
|
|
static const int kDescriptorLengthIndex = 0;
|
|
static const int kEnumCacheIndex = 1;
|
|
static const int kFirstIndex = 2;
|
|
|
|
// The length of the "bridge" to the enum cache.
|
|
static const int kEnumCacheBridgeLength = 2;
|
|
static const int kEnumCacheBridgeCacheIndex = 0;
|
|
static const int kEnumCacheBridgeIndicesCacheIndex = 1;
|
|
|
|
// Layout description.
|
|
static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
|
|
static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
|
|
static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
|
|
|
|
// Layout description for the bridge array.
|
|
static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
|
|
|
|
// Layout of descriptor.
|
|
static const int kDescriptorKey = 0;
|
|
static const int kDescriptorDetails = 1;
|
|
static const int kDescriptorValue = 2;
|
|
static const int kDescriptorSize = 3;
|
|
|
|
#ifdef OBJECT_PRINT
|
|
// Print all the descriptors.
|
|
void PrintDescriptors(FILE* out = stdout);
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
// Is the descriptor array sorted and without duplicates?
|
|
bool IsSortedNoDuplicates(int valid_descriptors = -1);
|
|
|
|
// Is the descriptor array consistent with the back pointers in targets?
|
|
bool IsConsistentWithBackPointers(Map* current_map);
|
|
|
|
// Are two DescriptorArrays equal?
|
|
bool IsEqualTo(DescriptorArray* other);
|
|
#endif
|
|
|
|
// The maximum number of descriptors we want in a descriptor array (should
|
|
// fit in a page).
|
|
static const int kMaxNumberOfDescriptors = 1024 + 512;
|
|
|
|
// Returns the fixed array length required to hold number_of_descriptors
|
|
// descriptors.
|
|
static int LengthFor(int number_of_descriptors) {
|
|
return ToKeyIndex(number_of_descriptors);
|
|
}
|
|
|
|
private:
|
|
// An entry in a DescriptorArray, represented as an (array, index) pair.
|
|
class Entry {
|
|
public:
|
|
inline explicit Entry(DescriptorArray* descs, int index) :
|
|
descs_(descs), index_(index) { }
|
|
|
|
inline PropertyType type() { return descs_->GetType(index_); }
|
|
inline Object* GetCallbackObject() { return descs_->GetValue(index_); }
|
|
|
|
private:
|
|
DescriptorArray* descs_;
|
|
int index_;
|
|
};
|
|
|
|
// Conversion from descriptor number to array indices.
|
|
static int ToKeyIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorKey;
|
|
}
|
|
|
|
static int ToDetailsIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorDetails;
|
|
}
|
|
|
|
static int ToValueIndex(int descriptor_number) {
|
|
return kFirstIndex +
|
|
(descriptor_number * kDescriptorSize) +
|
|
kDescriptorValue;
|
|
}
|
|
|
|
// Swap first and second descriptor.
|
|
inline void SwapSortedKeys(int first, int second);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
|
|
};
|
|
|
|
|
|
enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
|
|
|
|
template<SearchMode search_mode, typename T>
|
|
inline int LinearSearch(T* array, Name* name, int len, int valid_entries);
|
|
|
|
|
|
template<SearchMode search_mode, typename T>
|
|
inline int Search(T* array, Name* name, int valid_entries = 0);
|
|
|
|
|
|
// HashTable is a subclass of FixedArray that implements a hash table
|
|
// that uses open addressing and quadratic probing.
|
|
//
|
|
// In order for the quadratic probing to work, elements that have not
|
|
// yet been used and elements that have been deleted are
|
|
// distinguished. Probing continues when deleted elements are
|
|
// encountered and stops when unused elements are encountered.
|
|
//
|
|
// - Elements with key == undefined have not been used yet.
|
|
// - Elements with key == the_hole have been deleted.
|
|
//
|
|
// The hash table class is parameterized with a Shape and a Key.
|
|
// Shape must be a class with the following interface:
|
|
// class ExampleShape {
|
|
// public:
|
|
// // Tells whether key matches other.
|
|
// static bool IsMatch(Key key, Object* other);
|
|
// // Returns the hash value for key.
|
|
// static uint32_t Hash(Key key);
|
|
// // Returns the hash value for object.
|
|
// static uint32_t HashForObject(Key key, Object* object);
|
|
// // Convert key to an object.
|
|
// static inline Object* AsObject(Heap* heap, Key key);
|
|
// // The prefix size indicates number of elements in the beginning
|
|
// // of the backing storage.
|
|
// static const int kPrefixSize = ..;
|
|
// // The Element size indicates number of elements per entry.
|
|
// static const int kEntrySize = ..;
|
|
// };
|
|
// The prefix size indicates an amount of memory in the
|
|
// beginning of the backing storage that can be used for non-element
|
|
// information by subclasses.
|
|
|
|
template<typename Key>
|
|
class BaseShape {
|
|
public:
|
|
static const bool UsesSeed = false;
|
|
static uint32_t Hash(Key key) { return 0; }
|
|
static uint32_t SeededHash(Key key, uint32_t seed) {
|
|
ASSERT(UsesSeed);
|
|
return Hash(key);
|
|
}
|
|
static uint32_t HashForObject(Key key, Object* object) { return 0; }
|
|
static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
|
|
ASSERT(UsesSeed);
|
|
return HashForObject(key, object);
|
|
}
|
|
};
|
|
|
|
template<typename Shape, typename Key>
|
|
class HashTable: public FixedArray {
|
|
public:
|
|
enum MinimumCapacity {
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
USE_CUSTOM_MINIMUM_CAPACITY
|
|
};
|
|
|
|
// Wrapper methods
|
|
inline uint32_t Hash(Key key) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHash(key,
|
|
GetHeap()->HashSeed());
|
|
} else {
|
|
return Shape::Hash(key);
|
|
}
|
|
}
|
|
|
|
inline uint32_t HashForObject(Key key, Object* object) {
|
|
if (Shape::UsesSeed) {
|
|
return Shape::SeededHashForObject(key,
|
|
GetHeap()->HashSeed(), object);
|
|
} else {
|
|
return Shape::HashForObject(key, object);
|
|
}
|
|
}
|
|
|
|
// Returns the number of elements in the hash table.
|
|
int NumberOfElements() {
|
|
return Smi::cast(get(kNumberOfElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the number of deleted elements in the hash table.
|
|
int NumberOfDeletedElements() {
|
|
return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
|
|
}
|
|
|
|
// Returns the capacity of the hash table.
|
|
int Capacity() {
|
|
return Smi::cast(get(kCapacityIndex))->value();
|
|
}
|
|
|
|
// ElementAdded should be called whenever an element is added to a
|
|
// hash table.
|
|
void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
|
|
|
|
// ElementRemoved should be called whenever an element is removed from
|
|
// a hash table.
|
|
void ElementRemoved() {
|
|
SetNumberOfElements(NumberOfElements() - 1);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
|
|
}
|
|
void ElementsRemoved(int n) {
|
|
SetNumberOfElements(NumberOfElements() - n);
|
|
SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
|
|
}
|
|
|
|
// Returns a new HashTable object. Might return Failure.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(
|
|
Heap* heap,
|
|
int at_least_space_for,
|
|
MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Computes the required capacity for a table holding the given
|
|
// number of elements. May be more than HashTable::kMaxCapacity.
|
|
static int ComputeCapacity(int at_least_space_for);
|
|
|
|
// Returns the key at entry.
|
|
Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
|
|
|
|
// Tells whether k is a real key. The hole and undefined are not allowed
|
|
// as keys and can be used to indicate missing or deleted elements.
|
|
bool IsKey(Object* k) {
|
|
return !k->IsTheHole() && !k->IsUndefined();
|
|
}
|
|
|
|
// Garbage collection support.
|
|
void IteratePrefix(ObjectVisitor* visitor);
|
|
void IterateElements(ObjectVisitor* visitor);
|
|
|
|
// Casting.
|
|
static inline HashTable* cast(Object* obj);
|
|
|
|
// Compute the probe offset (quadratic probing).
|
|
INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
|
|
return (n + n * n) >> 1;
|
|
}
|
|
|
|
static const int kNumberOfElementsIndex = 0;
|
|
static const int kNumberOfDeletedElementsIndex = 1;
|
|
static const int kCapacityIndex = 2;
|
|
static const int kPrefixStartIndex = 3;
|
|
static const int kElementsStartIndex =
|
|
kPrefixStartIndex + Shape::kPrefixSize;
|
|
static const int kEntrySize = Shape::kEntrySize;
|
|
static const int kElementsStartOffset =
|
|
kHeaderSize + kElementsStartIndex * kPointerSize;
|
|
static const int kCapacityOffset =
|
|
kHeaderSize + kCapacityIndex * kPointerSize;
|
|
|
|
// Constant used for denoting a absent entry.
|
|
static const int kNotFound = -1;
|
|
|
|
// Maximal capacity of HashTable. Based on maximal length of underlying
|
|
// FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
|
|
// cannot overflow.
|
|
static const int kMaxCapacity =
|
|
(FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
|
|
|
|
// Find entry for key otherwise return kNotFound.
|
|
inline int FindEntry(Key key);
|
|
int FindEntry(Isolate* isolate, Key key);
|
|
|
|
// Rehashes the table in-place.
|
|
void Rehash(Key key);
|
|
|
|
protected:
|
|
// Find the entry at which to insert element with the given key that
|
|
// has the given hash value.
|
|
uint32_t FindInsertionEntry(uint32_t hash);
|
|
|
|
// Returns the index for an entry (of the key)
|
|
static inline int EntryToIndex(int entry) {
|
|
return (entry * kEntrySize) + kElementsStartIndex;
|
|
}
|
|
|
|
// Update the number of elements in the hash table.
|
|
void SetNumberOfElements(int nof) {
|
|
set(kNumberOfElementsIndex, Smi::FromInt(nof));
|
|
}
|
|
|
|
// Update the number of deleted elements in the hash table.
|
|
void SetNumberOfDeletedElements(int nod) {
|
|
set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
|
|
}
|
|
|
|
// Sets the capacity of the hash table.
|
|
void SetCapacity(int capacity) {
|
|
// To scale a computed hash code to fit within the hash table, we
|
|
// use bit-wise AND with a mask, so the capacity must be positive
|
|
// and non-zero.
|
|
ASSERT(capacity > 0);
|
|
ASSERT(capacity <= kMaxCapacity);
|
|
set(kCapacityIndex, Smi::FromInt(capacity));
|
|
}
|
|
|
|
|
|
// Returns probe entry.
|
|
static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
|
|
ASSERT(IsPowerOf2(size));
|
|
return (hash + GetProbeOffset(number)) & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
|
|
return hash & (size - 1);
|
|
}
|
|
|
|
inline static uint32_t NextProbe(
|
|
uint32_t last, uint32_t number, uint32_t size) {
|
|
return (last + number) & (size - 1);
|
|
}
|
|
|
|
// Returns _expected_ if one of entries given by the first _probe_ probes is
|
|
// equal to _expected_. Otherwise, returns the entry given by the probe
|
|
// number _probe_.
|
|
uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
|
|
|
|
void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
|
|
|
|
// Rehashes this hash-table into the new table.
|
|
MUST_USE_RESULT MaybeObject* Rehash(HashTable* new_table, Key key);
|
|
|
|
// Attempt to shrink hash table after removal of key.
|
|
MUST_USE_RESULT MaybeObject* Shrink(Key key);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
MUST_USE_RESULT MaybeObject* EnsureCapacity(
|
|
int n,
|
|
Key key,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
};
|
|
|
|
|
|
// HashTableKey is an abstract superclass for virtual key behavior.
|
|
class HashTableKey {
|
|
public:
|
|
// Returns whether the other object matches this key.
|
|
virtual bool IsMatch(Object* other) = 0;
|
|
// Returns the hash value for this key.
|
|
virtual uint32_t Hash() = 0;
|
|
// Returns the hash value for object.
|
|
virtual uint32_t HashForObject(Object* key) = 0;
|
|
// Returns the key object for storing into the hash table.
|
|
// If allocations fails a failure object is returned.
|
|
MUST_USE_RESULT virtual MaybeObject* AsObject(Heap* heap) = 0;
|
|
// Required.
|
|
virtual ~HashTableKey() {}
|
|
};
|
|
|
|
|
|
class StringTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 1;
|
|
};
|
|
|
|
class SeqOneByteString;
|
|
|
|
// StringTable.
|
|
//
|
|
// No special elements in the prefix and the element size is 1
|
|
// because only the string itself (the key) needs to be stored.
|
|
class StringTable: public HashTable<StringTableShape, HashTableKey*> {
|
|
public:
|
|
// Find string in the string table. If it is not there yet, it is
|
|
// added. The return value is the string table which might have
|
|
// been enlarged. If the return value is not a failure, the string
|
|
// pointer *s is set to the string found.
|
|
MUST_USE_RESULT MaybeObject* LookupUtf8String(
|
|
Vector<const char> str,
|
|
Object** s);
|
|
MUST_USE_RESULT MaybeObject* LookupOneByteString(
|
|
Vector<const uint8_t> str,
|
|
Object** s);
|
|
MUST_USE_RESULT MaybeObject* LookupSubStringOneByteString(
|
|
Handle<SeqOneByteString> str,
|
|
int from,
|
|
int length,
|
|
Object** s);
|
|
MUST_USE_RESULT MaybeObject* LookupTwoByteString(
|
|
Vector<const uc16> str,
|
|
Object** s);
|
|
MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
|
|
|
|
// Looks up a string that is equal to the given string and returns
|
|
// true if it is found, assigning the string to the given output
|
|
// parameter.
|
|
bool LookupStringIfExists(String* str, String** result);
|
|
bool LookupTwoCharsStringIfExists(uint16_t c1, uint16_t c2, String** result);
|
|
|
|
// Casting.
|
|
static inline StringTable* cast(Object* obj);
|
|
|
|
private:
|
|
MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
|
|
|
|
template <bool seq_ascii> friend class JsonParser;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
|
|
};
|
|
|
|
|
|
class MapCacheShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
// MapCache.
|
|
//
|
|
// Maps keys that are a fixed array of unique names to a map.
|
|
// Used for canonicalize maps for object literals.
|
|
class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
|
|
public:
|
|
// Find cached value for a name key, otherwise return null.
|
|
Object* Lookup(FixedArray* key);
|
|
MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
|
|
static inline MapCache* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
|
|
};
|
|
|
|
|
|
template <typename Shape, typename Key>
|
|
class Dictionary: public HashTable<Shape, Key> {
|
|
public:
|
|
static inline Dictionary<Shape, Key>* cast(Object* obj) {
|
|
return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
|
|
}
|
|
|
|
// Returns the value at entry.
|
|
Object* ValueAt(int entry) {
|
|
return this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 1);
|
|
}
|
|
|
|
// Set the value for entry.
|
|
void ValueAtPut(int entry, Object* value) {
|
|
this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 1, value);
|
|
}
|
|
|
|
// Returns the property details for the property at entry.
|
|
PropertyDetails DetailsAt(int entry) {
|
|
ASSERT(entry >= 0); // Not found is -1, which is not caught by get().
|
|
return PropertyDetails(
|
|
Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
|
|
}
|
|
|
|
// Set the details for entry.
|
|
void DetailsAtPut(int entry, PropertyDetails value) {
|
|
this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
|
|
}
|
|
|
|
// Sorting support
|
|
void CopyValuesTo(FixedArray* elements);
|
|
|
|
// Delete a property from the dictionary.
|
|
Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
|
|
|
|
// Attempt to shrink the dictionary after deletion of key.
|
|
MUST_USE_RESULT MaybeObject* Shrink(Key key);
|
|
|
|
// Returns the number of elements in the dictionary filtering out properties
|
|
// with the specified attributes.
|
|
int NumberOfElementsFilterAttributes(PropertyAttributes filter);
|
|
|
|
// Returns the number of enumerable elements in the dictionary.
|
|
int NumberOfEnumElements();
|
|
|
|
enum SortMode { UNSORTED, SORTED };
|
|
// Copies keys to preallocated fixed array.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
// Fill in details for properties into storage.
|
|
void CopyKeysTo(FixedArray* storage,
|
|
int index,
|
|
PropertyAttributes filter,
|
|
SortMode sort_mode);
|
|
|
|
// Accessors for next enumeration index.
|
|
void SetNextEnumerationIndex(int index) {
|
|
ASSERT(index != 0);
|
|
this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
|
|
}
|
|
|
|
int NextEnumerationIndex() {
|
|
return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
|
|
}
|
|
|
|
// Returns a new array for dictionary usage. Might return Failure.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(
|
|
Heap* heap,
|
|
int at_least_space_for,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Ensure enough space for n additional elements.
|
|
MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
void Print(FILE* out = stdout);
|
|
#endif
|
|
// Returns the key (slow).
|
|
Object* SlowReverseLookup(Object* value);
|
|
|
|
// Sets the entry to (key, value) pair.
|
|
inline void SetEntry(int entry,
|
|
Object* key,
|
|
Object* value);
|
|
inline void SetEntry(int entry,
|
|
Object* key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
MUST_USE_RESULT MaybeObject* Add(Key key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
protected:
|
|
// Generic at put operation.
|
|
MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
|
|
|
|
// Add entry to dictionary.
|
|
MUST_USE_RESULT MaybeObject* AddEntry(Key key,
|
|
Object* value,
|
|
PropertyDetails details,
|
|
uint32_t hash);
|
|
|
|
// Generate new enumeration indices to avoid enumeration index overflow.
|
|
MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
|
|
static const int kMaxNumberKeyIndex =
|
|
HashTable<Shape, Key>::kPrefixStartIndex;
|
|
static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
|
|
};
|
|
|
|
|
|
class NameDictionaryShape : public BaseShape<Name*> {
|
|
public:
|
|
static inline bool IsMatch(Name* key, Object* other);
|
|
static inline uint32_t Hash(Name* key);
|
|
static inline uint32_t HashForObject(Name* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Name* key);
|
|
static const int kPrefixSize = 2;
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = true;
|
|
};
|
|
|
|
|
|
class NameDictionary: public Dictionary<NameDictionaryShape, Name*> {
|
|
public:
|
|
static inline NameDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<NameDictionary*>(obj);
|
|
}
|
|
|
|
// Copies enumerable keys to preallocated fixed array.
|
|
FixedArray* CopyEnumKeysTo(FixedArray* storage);
|
|
static void DoGenerateNewEnumerationIndices(
|
|
Handle<NameDictionary> dictionary);
|
|
|
|
// For transforming properties of a JSObject.
|
|
MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
|
|
JSObject* obj,
|
|
int unused_property_fields);
|
|
|
|
// Find entry for key, otherwise return kNotFound. Optimized version of
|
|
// HashTable::FindEntry.
|
|
int FindEntry(Name* key);
|
|
};
|
|
|
|
|
|
class NumberDictionaryShape : public BaseShape<uint32_t> {
|
|
public:
|
|
static inline bool IsMatch(uint32_t key, Object* other);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
uint32_t key);
|
|
static const int kEntrySize = 3;
|
|
static const bool kIsEnumerable = false;
|
|
};
|
|
|
|
|
|
class SeededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const bool UsesSeed = true;
|
|
static const int kPrefixSize = 2;
|
|
|
|
static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
|
|
static inline uint32_t SeededHashForObject(uint32_t key,
|
|
uint32_t seed,
|
|
Object* object);
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionaryShape : public NumberDictionaryShape {
|
|
public:
|
|
static const int kPrefixSize = 0;
|
|
|
|
static inline uint32_t Hash(uint32_t key);
|
|
static inline uint32_t HashForObject(uint32_t key, Object* object);
|
|
};
|
|
|
|
|
|
class SeededNumberDictionary
|
|
: public Dictionary<SeededNumberDictionaryShape, uint32_t> {
|
|
public:
|
|
static SeededNumberDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<SeededNumberDictionary*>(obj);
|
|
}
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
|
|
MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
|
|
Handle<SeededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
PropertyDetails details);
|
|
|
|
MUST_USE_RESULT MaybeObject* Set(uint32_t key,
|
|
Object* value,
|
|
PropertyDetails details);
|
|
|
|
void UpdateMaxNumberKey(uint32_t key);
|
|
|
|
// If slow elements are required we will never go back to fast-case
|
|
// for the elements kept in this dictionary. We require slow
|
|
// elements if an element has been added at an index larger than
|
|
// kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
|
|
// when defining a getter or setter with a number key.
|
|
inline bool requires_slow_elements();
|
|
inline void set_requires_slow_elements();
|
|
|
|
// Get the value of the max number key that has been added to this
|
|
// dictionary. max_number_key can only be called if
|
|
// requires_slow_elements returns false.
|
|
inline uint32_t max_number_key();
|
|
|
|
// Bit masks.
|
|
static const int kRequiresSlowElementsMask = 1;
|
|
static const int kRequiresSlowElementsTagSize = 1;
|
|
static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
|
|
};
|
|
|
|
|
|
class UnseededNumberDictionary
|
|
: public Dictionary<UnseededNumberDictionaryShape, uint32_t> {
|
|
public:
|
|
static UnseededNumberDictionary* cast(Object* obj) {
|
|
ASSERT(obj->IsDictionary());
|
|
return reinterpret_cast<UnseededNumberDictionary*>(obj);
|
|
}
|
|
|
|
// Type specific at put (default NONE attributes is used when adding).
|
|
MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
|
|
MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key, Object* value);
|
|
|
|
// Set an existing entry or add a new one if needed.
|
|
// Return the updated dictionary.
|
|
MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
|
|
Handle<UnseededNumberDictionary> dictionary,
|
|
uint32_t index,
|
|
Handle<Object> value);
|
|
|
|
MUST_USE_RESULT MaybeObject* Set(uint32_t key, Object* value);
|
|
};
|
|
|
|
|
|
template <int entrysize>
|
|
class ObjectHashTableShape : public BaseShape<Object*> {
|
|
public:
|
|
static inline bool IsMatch(Object* key, Object* other);
|
|
static inline uint32_t Hash(Object* key);
|
|
static inline uint32_t HashForObject(Object* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Object* key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = entrysize;
|
|
};
|
|
|
|
|
|
// ObjectHashSet holds keys that are arbitrary objects by using the identity
|
|
// hash of the key for hashing purposes.
|
|
class ObjectHashSet: public HashTable<ObjectHashTableShape<1>, Object*> {
|
|
public:
|
|
static inline ObjectHashSet* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<ObjectHashSet*>(obj);
|
|
}
|
|
|
|
// Looks up whether the given key is part of this hash set.
|
|
bool Contains(Object* key);
|
|
|
|
// Adds the given key to this hash set.
|
|
MUST_USE_RESULT MaybeObject* Add(Object* key);
|
|
|
|
// Removes the given key from this hash set.
|
|
MUST_USE_RESULT MaybeObject* Remove(Object* key);
|
|
};
|
|
|
|
|
|
// ObjectHashTable maps keys that are arbitrary objects to object values by
|
|
// using the identity hash of the key for hashing purposes.
|
|
class ObjectHashTable: public HashTable<ObjectHashTableShape<2>, Object*> {
|
|
public:
|
|
static inline ObjectHashTable* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<ObjectHashTable*>(obj);
|
|
}
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Object* key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key. Mapping a
|
|
// key to the hole value causes removal of the whole entry.
|
|
MUST_USE_RESULT MaybeObject* Put(Object* key, Object* value);
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Object* key, Object* value);
|
|
void RemoveEntry(int entry);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
template <int entrysize>
|
|
class WeakHashTableShape : public BaseShape<Object*> {
|
|
public:
|
|
static inline bool IsMatch(Object* key, Object* other);
|
|
static inline uint32_t Hash(Object* key);
|
|
static inline uint32_t HashForObject(Object* key, Object* object);
|
|
MUST_USE_RESULT static inline MaybeObject* AsObject(Heap* heap,
|
|
Object* key);
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = entrysize;
|
|
};
|
|
|
|
|
|
// WeakHashTable maps keys that are arbitrary objects to object values.
|
|
// It is used for the global weak hash table that maps objects
|
|
// embedded in optimized code to dependent code lists.
|
|
class WeakHashTable: public HashTable<WeakHashTableShape<2>, Object*> {
|
|
public:
|
|
static inline WeakHashTable* cast(Object* obj) {
|
|
ASSERT(obj->IsHashTable());
|
|
return reinterpret_cast<WeakHashTable*>(obj);
|
|
}
|
|
|
|
// Looks up the value associated with the given key. The hole value is
|
|
// returned in case the key is not present.
|
|
Object* Lookup(Object* key);
|
|
|
|
// Adds (or overwrites) the value associated with the given key. Mapping a
|
|
// key to the hole value causes removal of the whole entry.
|
|
MUST_USE_RESULT MaybeObject* Put(Object* key, Object* value);
|
|
|
|
// This function is called when heap verification is turned on.
|
|
void Zap(Object* value) {
|
|
int capacity = Capacity();
|
|
for (int i = 0; i < capacity; i++) {
|
|
set(EntryToIndex(i), value);
|
|
set(EntryToValueIndex(i), value);
|
|
}
|
|
}
|
|
|
|
private:
|
|
friend class MarkCompactCollector;
|
|
|
|
void AddEntry(int entry, Object* key, Object* value);
|
|
|
|
// Returns the index to the value of an entry.
|
|
static inline int EntryToValueIndex(int entry) {
|
|
return EntryToIndex(entry) + 1;
|
|
}
|
|
};
|
|
|
|
|
|
// JSFunctionResultCache caches results of some JSFunction invocation.
|
|
// It is a fixed array with fixed structure:
|
|
// [0]: factory function
|
|
// [1]: finger index
|
|
// [2]: current cache size
|
|
// [3]: dummy field.
|
|
// The rest of array are key/value pairs.
|
|
class JSFunctionResultCache: public FixedArray {
|
|
public:
|
|
static const int kFactoryIndex = 0;
|
|
static const int kFingerIndex = kFactoryIndex + 1;
|
|
static const int kCacheSizeIndex = kFingerIndex + 1;
|
|
static const int kDummyIndex = kCacheSizeIndex + 1;
|
|
static const int kEntriesIndex = kDummyIndex + 1;
|
|
|
|
static const int kEntrySize = 2; // key + value
|
|
|
|
static const int kFactoryOffset = kHeaderSize;
|
|
static const int kFingerOffset = kFactoryOffset + kPointerSize;
|
|
static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
|
|
|
|
inline void MakeZeroSize();
|
|
inline void Clear();
|
|
|
|
inline int size();
|
|
inline void set_size(int size);
|
|
inline int finger_index();
|
|
inline void set_finger_index(int finger_index);
|
|
|
|
// Casting
|
|
static inline JSFunctionResultCache* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(JSFunctionResultCache)
|
|
};
|
|
|
|
|
|
// ScopeInfo represents information about different scopes of a source
|
|
// program and the allocation of the scope's variables. Scope information
|
|
// is stored in a compressed form in ScopeInfo objects and is used
|
|
// at runtime (stack dumps, deoptimization, etc.).
|
|
|
|
// This object provides quick access to scope info details for runtime
|
|
// routines.
|
|
class ScopeInfo : public FixedArray {
|
|
public:
|
|
static inline ScopeInfo* cast(Object* object);
|
|
|
|
// Return the type of this scope.
|
|
ScopeType scope_type();
|
|
|
|
// Does this scope call eval?
|
|
bool CallsEval();
|
|
|
|
// Return the language mode of this scope.
|
|
LanguageMode language_mode();
|
|
|
|
// Does this scope make a non-strict eval call?
|
|
bool CallsNonStrictEval() {
|
|
return CallsEval() && (language_mode() == CLASSIC_MODE);
|
|
}
|
|
|
|
// Return the total number of locals allocated on the stack and in the
|
|
// context. This includes the parameters that are allocated in the context.
|
|
int LocalCount();
|
|
|
|
// Return the number of stack slots for code. This number consists of two
|
|
// parts:
|
|
// 1. One stack slot per stack allocated local.
|
|
// 2. One stack slot for the function name if it is stack allocated.
|
|
int StackSlotCount();
|
|
|
|
// Return the number of context slots for code if a context is allocated. This
|
|
// number consists of three parts:
|
|
// 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
|
|
// 2. One context slot per context allocated local.
|
|
// 3. One context slot for the function name if it is context allocated.
|
|
// Parameters allocated in the context count as context allocated locals. If
|
|
// no contexts are allocated for this scope ContextLength returns 0.
|
|
int ContextLength();
|
|
|
|
// Is this scope the scope of a named function expression?
|
|
bool HasFunctionName();
|
|
|
|
// Return if this has context allocated locals.
|
|
bool HasHeapAllocatedLocals();
|
|
|
|
// Return if contexts are allocated for this scope.
|
|
bool HasContext();
|
|
|
|
// Return the function_name if present.
|
|
String* FunctionName();
|
|
|
|
// Return the name of the given parameter.
|
|
String* ParameterName(int var);
|
|
|
|
// Return the name of the given local.
|
|
String* LocalName(int var);
|
|
|
|
// Return the name of the given stack local.
|
|
String* StackLocalName(int var);
|
|
|
|
// Return the name of the given context local.
|
|
String* ContextLocalName(int var);
|
|
|
|
// Return the mode of the given context local.
|
|
VariableMode ContextLocalMode(int var);
|
|
|
|
// Return the initialization flag of the given context local.
|
|
InitializationFlag ContextLocalInitFlag(int var);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// the stack slot index for a given slot name if the slot is
|
|
// present; otherwise returns a value < 0. The name must be an internalized
|
|
// string.
|
|
int StackSlotIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// context slot index for a given slot name if the slot is present; otherwise
|
|
// returns a value < 0. The name must be an internalized string.
|
|
// If the slot is present and mode != NULL, sets *mode to the corresponding
|
|
// mode for that variable.
|
|
int ContextSlotIndex(String* name,
|
|
VariableMode* mode,
|
|
InitializationFlag* init_flag);
|
|
|
|
// Lookup support for serialized scope info. Returns the
|
|
// parameter index for a given parameter name if the parameter is present;
|
|
// otherwise returns a value < 0. The name must be an internalized string.
|
|
int ParameterIndex(String* name);
|
|
|
|
// Lookup support for serialized scope info. Returns the function context
|
|
// slot index if the function name is present and context-allocated (named
|
|
// function expressions, only), otherwise returns a value < 0. The name
|
|
// must be an internalized string.
|
|
int FunctionContextSlotIndex(String* name, VariableMode* mode);
|
|
|
|
|
|
// Copies all the context locals into an object used to materialize a scope.
|
|
static bool CopyContextLocalsToScopeObject(Handle<ScopeInfo> scope_info,
|
|
Handle<Context> context,
|
|
Handle<JSObject> scope_object);
|
|
|
|
|
|
static Handle<ScopeInfo> Create(Scope* scope, Zone* zone);
|
|
|
|
// Serializes empty scope info.
|
|
static ScopeInfo* Empty(Isolate* isolate);
|
|
|
|
#ifdef DEBUG
|
|
void Print();
|
|
#endif
|
|
|
|
// The layout of the static part of a ScopeInfo is as follows. Each entry is
|
|
// numeric and occupies one array slot.
|
|
// 1. A set of properties of the scope
|
|
// 2. The number of parameters. This only applies to function scopes. For
|
|
// non-function scopes this is 0.
|
|
// 3. The number of non-parameter variables allocated on the stack.
|
|
// 4. The number of non-parameter and parameter variables allocated in the
|
|
// context.
|
|
#define FOR_EACH_NUMERIC_FIELD(V) \
|
|
V(Flags) \
|
|
V(ParameterCount) \
|
|
V(StackLocalCount) \
|
|
V(ContextLocalCount)
|
|
|
|
#define FIELD_ACCESSORS(name) \
|
|
void Set##name(int value) { \
|
|
set(k##name, Smi::FromInt(value)); \
|
|
} \
|
|
int name() { \
|
|
if (length() > 0) { \
|
|
return Smi::cast(get(k##name))->value(); \
|
|
} else { \
|
|
return 0; \
|
|
} \
|
|
}
|
|
FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
|
|
#undef FIELD_ACCESSORS
|
|
|
|
private:
|
|
enum {
|
|
#define DECL_INDEX(name) k##name,
|
|
FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
|
|
#undef DECL_INDEX
|
|
#undef FOR_EACH_NUMERIC_FIELD
|
|
kVariablePartIndex
|
|
};
|
|
|
|
// The layout of the variable part of a ScopeInfo is as follows:
|
|
// 1. ParameterEntries:
|
|
// This part stores the names of the parameters for function scopes. One
|
|
// slot is used per parameter, so in total this part occupies
|
|
// ParameterCount() slots in the array. For other scopes than function
|
|
// scopes ParameterCount() is 0.
|
|
// 2. StackLocalEntries:
|
|
// Contains the names of local variables that are allocated on the stack,
|
|
// in increasing order of the stack slot index. One slot is used per stack
|
|
// local, so in total this part occupies StackLocalCount() slots in the
|
|
// array.
|
|
// 3. ContextLocalNameEntries:
|
|
// Contains the names of local variables and parameters that are allocated
|
|
// in the context. They are stored in increasing order of the context slot
|
|
// index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount() slots
|
|
// in the array.
|
|
// 4. ContextLocalInfoEntries:
|
|
// Contains the variable modes and initialization flags corresponding to
|
|
// the context locals in ContextLocalNameEntries. One slot is used per
|
|
// context local, so in total this part occupies ContextLocalCount()
|
|
// slots in the array.
|
|
// 5. FunctionNameEntryIndex:
|
|
// If the scope belongs to a named function expression this part contains
|
|
// information about the function variable. It always occupies two array
|
|
// slots: a. The name of the function variable.
|
|
// b. The context or stack slot index for the variable.
|
|
int ParameterEntriesIndex();
|
|
int StackLocalEntriesIndex();
|
|
int ContextLocalNameEntriesIndex();
|
|
int ContextLocalInfoEntriesIndex();
|
|
int FunctionNameEntryIndex();
|
|
|
|
// Location of the function variable for named function expressions.
|
|
enum FunctionVariableInfo {
|
|
NONE, // No function name present.
|
|
STACK, // Function
|
|
CONTEXT,
|
|
UNUSED
|
|
};
|
|
|
|
// Properties of scopes.
|
|
class ScopeTypeField: public BitField<ScopeType, 0, 3> {};
|
|
class CallsEvalField: public BitField<bool, 3, 1> {};
|
|
class LanguageModeField: public BitField<LanguageMode, 4, 2> {};
|
|
class FunctionVariableField: public BitField<FunctionVariableInfo, 6, 2> {};
|
|
class FunctionVariableMode: public BitField<VariableMode, 8, 3> {};
|
|
|
|
// BitFields representing the encoded information for context locals in the
|
|
// ContextLocalInfoEntries part.
|
|
class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
|
|
class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
|
|
};
|
|
|
|
|
|
// The cache for maps used by normalized (dictionary mode) objects.
|
|
// Such maps do not have property descriptors, so a typical program
|
|
// needs very limited number of distinct normalized maps.
|
|
class NormalizedMapCache: public FixedArray {
|
|
public:
|
|
static const int kEntries = 64;
|
|
|
|
static Handle<Map> Get(Handle<NormalizedMapCache> cache,
|
|
Handle<JSObject> object,
|
|
PropertyNormalizationMode mode);
|
|
|
|
void Clear();
|
|
|
|
// Casting
|
|
static inline NormalizedMapCache* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(NormalizedMapCache)
|
|
};
|
|
|
|
|
|
// ByteArray represents fixed sized byte arrays. Used for the relocation info
|
|
// that is attached to code objects.
|
|
class ByteArray: public FixedArrayBase {
|
|
public:
|
|
inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
|
|
|
|
// Setter and getter.
|
|
inline byte get(int index);
|
|
inline void set(int index, byte value);
|
|
|
|
// Treat contents as an int array.
|
|
inline int get_int(int index);
|
|
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length);
|
|
}
|
|
// We use byte arrays for free blocks in the heap. Given a desired size in
|
|
// bytes that is a multiple of the word size and big enough to hold a byte
|
|
// array, this function returns the number of elements a byte array should
|
|
// have.
|
|
static int LengthFor(int size_in_bytes) {
|
|
ASSERT(IsAligned(size_in_bytes, kPointerSize));
|
|
ASSERT(size_in_bytes >= kHeaderSize);
|
|
return size_in_bytes - kHeaderSize;
|
|
}
|
|
|
|
// Returns data start address.
|
|
inline Address GetDataStartAddress();
|
|
|
|
// Returns a pointer to the ByteArray object for a given data start address.
|
|
static inline ByteArray* FromDataStartAddress(Address address);
|
|
|
|
// Casting.
|
|
static inline ByteArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
inline int ByteArraySize() {
|
|
return SizeFor(this->length());
|
|
}
|
|
DECLARE_PRINTER(ByteArray)
|
|
DECLARE_VERIFIER(ByteArray)
|
|
|
|
// Layout description.
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
// Maximal memory consumption for a single ByteArray.
|
|
static const int kMaxSize = 512 * MB;
|
|
// Maximal length of a single ByteArray.
|
|
static const int kMaxLength = kMaxSize - kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
|
|
};
|
|
|
|
|
|
// FreeSpace represents fixed sized areas of the heap that are not currently in
|
|
// use. Used by the heap and GC.
|
|
class FreeSpace: public HeapObject {
|
|
public:
|
|
// [size]: size of the free space including the header.
|
|
inline int size();
|
|
inline void set_size(int value);
|
|
|
|
inline int Size() { return size(); }
|
|
|
|
// Casting.
|
|
static inline FreeSpace* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FreeSpace)
|
|
DECLARE_VERIFIER(FreeSpace)
|
|
|
|
// Layout description.
|
|
// Size is smi tagged when it is stored.
|
|
static const int kSizeOffset = HeapObject::kHeaderSize;
|
|
static const int kHeaderSize = kSizeOffset + kPointerSize;
|
|
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
|
|
};
|
|
|
|
|
|
// An ExternalArray represents a fixed-size array of primitive values
|
|
// which live outside the JavaScript heap. Its subclasses are used to
|
|
// implement the CanvasArray types being defined in the WebGL
|
|
// specification. As of this writing the first public draft is not yet
|
|
// available, but Khronos members can access the draft at:
|
|
// https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
|
|
//
|
|
// The semantics of these arrays differ from CanvasPixelArray.
|
|
// Out-of-range values passed to the setter are converted via a C
|
|
// cast, not clamping. Out-of-range indices cause exceptions to be
|
|
// raised rather than being silently ignored.
|
|
class ExternalArray: public FixedArrayBase {
|
|
public:
|
|
inline bool is_the_hole(int index) { return false; }
|
|
|
|
// [external_pointer]: The pointer to the external memory area backing this
|
|
// external array.
|
|
DECL_ACCESSORS(external_pointer, void) // Pointer to the data store.
|
|
|
|
// Casting.
|
|
static inline ExternalArray* cast(Object* obj);
|
|
|
|
// Maximal acceptable length for an external array.
|
|
static const int kMaxLength = 0x3fffffff;
|
|
|
|
// ExternalArray headers are not quadword aligned.
|
|
static const int kExternalPointerOffset =
|
|
POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize);
|
|
static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
|
|
static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
|
|
};
|
|
|
|
|
|
// A ExternalPixelArray represents a fixed-size byte array with special
|
|
// semantics used for implementing the CanvasPixelArray object. Please see the
|
|
// specification at:
|
|
|
|
// http://www.whatwg.org/specs/web-apps/current-work/
|
|
// multipage/the-canvas-element.html#canvaspixelarray
|
|
// In particular, write access clamps the value written to 0 or 255 if the
|
|
// value written is outside this range.
|
|
class ExternalPixelArray: public ExternalArray {
|
|
public:
|
|
inline uint8_t* external_pixel_pointer();
|
|
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber and
|
|
// undefined and clamps the converted value between 0 and 255.
|
|
Object* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalPixelArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalPixelArray)
|
|
DECLARE_VERIFIER(ExternalPixelArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalPixelArray);
|
|
};
|
|
|
|
|
|
class ExternalByteArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalByteArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalByteArray)
|
|
DECLARE_VERIFIER(ExternalByteArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
|
|
};
|
|
|
|
|
|
class ExternalUnsignedByteArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint8_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint8_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUnsignedByteArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUnsignedByteArray)
|
|
DECLARE_VERIFIER(ExternalUnsignedByteArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
|
|
};
|
|
|
|
|
|
class ExternalShortArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int16_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int16_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalShortArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalShortArray)
|
|
DECLARE_VERIFIER(ExternalShortArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
|
|
};
|
|
|
|
|
|
class ExternalUnsignedShortArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint16_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint16_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUnsignedShortArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUnsignedShortArray)
|
|
DECLARE_VERIFIER(ExternalUnsignedShortArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
|
|
};
|
|
|
|
|
|
class ExternalIntArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline int32_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, int32_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalIntArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalIntArray)
|
|
DECLARE_VERIFIER(ExternalIntArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
|
|
};
|
|
|
|
|
|
class ExternalUnsignedIntArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline uint32_t get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, uint32_t value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalUnsignedIntArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalUnsignedIntArray)
|
|
DECLARE_VERIFIER(ExternalUnsignedIntArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
|
|
};
|
|
|
|
|
|
class ExternalFloatArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline float get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, float value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalFloatArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalFloatArray)
|
|
DECLARE_VERIFIER(ExternalFloatArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
|
|
};
|
|
|
|
|
|
class ExternalDoubleArray: public ExternalArray {
|
|
public:
|
|
// Setter and getter.
|
|
inline double get_scalar(int index);
|
|
MUST_USE_RESULT inline MaybeObject* get(int index);
|
|
inline void set(int index, double value);
|
|
|
|
// This accessor applies the correct conversion from Smi, HeapNumber
|
|
// and undefined.
|
|
MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
|
|
|
|
// Casting.
|
|
static inline ExternalDoubleArray* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExternalDoubleArray)
|
|
DECLARE_VERIFIER(ExternalDoubleArray)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalDoubleArray);
|
|
};
|
|
|
|
|
|
// DeoptimizationInputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the Hydrogen/Lithium compiler. It also
|
|
// contains information about functions that were inlined. If N different
|
|
// functions were inlined then first N elements of the literal array will
|
|
// contain these functions.
|
|
//
|
|
// It can be empty.
|
|
class DeoptimizationInputData: public FixedArray {
|
|
public:
|
|
// Layout description. Indices in the array.
|
|
static const int kTranslationByteArrayIndex = 0;
|
|
static const int kInlinedFunctionCountIndex = 1;
|
|
static const int kLiteralArrayIndex = 2;
|
|
static const int kOsrAstIdIndex = 3;
|
|
static const int kOsrPcOffsetIndex = 4;
|
|
static const int kFirstDeoptEntryIndex = 5;
|
|
|
|
// Offsets of deopt entry elements relative to the start of the entry.
|
|
static const int kAstIdRawOffset = 0;
|
|
static const int kTranslationIndexOffset = 1;
|
|
static const int kArgumentsStackHeightOffset = 2;
|
|
static const int kPcOffset = 3;
|
|
static const int kDeoptEntrySize = 4;
|
|
|
|
// Simple element accessors.
|
|
#define DEFINE_ELEMENT_ACCESSORS(name, type) \
|
|
type* name() { \
|
|
return type::cast(get(k##name##Index)); \
|
|
} \
|
|
void Set##name(type* value) { \
|
|
set(k##name##Index, value); \
|
|
}
|
|
|
|
DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
|
|
DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
|
|
DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
|
|
|
|
#undef DEFINE_ELEMENT_ACCESSORS
|
|
|
|
// Accessors for elements of the ith deoptimization entry.
|
|
#define DEFINE_ENTRY_ACCESSORS(name, type) \
|
|
type* name(int i) { \
|
|
return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
|
|
} \
|
|
void Set##name(int i, type* value) { \
|
|
set(IndexForEntry(i) + k##name##Offset, value); \
|
|
}
|
|
|
|
DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
|
|
DEFINE_ENTRY_ACCESSORS(Pc, Smi)
|
|
|
|
#undef DEFINE_ENTRY_ACCESSORS
|
|
|
|
BailoutId AstId(int i) {
|
|
return BailoutId(AstIdRaw(i)->value());
|
|
}
|
|
|
|
void SetAstId(int i, BailoutId value) {
|
|
SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
|
|
}
|
|
|
|
int DeoptCount() {
|
|
return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
|
|
}
|
|
|
|
// Allocates a DeoptimizationInputData.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int deopt_entry_count,
|
|
PretenureFlag pretenure);
|
|
|
|
// Casting.
|
|
static inline DeoptimizationInputData* cast(Object* obj);
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
void DeoptimizationInputDataPrint(FILE* out);
|
|
#endif
|
|
|
|
private:
|
|
static int IndexForEntry(int i) {
|
|
return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
|
|
}
|
|
|
|
static int LengthFor(int entry_count) {
|
|
return IndexForEntry(entry_count);
|
|
}
|
|
};
|
|
|
|
|
|
// DeoptimizationOutputData is a fixed array used to hold the deoptimization
|
|
// data for code generated by the full compiler.
|
|
// The format of the these objects is
|
|
// [i * 2]: Ast ID for ith deoptimization.
|
|
// [i * 2 + 1]: PC and state of ith deoptimization
|
|
class DeoptimizationOutputData: public FixedArray {
|
|
public:
|
|
int DeoptPoints() { return length() / 2; }
|
|
|
|
BailoutId AstId(int index) {
|
|
return BailoutId(Smi::cast(get(index * 2))->value());
|
|
}
|
|
|
|
void SetAstId(int index, BailoutId id) {
|
|
set(index * 2, Smi::FromInt(id.ToInt()));
|
|
}
|
|
|
|
Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
|
|
void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
|
|
|
|
static int LengthOfFixedArray(int deopt_points) {
|
|
return deopt_points * 2;
|
|
}
|
|
|
|
// Allocates a DeoptimizationOutputData.
|
|
MUST_USE_RESULT static MaybeObject* Allocate(Isolate* isolate,
|
|
int number_of_deopt_points,
|
|
PretenureFlag pretenure);
|
|
|
|
// Casting.
|
|
static inline DeoptimizationOutputData* cast(Object* obj);
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
void DeoptimizationOutputDataPrint(FILE* out);
|
|
#endif
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class Cell;
|
|
class PropertyCell;
|
|
|
|
// TypeFeedbackCells is a fixed array used to hold the association between
|
|
// cache cells and AST ids for code generated by the full compiler.
|
|
// The format of the these objects is
|
|
// [i * 2]: Global property cell of ith cache cell.
|
|
// [i * 2 + 1]: Ast ID for ith cache cell.
|
|
class TypeFeedbackCells: public FixedArray {
|
|
public:
|
|
int CellCount() { return length() / 2; }
|
|
static int LengthOfFixedArray(int cell_count) { return cell_count * 2; }
|
|
|
|
// Accessors for AST ids associated with cache values.
|
|
inline TypeFeedbackId AstId(int index);
|
|
inline void SetAstId(int index, TypeFeedbackId id);
|
|
|
|
// Accessors for global property cells holding the cache values.
|
|
inline Cell* GetCell(int index);
|
|
inline void SetCell(int index, Cell* cell);
|
|
|
|
// The object that indicates an uninitialized cache.
|
|
static inline Handle<Object> UninitializedSentinel(Isolate* isolate);
|
|
|
|
// The object that indicates a megamorphic state.
|
|
static inline Handle<Object> MegamorphicSentinel(Isolate* isolate);
|
|
|
|
// The object that indicates a monomorphic state of Array with
|
|
// ElementsKind
|
|
static inline Handle<Object> MonomorphicArraySentinel(Isolate* isolate,
|
|
ElementsKind elements_kind);
|
|
|
|
// A raw version of the uninitialized sentinel that's safe to read during
|
|
// garbage collection (e.g., for patching the cache).
|
|
static inline Object* RawUninitializedSentinel(Heap* heap);
|
|
|
|
// Casting.
|
|
static inline TypeFeedbackCells* cast(Object* obj);
|
|
|
|
static const int kForInFastCaseMarker = 0;
|
|
static const int kForInSlowCaseMarker = 1;
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class SafepointEntry;
|
|
class TypeFeedbackInfo;
|
|
|
|
// Code describes objects with on-the-fly generated machine code.
|
|
class Code: public HeapObject {
|
|
public:
|
|
// Opaque data type for encapsulating code flags like kind, inline
|
|
// cache state, and arguments count.
|
|
typedef uint32_t Flags;
|
|
|
|
#define NON_IC_KIND_LIST(V) \
|
|
V(FUNCTION) \
|
|
V(OPTIMIZED_FUNCTION) \
|
|
V(STUB) \
|
|
V(HANDLER) \
|
|
V(BUILTIN) \
|
|
V(REGEXP)
|
|
|
|
#define IC_KIND_LIST(V) \
|
|
V(LOAD_IC) \
|
|
V(KEYED_LOAD_IC) \
|
|
V(CALL_IC) \
|
|
V(KEYED_CALL_IC) \
|
|
V(STORE_IC) \
|
|
V(KEYED_STORE_IC) \
|
|
V(BINARY_OP_IC) \
|
|
V(COMPARE_IC) \
|
|
V(COMPARE_NIL_IC) \
|
|
V(TO_BOOLEAN_IC)
|
|
|
|
#define CODE_KIND_LIST(V) \
|
|
NON_IC_KIND_LIST(V) \
|
|
IC_KIND_LIST(V)
|
|
|
|
enum Kind {
|
|
#define DEFINE_CODE_KIND_ENUM(name) name,
|
|
CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
|
|
#undef DEFINE_CODE_KIND_ENUM
|
|
NUMBER_OF_KINDS
|
|
};
|
|
|
|
// No more than 16 kinds. The value is currently encoded in four bits in
|
|
// Flags.
|
|
STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
|
|
|
|
static const char* Kind2String(Kind kind);
|
|
|
|
// Types of stubs.
|
|
enum StubType {
|
|
NORMAL,
|
|
FIELD,
|
|
CONSTANT,
|
|
CALLBACKS,
|
|
INTERCEPTOR,
|
|
TRANSITION,
|
|
NONEXISTENT
|
|
};
|
|
|
|
typedef int ExtraICState;
|
|
|
|
static const ExtraICState kNoExtraICState = 0;
|
|
|
|
static const int kPrologueOffsetNotSet = -1;
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
// Printing
|
|
static const char* ICState2String(InlineCacheState state);
|
|
static const char* StubType2String(StubType type);
|
|
static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra);
|
|
void Disassemble(const char* name, FILE* out = stdout);
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
// [instruction_size]: Size of the native instructions
|
|
inline int instruction_size();
|
|
inline void set_instruction_size(int value);
|
|
|
|
// [relocation_info]: Code relocation information
|
|
DECL_ACCESSORS(relocation_info, ByteArray)
|
|
void InvalidateRelocation();
|
|
|
|
// [handler_table]: Fixed array containing offsets of exception handlers.
|
|
DECL_ACCESSORS(handler_table, FixedArray)
|
|
|
|
// [deoptimization_data]: Array containing data for deopt.
|
|
DECL_ACCESSORS(deoptimization_data, FixedArray)
|
|
|
|
// [raw_type_feedback_info]: This field stores various things, depending on
|
|
// the kind of the code object.
|
|
// FUNCTION => type feedback information.
|
|
// STUB => various things, e.g. a SMI
|
|
// OPTIMIZED_FUNCTION => the next_code_link for optimized code list.
|
|
DECL_ACCESSORS(raw_type_feedback_info, Object)
|
|
inline Object* type_feedback_info();
|
|
inline void set_type_feedback_info(
|
|
Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline int stub_info();
|
|
inline void set_stub_info(int info);
|
|
|
|
// [next_code_link]: Link for lists of optimized or deoptimized code.
|
|
// Note that storage for this field is overlapped with typefeedback_info.
|
|
DECL_ACCESSORS(next_code_link, Object)
|
|
|
|
// [gc_metadata]: Field used to hold GC related metadata. The contents of this
|
|
// field does not have to be traced during garbage collection since
|
|
// it is only used by the garbage collector itself.
|
|
DECL_ACCESSORS(gc_metadata, Object)
|
|
|
|
// [ic_age]: Inline caching age: the value of the Heap::global_ic_age
|
|
// at the moment when this object was created.
|
|
inline void set_ic_age(int count);
|
|
inline int ic_age();
|
|
|
|
// [prologue_offset]: Offset of the function prologue, used for aging
|
|
// FUNCTIONs and OPTIMIZED_FUNCTIONs.
|
|
inline int prologue_offset();
|
|
inline void set_prologue_offset(int offset);
|
|
|
|
// Unchecked accessors to be used during GC.
|
|
inline ByteArray* unchecked_relocation_info();
|
|
|
|
inline int relocation_size();
|
|
|
|
// [flags]: Various code flags.
|
|
inline Flags flags();
|
|
inline void set_flags(Flags flags);
|
|
|
|
// [flags]: Access to specific code flags.
|
|
inline Kind kind();
|
|
inline Kind handler_kind() {
|
|
return static_cast<Kind>(arguments_count());
|
|
}
|
|
inline InlineCacheState ic_state(); // Only valid for IC stubs.
|
|
inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
|
|
|
|
inline ExtraICState extended_extra_ic_state(); // Only valid for
|
|
// non-call IC stubs.
|
|
static bool needs_extended_extra_ic_state(Kind kind) {
|
|
// TODO(danno): This is a bit of a hack right now since there are still
|
|
// clients of this API that pass "extra" values in for argc. These clients
|
|
// should be retrofitted to used ExtendedExtraICState.
|
|
return kind == COMPARE_NIL_IC || kind == TO_BOOLEAN_IC ||
|
|
kind == BINARY_OP_IC;
|
|
}
|
|
|
|
inline StubType type(); // Only valid for monomorphic IC stubs.
|
|
inline int arguments_count(); // Only valid for call IC stubs.
|
|
|
|
// Testers for IC stub kinds.
|
|
inline bool is_inline_cache_stub();
|
|
inline bool is_debug_stub();
|
|
inline bool is_handler() { return kind() == HANDLER; }
|
|
inline bool is_load_stub() { return kind() == LOAD_IC; }
|
|
inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
|
|
inline bool is_store_stub() { return kind() == STORE_IC; }
|
|
inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
|
|
inline bool is_call_stub() { return kind() == CALL_IC; }
|
|
inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
|
|
inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
|
|
inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
|
|
inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
|
|
inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
|
|
inline bool is_keyed_stub();
|
|
|
|
// [major_key]: For kind STUB or BINARY_OP_IC, the major key.
|
|
inline int major_key();
|
|
inline void set_major_key(int value);
|
|
|
|
// For kind STUB or ICs, tells whether or not a code object was generated by
|
|
// the optimizing compiler (but it may not be an optimized function).
|
|
bool is_crankshafted();
|
|
inline void set_is_crankshafted(bool value);
|
|
|
|
// For stubs, tells whether they should always exist, so that they can be
|
|
// called from other stubs.
|
|
inline bool is_pregenerated();
|
|
inline void set_is_pregenerated(bool value);
|
|
|
|
// [optimizable]: For FUNCTION kind, tells if it is optimizable.
|
|
inline bool optimizable();
|
|
inline void set_optimizable(bool value);
|
|
|
|
// [has_deoptimization_support]: For FUNCTION kind, tells if it has
|
|
// deoptimization support.
|
|
inline bool has_deoptimization_support();
|
|
inline void set_has_deoptimization_support(bool value);
|
|
|
|
// [has_debug_break_slots]: For FUNCTION kind, tells if it has
|
|
// been compiled with debug break slots.
|
|
inline bool has_debug_break_slots();
|
|
inline void set_has_debug_break_slots(bool value);
|
|
|
|
// [compiled_with_optimizing]: For FUNCTION kind, tells if it has
|
|
// been compiled with IsOptimizing set to true.
|
|
inline bool is_compiled_optimizable();
|
|
inline void set_compiled_optimizable(bool value);
|
|
|
|
// [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
|
|
// how long the function has been marked for OSR and therefore which
|
|
// level of loop nesting we are willing to do on-stack replacement
|
|
// for.
|
|
inline void set_allow_osr_at_loop_nesting_level(int level);
|
|
inline int allow_osr_at_loop_nesting_level();
|
|
|
|
// [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
|
|
// the code object was seen on the stack with no IC patching going on.
|
|
inline int profiler_ticks();
|
|
inline void set_profiler_ticks(int ticks);
|
|
|
|
// [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
|
|
// reserved in the code prologue.
|
|
inline unsigned stack_slots();
|
|
inline void set_stack_slots(unsigned slots);
|
|
|
|
// [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in
|
|
// the instruction stream where the safepoint table starts.
|
|
inline unsigned safepoint_table_offset();
|
|
inline void set_safepoint_table_offset(unsigned offset);
|
|
|
|
// [back_edge_table_start]: For kind FUNCTION, the offset in the
|
|
// instruction stream where the back edge table starts.
|
|
inline unsigned back_edge_table_offset();
|
|
inline void set_back_edge_table_offset(unsigned offset);
|
|
|
|
inline bool back_edges_patched_for_osr();
|
|
inline void set_back_edges_patched_for_osr(bool value);
|
|
|
|
// [check type]: For kind CALL_IC, tells how to check if the
|
|
// receiver is valid for the given call.
|
|
inline CheckType check_type();
|
|
inline void set_check_type(CheckType value);
|
|
|
|
// [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
|
|
inline byte to_boolean_state();
|
|
|
|
// [has_function_cache]: For kind STUB tells whether there is a function
|
|
// cache is passed to the stub.
|
|
inline bool has_function_cache();
|
|
inline void set_has_function_cache(bool flag);
|
|
|
|
|
|
// [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
|
|
// the code is going to be deoptimized because of dead embedded maps.
|
|
inline bool marked_for_deoptimization();
|
|
inline void set_marked_for_deoptimization(bool flag);
|
|
|
|
// Get the safepoint entry for the given pc.
|
|
SafepointEntry GetSafepointEntry(Address pc);
|
|
|
|
// Find an object in a stub with a specified map
|
|
Object* FindNthObject(int n, Map* match_map);
|
|
void ReplaceNthObject(int n, Map* match_map, Object* replace_with);
|
|
|
|
// Find the first map in an IC stub.
|
|
Map* FindFirstMap();
|
|
void FindAllMaps(MapHandleList* maps);
|
|
void ReplaceFirstMap(Map* replace);
|
|
|
|
// Find the first handler in an IC stub.
|
|
Code* FindFirstHandler();
|
|
|
|
// Find |length| handlers and put them into |code_list|. Returns false if not
|
|
// enough handlers can be found.
|
|
bool FindHandlers(CodeHandleList* code_list, int length = -1);
|
|
|
|
// Find the first name in an IC stub.
|
|
Name* FindFirstName();
|
|
|
|
void ReplaceNthCell(int n, Cell* replace_with);
|
|
|
|
class ExtraICStateStrictMode: public BitField<StrictModeFlag, 0, 1> {};
|
|
class ExtraICStateKeyedAccessStoreMode:
|
|
public BitField<KeyedAccessStoreMode, 1, 4> {}; // NOLINT
|
|
|
|
static inline StrictModeFlag GetStrictMode(ExtraICState extra_ic_state) {
|
|
return ExtraICStateStrictMode::decode(extra_ic_state);
|
|
}
|
|
|
|
static inline KeyedAccessStoreMode GetKeyedAccessStoreMode(
|
|
ExtraICState extra_ic_state) {
|
|
return ExtraICStateKeyedAccessStoreMode::decode(extra_ic_state);
|
|
}
|
|
|
|
static inline ExtraICState ComputeExtraICState(
|
|
KeyedAccessStoreMode store_mode,
|
|
StrictModeFlag strict_mode) {
|
|
return ExtraICStateKeyedAccessStoreMode::encode(store_mode) |
|
|
ExtraICStateStrictMode::encode(strict_mode);
|
|
}
|
|
|
|
// Flags operations.
|
|
static inline Flags ComputeFlags(
|
|
Kind kind,
|
|
InlineCacheState ic_state = UNINITIALIZED,
|
|
ExtraICState extra_ic_state = kNoExtraICState,
|
|
StubType type = NORMAL,
|
|
int argc = -1,
|
|
InlineCacheHolderFlag holder = OWN_MAP);
|
|
|
|
static inline Flags ComputeMonomorphicFlags(
|
|
Kind kind,
|
|
ExtraICState extra_ic_state = kNoExtraICState,
|
|
StubType type = NORMAL,
|
|
int argc = -1,
|
|
InlineCacheHolderFlag holder = OWN_MAP);
|
|
|
|
static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
|
|
static inline StubType ExtractTypeFromFlags(Flags flags);
|
|
static inline Kind ExtractKindFromFlags(Flags flags);
|
|
static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
|
|
static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
|
|
static inline ExtraICState ExtractExtendedExtraICStateFromFlags(Flags flags);
|
|
static inline int ExtractArgumentsCountFromFlags(Flags flags);
|
|
|
|
static inline Flags RemoveTypeFromFlags(Flags flags);
|
|
|
|
// Convert a target address into a code object.
|
|
static inline Code* GetCodeFromTargetAddress(Address address);
|
|
|
|
// Convert an entry address into an object.
|
|
static inline Object* GetObjectFromEntryAddress(Address location_of_address);
|
|
|
|
// Returns the address of the first instruction.
|
|
inline byte* instruction_start();
|
|
|
|
// Returns the address right after the last instruction.
|
|
inline byte* instruction_end();
|
|
|
|
// Returns the size of the instructions, padding, and relocation information.
|
|
inline int body_size();
|
|
|
|
// Returns the address of the first relocation info (read backwards!).
|
|
inline byte* relocation_start();
|
|
|
|
// Code entry point.
|
|
inline byte* entry();
|
|
|
|
// Returns true if pc is inside this object's instructions.
|
|
inline bool contains(byte* pc);
|
|
|
|
// Relocate the code by delta bytes. Called to signal that this code
|
|
// object has been moved by delta bytes.
|
|
void Relocate(intptr_t delta);
|
|
|
|
// Migrate code described by desc.
|
|
void CopyFrom(const CodeDesc& desc);
|
|
|
|
// Returns the object size for a given body (used for allocation).
|
|
static int SizeFor(int body_size) {
|
|
ASSERT_SIZE_TAG_ALIGNED(body_size);
|
|
return RoundUp(kHeaderSize + body_size, kCodeAlignment);
|
|
}
|
|
|
|
// Calculate the size of the code object to report for log events. This takes
|
|
// the layout of the code object into account.
|
|
int ExecutableSize() {
|
|
// Check that the assumptions about the layout of the code object holds.
|
|
ASSERT_EQ(static_cast<int>(instruction_start() - address()),
|
|
Code::kHeaderSize);
|
|
return instruction_size() + Code::kHeaderSize;
|
|
}
|
|
|
|
// Locating source position.
|
|
int SourcePosition(Address pc);
|
|
int SourceStatementPosition(Address pc);
|
|
|
|
// Casting.
|
|
static inline Code* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
int CodeSize() { return SizeFor(body_size()); }
|
|
inline void CodeIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void CodeIterateBody(Heap* heap);
|
|
|
|
DECLARE_PRINTER(Code)
|
|
DECLARE_VERIFIER(Code)
|
|
|
|
void ClearInlineCaches();
|
|
void ClearTypeFeedbackCells(Heap* heap);
|
|
|
|
BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
|
|
|
|
#define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
|
|
enum Age {
|
|
kNotExecutedCodeAge = -2,
|
|
kExecutedOnceCodeAge = -1,
|
|
kNoAgeCodeAge = 0,
|
|
CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
|
|
kAfterLastCodeAge,
|
|
kLastCodeAge = kAfterLastCodeAge - 1,
|
|
kCodeAgeCount = kAfterLastCodeAge - 1,
|
|
kIsOldCodeAge = kSexagenarianCodeAge,
|
|
kPreAgedCodeAge = kIsOldCodeAge - 1
|
|
};
|
|
#undef DECLARE_CODE_AGE_ENUM
|
|
|
|
// Code aging. Indicates how many full GCs this code has survived without
|
|
// being entered through the prologue. Used to determine when it is
|
|
// relatively safe to flush this code object and replace it with the lazy
|
|
// compilation stub.
|
|
static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
|
|
static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
|
|
void MakeOlder(MarkingParity);
|
|
static bool IsYoungSequence(byte* sequence);
|
|
bool IsOld();
|
|
Age GetAge();
|
|
static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
|
|
return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
|
|
}
|
|
|
|
void PrintDeoptLocation(int bailout_id);
|
|
bool CanDeoptAt(Address pc);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void VerifyEmbeddedObjectsDependency();
|
|
#endif
|
|
|
|
static bool IsWeakEmbeddedObject(Kind kind, Object* object);
|
|
|
|
// Max loop nesting marker used to postpose OSR. We don't take loop
|
|
// nesting that is deeper than 5 levels into account.
|
|
static const int kMaxLoopNestingMarker = 6;
|
|
|
|
// Layout description.
|
|
static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
|
|
static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
|
|
static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
|
|
static const int kDeoptimizationDataOffset =
|
|
kHandlerTableOffset + kPointerSize;
|
|
static const int kTypeFeedbackInfoOffset =
|
|
kDeoptimizationDataOffset + kPointerSize;
|
|
static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset; // Shared.
|
|
static const int kGCMetadataOffset = kTypeFeedbackInfoOffset + kPointerSize;
|
|
static const int kICAgeOffset =
|
|
kGCMetadataOffset + kPointerSize;
|
|
static const int kFlagsOffset = kICAgeOffset + kIntSize;
|
|
static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
|
|
static const int kKindSpecificFlags2Offset =
|
|
kKindSpecificFlags1Offset + kIntSize;
|
|
// Note: We might be able to squeeze this into the flags above.
|
|
static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
|
|
|
|
static const int kHeaderPaddingStart = kPrologueOffset + kIntSize;
|
|
|
|
// Add padding to align the instruction start following right after
|
|
// the Code object header.
|
|
static const int kHeaderSize =
|
|
(kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
|
|
|
|
// Byte offsets within kKindSpecificFlags1Offset.
|
|
static const int kOptimizableOffset = kKindSpecificFlags1Offset;
|
|
static const int kCheckTypeOffset = kKindSpecificFlags1Offset;
|
|
|
|
static const int kFullCodeFlags = kOptimizableOffset + 1;
|
|
class FullCodeFlagsHasDeoptimizationSupportField:
|
|
public BitField<bool, 0, 1> {}; // NOLINT
|
|
class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
|
|
class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {};
|
|
|
|
static const int kAllowOSRAtLoopNestingLevelOffset = kFullCodeFlags + 1;
|
|
static const int kProfilerTicksOffset = kAllowOSRAtLoopNestingLevelOffset + 1;
|
|
|
|
// Flags layout. BitField<type, shift, size>.
|
|
class ICStateField: public BitField<InlineCacheState, 0, 3> {};
|
|
class TypeField: public BitField<StubType, 3, 3> {};
|
|
class CacheHolderField: public BitField<InlineCacheHolderFlag, 6, 1> {};
|
|
class KindField: public BitField<Kind, 7, 4> {};
|
|
class IsPregeneratedField: public BitField<bool, 11, 1> {};
|
|
class ExtraICStateField: public BitField<ExtraICState, 12, 5> {};
|
|
class ExtendedExtraICStateField: public BitField<ExtraICState, 12,
|
|
PlatformSmiTagging::kSmiValueSize - 12 + 1> {}; // NOLINT
|
|
STATIC_ASSERT(ExtraICStateField::kShift == ExtendedExtraICStateField::kShift);
|
|
|
|
// KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kStackSlotsFirstBit = 0;
|
|
static const int kStackSlotsBitCount = 24;
|
|
static const int kHasFunctionCacheFirstBit =
|
|
kStackSlotsFirstBit + kStackSlotsBitCount;
|
|
static const int kHasFunctionCacheBitCount = 1;
|
|
static const int kMarkedForDeoptimizationFirstBit =
|
|
kStackSlotsFirstBit + kStackSlotsBitCount + 1;
|
|
static const int kMarkedForDeoptimizationBitCount = 1;
|
|
|
|
STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
|
|
STATIC_ASSERT(kHasFunctionCacheFirstBit + kHasFunctionCacheBitCount <= 32);
|
|
STATIC_ASSERT(kMarkedForDeoptimizationFirstBit +
|
|
kMarkedForDeoptimizationBitCount <= 32);
|
|
|
|
class StackSlotsField: public BitField<int,
|
|
kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
|
|
class HasFunctionCacheField: public BitField<bool,
|
|
kHasFunctionCacheFirstBit, kHasFunctionCacheBitCount> {}; // NOLINT
|
|
class MarkedForDeoptimizationField: public BitField<bool,
|
|
kMarkedForDeoptimizationFirstBit,
|
|
kMarkedForDeoptimizationBitCount> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (ALL)
|
|
static const int kIsCrankshaftedBit = 0;
|
|
class IsCrankshaftedField: public BitField<bool,
|
|
kIsCrankshaftedBit, 1> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
|
|
static const int kStubMajorKeyFirstBit = kIsCrankshaftedBit + 1;
|
|
static const int kSafepointTableOffsetFirstBit =
|
|
kStubMajorKeyFirstBit + kStubMajorKeyBits;
|
|
static const int kSafepointTableOffsetBitCount = 25;
|
|
|
|
STATIC_ASSERT(kStubMajorKeyFirstBit + kStubMajorKeyBits <= 32);
|
|
STATIC_ASSERT(kSafepointTableOffsetFirstBit +
|
|
kSafepointTableOffsetBitCount <= 32);
|
|
STATIC_ASSERT(1 + kStubMajorKeyBits +
|
|
kSafepointTableOffsetBitCount <= 32);
|
|
|
|
class SafepointTableOffsetField: public BitField<int,
|
|
kSafepointTableOffsetFirstBit,
|
|
kSafepointTableOffsetBitCount> {}; // NOLINT
|
|
class StubMajorKeyField: public BitField<int,
|
|
kStubMajorKeyFirstBit, kStubMajorKeyBits> {}; // NOLINT
|
|
|
|
// KindSpecificFlags2 layout (FUNCTION)
|
|
class BackEdgeTableOffsetField: public BitField<int,
|
|
kIsCrankshaftedBit + 1, 29> {}; // NOLINT
|
|
class BackEdgesPatchedForOSRField: public BitField<bool,
|
|
kIsCrankshaftedBit + 1 + 29, 1> {}; // NOLINT
|
|
|
|
// Signed field cannot be encoded using the BitField class.
|
|
static const int kArgumentsCountShift = 17;
|
|
static const int kArgumentsCountMask = ~((1 << kArgumentsCountShift) - 1);
|
|
static const int kArgumentsBits =
|
|
PlatformSmiTagging::kSmiValueSize - Code::kArgumentsCountShift + 1;
|
|
static const int kMaxArguments = (1 << kArgumentsBits) - 1;
|
|
|
|
// ICs can use either argument count or ExtendedExtraIC, since their storage
|
|
// overlaps.
|
|
STATIC_ASSERT(ExtraICStateField::kShift +
|
|
ExtraICStateField::kSize + kArgumentsBits ==
|
|
ExtendedExtraICStateField::kShift +
|
|
ExtendedExtraICStateField::kSize);
|
|
|
|
// This constant should be encodable in an ARM instruction.
|
|
static const int kFlagsNotUsedInLookup =
|
|
TypeField::kMask | CacheHolderField::kMask;
|
|
|
|
private:
|
|
friend class RelocIterator;
|
|
|
|
// Code aging
|
|
byte* FindCodeAgeSequence();
|
|
static void GetCodeAgeAndParity(Code* code, Age* age,
|
|
MarkingParity* parity);
|
|
static void GetCodeAgeAndParity(byte* sequence, Age* age,
|
|
MarkingParity* parity);
|
|
static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
|
|
|
|
// Code aging -- platform-specific
|
|
static void PatchPlatformCodeAge(Isolate* isolate,
|
|
byte* sequence, Age age,
|
|
MarkingParity parity);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
|
|
};
|
|
|
|
|
|
class CompilationInfo;
|
|
|
|
// This class describes the layout of dependent codes array of a map. The
|
|
// array is partitioned into several groups of dependent codes. Each group
|
|
// contains codes with the same dependency on the map. The array has the
|
|
// following layout for n dependency groups:
|
|
//
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
// | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
|
|
// +----+----+-----+----+---------+----------+-----+---------+-----------+
|
|
//
|
|
// The first n elements are Smis, each of them specifies the number of codes
|
|
// in the corresponding group. The subsequent elements contain grouped code
|
|
// objects. The suffix of the array can be filled with the undefined value if
|
|
// the number of codes is less than the length of the array. The order of the
|
|
// code objects within a group is not preserved.
|
|
//
|
|
// All code indexes used in the class are counted starting from the first
|
|
// code object of the first group. In other words, code index 0 corresponds
|
|
// to array index n = kCodesStartIndex.
|
|
|
|
class DependentCode: public FixedArray {
|
|
public:
|
|
enum DependencyGroup {
|
|
// Group of code that weakly embed this map and depend on being
|
|
// deoptimized when the map is garbage collected.
|
|
kWeaklyEmbeddedGroup,
|
|
// Group of code that embed a transition to this map, and depend on being
|
|
// deoptimized when the transition is replaced by a new version.
|
|
kTransitionGroup,
|
|
// Group of code that omit run-time prototype checks for prototypes
|
|
// described by this map. The group is deoptimized whenever an object
|
|
// described by this map changes shape (and transitions to a new map),
|
|
// possibly invalidating the assumptions embedded in the code.
|
|
kPrototypeCheckGroup,
|
|
// Group of code that depends on elements not being added to objects with
|
|
// this map.
|
|
kElementsCantBeAddedGroup,
|
|
// Group of code that depends on global property values in property cells
|
|
// not being changed.
|
|
kPropertyCellChangedGroup,
|
|
kGroupCount = kPropertyCellChangedGroup + 1
|
|
};
|
|
|
|
// Array for holding the index of the first code object of each group.
|
|
// The last element stores the total number of code objects.
|
|
class GroupStartIndexes {
|
|
public:
|
|
explicit GroupStartIndexes(DependentCode* entries);
|
|
void Recompute(DependentCode* entries);
|
|
int at(int i) { return start_indexes_[i]; }
|
|
int number_of_entries() { return start_indexes_[kGroupCount]; }
|
|
private:
|
|
int start_indexes_[kGroupCount + 1];
|
|
};
|
|
|
|
bool Contains(DependencyGroup group, Code* code);
|
|
static Handle<DependentCode> Insert(Handle<DependentCode> entries,
|
|
DependencyGroup group,
|
|
Handle<Object> object);
|
|
void UpdateToFinishedCode(DependencyGroup group,
|
|
CompilationInfo* info,
|
|
Code* code);
|
|
void RemoveCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
void DeoptimizeDependentCodeGroup(Isolate* isolate,
|
|
DependentCode::DependencyGroup group);
|
|
|
|
// The following low-level accessors should only be used by this class
|
|
// and the mark compact collector.
|
|
inline int number_of_entries(DependencyGroup group);
|
|
inline void set_number_of_entries(DependencyGroup group, int value);
|
|
inline bool is_code_at(int i);
|
|
inline Code* code_at(int i);
|
|
inline CompilationInfo* compilation_info_at(int i);
|
|
inline void set_object_at(int i, Object* object);
|
|
inline Object** slot_at(int i);
|
|
inline Object* object_at(int i);
|
|
inline void clear_at(int i);
|
|
inline void copy(int from, int to);
|
|
static inline DependentCode* cast(Object* object);
|
|
|
|
static DependentCode* ForObject(Handle<HeapObject> object,
|
|
DependencyGroup group);
|
|
|
|
private:
|
|
// Make a room at the end of the given group by moving out the first
|
|
// code objects of the subsequent groups.
|
|
inline void ExtendGroup(DependencyGroup group);
|
|
static const int kCodesStartIndex = kGroupCount;
|
|
};
|
|
|
|
|
|
// All heap objects have a Map that describes their structure.
|
|
// A Map contains information about:
|
|
// - Size information about the object
|
|
// - How to iterate over an object (for garbage collection)
|
|
class Map: public HeapObject {
|
|
public:
|
|
// Instance size.
|
|
// Size in bytes or kVariableSizeSentinel if instances do not have
|
|
// a fixed size.
|
|
inline int instance_size();
|
|
inline void set_instance_size(int value);
|
|
|
|
// Count of properties allocated in the object.
|
|
inline int inobject_properties();
|
|
inline void set_inobject_properties(int value);
|
|
|
|
// Count of property fields pre-allocated in the object when first allocated.
|
|
inline int pre_allocated_property_fields();
|
|
inline void set_pre_allocated_property_fields(int value);
|
|
|
|
// Instance type.
|
|
inline InstanceType instance_type();
|
|
inline void set_instance_type(InstanceType value);
|
|
|
|
// Tells how many unused property fields are available in the
|
|
// instance (only used for JSObject in fast mode).
|
|
inline int unused_property_fields();
|
|
inline void set_unused_property_fields(int value);
|
|
|
|
// Bit field.
|
|
inline byte bit_field();
|
|
inline void set_bit_field(byte value);
|
|
|
|
// Bit field 2.
|
|
inline byte bit_field2();
|
|
inline void set_bit_field2(byte value);
|
|
|
|
// Bit field 3.
|
|
inline uint32_t bit_field3();
|
|
inline void set_bit_field3(uint32_t bits);
|
|
|
|
class EnumLengthBits: public BitField<int, 0, 11> {};
|
|
class NumberOfOwnDescriptorsBits: public BitField<int, 11, 11> {};
|
|
class IsShared: public BitField<bool, 22, 1> {};
|
|
class FunctionWithPrototype: public BitField<bool, 23, 1> {};
|
|
class DictionaryMap: public BitField<bool, 24, 1> {};
|
|
class OwnsDescriptors: public BitField<bool, 25, 1> {};
|
|
class IsObserved: public BitField<bool, 26, 1> {};
|
|
class Deprecated: public BitField<bool, 27, 1> {};
|
|
class IsFrozen: public BitField<bool, 28, 1> {};
|
|
class IsUnstable: public BitField<bool, 29, 1> {};
|
|
class IsMigrationTarget: public BitField<bool, 30, 1> {};
|
|
|
|
// Tells whether the object in the prototype property will be used
|
|
// for instances created from this function. If the prototype
|
|
// property is set to a value that is not a JSObject, the prototype
|
|
// property will not be used to create instances of the function.
|
|
// See ECMA-262, 13.2.2.
|
|
inline void set_non_instance_prototype(bool value);
|
|
inline bool has_non_instance_prototype();
|
|
|
|
// Tells whether function has special prototype property. If not, prototype
|
|
// property will not be created when accessed (will return undefined),
|
|
// and construction from this function will not be allowed.
|
|
inline void set_function_with_prototype(bool value);
|
|
inline bool function_with_prototype();
|
|
|
|
// Tells whether the instance with this map should be ignored by the
|
|
// Object.getPrototypeOf() function and the __proto__ accessor.
|
|
inline void set_is_hidden_prototype() {
|
|
set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
|
|
}
|
|
|
|
inline bool is_hidden_prototype() {
|
|
return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has a named interceptor.
|
|
inline void set_has_named_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
|
|
}
|
|
|
|
inline bool has_named_interceptor() {
|
|
return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Records and queries whether the instance has an indexed interceptor.
|
|
inline void set_has_indexed_interceptor() {
|
|
set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
|
|
}
|
|
|
|
inline bool has_indexed_interceptor() {
|
|
return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance is undetectable.
|
|
// An undetectable object is a special class of JSObject: 'typeof' operator
|
|
// returns undefined, ToBoolean returns false. Otherwise it behaves like
|
|
// a normal JS object. It is useful for implementing undetectable
|
|
// document.all in Firefox & Safari.
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
|
|
inline void set_is_undetectable() {
|
|
set_bit_field(bit_field() | (1 << kIsUndetectable));
|
|
}
|
|
|
|
inline bool is_undetectable() {
|
|
return ((1 << kIsUndetectable) & bit_field()) != 0;
|
|
}
|
|
|
|
// Tells whether the instance has a call-as-function handler.
|
|
inline void set_has_instance_call_handler() {
|
|
set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
|
|
}
|
|
|
|
inline bool has_instance_call_handler() {
|
|
return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
|
|
}
|
|
|
|
inline void set_is_extensible(bool value);
|
|
inline bool is_extensible();
|
|
|
|
inline void set_elements_kind(ElementsKind elements_kind) {
|
|
ASSERT(elements_kind < kElementsKindCount);
|
|
ASSERT(kElementsKindCount <= (1 << kElementsKindBitCount));
|
|
ASSERT(!is_observed() ||
|
|
elements_kind == DICTIONARY_ELEMENTS ||
|
|
elements_kind == NON_STRICT_ARGUMENTS_ELEMENTS ||
|
|
IsExternalArrayElementsKind(elements_kind));
|
|
set_bit_field2((bit_field2() & ~kElementsKindMask) |
|
|
(elements_kind << kElementsKindShift));
|
|
ASSERT(this->elements_kind() == elements_kind);
|
|
}
|
|
|
|
inline ElementsKind elements_kind() {
|
|
return static_cast<ElementsKind>(
|
|
(bit_field2() & kElementsKindMask) >> kElementsKindShift);
|
|
}
|
|
|
|
// Tells whether the instance has fast elements that are only Smis.
|
|
inline bool has_fast_smi_elements() {
|
|
return IsFastSmiElementsKind(elements_kind());
|
|
}
|
|
|
|
// Tells whether the instance has fast elements.
|
|
inline bool has_fast_object_elements() {
|
|
return IsFastObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_smi_or_object_elements() {
|
|
return IsFastSmiOrObjectElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_double_elements() {
|
|
return IsFastDoubleElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_fast_elements() {
|
|
return IsFastElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_non_strict_arguments_elements() {
|
|
return elements_kind() == NON_STRICT_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
inline bool has_external_array_elements() {
|
|
return IsExternalArrayElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_dictionary_elements() {
|
|
return IsDictionaryElementsKind(elements_kind());
|
|
}
|
|
|
|
inline bool has_slow_elements_kind() {
|
|
return elements_kind() == DICTIONARY_ELEMENTS
|
|
|| elements_kind() == NON_STRICT_ARGUMENTS_ELEMENTS;
|
|
}
|
|
|
|
static bool IsValidElementsTransition(ElementsKind from_kind,
|
|
ElementsKind to_kind);
|
|
|
|
inline bool HasTransitionArray();
|
|
inline bool HasElementsTransition();
|
|
inline Map* elements_transition_map();
|
|
MUST_USE_RESULT inline MaybeObject* set_elements_transition_map(
|
|
Map* transitioned_map);
|
|
inline void SetTransition(int transition_index, Map* target);
|
|
inline Map* GetTransition(int transition_index);
|
|
|
|
static Handle<TransitionArray> AddTransition(Handle<Map> map,
|
|
Handle<Name> key,
|
|
Handle<Map> target,
|
|
SimpleTransitionFlag flag);
|
|
|
|
MUST_USE_RESULT inline MaybeObject* AddTransition(Name* key,
|
|
Map* target,
|
|
SimpleTransitionFlag flag);
|
|
DECL_ACCESSORS(transitions, TransitionArray)
|
|
inline void ClearTransitions(Heap* heap,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
void DeprecateTransitionTree();
|
|
void DeprecateTarget(Name* key, DescriptorArray* new_descriptors);
|
|
|
|
Map* FindRootMap();
|
|
Map* FindUpdatedMap(int verbatim, int length, DescriptorArray* descriptors);
|
|
Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
|
|
|
|
int NumberOfFields();
|
|
|
|
bool InstancesNeedRewriting(Map* target,
|
|
int target_number_of_fields,
|
|
int target_inobject,
|
|
int target_unused);
|
|
static Handle<Map> GeneralizeAllFieldRepresentations(
|
|
Handle<Map> map,
|
|
Representation new_representation);
|
|
static Handle<Map> GeneralizeRepresentation(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
Representation new_representation,
|
|
StoreMode store_mode);
|
|
static Handle<Map> CopyGeneralizeAllRepresentations(
|
|
Handle<Map> map,
|
|
int modify_index,
|
|
StoreMode store_mode,
|
|
PropertyAttributes attributes,
|
|
const char* reason);
|
|
|
|
void PrintGeneralization(FILE* file,
|
|
const char* reason,
|
|
int modify_index,
|
|
int split,
|
|
int descriptors,
|
|
bool constant_to_field,
|
|
Representation old_representation,
|
|
Representation new_representation);
|
|
|
|
// Returns the constructor name (the name (possibly, inferred name) of the
|
|
// function that was used to instantiate the object).
|
|
String* constructor_name();
|
|
|
|
// Tells whether the map is attached to SharedFunctionInfo
|
|
// (for inobject slack tracking).
|
|
inline void set_attached_to_shared_function_info(bool value);
|
|
|
|
inline bool attached_to_shared_function_info();
|
|
|
|
// Tells whether the map is shared between objects that may have different
|
|
// behavior. If true, the map should never be modified, instead a clone
|
|
// should be created and modified.
|
|
inline void set_is_shared(bool value);
|
|
inline bool is_shared();
|
|
|
|
// Tells whether the map is used for JSObjects in dictionary mode (ie
|
|
// normalized objects, ie objects for which HasFastProperties returns false).
|
|
// A map can never be used for both dictionary mode and fast mode JSObjects.
|
|
// False by default and for HeapObjects that are not JSObjects.
|
|
inline void set_dictionary_map(bool value);
|
|
inline bool is_dictionary_map();
|
|
|
|
// Tells whether the instance needs security checks when accessing its
|
|
// properties.
|
|
inline void set_is_access_check_needed(bool access_check_needed);
|
|
inline bool is_access_check_needed();
|
|
|
|
// Returns true if map has a non-empty stub code cache.
|
|
inline bool has_code_cache();
|
|
|
|
// [prototype]: implicit prototype object.
|
|
DECL_ACCESSORS(prototype, Object)
|
|
|
|
// [constructor]: points back to the function responsible for this map.
|
|
DECL_ACCESSORS(constructor, Object)
|
|
|
|
// [instance descriptors]: describes the object.
|
|
DECL_ACCESSORS(instance_descriptors, DescriptorArray)
|
|
inline void InitializeDescriptors(DescriptorArray* descriptors);
|
|
|
|
// [stub cache]: contains stubs compiled for this map.
|
|
DECL_ACCESSORS(code_cache, Object)
|
|
|
|
// [dependent code]: list of optimized codes that have this map embedded.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// [back pointer]: points back to the parent map from which a transition
|
|
// leads to this map. The field overlaps with prototype transitions and the
|
|
// back pointer will be moved into the prototype transitions array if
|
|
// required.
|
|
inline Object* GetBackPointer();
|
|
inline void SetBackPointer(Object* value,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline void init_back_pointer(Object* undefined);
|
|
|
|
// [prototype transitions]: cache of prototype transitions.
|
|
// Prototype transition is a transition that happens
|
|
// when we change object's prototype to a new one.
|
|
// Cache format:
|
|
// 0: finger - index of the first free cell in the cache
|
|
// 1: back pointer that overlaps with prototype transitions field.
|
|
// 2 + 2 * i: prototype
|
|
// 3 + 2 * i: target map
|
|
inline FixedArray* GetPrototypeTransitions();
|
|
MUST_USE_RESULT inline MaybeObject* SetPrototypeTransitions(
|
|
FixedArray* prototype_transitions);
|
|
inline bool HasPrototypeTransitions();
|
|
|
|
inline HeapObject* UncheckedPrototypeTransitions();
|
|
inline TransitionArray* unchecked_transition_array();
|
|
|
|
static const int kProtoTransitionHeaderSize = 1;
|
|
static const int kProtoTransitionNumberOfEntriesOffset = 0;
|
|
static const int kProtoTransitionElementsPerEntry = 2;
|
|
static const int kProtoTransitionPrototypeOffset = 0;
|
|
static const int kProtoTransitionMapOffset = 1;
|
|
|
|
inline int NumberOfProtoTransitions() {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
if (cache->length() == 0) return 0;
|
|
return
|
|
Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value();
|
|
}
|
|
|
|
inline void SetNumberOfProtoTransitions(int value) {
|
|
FixedArray* cache = GetPrototypeTransitions();
|
|
ASSERT(cache->length() != 0);
|
|
cache->set(kProtoTransitionNumberOfEntriesOffset, Smi::FromInt(value));
|
|
}
|
|
|
|
// Lookup in the map's instance descriptors and fill out the result
|
|
// with the given holder if the name is found. The holder may be
|
|
// NULL when this function is used from the compiler.
|
|
inline void LookupDescriptor(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result);
|
|
|
|
inline void LookupTransition(JSObject* holder,
|
|
Name* name,
|
|
LookupResult* result);
|
|
|
|
// The size of transition arrays are limited so they do not end up in large
|
|
// object space. Otherwise ClearNonLiveTransitions would leak memory while
|
|
// applying in-place right trimming.
|
|
inline bool CanHaveMoreTransitions();
|
|
|
|
int LastAdded() {
|
|
int number_of_own_descriptors = NumberOfOwnDescriptors();
|
|
ASSERT(number_of_own_descriptors > 0);
|
|
return number_of_own_descriptors - 1;
|
|
}
|
|
|
|
int NumberOfOwnDescriptors() {
|
|
return NumberOfOwnDescriptorsBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetNumberOfOwnDescriptors(int number) {
|
|
ASSERT(number <= instance_descriptors()->number_of_descriptors());
|
|
set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
|
|
}
|
|
|
|
inline Cell* RetrieveDescriptorsPointer();
|
|
|
|
int EnumLength() {
|
|
return EnumLengthBits::decode(bit_field3());
|
|
}
|
|
|
|
void SetEnumLength(int length) {
|
|
if (length != kInvalidEnumCache) {
|
|
ASSERT(length >= 0);
|
|
ASSERT(length == 0 || instance_descriptors()->HasEnumCache());
|
|
ASSERT(length <= NumberOfOwnDescriptors());
|
|
}
|
|
set_bit_field3(EnumLengthBits::update(bit_field3(), length));
|
|
}
|
|
|
|
inline bool owns_descriptors();
|
|
inline void set_owns_descriptors(bool is_shared);
|
|
inline bool is_observed();
|
|
inline void set_is_observed(bool is_observed);
|
|
inline void freeze();
|
|
inline bool is_frozen();
|
|
inline void mark_unstable();
|
|
inline bool is_stable();
|
|
inline void set_migration_target(bool value);
|
|
inline bool is_migration_target();
|
|
inline void deprecate();
|
|
inline bool is_deprecated();
|
|
inline bool CanBeDeprecated();
|
|
// Returns a non-deprecated version of the input. If the input was not
|
|
// deprecated, it is directly returned. Otherwise, the non-deprecated version
|
|
// is found by re-transitioning from the root of the transition tree using the
|
|
// descriptor array of the map. Returns NULL if no updated map is found.
|
|
Map* CurrentMapForDeprecated();
|
|
|
|
static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
|
|
MUST_USE_RESULT MaybeObject* RawCopy(int instance_size);
|
|
MUST_USE_RESULT MaybeObject* CopyWithPreallocatedFieldDescriptors();
|
|
static Handle<Map> CopyDropDescriptors(Handle<Map> map);
|
|
MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
|
|
static Handle<Map> CopyReplaceDescriptors(Handle<Map> map,
|
|
Handle<DescriptorArray> descriptors,
|
|
TransitionFlag flag,
|
|
Handle<Name> name);
|
|
MUST_USE_RESULT MaybeObject* CopyReplaceDescriptors(
|
|
DescriptorArray* descriptors,
|
|
TransitionFlag flag,
|
|
Name* name = NULL,
|
|
SimpleTransitionFlag simple_flag = FULL_TRANSITION);
|
|
static Handle<Map> CopyInstallDescriptors(
|
|
Handle<Map> map,
|
|
int new_descriptor,
|
|
Handle<DescriptorArray> descriptors);
|
|
MUST_USE_RESULT MaybeObject* ShareDescriptor(DescriptorArray* descriptors,
|
|
Descriptor* descriptor);
|
|
MUST_USE_RESULT MaybeObject* CopyAddDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* CopyInsertDescriptor(Descriptor* descriptor,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* CopyReplaceDescriptor(
|
|
DescriptorArray* descriptors,
|
|
Descriptor* descriptor,
|
|
int index,
|
|
TransitionFlag flag);
|
|
MUST_USE_RESULT MaybeObject* AsElementsKind(ElementsKind kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* CopyAsElementsKind(ElementsKind kind,
|
|
TransitionFlag flag);
|
|
|
|
static Handle<Map> CopyForObserved(Handle<Map> map);
|
|
|
|
static Handle<Map> CopyNormalized(Handle<Map> map,
|
|
PropertyNormalizationMode mode,
|
|
NormalizedMapSharingMode sharing);
|
|
|
|
inline void AppendDescriptor(Descriptor* desc,
|
|
const DescriptorArray::WhitenessWitness&);
|
|
|
|
// Returns a copy of the map, with all transitions dropped from the
|
|
// instance descriptors.
|
|
static Handle<Map> Copy(Handle<Map> map);
|
|
MUST_USE_RESULT MaybeObject* Copy();
|
|
|
|
// Returns the next free property index (only valid for FAST MODE).
|
|
int NextFreePropertyIndex();
|
|
|
|
// Returns the number of properties described in instance_descriptors
|
|
// filtering out properties with the specified attributes.
|
|
int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
|
|
PropertyAttributes filter = NONE);
|
|
|
|
// Returns the number of slots allocated for the initial properties
|
|
// backing storage for instances of this map.
|
|
int InitialPropertiesLength() {
|
|
return pre_allocated_property_fields() + unused_property_fields() -
|
|
inobject_properties();
|
|
}
|
|
|
|
// Casting.
|
|
static inline Map* cast(Object* obj);
|
|
|
|
// Locate an accessor in the instance descriptor.
|
|
AccessorDescriptor* FindAccessor(Name* name);
|
|
|
|
// Code cache operations.
|
|
|
|
// Clears the code cache.
|
|
inline void ClearCodeCache(Heap* heap);
|
|
|
|
// Update code cache.
|
|
static void UpdateCodeCache(Handle<Map> map,
|
|
Handle<Name> name,
|
|
Handle<Code> code);
|
|
MUST_USE_RESULT MaybeObject* UpdateCodeCache(Name* name, Code* code);
|
|
|
|
// Extend the descriptor array of the map with the list of descriptors.
|
|
// In case of duplicates, the latest descriptor is used.
|
|
static void AppendCallbackDescriptors(Handle<Map> map,
|
|
Handle<Object> descriptors);
|
|
|
|
static void EnsureDescriptorSlack(Handle<Map> map, int slack);
|
|
|
|
// Returns the found code or undefined if absent.
|
|
Object* FindInCodeCache(Name* name, Code::Flags flags);
|
|
|
|
// Returns the non-negative index of the code object if it is in the
|
|
// cache and -1 otherwise.
|
|
int IndexInCodeCache(Object* name, Code* code);
|
|
|
|
// Removes a code object from the code cache at the given index.
|
|
void RemoveFromCodeCache(Name* name, Code* code, int index);
|
|
|
|
// Set all map transitions from this map to dead maps to null. Also clear
|
|
// back pointers in transition targets so that we do not process this map
|
|
// again while following back pointers.
|
|
void ClearNonLiveTransitions(Heap* heap);
|
|
|
|
// Computes a hash value for this map, to be used in HashTables and such.
|
|
int Hash();
|
|
|
|
bool EquivalentToForTransition(Map* other);
|
|
|
|
// Compares this map to another to see if they describe equivalent objects.
|
|
// If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
|
|
// it had exactly zero inobject properties.
|
|
// The "shared" flags of both this map and |other| are ignored.
|
|
bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
|
|
|
|
// Returns the map that this map transitions to if its elements_kind
|
|
// is changed to |elements_kind|, or NULL if no such map is cached yet.
|
|
// |safe_to_add_transitions| is set to false if adding transitions is not
|
|
// allowed.
|
|
Map* LookupElementsTransitionMap(ElementsKind elements_kind);
|
|
|
|
// Returns the transitioned map for this map with the most generic
|
|
// elements_kind that's found in |candidates|, or null handle if no match is
|
|
// found at all.
|
|
Handle<Map> FindTransitionedMap(MapHandleList* candidates);
|
|
Map* FindTransitionedMap(MapList* candidates);
|
|
|
|
// Zaps the contents of backing data structures. Note that the
|
|
// heap verifier (i.e. VerifyMarkingVisitor) relies on zapping of objects
|
|
// holding weak references when incremental marking is used, because it also
|
|
// iterates over objects that are otherwise unreachable.
|
|
// In general we only want to call these functions in release mode when
|
|
// heap verification is turned on.
|
|
void ZapPrototypeTransitions();
|
|
void ZapTransitions();
|
|
|
|
bool CanTransition() {
|
|
// Only JSObject and subtypes have map transitions and back pointers.
|
|
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
bool IsJSObjectMap() {
|
|
return instance_type() >= FIRST_JS_OBJECT_TYPE;
|
|
}
|
|
|
|
// Fires when the layout of an object with a leaf map changes.
|
|
// This includes adding transitions to the leaf map or changing
|
|
// the descriptor array.
|
|
inline void NotifyLeafMapLayoutChange();
|
|
|
|
inline bool CanOmitMapChecks();
|
|
|
|
void AddDependentCompilationInfo(DependentCode::DependencyGroup group,
|
|
CompilationInfo* info);
|
|
|
|
void AddDependentCode(DependentCode::DependencyGroup group,
|
|
Handle<Code> code);
|
|
|
|
bool IsMapInArrayPrototypeChain();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Map)
|
|
DECLARE_VERIFIER(Map)
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void SharedMapVerify();
|
|
void VerifyOmittedMapChecks();
|
|
#endif
|
|
|
|
inline int visitor_id();
|
|
inline void set_visitor_id(int visitor_id);
|
|
|
|
typedef void (*TraverseCallback)(Map* map, void* data);
|
|
|
|
void TraverseTransitionTree(TraverseCallback callback, void* data);
|
|
|
|
// When you set the prototype of an object using the __proto__ accessor you
|
|
// need a new map for the object (the prototype is stored in the map). In
|
|
// order not to multiply maps unnecessarily we store these as transitions in
|
|
// the original map. That way we can transition to the same map if the same
|
|
// prototype is set, rather than creating a new map every time. The
|
|
// transitions are in the form of a map where the keys are prototype objects
|
|
// and the values are the maps the are transitioned to.
|
|
static const int kMaxCachedPrototypeTransitions = 256;
|
|
static Handle<Map> GetPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype);
|
|
static Handle<Map> PutPrototypeTransition(Handle<Map> map,
|
|
Handle<Object> prototype,
|
|
Handle<Map> target_map);
|
|
|
|
static const int kMaxPreAllocatedPropertyFields = 255;
|
|
|
|
// Constant for denoting that the enum cache is not yet initialized.
|
|
static const int kInvalidEnumCache = EnumLengthBits::kMax;
|
|
|
|
// Layout description.
|
|
static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
|
|
static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
|
|
static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
|
|
static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
|
|
// Storage for the transition array is overloaded to directly contain a back
|
|
// pointer if unused. When the map has transitions, the back pointer is
|
|
// transferred to the transition array and accessed through an extra
|
|
// indirection.
|
|
static const int kTransitionsOrBackPointerOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kDescriptorsOffset =
|
|
kTransitionsOrBackPointerOffset + kPointerSize;
|
|
static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
|
|
static const int kBitField3Offset = kDependentCodeOffset + kPointerSize;
|
|
static const int kSize = kBitField3Offset + kPointerSize;
|
|
|
|
// Layout of pointer fields. Heap iteration code relies on them
|
|
// being continuously allocated.
|
|
static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
|
|
static const int kPointerFieldsEndOffset = kBitField3Offset + kPointerSize;
|
|
|
|
// Byte offsets within kInstanceSizesOffset.
|
|
static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
|
|
static const int kInObjectPropertiesByte = 1;
|
|
static const int kInObjectPropertiesOffset =
|
|
kInstanceSizesOffset + kInObjectPropertiesByte;
|
|
static const int kPreAllocatedPropertyFieldsByte = 2;
|
|
static const int kPreAllocatedPropertyFieldsOffset =
|
|
kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
|
|
static const int kVisitorIdByte = 3;
|
|
static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
|
|
|
|
// Byte offsets within kInstanceAttributesOffset attributes.
|
|
static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
|
|
static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
|
|
static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
|
|
static const int kBitField2Offset = kInstanceAttributesOffset + 3;
|
|
|
|
STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
|
|
|
|
// Bit positions for bit field.
|
|
static const int kUnused = 0; // To be used for marking recently used maps.
|
|
static const int kHasNonInstancePrototype = 1;
|
|
static const int kIsHiddenPrototype = 2;
|
|
static const int kHasNamedInterceptor = 3;
|
|
static const int kHasIndexedInterceptor = 4;
|
|
static const int kIsUndetectable = 5;
|
|
static const int kHasInstanceCallHandler = 6;
|
|
static const int kIsAccessCheckNeeded = 7;
|
|
|
|
// Bit positions for bit field 2
|
|
static const int kIsExtensible = 0;
|
|
static const int kStringWrapperSafeForDefaultValueOf = 1;
|
|
static const int kAttachedToSharedFunctionInfo = 2;
|
|
// No bits can be used after kElementsKindFirstBit, they are all reserved for
|
|
// storing ElementKind.
|
|
static const int kElementsKindShift = 3;
|
|
static const int kElementsKindBitCount = 5;
|
|
|
|
// Derived values from bit field 2
|
|
static const int kElementsKindMask = (-1 << kElementsKindShift) &
|
|
((1 << (kElementsKindShift + kElementsKindBitCount)) - 1);
|
|
static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
|
|
(FAST_ELEMENTS + 1) << Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastSmiElementValue =
|
|
static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleyElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
static const int8_t kMaximumBitField2FastHoleySmiElementValue =
|
|
static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
|
|
Map::kElementsKindShift) - 1;
|
|
|
|
typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
|
|
kPointerFieldsEndOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
|
|
};
|
|
|
|
|
|
// An abstract superclass, a marker class really, for simple structure classes.
|
|
// It doesn't carry much functionality but allows struct classes to be
|
|
// identified in the type system.
|
|
class Struct: public HeapObject {
|
|
public:
|
|
inline void InitializeBody(int object_size);
|
|
static inline Struct* cast(Object* that);
|
|
};
|
|
|
|
|
|
// A simple one-element struct, useful where smis need to be boxed.
|
|
class Box : public Struct {
|
|
public:
|
|
// [value]: the boxed contents.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
static inline Box* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Box)
|
|
DECLARE_VERIFIER(Box)
|
|
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
|
|
};
|
|
|
|
|
|
// Script describes a script which has been added to the VM.
|
|
class Script: public Struct {
|
|
public:
|
|
// Script types.
|
|
enum Type {
|
|
TYPE_NATIVE = 0,
|
|
TYPE_EXTENSION = 1,
|
|
TYPE_NORMAL = 2
|
|
};
|
|
|
|
// Script compilation types.
|
|
enum CompilationType {
|
|
COMPILATION_TYPE_HOST = 0,
|
|
COMPILATION_TYPE_EVAL = 1
|
|
};
|
|
|
|
// Script compilation state.
|
|
enum CompilationState {
|
|
COMPILATION_STATE_INITIAL = 0,
|
|
COMPILATION_STATE_COMPILED = 1
|
|
};
|
|
|
|
// [source]: the script source.
|
|
DECL_ACCESSORS(source, Object)
|
|
|
|
// [name]: the script name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [id]: the script id.
|
|
DECL_ACCESSORS(id, Smi)
|
|
|
|
// [line_offset]: script line offset in resource from where it was extracted.
|
|
DECL_ACCESSORS(line_offset, Smi)
|
|
|
|
// [column_offset]: script column offset in resource from where it was
|
|
// extracted.
|
|
DECL_ACCESSORS(column_offset, Smi)
|
|
|
|
// [data]: additional data associated with this script.
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
// [context_data]: context data for the context this script was compiled in.
|
|
DECL_ACCESSORS(context_data, Object)
|
|
|
|
// [wrapper]: the wrapper cache.
|
|
DECL_ACCESSORS(wrapper, Foreign)
|
|
|
|
// [type]: the script type.
|
|
DECL_ACCESSORS(type, Smi)
|
|
|
|
// [line_ends]: FixedArray of line ends positions.
|
|
DECL_ACCESSORS(line_ends, Object)
|
|
|
|
// [eval_from_shared]: for eval scripts the shared funcion info for the
|
|
// function from which eval was called.
|
|
DECL_ACCESSORS(eval_from_shared, Object)
|
|
|
|
// [eval_from_instructions_offset]: the instruction offset in the code for the
|
|
// function from which eval was called where eval was called.
|
|
DECL_ACCESSORS(eval_from_instructions_offset, Smi)
|
|
|
|
// [flags]: Holds an exciting bitfield.
|
|
DECL_ACCESSORS(flags, Smi)
|
|
|
|
// [compilation_type]: how the the script was compiled. Encoded in the
|
|
// 'flags' field.
|
|
inline CompilationType compilation_type();
|
|
inline void set_compilation_type(CompilationType type);
|
|
|
|
// [compilation_state]: determines whether the script has already been
|
|
// compiled. Encoded in the 'flags' field.
|
|
inline CompilationState compilation_state();
|
|
inline void set_compilation_state(CompilationState state);
|
|
|
|
// [is_shared_cross_origin]: An opaque boolean set by the embedder via
|
|
// ScriptOrigin, and used by the embedder to make decisions about the
|
|
// script's level of privilege. V8 just passes this through. Encoded in
|
|
// the 'flags' field.
|
|
DECL_BOOLEAN_ACCESSORS(is_shared_cross_origin)
|
|
|
|
static inline Script* cast(Object* obj);
|
|
|
|
// If script source is an external string, check that the underlying
|
|
// resource is accessible. Otherwise, always return true.
|
|
inline bool HasValidSource();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Script)
|
|
DECLARE_VERIFIER(Script)
|
|
|
|
static const int kSourceOffset = HeapObject::kHeaderSize;
|
|
static const int kNameOffset = kSourceOffset + kPointerSize;
|
|
static const int kLineOffsetOffset = kNameOffset + kPointerSize;
|
|
static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
|
|
static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
|
|
static const int kContextOffset = kDataOffset + kPointerSize;
|
|
static const int kWrapperOffset = kContextOffset + kPointerSize;
|
|
static const int kTypeOffset = kWrapperOffset + kPointerSize;
|
|
static const int kLineEndsOffset = kTypeOffset + kPointerSize;
|
|
static const int kIdOffset = kLineEndsOffset + kPointerSize;
|
|
static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
|
|
static const int kEvalFrominstructionsOffsetOffset =
|
|
kEvalFromSharedOffset + kPointerSize;
|
|
static const int kFlagsOffset =
|
|
kEvalFrominstructionsOffsetOffset + kPointerSize;
|
|
static const int kSize = kFlagsOffset + kPointerSize;
|
|
|
|
private:
|
|
// Bit positions in the flags field.
|
|
static const int kCompilationTypeBit = 0;
|
|
static const int kCompilationStateBit = 1;
|
|
static const int kIsSharedCrossOriginBit = 2;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
|
|
};
|
|
|
|
|
|
// List of builtin functions we want to identify to improve code
|
|
// generation.
|
|
//
|
|
// Each entry has a name of a global object property holding an object
|
|
// optionally followed by ".prototype", a name of a builtin function
|
|
// on the object (the one the id is set for), and a label.
|
|
//
|
|
// Installation of ids for the selected builtin functions is handled
|
|
// by the bootstrapper.
|
|
#define FUNCTIONS_WITH_ID_LIST(V) \
|
|
V(Array.prototype, push, ArrayPush) \
|
|
V(Array.prototype, pop, ArrayPop) \
|
|
V(Function.prototype, apply, FunctionApply) \
|
|
V(String.prototype, charCodeAt, StringCharCodeAt) \
|
|
V(String.prototype, charAt, StringCharAt) \
|
|
V(String, fromCharCode, StringFromCharCode) \
|
|
V(Math, floor, MathFloor) \
|
|
V(Math, round, MathRound) \
|
|
V(Math, ceil, MathCeil) \
|
|
V(Math, abs, MathAbs) \
|
|
V(Math, log, MathLog) \
|
|
V(Math, sin, MathSin) \
|
|
V(Math, cos, MathCos) \
|
|
V(Math, tan, MathTan) \
|
|
V(Math, asin, MathASin) \
|
|
V(Math, acos, MathACos) \
|
|
V(Math, atan, MathATan) \
|
|
V(Math, exp, MathExp) \
|
|
V(Math, sqrt, MathSqrt) \
|
|
V(Math, pow, MathPow) \
|
|
V(Math, random, MathRandom) \
|
|
V(Math, max, MathMax) \
|
|
V(Math, min, MathMin) \
|
|
V(Math, imul, MathImul)
|
|
|
|
enum BuiltinFunctionId {
|
|
kArrayCode,
|
|
#define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
|
|
k##name,
|
|
FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
|
|
#undef DECLARE_FUNCTION_ID
|
|
// Fake id for a special case of Math.pow. Note, it continues the
|
|
// list of math functions.
|
|
kMathPowHalf
|
|
};
|
|
|
|
|
|
// SharedFunctionInfo describes the JSFunction information that can be
|
|
// shared by multiple instances of the function.
|
|
class SharedFunctionInfo: public HeapObject {
|
|
public:
|
|
// [name]: Function name.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// [code]: Function code.
|
|
DECL_ACCESSORS(code, Code)
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// [optimized_code_map]: Map from native context to optimized code
|
|
// and a shared literals array or Smi(0) if none.
|
|
DECL_ACCESSORS(optimized_code_map, Object)
|
|
|
|
// Returns index i of the entry with the specified context. At position
|
|
// i - 1 is the context, position i the code, and i + 1 the literals array.
|
|
// Returns -1 when no matching entry is found.
|
|
int SearchOptimizedCodeMap(Context* native_context);
|
|
|
|
// Installs optimized code from the code map on the given closure. The
|
|
// index has to be consistent with a search result as defined above.
|
|
void InstallFromOptimizedCodeMap(JSFunction* function, int index);
|
|
|
|
// Clear optimized code map.
|
|
void ClearOptimizedCodeMap();
|
|
|
|
// Removed a specific optimized code object from the optimized code map.
|
|
void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
|
|
|
|
// Trims the optimized code map after entries have been removed.
|
|
void TrimOptimizedCodeMap(int shrink_by);
|
|
|
|
// Add a new entry to the optimized code map.
|
|
MUST_USE_RESULT MaybeObject* AddToOptimizedCodeMap(Context* native_context,
|
|
Code* code,
|
|
FixedArray* literals);
|
|
static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
|
|
Handle<Context> native_context,
|
|
Handle<Code> code,
|
|
Handle<FixedArray> literals);
|
|
|
|
// Layout description of the optimized code map.
|
|
static const int kNextMapIndex = 0;
|
|
static const int kEntriesStart = 1;
|
|
static const int kEntryLength = 3;
|
|
static const int kFirstContextSlot = FixedArray::kHeaderSize + kPointerSize;
|
|
static const int kFirstCodeSlot = FixedArray::kHeaderSize + 2 * kPointerSize;
|
|
static const int kSecondEntryIndex = kEntryLength + kEntriesStart;
|
|
static const int kInitialLength = kEntriesStart + kEntryLength;
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
// [construct stub]: Code stub for constructing instances of this function.
|
|
DECL_ACCESSORS(construct_stub, Code)
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [length]: The function length - usually the number of declared parameters.
|
|
// Use up to 2^30 parameters.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// [formal parameter count]: The declared number of parameters.
|
|
inline int formal_parameter_count();
|
|
inline void set_formal_parameter_count(int value);
|
|
|
|
// Set the formal parameter count so the function code will be
|
|
// called without using argument adaptor frames.
|
|
inline void DontAdaptArguments();
|
|
|
|
// [expected_nof_properties]: Expected number of properties for the function.
|
|
inline int expected_nof_properties();
|
|
inline void set_expected_nof_properties(int value);
|
|
|
|
// Inobject slack tracking is the way to reclaim unused inobject space.
|
|
//
|
|
// The instance size is initially determined by adding some slack to
|
|
// expected_nof_properties (to allow for a few extra properties added
|
|
// after the constructor). There is no guarantee that the extra space
|
|
// will not be wasted.
|
|
//
|
|
// Here is the algorithm to reclaim the unused inobject space:
|
|
// - Detect the first constructor call for this SharedFunctionInfo.
|
|
// When it happens enter the "in progress" state: remember the
|
|
// constructor's initial_map and install a special construct stub that
|
|
// counts constructor calls.
|
|
// - While the tracking is in progress create objects filled with
|
|
// one_pointer_filler_map instead of undefined_value. This way they can be
|
|
// resized quickly and safely.
|
|
// - Once enough (kGenerousAllocationCount) objects have been created
|
|
// compute the 'slack' (traverse the map transition tree starting from the
|
|
// initial_map and find the lowest value of unused_property_fields).
|
|
// - Traverse the transition tree again and decrease the instance size
|
|
// of every map. Existing objects will resize automatically (they are
|
|
// filled with one_pointer_filler_map). All further allocations will
|
|
// use the adjusted instance size.
|
|
// - Decrease expected_nof_properties so that an allocations made from
|
|
// another context will use the adjusted instance size too.
|
|
// - Exit "in progress" state by clearing the reference to the initial_map
|
|
// and setting the regular construct stub (generic or inline).
|
|
//
|
|
// The above is the main event sequence. Some special cases are possible
|
|
// while the tracking is in progress:
|
|
//
|
|
// - GC occurs.
|
|
// Check if the initial_map is referenced by any live objects (except this
|
|
// SharedFunctionInfo). If it is, continue tracking as usual.
|
|
// If it is not, clear the reference and reset the tracking state. The
|
|
// tracking will be initiated again on the next constructor call.
|
|
//
|
|
// - The constructor is called from another context.
|
|
// Immediately complete the tracking, perform all the necessary changes
|
|
// to maps. This is necessary because there is no efficient way to track
|
|
// multiple initial_maps.
|
|
// Proceed to create an object in the current context (with the adjusted
|
|
// size).
|
|
//
|
|
// - A different constructor function sharing the same SharedFunctionInfo is
|
|
// called in the same context. This could be another closure in the same
|
|
// context, or the first function could have been disposed.
|
|
// This is handled the same way as the previous case.
|
|
//
|
|
// Important: inobject slack tracking is not attempted during the snapshot
|
|
// creation.
|
|
|
|
static const int kGenerousAllocationCount = 8;
|
|
|
|
// [construction_count]: Counter for constructor calls made during
|
|
// the tracking phase.
|
|
inline int construction_count();
|
|
inline void set_construction_count(int value);
|
|
|
|
// [initial_map]: initial map of the first function called as a constructor.
|
|
// Saved for the duration of the tracking phase.
|
|
// This is a weak link (GC resets it to undefined_value if no other live
|
|
// object reference this map).
|
|
DECL_ACCESSORS(initial_map, Object)
|
|
|
|
// True if the initial_map is not undefined and the countdown stub is
|
|
// installed.
|
|
inline bool IsInobjectSlackTrackingInProgress();
|
|
|
|
// Starts the tracking.
|
|
// Stores the initial map and installs the countdown stub.
|
|
// IsInobjectSlackTrackingInProgress is normally true after this call,
|
|
// except when tracking have not been started (e.g. the map has no unused
|
|
// properties or the snapshot is being built).
|
|
void StartInobjectSlackTracking(Map* map);
|
|
|
|
// Completes the tracking.
|
|
// IsInobjectSlackTrackingInProgress is false after this call.
|
|
void CompleteInobjectSlackTracking();
|
|
|
|
// Invoked before pointers in SharedFunctionInfo are being marked.
|
|
// Also clears the optimized code map.
|
|
inline void BeforeVisitingPointers();
|
|
|
|
// Clears the initial_map before the GC marking phase to ensure the reference
|
|
// is weak. IsInobjectSlackTrackingInProgress is false after this call.
|
|
void DetachInitialMap();
|
|
|
|
// Restores the link to the initial map after the GC marking phase.
|
|
// IsInobjectSlackTrackingInProgress is true after this call.
|
|
void AttachInitialMap(Map* map);
|
|
|
|
// False if there are definitely no live objects created from this function.
|
|
// True if live objects _may_ exist (existence not guaranteed).
|
|
// May go back from true to false after GC.
|
|
DECL_BOOLEAN_ACCESSORS(live_objects_may_exist)
|
|
|
|
// [instance class name]: class name for instances.
|
|
DECL_ACCESSORS(instance_class_name, Object)
|
|
|
|
// [function data]: This field holds some additional data for function.
|
|
// Currently it either has FunctionTemplateInfo to make benefit the API
|
|
// or Smi identifying a builtin function.
|
|
// In the long run we don't want all functions to have this field but
|
|
// we can fix that when we have a better model for storing hidden data
|
|
// on objects.
|
|
DECL_ACCESSORS(function_data, Object)
|
|
|
|
inline bool IsApiFunction();
|
|
inline FunctionTemplateInfo* get_api_func_data();
|
|
inline bool HasBuiltinFunctionId();
|
|
inline BuiltinFunctionId builtin_function_id();
|
|
|
|
// [script info]: Script from which the function originates.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [num_literals]: Number of literals used by this function.
|
|
inline int num_literals();
|
|
inline void set_num_literals(int value);
|
|
|
|
// [start_position_and_type]: Field used to store both the source code
|
|
// position, whether or not the function is a function expression,
|
|
// and whether or not the function is a toplevel function. The two
|
|
// least significants bit indicates whether the function is an
|
|
// expression and the rest contains the source code position.
|
|
inline int start_position_and_type();
|
|
inline void set_start_position_and_type(int value);
|
|
|
|
// [debug info]: Debug information.
|
|
DECL_ACCESSORS(debug_info, Object)
|
|
|
|
// [inferred name]: Name inferred from variable or property
|
|
// assignment of this function. Used to facilitate debugging and
|
|
// profiling of JavaScript code written in OO style, where almost
|
|
// all functions are anonymous but are assigned to object
|
|
// properties.
|
|
DECL_ACCESSORS(inferred_name, String)
|
|
|
|
// The function's name if it is non-empty, otherwise the inferred name.
|
|
String* DebugName();
|
|
|
|
// Position of the 'function' token in the script source.
|
|
inline int function_token_position();
|
|
inline void set_function_token_position(int function_token_position);
|
|
|
|
// Position of this function in the script source.
|
|
inline int start_position();
|
|
inline void set_start_position(int start_position);
|
|
|
|
// End position of this function in the script source.
|
|
inline int end_position();
|
|
inline void set_end_position(int end_position);
|
|
|
|
// Is this function a function expression in the source code.
|
|
DECL_BOOLEAN_ACCESSORS(is_expression)
|
|
|
|
// Is this function a top-level function (scripts, evals).
|
|
DECL_BOOLEAN_ACCESSORS(is_toplevel)
|
|
|
|
// Bit field containing various information collected by the compiler to
|
|
// drive optimization.
|
|
inline int compiler_hints();
|
|
inline void set_compiler_hints(int value);
|
|
|
|
inline int ast_node_count();
|
|
inline void set_ast_node_count(int count);
|
|
|
|
inline int profiler_ticks();
|
|
|
|
// Inline cache age is used to infer whether the function survived a context
|
|
// disposal or not. In the former case we reset the opt_count.
|
|
inline int ic_age();
|
|
inline void set_ic_age(int age);
|
|
|
|
// Indicates if this function can be lazy compiled.
|
|
// This is used to determine if we can safely flush code from a function
|
|
// when doing GC if we expect that the function will no longer be used.
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
|
|
|
|
// Indicates if this function can be lazy compiled without a context.
|
|
// This is used to determine if we can force compilation without reaching
|
|
// the function through program execution but through other means (e.g. heap
|
|
// iteration by the debugger).
|
|
DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
|
|
|
|
// Indicates whether optimizations have been disabled for this
|
|
// shared function info. If a function is repeatedly optimized or if
|
|
// we cannot optimize the function we disable optimization to avoid
|
|
// spending time attempting to optimize it again.
|
|
DECL_BOOLEAN_ACCESSORS(optimization_disabled)
|
|
|
|
// Indicates the language mode of the function's code as defined by the
|
|
// current harmony drafts for the next ES language standard. Possible
|
|
// values are:
|
|
// 1. CLASSIC_MODE - Unrestricted syntax and semantics, same as in ES5.
|
|
// 2. STRICT_MODE - Restricted syntax and semantics, same as in ES5.
|
|
// 3. EXTENDED_MODE - Only available under the harmony flag, not part of ES5.
|
|
inline LanguageMode language_mode();
|
|
inline void set_language_mode(LanguageMode language_mode);
|
|
|
|
// Indicates whether the language mode of this function is CLASSIC_MODE.
|
|
inline bool is_classic_mode();
|
|
|
|
// Indicates whether the language mode of this function is EXTENDED_MODE.
|
|
inline bool is_extended_mode();
|
|
|
|
// False if the function definitely does not allocate an arguments object.
|
|
DECL_BOOLEAN_ACCESSORS(uses_arguments)
|
|
|
|
// True if the function has any duplicated parameter names.
|
|
DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
|
|
|
|
// Indicates whether the function is a native function.
|
|
// These needs special treatment in .call and .apply since
|
|
// null passed as the receiver should not be translated to the
|
|
// global object.
|
|
DECL_BOOLEAN_ACCESSORS(native)
|
|
|
|
// Indicates that the function was created by the Function function.
|
|
// Though it's anonymous, toString should treat it as if it had the name
|
|
// "anonymous". We don't set the name itself so that the system does not
|
|
// see a binding for it.
|
|
DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
|
|
|
|
// Indicates whether the function is a bound function created using
|
|
// the bind function.
|
|
DECL_BOOLEAN_ACCESSORS(bound)
|
|
|
|
// Indicates that the function is anonymous (the name field can be set
|
|
// through the API, which does not change this flag).
|
|
DECL_BOOLEAN_ACCESSORS(is_anonymous)
|
|
|
|
// Is this a function or top-level/eval code.
|
|
DECL_BOOLEAN_ACCESSORS(is_function)
|
|
|
|
// Indicates that the function cannot be optimized.
|
|
DECL_BOOLEAN_ACCESSORS(dont_optimize)
|
|
|
|
// Indicates that the function cannot be inlined.
|
|
DECL_BOOLEAN_ACCESSORS(dont_inline)
|
|
|
|
// Indicates that code for this function cannot be cached.
|
|
DECL_BOOLEAN_ACCESSORS(dont_cache)
|
|
|
|
// Indicates that code for this function cannot be flushed.
|
|
DECL_BOOLEAN_ACCESSORS(dont_flush)
|
|
|
|
// Indicates that this function is a generator.
|
|
DECL_BOOLEAN_ACCESSORS(is_generator)
|
|
|
|
// Indicates whether or not the code in the shared function support
|
|
// deoptimization.
|
|
inline bool has_deoptimization_support();
|
|
|
|
// Enable deoptimization support through recompiled code.
|
|
void EnableDeoptimizationSupport(Code* recompiled);
|
|
|
|
// Disable (further) attempted optimization of all functions sharing this
|
|
// shared function info.
|
|
void DisableOptimization(BailoutReason reason);
|
|
|
|
inline BailoutReason DisableOptimizationReason();
|
|
|
|
// Lookup the bailout ID and ASSERT that it exists in the non-optimized
|
|
// code, returns whether it asserted (i.e., always true if assertions are
|
|
// disabled).
|
|
bool VerifyBailoutId(BailoutId id);
|
|
|
|
// [source code]: Source code for the function.
|
|
bool HasSourceCode();
|
|
Handle<Object> GetSourceCode();
|
|
|
|
// Number of times the function was optimized.
|
|
inline int opt_count();
|
|
inline void set_opt_count(int opt_count);
|
|
|
|
// Number of times the function was deoptimized.
|
|
inline void set_deopt_count(int value);
|
|
inline int deopt_count();
|
|
inline void increment_deopt_count();
|
|
|
|
// Number of time we tried to re-enable optimization after it
|
|
// was disabled due to high number of deoptimizations.
|
|
inline void set_opt_reenable_tries(int value);
|
|
inline int opt_reenable_tries();
|
|
|
|
inline void TryReenableOptimization();
|
|
|
|
// Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
|
|
inline void set_counters(int value);
|
|
inline int counters();
|
|
|
|
// Stores opt_count and bailout_reason as bit-fields.
|
|
inline void set_opt_count_and_bailout_reason(int value);
|
|
inline int opt_count_and_bailout_reason();
|
|
|
|
void set_bailout_reason(BailoutReason reason) {
|
|
set_opt_count_and_bailout_reason(
|
|
DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(),
|
|
reason));
|
|
}
|
|
|
|
void set_dont_optimize_reason(BailoutReason reason) {
|
|
set_bailout_reason(reason);
|
|
set_dont_optimize(reason != kNoReason);
|
|
}
|
|
|
|
// Source size of this function.
|
|
int SourceSize();
|
|
|
|
// Calculate the instance size.
|
|
int CalculateInstanceSize();
|
|
|
|
// Calculate the number of in-object properties.
|
|
int CalculateInObjectProperties();
|
|
|
|
// Dispatched behavior.
|
|
// Set max_length to -1 for unlimited length.
|
|
void SourceCodePrint(StringStream* accumulator, int max_length);
|
|
DECLARE_PRINTER(SharedFunctionInfo)
|
|
DECLARE_VERIFIER(SharedFunctionInfo)
|
|
|
|
void ResetForNewContext(int new_ic_age);
|
|
|
|
// Helper to compile the shared code. Returns true on success, false on
|
|
// failure (e.g., stack overflow during compilation). This is only used by
|
|
// the debugger, it is not possible to compile without a context otherwise.
|
|
static bool CompileLazy(Handle<SharedFunctionInfo> shared,
|
|
ClearExceptionFlag flag);
|
|
|
|
// Casting.
|
|
static inline SharedFunctionInfo* cast(Object* obj);
|
|
|
|
// Constants.
|
|
static const int kDontAdaptArgumentsSentinel = -1;
|
|
|
|
// Layout description.
|
|
// Pointer fields.
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kCodeOffset = kNameOffset + kPointerSize;
|
|
static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
|
|
static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
|
|
static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
|
|
static const int kInstanceClassNameOffset =
|
|
kConstructStubOffset + kPointerSize;
|
|
static const int kFunctionDataOffset =
|
|
kInstanceClassNameOffset + kPointerSize;
|
|
static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
|
|
static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
|
|
static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
|
|
static const int kInitialMapOffset =
|
|
kInferredNameOffset + kPointerSize;
|
|
// ast_node_count is a Smi field. It could be grouped with another Smi field
|
|
// into a PSEUDO_SMI_ACCESSORS pair (on x64), if one becomes available.
|
|
static const int kAstNodeCountOffset =
|
|
kInitialMapOffset + kPointerSize;
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// Smi fields.
|
|
static const int kLengthOffset =
|
|
kAstNodeCountOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kPointerSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kPointerSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kNumLiteralsOffset + kPointerSize;
|
|
static const int kEndPositionOffset =
|
|
kStartPositionAndTypeOffset + kPointerSize;
|
|
static const int kFunctionTokenPositionOffset =
|
|
kEndPositionOffset + kPointerSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kPointerSize;
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kPointerSize;
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kPointerSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kCountersOffset + kPointerSize;
|
|
#else
|
|
// The only reason to use smi fields instead of int fields
|
|
// is to allow iteration without maps decoding during
|
|
// garbage collections.
|
|
// To avoid wasting space on 64-bit architectures we use
|
|
// the following trick: we group integer fields into pairs
|
|
// First integer in each pair is shifted left by 1.
|
|
// By doing this we guarantee that LSB of each kPointerSize aligned
|
|
// word is not set and thus this word cannot be treated as pointer
|
|
// to HeapObject during old space traversal.
|
|
static const int kLengthOffset =
|
|
kAstNodeCountOffset + kPointerSize;
|
|
static const int kFormalParameterCountOffset =
|
|
kLengthOffset + kIntSize;
|
|
|
|
static const int kExpectedNofPropertiesOffset =
|
|
kFormalParameterCountOffset + kIntSize;
|
|
static const int kNumLiteralsOffset =
|
|
kExpectedNofPropertiesOffset + kIntSize;
|
|
|
|
static const int kEndPositionOffset =
|
|
kNumLiteralsOffset + kIntSize;
|
|
static const int kStartPositionAndTypeOffset =
|
|
kEndPositionOffset + kIntSize;
|
|
|
|
static const int kFunctionTokenPositionOffset =
|
|
kStartPositionAndTypeOffset + kIntSize;
|
|
static const int kCompilerHintsOffset =
|
|
kFunctionTokenPositionOffset + kIntSize;
|
|
|
|
static const int kOptCountAndBailoutReasonOffset =
|
|
kCompilerHintsOffset + kIntSize;
|
|
|
|
static const int kCountersOffset =
|
|
kOptCountAndBailoutReasonOffset + kIntSize;
|
|
|
|
// Total size.
|
|
static const int kSize = kCountersOffset + kIntSize;
|
|
|
|
#endif
|
|
|
|
// The construction counter for inobject slack tracking is stored in the
|
|
// most significant byte of compiler_hints which is otherwise unused.
|
|
// Its offset depends on the endian-ness of the architecture.
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset,
|
|
kInitialMapOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
// Bit positions in start_position_and_type.
|
|
// The source code start position is in the 30 most significant bits of
|
|
// the start_position_and_type field.
|
|
static const int kIsExpressionBit = 0;
|
|
static const int kIsTopLevelBit = 1;
|
|
static const int kStartPositionShift = 2;
|
|
static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
|
|
|
|
// Bit positions in compiler_hints.
|
|
enum CompilerHints {
|
|
kAllowLazyCompilation,
|
|
kAllowLazyCompilationWithoutContext,
|
|
kLiveObjectsMayExist,
|
|
kOptimizationDisabled,
|
|
kStrictModeFunction,
|
|
kExtendedModeFunction,
|
|
kUsesArguments,
|
|
kHasDuplicateParameters,
|
|
kNative,
|
|
kBoundFunction,
|
|
kIsAnonymous,
|
|
kNameShouldPrintAsAnonymous,
|
|
kIsFunction,
|
|
kDontOptimize,
|
|
kDontInline,
|
|
kDontCache,
|
|
kDontFlush,
|
|
kIsGenerator,
|
|
kCompilerHintsCount // Pseudo entry
|
|
};
|
|
|
|
class DeoptCountBits: public BitField<int, 0, 4> {};
|
|
class OptReenableTriesBits: public BitField<int, 4, 18> {};
|
|
class ICAgeBits: public BitField<int, 22, 8> {};
|
|
|
|
class OptCountBits: public BitField<int, 0, 22> {};
|
|
class DisabledOptimizationReasonBits: public BitField<int, 22, 8> {};
|
|
|
|
private:
|
|
#if V8_HOST_ARCH_32_BIT
|
|
// On 32 bit platforms, compiler hints is a smi.
|
|
static const int kCompilerHintsSmiTagSize = kSmiTagSize;
|
|
static const int kCompilerHintsSize = kPointerSize;
|
|
#else
|
|
// On 64 bit platforms, compiler hints is not a smi, see comment above.
|
|
static const int kCompilerHintsSmiTagSize = 0;
|
|
static const int kCompilerHintsSize = kIntSize;
|
|
#endif
|
|
|
|
STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
|
|
SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
|
|
|
|
public:
|
|
// Constants for optimizing codegen for strict mode function and
|
|
// native tests.
|
|
// Allows to use byte-width instructions.
|
|
static const int kStrictModeBitWithinByte =
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
static const int kExtendedModeBitWithinByte =
|
|
(kExtendedModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
static const int kNativeBitWithinByte =
|
|
(kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
|
|
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
static const int kExtendedModeByteOffset = kCompilerHintsOffset +
|
|
(kExtendedModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
static const int kStrictModeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
static const int kExtendedModeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kExtendedModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
static const int kNativeByteOffset = kCompilerHintsOffset +
|
|
(kCompilerHintsSize - 1) -
|
|
((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
|
|
#else
|
|
#error Unknown byte ordering
|
|
#endif
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
|
|
};
|
|
|
|
|
|
class JSGeneratorObject: public JSObject {
|
|
public:
|
|
// [function]: The function corresponding to this generator object.
|
|
DECL_ACCESSORS(function, JSFunction)
|
|
|
|
// [context]: The context of the suspended computation.
|
|
DECL_ACCESSORS(context, Context)
|
|
|
|
// [receiver]: The receiver of the suspended computation.
|
|
DECL_ACCESSORS(receiver, Object)
|
|
|
|
// [continuation]: Offset into code of continuation.
|
|
//
|
|
// A positive offset indicates a suspended generator. The special
|
|
// kGeneratorExecuting and kGeneratorClosed values indicate that a generator
|
|
// cannot be resumed.
|
|
inline int continuation();
|
|
inline void set_continuation(int continuation);
|
|
|
|
// [operand_stack]: Saved operand stack.
|
|
DECL_ACCESSORS(operand_stack, FixedArray)
|
|
|
|
// [stack_handler_index]: Index of first stack handler in operand_stack, or -1
|
|
// if the captured activation had no stack handler.
|
|
inline int stack_handler_index();
|
|
inline void set_stack_handler_index(int stack_handler_index);
|
|
|
|
// Casting.
|
|
static inline JSGeneratorObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGeneratorObject)
|
|
DECLARE_VERIFIER(JSGeneratorObject)
|
|
|
|
// Magic sentinel values for the continuation.
|
|
static const int kGeneratorExecuting = -1;
|
|
static const int kGeneratorClosed = 0;
|
|
|
|
// Layout description.
|
|
static const int kFunctionOffset = JSObject::kHeaderSize;
|
|
static const int kContextOffset = kFunctionOffset + kPointerSize;
|
|
static const int kReceiverOffset = kContextOffset + kPointerSize;
|
|
static const int kContinuationOffset = kReceiverOffset + kPointerSize;
|
|
static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
|
|
static const int kStackHandlerIndexOffset =
|
|
kOperandStackOffset + kPointerSize;
|
|
static const int kSize = kStackHandlerIndexOffset + kPointerSize;
|
|
|
|
// Resume mode, for use by runtime functions.
|
|
enum ResumeMode { NEXT, THROW };
|
|
|
|
// Yielding from a generator returns an object with the following inobject
|
|
// properties. See Context::generator_result_map() for the map.
|
|
static const int kResultValuePropertyIndex = 0;
|
|
static const int kResultDonePropertyIndex = 1;
|
|
static const int kResultPropertyCount = 2;
|
|
|
|
static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
|
|
static const int kResultDonePropertyOffset =
|
|
kResultValuePropertyOffset + kPointerSize;
|
|
static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
|
|
};
|
|
|
|
|
|
// Representation for module instance objects.
|
|
class JSModule: public JSObject {
|
|
public:
|
|
// [context]: the context holding the module's locals, or undefined if none.
|
|
DECL_ACCESSORS(context, Object)
|
|
|
|
// [scope_info]: Scope info.
|
|
DECL_ACCESSORS(scope_info, ScopeInfo)
|
|
|
|
// Casting.
|
|
static inline JSModule* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSModule)
|
|
DECLARE_VERIFIER(JSModule)
|
|
|
|
// Layout description.
|
|
static const int kContextOffset = JSObject::kHeaderSize;
|
|
static const int kScopeInfoOffset = kContextOffset + kPointerSize;
|
|
static const int kSize = kScopeInfoOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
|
|
};
|
|
|
|
|
|
// JSFunction describes JavaScript functions.
|
|
class JSFunction: public JSObject {
|
|
public:
|
|
// [prototype_or_initial_map]:
|
|
DECL_ACCESSORS(prototype_or_initial_map, Object)
|
|
|
|
// [shared]: The information about the function that
|
|
// can be shared by instances.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
|
|
// [context]: The context for this function.
|
|
inline Context* context();
|
|
inline void set_context(Object* context);
|
|
|
|
// [code]: The generated code object for this function. Executed
|
|
// when the function is invoked, e.g. foo() or new foo(). See
|
|
// [[Call]] and [[Construct]] description in ECMA-262, section
|
|
// 8.6.2, page 27.
|
|
inline Code* code();
|
|
inline void set_code(Code* code);
|
|
inline void set_code_no_write_barrier(Code* code);
|
|
inline void ReplaceCode(Code* code);
|
|
|
|
// Tells whether this function is builtin.
|
|
inline bool IsBuiltin();
|
|
|
|
// Tells whether or not the function needs arguments adaption.
|
|
inline bool NeedsArgumentsAdaption();
|
|
|
|
// Tells whether or not this function has been optimized.
|
|
inline bool IsOptimized();
|
|
|
|
// Tells whether or not this function can be optimized.
|
|
inline bool IsOptimizable();
|
|
|
|
// Mark this function for lazy recompilation. The function will be
|
|
// recompiled the next time it is executed.
|
|
void MarkForLazyRecompilation();
|
|
void MarkForConcurrentRecompilation();
|
|
void MarkInRecompileQueue();
|
|
|
|
// Helpers to compile this function. Returns true on success, false on
|
|
// failure (e.g., stack overflow during compilation).
|
|
static bool EnsureCompiled(Handle<JSFunction> function,
|
|
ClearExceptionFlag flag);
|
|
static bool CompileLazy(Handle<JSFunction> function,
|
|
ClearExceptionFlag flag);
|
|
static Handle<Code> CompileOsr(Handle<JSFunction> function,
|
|
BailoutId osr_ast_id,
|
|
ClearExceptionFlag flag);
|
|
static bool CompileOptimized(Handle<JSFunction> function,
|
|
ClearExceptionFlag flag);
|
|
|
|
// Tells whether or not the function is already marked for lazy
|
|
// recompilation.
|
|
inline bool IsMarkedForLazyRecompilation();
|
|
inline bool IsMarkedForConcurrentRecompilation();
|
|
|
|
// Tells whether or not the function is on the concurrent recompilation queue.
|
|
inline bool IsInRecompileQueue();
|
|
|
|
// Check whether or not this function is inlineable.
|
|
bool IsInlineable();
|
|
|
|
// [literals_or_bindings]: Fixed array holding either
|
|
// the materialized literals or the bindings of a bound function.
|
|
//
|
|
// If the function contains object, regexp or array literals, the
|
|
// literals array prefix contains the object, regexp, and array
|
|
// function to be used when creating these literals. This is
|
|
// necessary so that we do not dynamically lookup the object, regexp
|
|
// or array functions. Performing a dynamic lookup, we might end up
|
|
// using the functions from a new context that we should not have
|
|
// access to.
|
|
//
|
|
// On bound functions, the array is a (copy-on-write) fixed-array containing
|
|
// the function that was bound, bound this-value and any bound
|
|
// arguments. Bound functions never contain literals.
|
|
DECL_ACCESSORS(literals_or_bindings, FixedArray)
|
|
|
|
inline FixedArray* literals();
|
|
inline void set_literals(FixedArray* literals);
|
|
|
|
inline FixedArray* function_bindings();
|
|
inline void set_function_bindings(FixedArray* bindings);
|
|
|
|
// The initial map for an object created by this constructor.
|
|
inline Map* initial_map();
|
|
inline void set_initial_map(Map* value);
|
|
inline bool has_initial_map();
|
|
|
|
// Get and set the prototype property on a JSFunction. If the
|
|
// function has an initial map the prototype is set on the initial
|
|
// map. Otherwise, the prototype is put in the initial map field
|
|
// until an initial map is needed.
|
|
inline bool has_prototype();
|
|
inline bool has_instance_prototype();
|
|
inline Object* prototype();
|
|
inline Object* instance_prototype();
|
|
static void SetPrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
static void SetInstancePrototype(Handle<JSFunction> function,
|
|
Handle<Object> value);
|
|
|
|
// After prototype is removed, it will not be created when accessed, and
|
|
// [[Construct]] from this function will not be allowed.
|
|
void RemovePrototype();
|
|
inline bool should_have_prototype();
|
|
|
|
// Accessor for this function's initial map's [[class]]
|
|
// property. This is primarily used by ECMA native functions. This
|
|
// method sets the class_name field of this function's initial map
|
|
// to a given value. It creates an initial map if this function does
|
|
// not have one. Note that this method does not copy the initial map
|
|
// if it has one already, but simply replaces it with the new value.
|
|
// Instances created afterwards will have a map whose [[class]] is
|
|
// set to 'value', but there is no guarantees on instances created
|
|
// before.
|
|
void SetInstanceClassName(String* name);
|
|
|
|
// Returns if this function has been compiled to native code yet.
|
|
inline bool is_compiled();
|
|
|
|
// [next_function_link]: Links functions into various lists, e.g. the list
|
|
// of optimized functions hanging off the native_context. The CodeFlusher
|
|
// uses this link to chain together flushing candidates. Treated weakly
|
|
// by the garbage collector.
|
|
DECL_ACCESSORS(next_function_link, Object)
|
|
|
|
// Prints the name of the function using PrintF.
|
|
void PrintName(FILE* out = stdout);
|
|
|
|
// Casting.
|
|
static inline JSFunction* cast(Object* obj);
|
|
|
|
// Iterates the objects, including code objects indirectly referenced
|
|
// through pointers to the first instruction in the code object.
|
|
void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunction)
|
|
DECLARE_VERIFIER(JSFunction)
|
|
|
|
// Returns the number of allocated literals.
|
|
inline int NumberOfLiterals();
|
|
|
|
// Retrieve the native context from a function's literal array.
|
|
static Context* NativeContextFromLiterals(FixedArray* literals);
|
|
|
|
// Used for flags such as --hydrogen-filter.
|
|
bool PassesFilter(const char* raw_filter);
|
|
|
|
// Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
|
|
// kSize) is weak and has special handling during garbage collection.
|
|
static const int kCodeEntryOffset = JSObject::kHeaderSize;
|
|
static const int kPrototypeOrInitialMapOffset =
|
|
kCodeEntryOffset + kPointerSize;
|
|
static const int kSharedFunctionInfoOffset =
|
|
kPrototypeOrInitialMapOffset + kPointerSize;
|
|
static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
|
|
static const int kLiteralsOffset = kContextOffset + kPointerSize;
|
|
static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
|
|
static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
|
|
static const int kSize = kNextFunctionLinkOffset + kPointerSize;
|
|
|
|
// Layout of the literals array.
|
|
static const int kLiteralsPrefixSize = 1;
|
|
static const int kLiteralNativeContextIndex = 0;
|
|
|
|
// Layout of the bound-function binding array.
|
|
static const int kBoundFunctionIndex = 0;
|
|
static const int kBoundThisIndex = 1;
|
|
static const int kBoundArgumentsStartIndex = 2;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
|
|
};
|
|
|
|
|
|
// JSGlobalProxy's prototype must be a JSGlobalObject or null,
|
|
// and the prototype is hidden. JSGlobalProxy always delegates
|
|
// property accesses to its prototype if the prototype is not null.
|
|
//
|
|
// A JSGlobalProxy can be reinitialized which will preserve its identity.
|
|
//
|
|
// Accessing a JSGlobalProxy requires security check.
|
|
|
|
class JSGlobalProxy : public JSObject {
|
|
public:
|
|
// [native_context]: the owner native context of this global proxy object.
|
|
// It is null value if this object is not used by any context.
|
|
DECL_ACCESSORS(native_context, Object)
|
|
|
|
// Casting.
|
|
static inline JSGlobalProxy* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalProxy)
|
|
DECLARE_VERIFIER(JSGlobalProxy)
|
|
|
|
// Layout description.
|
|
static const int kNativeContextOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kNativeContextOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
|
|
};
|
|
|
|
|
|
// Forward declaration.
|
|
class JSBuiltinsObject;
|
|
|
|
// Common super class for JavaScript global objects and the special
|
|
// builtins global objects.
|
|
class GlobalObject: public JSObject {
|
|
public:
|
|
// [builtins]: the object holding the runtime routines written in JS.
|
|
DECL_ACCESSORS(builtins, JSBuiltinsObject)
|
|
|
|
// [native context]: the natives corresponding to this global object.
|
|
DECL_ACCESSORS(native_context, Context)
|
|
|
|
// [global context]: the most recent (i.e. innermost) global context.
|
|
DECL_ACCESSORS(global_context, Context)
|
|
|
|
// [global receiver]: the global receiver object of the context
|
|
DECL_ACCESSORS(global_receiver, JSObject)
|
|
|
|
// Retrieve the property cell used to store a property.
|
|
PropertyCell* GetPropertyCell(LookupResult* result);
|
|
|
|
// This is like GetProperty, but is used when you know the lookup won't fail
|
|
// by throwing an exception. This is for the debug and builtins global
|
|
// objects, where it is known which properties can be expected to be present
|
|
// on the object.
|
|
Object* GetPropertyNoExceptionThrown(Name* key) {
|
|
Object* answer = GetProperty(key)->ToObjectUnchecked();
|
|
return answer;
|
|
}
|
|
|
|
// Ensure that the global object has a cell for the given property name.
|
|
static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
|
|
Handle<Name> name);
|
|
|
|
// Casting.
|
|
static inline GlobalObject* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kBuiltinsOffset = JSObject::kHeaderSize;
|
|
static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
|
|
static const int kGlobalContextOffset = kNativeContextOffset + kPointerSize;
|
|
static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
|
|
static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
|
|
};
|
|
|
|
|
|
// JavaScript global object.
|
|
class JSGlobalObject: public GlobalObject {
|
|
public:
|
|
// Casting.
|
|
static inline JSGlobalObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSGlobalObject)
|
|
DECLARE_VERIFIER(JSGlobalObject)
|
|
|
|
// Layout description.
|
|
static const int kSize = GlobalObject::kHeaderSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
|
|
};
|
|
|
|
|
|
// Builtins global object which holds the runtime routines written in
|
|
// JavaScript.
|
|
class JSBuiltinsObject: public GlobalObject {
|
|
public:
|
|
// Accessors for the runtime routines written in JavaScript.
|
|
inline Object* javascript_builtin(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
|
|
|
|
// Accessors for code of the runtime routines written in JavaScript.
|
|
inline Code* javascript_builtin_code(Builtins::JavaScript id);
|
|
inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
|
|
|
|
// Casting.
|
|
static inline JSBuiltinsObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSBuiltinsObject)
|
|
DECLARE_VERIFIER(JSBuiltinsObject)
|
|
|
|
// Layout description. The size of the builtins object includes
|
|
// room for two pointers per runtime routine written in javascript
|
|
// (function and code object).
|
|
static const int kJSBuiltinsCount = Builtins::id_count;
|
|
static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
|
|
static const int kJSBuiltinsCodeOffset =
|
|
GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
|
|
static const int kSize =
|
|
kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
|
|
|
|
static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsOffset + id * kPointerSize;
|
|
}
|
|
|
|
static int OffsetOfCodeWithId(Builtins::JavaScript id) {
|
|
return kJSBuiltinsCodeOffset + id * kPointerSize;
|
|
}
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
|
|
};
|
|
|
|
|
|
// Representation for JS Wrapper objects, String, Number, Boolean, etc.
|
|
class JSValue: public JSObject {
|
|
public:
|
|
// [value]: the object being wrapped.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
// Casting.
|
|
static inline JSValue* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSValue)
|
|
DECLARE_VERIFIER(JSValue)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
|
|
};
|
|
|
|
|
|
class DateCache;
|
|
|
|
// Representation for JS date objects.
|
|
class JSDate: public JSObject {
|
|
public:
|
|
// If one component is NaN, all of them are, indicating a NaN time value.
|
|
// [value]: the time value.
|
|
DECL_ACCESSORS(value, Object)
|
|
// [year]: caches year. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(year, Object)
|
|
// [month]: caches month. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(month, Object)
|
|
// [day]: caches day. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(day, Object)
|
|
// [weekday]: caches day of week. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(weekday, Object)
|
|
// [hour]: caches hours. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(hour, Object)
|
|
// [min]: caches minutes. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(min, Object)
|
|
// [sec]: caches seconds. Either undefined, smi, or NaN.
|
|
DECL_ACCESSORS(sec, Object)
|
|
// [cache stamp]: sample of the date cache stamp at the
|
|
// moment when local fields were cached.
|
|
DECL_ACCESSORS(cache_stamp, Object)
|
|
|
|
// Casting.
|
|
static inline JSDate* cast(Object* obj);
|
|
|
|
// Returns the date field with the specified index.
|
|
// See FieldIndex for the list of date fields.
|
|
static Object* GetField(Object* date, Smi* index);
|
|
|
|
void SetValue(Object* value, bool is_value_nan);
|
|
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDate)
|
|
DECLARE_VERIFIER(JSDate)
|
|
|
|
// The order is important. It must be kept in sync with date macros
|
|
// in macros.py.
|
|
enum FieldIndex {
|
|
kDateValue,
|
|
kYear,
|
|
kMonth,
|
|
kDay,
|
|
kWeekday,
|
|
kHour,
|
|
kMinute,
|
|
kSecond,
|
|
kFirstUncachedField,
|
|
kMillisecond = kFirstUncachedField,
|
|
kDays,
|
|
kTimeInDay,
|
|
kFirstUTCField,
|
|
kYearUTC = kFirstUTCField,
|
|
kMonthUTC,
|
|
kDayUTC,
|
|
kWeekdayUTC,
|
|
kHourUTC,
|
|
kMinuteUTC,
|
|
kSecondUTC,
|
|
kMillisecondUTC,
|
|
kDaysUTC,
|
|
kTimeInDayUTC,
|
|
kTimezoneOffset
|
|
};
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = JSObject::kHeaderSize;
|
|
static const int kYearOffset = kValueOffset + kPointerSize;
|
|
static const int kMonthOffset = kYearOffset + kPointerSize;
|
|
static const int kDayOffset = kMonthOffset + kPointerSize;
|
|
static const int kWeekdayOffset = kDayOffset + kPointerSize;
|
|
static const int kHourOffset = kWeekdayOffset + kPointerSize;
|
|
static const int kMinOffset = kHourOffset + kPointerSize;
|
|
static const int kSecOffset = kMinOffset + kPointerSize;
|
|
static const int kCacheStampOffset = kSecOffset + kPointerSize;
|
|
static const int kSize = kCacheStampOffset + kPointerSize;
|
|
|
|
private:
|
|
inline Object* DoGetField(FieldIndex index);
|
|
|
|
Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
|
|
|
|
// Computes and caches the cacheable fields of the date.
|
|
inline void SetLocalFields(int64_t local_time_ms, DateCache* date_cache);
|
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
|
|
};
|
|
|
|
|
|
// Representation of message objects used for error reporting through
|
|
// the API. The messages are formatted in JavaScript so this object is
|
|
// a real JavaScript object. The information used for formatting the
|
|
// error messages are not directly accessible from JavaScript to
|
|
// prevent leaking information to user code called during error
|
|
// formatting.
|
|
class JSMessageObject: public JSObject {
|
|
public:
|
|
// [type]: the type of error message.
|
|
DECL_ACCESSORS(type, String)
|
|
|
|
// [arguments]: the arguments for formatting the error message.
|
|
DECL_ACCESSORS(arguments, JSArray)
|
|
|
|
// [script]: the script from which the error message originated.
|
|
DECL_ACCESSORS(script, Object)
|
|
|
|
// [stack_trace]: the stack trace for this error message.
|
|
DECL_ACCESSORS(stack_trace, Object)
|
|
|
|
// [stack_frames]: an array of stack frames for this error object.
|
|
DECL_ACCESSORS(stack_frames, Object)
|
|
|
|
// [start_position]: the start position in the script for the error message.
|
|
inline int start_position();
|
|
inline void set_start_position(int value);
|
|
|
|
// [end_position]: the end position in the script for the error message.
|
|
inline int end_position();
|
|
inline void set_end_position(int value);
|
|
|
|
// Casting.
|
|
static inline JSMessageObject* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMessageObject)
|
|
DECLARE_VERIFIER(JSMessageObject)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = JSObject::kHeaderSize;
|
|
static const int kArgumentsOffset = kTypeOffset + kPointerSize;
|
|
static const int kScriptOffset = kArgumentsOffset + kPointerSize;
|
|
static const int kStackTraceOffset = kScriptOffset + kPointerSize;
|
|
static const int kStackFramesOffset = kStackTraceOffset + kPointerSize;
|
|
static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
|
|
static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
|
|
static const int kSize = kEndPositionOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<HeapObject::kMapOffset,
|
|
kStackFramesOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
};
|
|
|
|
|
|
// Regular expressions
|
|
// The regular expression holds a single reference to a FixedArray in
|
|
// the kDataOffset field.
|
|
// The FixedArray contains the following data:
|
|
// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
|
|
// - reference to the original source string
|
|
// - reference to the original flag string
|
|
// If it is an atom regexp
|
|
// - a reference to a literal string to search for
|
|
// If it is an irregexp regexp:
|
|
// - a reference to code for ASCII inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing).
|
|
// - a reference to code for UC16 inputs (bytecode or compiled), or a smi
|
|
// used for tracking the last usage (used for code flushing)..
|
|
// - max number of registers used by irregexp implementations.
|
|
// - number of capture registers (output values) of the regexp.
|
|
class JSRegExp: public JSObject {
|
|
public:
|
|
// Meaning of Type:
|
|
// NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
|
|
// ATOM: A simple string to match against using an indexOf operation.
|
|
// IRREGEXP: Compiled with Irregexp.
|
|
// IRREGEXP_NATIVE: Compiled to native code with Irregexp.
|
|
enum Type { NOT_COMPILED, ATOM, IRREGEXP };
|
|
enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
|
|
|
|
class Flags {
|
|
public:
|
|
explicit Flags(uint32_t value) : value_(value) { }
|
|
bool is_global() { return (value_ & GLOBAL) != 0; }
|
|
bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
|
|
bool is_multiline() { return (value_ & MULTILINE) != 0; }
|
|
uint32_t value() { return value_; }
|
|
private:
|
|
uint32_t value_;
|
|
};
|
|
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
inline Type TypeTag();
|
|
inline int CaptureCount();
|
|
inline Flags GetFlags();
|
|
inline String* Pattern();
|
|
inline Object* DataAt(int index);
|
|
// Set implementation data after the object has been prepared.
|
|
inline void SetDataAt(int index, Object* value);
|
|
|
|
static int code_index(bool is_ascii) {
|
|
if (is_ascii) {
|
|
return kIrregexpASCIICodeIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeIndex;
|
|
}
|
|
}
|
|
|
|
static int saved_code_index(bool is_ascii) {
|
|
if (is_ascii) {
|
|
return kIrregexpASCIICodeSavedIndex;
|
|
} else {
|
|
return kIrregexpUC16CodeSavedIndex;
|
|
}
|
|
}
|
|
|
|
static inline JSRegExp* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(JSRegExp)
|
|
|
|
static const int kDataOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
// Indices in the data array.
|
|
static const int kTagIndex = 0;
|
|
static const int kSourceIndex = kTagIndex + 1;
|
|
static const int kFlagsIndex = kSourceIndex + 1;
|
|
static const int kDataIndex = kFlagsIndex + 1;
|
|
// The data fields are used in different ways depending on the
|
|
// value of the tag.
|
|
// Atom regexps (literal strings).
|
|
static const int kAtomPatternIndex = kDataIndex;
|
|
|
|
static const int kAtomDataSize = kAtomPatternIndex + 1;
|
|
|
|
// Irregexp compiled code or bytecode for ASCII. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpASCIICodeIndex = kDataIndex;
|
|
// Irregexp compiled code or bytecode for UC16. If compilation
|
|
// fails, this fields hold an exception object that should be
|
|
// thrown if the regexp is used again.
|
|
static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
|
|
|
|
// Saved instance of Irregexp compiled code or bytecode for ASCII that
|
|
// is a potential candidate for flushing.
|
|
static const int kIrregexpASCIICodeSavedIndex = kDataIndex + 2;
|
|
// Saved instance of Irregexp compiled code or bytecode for UC16 that is
|
|
// a potential candidate for flushing.
|
|
static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
|
|
|
|
// Maximal number of registers used by either ASCII or UC16.
|
|
// Only used to check that there is enough stack space
|
|
static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
|
|
// Number of captures in the compiled regexp.
|
|
static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
|
|
|
|
static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
|
|
|
|
// Offsets directly into the data fixed array.
|
|
static const int kDataTagOffset =
|
|
FixedArray::kHeaderSize + kTagIndex * kPointerSize;
|
|
static const int kDataAsciiCodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
|
|
static const int kDataUC16CodeOffset =
|
|
FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
|
|
static const int kIrregexpCaptureCountOffset =
|
|
FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
|
|
|
|
// In-object fields.
|
|
static const int kSourceFieldIndex = 0;
|
|
static const int kGlobalFieldIndex = 1;
|
|
static const int kIgnoreCaseFieldIndex = 2;
|
|
static const int kMultilineFieldIndex = 3;
|
|
static const int kLastIndexFieldIndex = 4;
|
|
static const int kInObjectFieldCount = 5;
|
|
|
|
// The uninitialized value for a regexp code object.
|
|
static const int kUninitializedValue = -1;
|
|
|
|
// The compilation error value for the regexp code object. The real error
|
|
// object is in the saved code field.
|
|
static const int kCompilationErrorValue = -2;
|
|
|
|
// When we store the sweep generation at which we moved the code from the
|
|
// code index to the saved code index we mask it of to be in the [0:255]
|
|
// range.
|
|
static const int kCodeAgeMask = 0xff;
|
|
};
|
|
|
|
|
|
class CompilationCacheShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
class CompilationCacheTable: public HashTable<CompilationCacheShape,
|
|
HashTableKey*> {
|
|
public:
|
|
// Find cached value for a string key, otherwise return null.
|
|
Object* Lookup(String* src, Context* context);
|
|
Object* LookupEval(String* src,
|
|
Context* context,
|
|
LanguageMode language_mode,
|
|
int scope_position);
|
|
Object* LookupRegExp(String* source, JSRegExp::Flags flags);
|
|
MUST_USE_RESULT MaybeObject* Put(String* src,
|
|
Context* context,
|
|
Object* value);
|
|
MUST_USE_RESULT MaybeObject* PutEval(String* src,
|
|
Context* context,
|
|
SharedFunctionInfo* value,
|
|
int scope_position);
|
|
MUST_USE_RESULT MaybeObject* PutRegExp(String* src,
|
|
JSRegExp::Flags flags,
|
|
FixedArray* value);
|
|
|
|
// Remove given value from cache.
|
|
void Remove(Object* value);
|
|
|
|
static inline CompilationCacheTable* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
|
|
};
|
|
|
|
|
|
class CodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(default_cache, FixedArray)
|
|
DECL_ACCESSORS(normal_type_cache, Object)
|
|
|
|
// Add the code object to the cache.
|
|
MUST_USE_RESULT MaybeObject* Update(Name* name, Code* code);
|
|
|
|
// Lookup code object in the cache. Returns code object if found and undefined
|
|
// if not.
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
|
|
// Get the internal index of a code object in the cache. Returns -1 if the
|
|
// code object is not in that cache. This index can be used to later call
|
|
// RemoveByIndex. The cache cannot be modified between a call to GetIndex and
|
|
// RemoveByIndex.
|
|
int GetIndex(Object* name, Code* code);
|
|
|
|
// Remove an object from the cache with the provided internal index.
|
|
void RemoveByIndex(Object* name, Code* code, int index);
|
|
|
|
static inline CodeCache* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CodeCache)
|
|
DECLARE_VERIFIER(CodeCache)
|
|
|
|
static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kNormalTypeCacheOffset =
|
|
kDefaultCacheOffset + kPointerSize;
|
|
static const int kSize = kNormalTypeCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
MUST_USE_RESULT MaybeObject* UpdateDefaultCache(Name* name, Code* code);
|
|
MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(Name* name, Code* code);
|
|
Object* LookupDefaultCache(Name* name, Code::Flags flags);
|
|
Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
|
|
|
|
// Code cache layout of the default cache. Elements are alternating name and
|
|
// code objects for non normal load/store/call IC's.
|
|
static const int kCodeCacheEntrySize = 2;
|
|
static const int kCodeCacheEntryNameOffset = 0;
|
|
static const int kCodeCacheEntryCodeOffset = 1;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
|
|
};
|
|
|
|
|
|
class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
|
|
public:
|
|
static inline bool IsMatch(HashTableKey* key, Object* value) {
|
|
return key->IsMatch(value);
|
|
}
|
|
|
|
static inline uint32_t Hash(HashTableKey* key) {
|
|
return key->Hash();
|
|
}
|
|
|
|
static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
|
|
return key->HashForObject(object);
|
|
}
|
|
|
|
MUST_USE_RESULT static MaybeObject* AsObject(Heap* heap,
|
|
HashTableKey* key) {
|
|
return key->AsObject(heap);
|
|
}
|
|
|
|
static const int kPrefixSize = 0;
|
|
static const int kEntrySize = 2;
|
|
};
|
|
|
|
|
|
class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
|
|
HashTableKey*> {
|
|
public:
|
|
Object* Lookup(Name* name, Code::Flags flags);
|
|
MUST_USE_RESULT MaybeObject* Put(Name* name, Code* code);
|
|
|
|
int GetIndex(Name* name, Code::Flags flags);
|
|
void RemoveByIndex(int index);
|
|
|
|
static inline CodeCacheHashTable* cast(Object* obj);
|
|
|
|
// Initial size of the fixed array backing the hash table.
|
|
static const int kInitialSize = 64;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCache: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(cache, Object)
|
|
|
|
static void Update(Handle<PolymorphicCodeCache> cache,
|
|
MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Handle<Code> code);
|
|
|
|
MUST_USE_RESULT MaybeObject* Update(MapHandleList* maps,
|
|
Code::Flags flags,
|
|
Code* code);
|
|
|
|
// Returns an undefined value if the entry is not found.
|
|
Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
|
|
|
|
static inline PolymorphicCodeCache* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PolymorphicCodeCache)
|
|
DECLARE_VERIFIER(PolymorphicCodeCache)
|
|
|
|
static const int kCacheOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kCacheOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
|
|
};
|
|
|
|
|
|
class PolymorphicCodeCacheHashTable
|
|
: public HashTable<CodeCacheHashTableShape, HashTableKey*> {
|
|
public:
|
|
Object* Lookup(MapHandleList* maps, int code_kind);
|
|
|
|
MUST_USE_RESULT MaybeObject* Put(MapHandleList* maps,
|
|
int code_kind,
|
|
Code* code);
|
|
|
|
static inline PolymorphicCodeCacheHashTable* cast(Object* obj);
|
|
|
|
static const int kInitialSize = 64;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
|
|
};
|
|
|
|
|
|
class TypeFeedbackInfo: public Struct {
|
|
public:
|
|
inline int ic_total_count();
|
|
inline void set_ic_total_count(int count);
|
|
|
|
inline int ic_with_type_info_count();
|
|
inline void change_ic_with_type_info_count(int count);
|
|
|
|
inline void initialize_storage();
|
|
|
|
inline void change_own_type_change_checksum();
|
|
inline int own_type_change_checksum();
|
|
|
|
inline void set_inlined_type_change_checksum(int checksum);
|
|
inline bool matches_inlined_type_change_checksum(int checksum);
|
|
|
|
DECL_ACCESSORS(type_feedback_cells, TypeFeedbackCells)
|
|
|
|
static inline TypeFeedbackInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeFeedbackInfo)
|
|
DECLARE_VERIFIER(TypeFeedbackInfo)
|
|
|
|
static const int kStorage1Offset = HeapObject::kHeaderSize;
|
|
static const int kStorage2Offset = kStorage1Offset + kPointerSize;
|
|
static const int kTypeFeedbackCellsOffset = kStorage2Offset + kPointerSize;
|
|
static const int kSize = kTypeFeedbackCellsOffset + kPointerSize;
|
|
|
|
private:
|
|
static const int kTypeChangeChecksumBits = 7;
|
|
|
|
class ICTotalCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class OwnTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
class ICsWithTypeInfoCountField: public BitField<int, 0,
|
|
kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
|
|
class InlinedTypeChangeChecksum: public BitField<int,
|
|
kSmiValueSize - kTypeChangeChecksumBits,
|
|
kTypeChangeChecksumBits> {}; // NOLINT
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
|
|
};
|
|
|
|
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
|
|
class AllocationSite: public Struct {
|
|
public:
|
|
static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
|
|
|
|
DECL_ACCESSORS(transition_info, Object)
|
|
// nested_site threads a list of sites that represent nested literals
|
|
// walked in a particular order. So [[1, 2], 1, 2] will have one
|
|
// nested_site, but [[1, 2], 3, [4]] will have a list of two.
|
|
DECL_ACCESSORS(nested_site, Object)
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
inline void Initialize();
|
|
|
|
bool HasNestedSites() {
|
|
return nested_site()->IsAllocationSite();
|
|
}
|
|
|
|
// This method is expensive, it should only be called for reporting.
|
|
bool IsNestedSite();
|
|
|
|
ElementsKind GetElementsKind() {
|
|
ASSERT(!SitePointsToLiteral());
|
|
return static_cast<ElementsKind>(Smi::cast(transition_info())->value());
|
|
}
|
|
|
|
void SetElementsKind(ElementsKind kind) {
|
|
set_transition_info(Smi::FromInt(static_cast<int>(kind)));
|
|
}
|
|
|
|
bool SitePointsToLiteral() {
|
|
// If transition_info is a smi, then it represents an ElementsKind
|
|
// for a constructed array. Otherwise, it must be a boilerplate
|
|
// for an object or array literal.
|
|
return transition_info()->IsJSArray() || transition_info()->IsJSObject();
|
|
}
|
|
|
|
DECLARE_PRINTER(AllocationSite)
|
|
DECLARE_VERIFIER(AllocationSite)
|
|
|
|
static inline AllocationSite* cast(Object* obj);
|
|
static inline AllocationSiteMode GetMode(
|
|
ElementsKind boilerplate_elements_kind);
|
|
static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
|
|
static inline bool CanTrack(InstanceType type);
|
|
|
|
static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
|
|
static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kNestedSiteOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
|
|
static const int kSize = kWeakNextOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
|
|
kDependentCodeOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
|
|
};
|
|
|
|
|
|
class AllocationMemento: public Struct {
|
|
public:
|
|
static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kAllocationSiteOffset + kPointerSize;
|
|
|
|
DECL_ACCESSORS(allocation_site, Object)
|
|
|
|
bool IsValid() { return allocation_site()->IsAllocationSite(); }
|
|
AllocationSite* GetAllocationSite() {
|
|
ASSERT(IsValid());
|
|
return AllocationSite::cast(allocation_site());
|
|
}
|
|
|
|
DECLARE_PRINTER(AllocationMemento)
|
|
DECLARE_VERIFIER(AllocationMemento)
|
|
|
|
// Returns NULL if no AllocationMemento is available for object.
|
|
static AllocationMemento* FindForJSObject(JSObject* object,
|
|
bool in_GC = false);
|
|
static inline AllocationMemento* cast(Object* obj);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
|
|
};
|
|
|
|
|
|
// Representation of a slow alias as part of a non-strict arguments objects.
|
|
// For fast aliases (if HasNonStrictArgumentsElements()):
|
|
// - the parameter map contains an index into the context
|
|
// - all attributes of the element have default values
|
|
// For slow aliases (if HasDictionaryArgumentsElements()):
|
|
// - the parameter map contains no fast alias mapping (i.e. the hole)
|
|
// - this struct (in the slow backing store) contains an index into the context
|
|
// - all attributes are available as part if the property details
|
|
class AliasedArgumentsEntry: public Struct {
|
|
public:
|
|
inline int aliased_context_slot();
|
|
inline void set_aliased_context_slot(int count);
|
|
|
|
static inline AliasedArgumentsEntry* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AliasedArgumentsEntry)
|
|
DECLARE_VERIFIER(AliasedArgumentsEntry)
|
|
|
|
static const int kAliasedContextSlot = HeapObject::kHeaderSize;
|
|
static const int kSize = kAliasedContextSlot + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
|
|
};
|
|
|
|
|
|
enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
|
|
enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
|
|
|
|
|
|
class StringHasher {
|
|
public:
|
|
explicit inline StringHasher(int length, uint32_t seed);
|
|
|
|
template <typename schar>
|
|
static inline uint32_t HashSequentialString(const schar* chars,
|
|
int length,
|
|
uint32_t seed);
|
|
|
|
// Reads all the data, even for long strings and computes the utf16 length.
|
|
static uint32_t ComputeUtf8Hash(Vector<const char> chars,
|
|
uint32_t seed,
|
|
int* utf16_length_out);
|
|
|
|
// Calculated hash value for a string consisting of 1 to
|
|
// String::kMaxArrayIndexSize digits with no leading zeros (except "0").
|
|
// value is represented decimal value.
|
|
static uint32_t MakeArrayIndexHash(uint32_t value, int length);
|
|
|
|
// No string is allowed to have a hash of zero. That value is reserved
|
|
// for internal properties. If the hash calculation yields zero then we
|
|
// use 27 instead.
|
|
static const int kZeroHash = 27;
|
|
|
|
// Reusable parts of the hashing algorithm.
|
|
INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
|
|
INLINE(static uint32_t GetHashCore(uint32_t running_hash));
|
|
|
|
protected:
|
|
// Returns the value to store in the hash field of a string with
|
|
// the given length and contents.
|
|
uint32_t GetHashField();
|
|
// Returns true if the hash of this string can be computed without
|
|
// looking at the contents.
|
|
inline bool has_trivial_hash();
|
|
// Adds a block of characters to the hash.
|
|
template<typename Char>
|
|
inline void AddCharacters(const Char* chars, int len);
|
|
|
|
private:
|
|
// Add a character to the hash.
|
|
inline void AddCharacter(uint16_t c);
|
|
// Update index. Returns true if string is still an index.
|
|
inline bool UpdateIndex(uint16_t c);
|
|
|
|
int length_;
|
|
uint32_t raw_running_hash_;
|
|
uint32_t array_index_;
|
|
bool is_array_index_;
|
|
bool is_first_char_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringHasher);
|
|
};
|
|
|
|
|
|
// The characteristics of a string are stored in its map. Retrieving these
|
|
// few bits of information is moderately expensive, involving two memory
|
|
// loads where the second is dependent on the first. To improve efficiency
|
|
// the shape of the string is given its own class so that it can be retrieved
|
|
// once and used for several string operations. A StringShape is small enough
|
|
// to be passed by value and is immutable, but be aware that flattening a
|
|
// string can potentially alter its shape. Also be aware that a GC caused by
|
|
// something else can alter the shape of a string due to ConsString
|
|
// shortcutting. Keeping these restrictions in mind has proven to be error-
|
|
// prone and so we no longer put StringShapes in variables unless there is a
|
|
// concrete performance benefit at that particular point in the code.
|
|
class StringShape BASE_EMBEDDED {
|
|
public:
|
|
inline explicit StringShape(String* s);
|
|
inline explicit StringShape(Map* s);
|
|
inline explicit StringShape(InstanceType t);
|
|
inline bool IsSequential();
|
|
inline bool IsExternal();
|
|
inline bool IsCons();
|
|
inline bool IsSliced();
|
|
inline bool IsIndirect();
|
|
inline bool IsExternalAscii();
|
|
inline bool IsExternalTwoByte();
|
|
inline bool IsSequentialAscii();
|
|
inline bool IsSequentialTwoByte();
|
|
inline bool IsInternalized();
|
|
inline StringRepresentationTag representation_tag();
|
|
inline uint32_t encoding_tag();
|
|
inline uint32_t full_representation_tag();
|
|
inline uint32_t size_tag();
|
|
#ifdef DEBUG
|
|
inline uint32_t type() { return type_; }
|
|
inline void invalidate() { valid_ = false; }
|
|
inline bool valid() { return valid_; }
|
|
#else
|
|
inline void invalidate() { }
|
|
#endif
|
|
|
|
private:
|
|
uint32_t type_;
|
|
#ifdef DEBUG
|
|
inline void set_valid() { valid_ = true; }
|
|
bool valid_;
|
|
#else
|
|
inline void set_valid() { }
|
|
#endif
|
|
};
|
|
|
|
|
|
// The Name abstract class captures anything that can be used as a property
|
|
// name, i.e., strings and symbols. All names store a hash value.
|
|
class Name: public HeapObject {
|
|
public:
|
|
// Get and set the hash field of the name.
|
|
inline uint32_t hash_field();
|
|
inline void set_hash_field(uint32_t value);
|
|
|
|
// Tells whether the hash code has been computed.
|
|
inline bool HasHashCode();
|
|
|
|
// Returns a hash value used for the property table
|
|
inline uint32_t Hash();
|
|
|
|
// Equality operations.
|
|
inline bool Equals(Name* other);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
// Casting.
|
|
static inline Name* cast(Object* obj);
|
|
|
|
bool IsCacheable(Isolate* isolate);
|
|
|
|
DECLARE_PRINTER(Name)
|
|
|
|
// Layout description.
|
|
static const int kHashFieldOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kHashFieldOffset + kPointerSize;
|
|
|
|
// Mask constant for checking if a name has a computed hash code
|
|
// and if it is a string that is an array index. The least significant bit
|
|
// indicates whether a hash code has been computed. If the hash code has
|
|
// been computed the 2nd bit tells whether the string can be used as an
|
|
// array index.
|
|
static const int kHashNotComputedMask = 1;
|
|
static const int kIsNotArrayIndexMask = 1 << 1;
|
|
static const int kNofHashBitFields = 2;
|
|
|
|
// Shift constant retrieving hash code from hash field.
|
|
static const int kHashShift = kNofHashBitFields;
|
|
|
|
// Only these bits are relevant in the hash, since the top two are shifted
|
|
// out.
|
|
static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
|
|
|
|
// Array index strings this short can keep their index in the hash field.
|
|
static const int kMaxCachedArrayIndexLength = 7;
|
|
|
|
// For strings which are array indexes the hash value has the string length
|
|
// mixed into the hash, mainly to avoid a hash value of zero which would be
|
|
// the case for the string '0'. 24 bits are used for the array index value.
|
|
static const int kArrayIndexValueBits = 24;
|
|
static const int kArrayIndexLengthBits =
|
|
kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
|
|
|
|
STATIC_CHECK((kArrayIndexLengthBits > 0));
|
|
|
|
static const int kArrayIndexHashLengthShift =
|
|
kArrayIndexValueBits + kNofHashBitFields;
|
|
|
|
static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
|
|
|
|
static const int kArrayIndexValueMask =
|
|
((1 << kArrayIndexValueBits) - 1) << kHashShift;
|
|
|
|
// Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
|
|
// could use a mask to test if the length of string is less than or equal to
|
|
// kMaxCachedArrayIndexLength.
|
|
STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
|
|
|
|
static const int kContainsCachedArrayIndexMask =
|
|
(~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
|
|
kIsNotArrayIndexMask;
|
|
|
|
// Value of empty hash field indicating that the hash is not computed.
|
|
static const int kEmptyHashField =
|
|
kIsNotArrayIndexMask | kHashNotComputedMask;
|
|
|
|
protected:
|
|
static inline bool IsHashFieldComputed(uint32_t field);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
|
|
};
|
|
|
|
|
|
// ES6 symbols.
|
|
class Symbol: public Name {
|
|
public:
|
|
// [name]: the print name of a symbol, or undefined if none.
|
|
DECL_ACCESSORS(name, Object)
|
|
|
|
// Casting.
|
|
static inline Symbol* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Symbol)
|
|
DECLARE_VERIFIER(Symbol)
|
|
|
|
// Layout description.
|
|
static const int kNameOffset = Name::kSize;
|
|
static const int kSize = kNameOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kNameOffset, kNameOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
|
|
};
|
|
|
|
|
|
class ConsString;
|
|
|
|
// The String abstract class captures JavaScript string values:
|
|
//
|
|
// Ecma-262:
|
|
// 4.3.16 String Value
|
|
// A string value is a member of the type String and is a finite
|
|
// ordered sequence of zero or more 16-bit unsigned integer values.
|
|
//
|
|
// All string values have a length field.
|
|
class String: public Name {
|
|
public:
|
|
enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
|
|
|
|
// Representation of the flat content of a String.
|
|
// A non-flat string doesn't have flat content.
|
|
// A flat string has content that's encoded as a sequence of either
|
|
// ASCII chars or two-byte UC16.
|
|
// Returned by String::GetFlatContent().
|
|
class FlatContent {
|
|
public:
|
|
// Returns true if the string is flat and this structure contains content.
|
|
bool IsFlat() { return state_ != NON_FLAT; }
|
|
// Returns true if the structure contains ASCII content.
|
|
bool IsAscii() { return state_ == ASCII; }
|
|
// Returns true if the structure contains two-byte content.
|
|
bool IsTwoByte() { return state_ == TWO_BYTE; }
|
|
|
|
// Return the one byte content of the string. Only use if IsAscii() returns
|
|
// true.
|
|
Vector<const uint8_t> ToOneByteVector() {
|
|
ASSERT_EQ(ASCII, state_);
|
|
return buffer_;
|
|
}
|
|
// Return the two-byte content of the string. Only use if IsTwoByte()
|
|
// returns true.
|
|
Vector<const uc16> ToUC16Vector() {
|
|
ASSERT_EQ(TWO_BYTE, state_);
|
|
return Vector<const uc16>::cast(buffer_);
|
|
}
|
|
|
|
private:
|
|
enum State { NON_FLAT, ASCII, TWO_BYTE };
|
|
|
|
// Constructors only used by String::GetFlatContent().
|
|
explicit FlatContent(Vector<const uint8_t> chars)
|
|
: buffer_(chars),
|
|
state_(ASCII) { }
|
|
explicit FlatContent(Vector<const uc16> chars)
|
|
: buffer_(Vector<const byte>::cast(chars)),
|
|
state_(TWO_BYTE) { }
|
|
FlatContent() : buffer_(), state_(NON_FLAT) { }
|
|
|
|
Vector<const uint8_t> buffer_;
|
|
State state_;
|
|
|
|
friend class String;
|
|
};
|
|
|
|
// Get and set the length of the string.
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// Returns whether this string has only ASCII chars, i.e. all of them can
|
|
// be ASCII encoded. This might be the case even if the string is
|
|
// two-byte. Such strings may appear when the embedder prefers
|
|
// two-byte external representations even for ASCII data.
|
|
inline bool IsOneByteRepresentation();
|
|
inline bool IsTwoByteRepresentation();
|
|
|
|
// Cons and slices have an encoding flag that may not represent the actual
|
|
// encoding of the underlying string. This is taken into account here.
|
|
// Requires: this->IsFlat()
|
|
inline bool IsOneByteRepresentationUnderneath();
|
|
inline bool IsTwoByteRepresentationUnderneath();
|
|
|
|
// NOTE: this should be considered only a hint. False negatives are
|
|
// possible.
|
|
inline bool HasOnlyOneByteChars();
|
|
|
|
// Get and set individual two byte chars in the string.
|
|
inline void Set(int index, uint16_t value);
|
|
// Get individual two byte char in the string. Repeated calls
|
|
// to this method are not efficient unless the string is flat.
|
|
INLINE(uint16_t Get(int index));
|
|
|
|
// Try to flatten the string. Checks first inline to see if it is
|
|
// necessary. Does nothing if the string is not a cons string.
|
|
// Flattening allocates a sequential string with the same data as
|
|
// the given string and mutates the cons string to a degenerate
|
|
// form, where the first component is the new sequential string and
|
|
// the second component is the empty string. If allocation fails,
|
|
// this function returns a failure. If flattening succeeds, this
|
|
// function returns the sequential string that is now the first
|
|
// component of the cons string.
|
|
//
|
|
// Degenerate cons strings are handled specially by the garbage
|
|
// collector (see IsShortcutCandidate).
|
|
//
|
|
// Use FlattenString from Handles.cc to flatten even in case an
|
|
// allocation failure happens.
|
|
inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Convenience function. Has exactly the same behavior as
|
|
// TryFlatten(), except in the case of failure returns the original
|
|
// string.
|
|
inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// Tries to return the content of a flat string as a structure holding either
|
|
// a flat vector of char or of uc16.
|
|
// If the string isn't flat, and therefore doesn't have flat content, the
|
|
// returned structure will report so, and can't provide a vector of either
|
|
// kind.
|
|
FlatContent GetFlatContent();
|
|
|
|
// Returns the parent of a sliced string or first part of a flat cons string.
|
|
// Requires: StringShape(this).IsIndirect() && this->IsFlat()
|
|
inline String* GetUnderlying();
|
|
|
|
// Mark the string as an undetectable object. It only applies to
|
|
// ASCII and two byte string types.
|
|
bool MarkAsUndetectable();
|
|
|
|
// Return a substring.
|
|
MUST_USE_RESULT MaybeObject* SubString(int from,
|
|
int to,
|
|
PretenureFlag pretenure = NOT_TENURED);
|
|
|
|
// String equality operations.
|
|
inline bool Equals(String* other);
|
|
bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
|
|
bool IsOneByteEqualTo(Vector<const uint8_t> str);
|
|
bool IsTwoByteEqualTo(Vector<const uc16> str);
|
|
|
|
// Return a UTF8 representation of the string. The string is null
|
|
// terminated but may optionally contain nulls. Length is returned
|
|
// in length_output if length_output is not a null pointer The string
|
|
// should be nearly flat, otherwise the performance of this method may
|
|
// be very slow (quadratic in the length). Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
|
|
RobustnessFlag robustness_flag,
|
|
int offset,
|
|
int length,
|
|
int* length_output = 0);
|
|
SmartArrayPointer<char> ToCString(
|
|
AllowNullsFlag allow_nulls = DISALLOW_NULLS,
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
|
|
int* length_output = 0);
|
|
|
|
// Return a 16 bit Unicode representation of the string.
|
|
// The string should be nearly flat, otherwise the performance of
|
|
// of this method may be very bad. Setting robustness_flag to
|
|
// ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
|
|
// handles unexpected data without causing assert failures and it does not
|
|
// do any heap allocations. This is useful when printing stack traces.
|
|
SmartArrayPointer<uc16> ToWideCString(
|
|
RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
|
|
|
|
bool ComputeArrayIndex(uint32_t* index);
|
|
|
|
// Externalization.
|
|
bool MakeExternal(v8::String::ExternalStringResource* resource);
|
|
bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
|
|
|
|
// Conversion.
|
|
inline bool AsArrayIndex(uint32_t* index);
|
|
|
|
// Casting.
|
|
static inline String* cast(Object* obj);
|
|
|
|
void PrintOn(FILE* out);
|
|
|
|
// For use during stack traces. Performs rudimentary sanity check.
|
|
bool LooksValid();
|
|
|
|
// Dispatched behavior.
|
|
void StringShortPrint(StringStream* accumulator);
|
|
#ifdef OBJECT_PRINT
|
|
char* ToAsciiArray();
|
|
#endif
|
|
DECLARE_PRINTER(String)
|
|
DECLARE_VERIFIER(String)
|
|
|
|
inline bool IsFlat();
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = Name::kSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
// Maximum number of characters to consider when trying to convert a string
|
|
// value into an array index.
|
|
static const int kMaxArrayIndexSize = 10;
|
|
STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
|
|
|
|
// Max char codes.
|
|
static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
|
|
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
|
|
static const int kMaxUtf16CodeUnit = 0xffff;
|
|
|
|
// Value of hash field containing computed hash equal to zero.
|
|
static const int kEmptyStringHash = kIsNotArrayIndexMask;
|
|
|
|
// Maximal string length.
|
|
static const int kMaxLength = (1 << (32 - 2)) - 1;
|
|
|
|
// Max length for computing hash. For strings longer than this limit the
|
|
// string length is used as the hash value.
|
|
static const int kMaxHashCalcLength = 16383;
|
|
|
|
// Limit for truncation in short printing.
|
|
static const int kMaxShortPrintLength = 1024;
|
|
|
|
// Support for regular expressions.
|
|
const uc16* GetTwoByteData();
|
|
const uc16* GetTwoByteData(unsigned start);
|
|
|
|
// Helper function for flattening strings.
|
|
template <typename sinkchar>
|
|
static void WriteToFlat(String* source,
|
|
sinkchar* sink,
|
|
int from,
|
|
int to);
|
|
|
|
// The return value may point to the first aligned word containing the
|
|
// first non-ascii character, rather than directly to the non-ascii character.
|
|
// If the return value is >= the passed length, the entire string was ASCII.
|
|
static inline int NonAsciiStart(const char* chars, int length) {
|
|
const char* start = chars;
|
|
const char* limit = chars + length;
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
ASSERT(unibrow::Utf8::kMaxOneByteChar == 0x7F);
|
|
const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80;
|
|
while (chars + sizeof(uintptr_t) <= limit) {
|
|
if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
chars += sizeof(uintptr_t);
|
|
}
|
|
#endif
|
|
while (chars < limit) {
|
|
if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
++chars;
|
|
}
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsAscii(const char* chars, int length) {
|
|
return NonAsciiStart(chars, length) >= length;
|
|
}
|
|
|
|
static inline bool IsAscii(const uint8_t* chars, int length) {
|
|
return
|
|
NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
|
|
}
|
|
|
|
static inline int NonOneByteStart(const uc16* chars, int length) {
|
|
const uc16* limit = chars + length;
|
|
const uc16* start = chars;
|
|
while (chars < limit) {
|
|
if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
|
|
++chars;
|
|
}
|
|
return static_cast<int>(chars - start);
|
|
}
|
|
|
|
static inline bool IsOneByte(const uc16* chars, int length) {
|
|
return NonOneByteStart(chars, length) >= length;
|
|
}
|
|
|
|
// TODO(dcarney): Replace all instances of this with VisitFlat.
|
|
template<class Visitor, class ConsOp>
|
|
static inline void Visit(String* string,
|
|
unsigned offset,
|
|
Visitor& visitor,
|
|
ConsOp& cons_op,
|
|
int32_t type,
|
|
unsigned length);
|
|
|
|
template<class Visitor>
|
|
static inline ConsString* VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset,
|
|
int length,
|
|
int32_t type);
|
|
|
|
template<class Visitor>
|
|
static inline ConsString* VisitFlat(Visitor* visitor,
|
|
String* string,
|
|
int offset = 0) {
|
|
int32_t type = string->map()->instance_type();
|
|
return VisitFlat(visitor, string, offset, string->length(), type);
|
|
}
|
|
|
|
private:
|
|
friend class Name;
|
|
|
|
// Try to flatten the top level ConsString that is hiding behind this
|
|
// string. This is a no-op unless the string is a ConsString. Flatten
|
|
// mutates the ConsString and might return a failure.
|
|
MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
|
|
|
|
// Slow case of String::Equals. This implementation works on any strings
|
|
// but it is most efficient on strings that are almost flat.
|
|
bool SlowEquals(String* other);
|
|
|
|
// Slow case of AsArrayIndex.
|
|
bool SlowAsArrayIndex(uint32_t* index);
|
|
|
|
// Compute and set the hash code.
|
|
uint32_t ComputeAndSetHash();
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(String);
|
|
};
|
|
|
|
|
|
// The SeqString abstract class captures sequential string values.
|
|
class SeqString: public String {
|
|
public:
|
|
// Casting.
|
|
static inline SeqString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kHeaderSize = String::kSize;
|
|
|
|
// Truncate the string in-place if possible and return the result.
|
|
// In case of new_length == 0, the empty string is returned without
|
|
// truncating the original string.
|
|
MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
|
|
int new_length);
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
|
|
};
|
|
|
|
|
|
// The AsciiString class captures sequential ASCII string objects.
|
|
// Each character in the AsciiString is an ASCII character.
|
|
class SeqOneByteString: public SeqString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = true;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqOneByteStringGet(int index);
|
|
inline void SeqOneByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uint8_t* GetChars();
|
|
|
|
// Casting
|
|
static inline SeqOneByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of an AsciiString
|
|
// instance.
|
|
inline int SeqOneByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for an AsciiString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential ASCII string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
// Maximal length of a single sequential ASCII string.
|
|
// Q.v. String::kMaxLength which is the maximal size of concatenated strings.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
|
|
};
|
|
|
|
|
|
// The TwoByteString class captures sequential unicode string objects.
|
|
// Each character in the TwoByteString is a two-byte uint16_t.
|
|
class SeqTwoByteString: public SeqString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = false;
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t SeqTwoByteStringGet(int index);
|
|
inline void SeqTwoByteStringSet(int index, uint16_t value);
|
|
|
|
// Get the address of the characters in this string.
|
|
inline Address GetCharsAddress();
|
|
|
|
inline uc16* GetChars();
|
|
|
|
// For regexp code.
|
|
const uint16_t* SeqTwoByteStringGetData(unsigned start);
|
|
|
|
// Casting
|
|
static inline SeqTwoByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support. This method is called by the
|
|
// garbage collector to compute the actual size of a TwoByteString
|
|
// instance.
|
|
inline int SeqTwoByteStringSize(InstanceType instance_type);
|
|
|
|
// Computes the size for a TwoByteString instance of a given length.
|
|
static int SizeFor(int length) {
|
|
return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
|
|
}
|
|
|
|
// Maximal memory usage for a single sequential two-byte string.
|
|
static const int kMaxSize = 512 * MB - 1;
|
|
// Maximal length of a single sequential two-byte string.
|
|
// Q.v. String::kMaxLength which is the maximal size of concatenated strings.
|
|
static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
|
|
};
|
|
|
|
|
|
// The ConsString class describes string values built by using the
|
|
// addition operator on strings. A ConsString is a pair where the
|
|
// first and second components are pointers to other string values.
|
|
// One or both components of a ConsString can be pointers to other
|
|
// ConsStrings, creating a binary tree of ConsStrings where the leaves
|
|
// are non-ConsString string values. The string value represented by
|
|
// a ConsString can be obtained by concatenating the leaf string
|
|
// values in a left-to-right depth-first traversal of the tree.
|
|
class ConsString: public String {
|
|
public:
|
|
// First string of the cons cell.
|
|
inline String* first();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_first();
|
|
inline void set_first(String* first,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Second string of the cons cell.
|
|
inline String* second();
|
|
// Doesn't check that the result is a string, even in debug mode. This is
|
|
// useful during GC where the mark bits confuse the checks.
|
|
inline Object* unchecked_second();
|
|
inline void set_second(String* second,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t ConsStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline ConsString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kSecondOffset = kFirstOffset + kPointerSize;
|
|
static const int kSize = kSecondOffset + kPointerSize;
|
|
|
|
// Minimum length for a cons string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(ConsString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
|
|
};
|
|
|
|
|
|
// The Sliced String class describes strings that are substrings of another
|
|
// sequential string. The motivation is to save time and memory when creating
|
|
// a substring. A Sliced String is described as a pointer to the parent,
|
|
// the offset from the start of the parent string and the length. Using
|
|
// a Sliced String therefore requires unpacking of the parent string and
|
|
// adding the offset to the start address. A substring of a Sliced String
|
|
// are not nested since the double indirection is simplified when creating
|
|
// such a substring.
|
|
// Currently missing features are:
|
|
// - handling externalized parent strings
|
|
// - external strings as parent
|
|
// - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
|
|
class SlicedString: public String {
|
|
public:
|
|
inline String* parent();
|
|
inline void set_parent(String* parent,
|
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
inline int offset();
|
|
inline void set_offset(int offset);
|
|
|
|
// Dispatched behavior.
|
|
uint16_t SlicedStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline SlicedString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kOffsetOffset = kParentOffset + kPointerSize;
|
|
static const int kSize = kOffsetOffset + kPointerSize;
|
|
|
|
// Minimum length for a sliced string.
|
|
static const int kMinLength = 13;
|
|
|
|
typedef FixedBodyDescriptor<kParentOffset,
|
|
kOffsetOffset + kPointerSize, kSize>
|
|
BodyDescriptor;
|
|
|
|
DECLARE_VERIFIER(SlicedString)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
|
|
};
|
|
|
|
|
|
// The ExternalString class describes string values that are backed by
|
|
// a string resource that lies outside the V8 heap. ExternalStrings
|
|
// consist of the length field common to all strings, a pointer to the
|
|
// external resource. It is important to ensure (externally) that the
|
|
// resource is not deallocated while the ExternalString is live in the
|
|
// V8 heap.
|
|
//
|
|
// The API expects that all ExternalStrings are created through the
|
|
// API. Therefore, ExternalStrings should not be used internally.
|
|
class ExternalString: public String {
|
|
public:
|
|
// Casting
|
|
static inline ExternalString* cast(Object* obj);
|
|
|
|
// Layout description.
|
|
static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
|
|
static const int kShortSize = kResourceOffset + kPointerSize;
|
|
static const int kResourceDataOffset = kResourceOffset + kPointerSize;
|
|
static const int kSize = kResourceDataOffset + kPointerSize;
|
|
|
|
static const int kMaxShortLength =
|
|
(kShortSize - SeqString::kHeaderSize) / kCharSize;
|
|
|
|
// Return whether external string is short (data pointer is not cached).
|
|
inline bool is_short();
|
|
|
|
STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
|
|
};
|
|
|
|
|
|
// The ExternalAsciiString class is an external string backed by an
|
|
// ASCII string.
|
|
class ExternalAsciiString: public ExternalString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = true;
|
|
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
|
|
// The underlying resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint8_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalAsciiStringGet(int index);
|
|
|
|
// Casting.
|
|
static inline ExternalAsciiString* cast(Object* obj);
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ExternalAsciiStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
|
|
};
|
|
|
|
|
|
// The ExternalTwoByteString class is an external string backed by a UTF-16
|
|
// encoded string.
|
|
class ExternalTwoByteString: public ExternalString {
|
|
public:
|
|
static const bool kHasAsciiEncoding = false;
|
|
|
|
typedef v8::String::ExternalStringResource Resource;
|
|
|
|
// The underlying string resource.
|
|
inline const Resource* resource();
|
|
inline void set_resource(const Resource* buffer);
|
|
|
|
// Update the pointer cache to the external character array.
|
|
// The cached pointer is always valid, as the external character array does =
|
|
// not move during lifetime. Deserialization is the only exception, after
|
|
// which the pointer cache has to be refreshed.
|
|
inline void update_data_cache();
|
|
|
|
inline const uint16_t* GetChars();
|
|
|
|
// Dispatched behavior.
|
|
inline uint16_t ExternalTwoByteStringGet(int index);
|
|
|
|
// For regexp code.
|
|
inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
|
|
|
|
// Casting.
|
|
static inline ExternalTwoByteString* cast(Object* obj);
|
|
|
|
// Garbage collection support.
|
|
inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ExternalTwoByteStringIterateBody();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
|
|
};
|
|
|
|
|
|
// Utility superclass for stack-allocated objects that must be updated
|
|
// on gc. It provides two ways for the gc to update instances, either
|
|
// iterating or updating after gc.
|
|
class Relocatable BASE_EMBEDDED {
|
|
public:
|
|
explicit inline Relocatable(Isolate* isolate);
|
|
inline virtual ~Relocatable();
|
|
virtual void IterateInstance(ObjectVisitor* v) { }
|
|
virtual void PostGarbageCollection() { }
|
|
|
|
static void PostGarbageCollectionProcessing(Isolate* isolate);
|
|
static int ArchiveSpacePerThread();
|
|
static char* ArchiveState(Isolate* isolate, char* to);
|
|
static char* RestoreState(Isolate* isolate, char* from);
|
|
static void Iterate(Isolate* isolate, ObjectVisitor* v);
|
|
static void Iterate(ObjectVisitor* v, Relocatable* top);
|
|
static char* Iterate(ObjectVisitor* v, char* t);
|
|
|
|
private:
|
|
Isolate* isolate_;
|
|
Relocatable* prev_;
|
|
};
|
|
|
|
|
|
// A flat string reader provides random access to the contents of a
|
|
// string independent of the character width of the string. The handle
|
|
// must be valid as long as the reader is being used.
|
|
class FlatStringReader : public Relocatable {
|
|
public:
|
|
FlatStringReader(Isolate* isolate, Handle<String> str);
|
|
FlatStringReader(Isolate* isolate, Vector<const char> input);
|
|
void PostGarbageCollection();
|
|
inline uc32 Get(int index);
|
|
int length() { return length_; }
|
|
private:
|
|
String** str_;
|
|
bool is_ascii_;
|
|
int length_;
|
|
const void* start_;
|
|
};
|
|
|
|
|
|
// A ConsStringOp that returns null.
|
|
// Useful when the operation to apply on a ConsString
|
|
// requires an expensive data structure.
|
|
class ConsStringNullOp {
|
|
public:
|
|
inline ConsStringNullOp() {}
|
|
static inline String* Operate(String*, unsigned*, int32_t*, unsigned*);
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ConsStringNullOp);
|
|
};
|
|
|
|
|
|
// This maintains an off-stack representation of the stack frames required
|
|
// to traverse a ConsString, allowing an entirely iterative and restartable
|
|
// traversal of the entire string
|
|
// Note: this class is not GC-safe.
|
|
class ConsStringIteratorOp {
|
|
public:
|
|
inline ConsStringIteratorOp() {}
|
|
String* Operate(String* string,
|
|
unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out);
|
|
inline String* ContinueOperation(int32_t* type_out, unsigned* length_out);
|
|
inline void Reset();
|
|
inline bool HasMore();
|
|
|
|
private:
|
|
// TODO(dcarney): Templatize this out for different stack sizes.
|
|
static const unsigned kStackSize = 32;
|
|
// Use a mask instead of doing modulo operations for stack wrapping.
|
|
static const unsigned kDepthMask = kStackSize-1;
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
|
|
static inline unsigned OffsetForDepth(unsigned depth);
|
|
|
|
inline void PushLeft(ConsString* string);
|
|
inline void PushRight(ConsString* string);
|
|
inline void AdjustMaximumDepth();
|
|
inline void Pop();
|
|
String* NextLeaf(bool* blew_stack, int32_t* type_out, unsigned* length_out);
|
|
String* Search(unsigned* offset_out,
|
|
int32_t* type_out,
|
|
unsigned* length_out);
|
|
|
|
unsigned depth_;
|
|
unsigned maximum_depth_;
|
|
// Stack must always contain only frames for which right traversal
|
|
// has not yet been performed.
|
|
ConsString* frames_[kStackSize];
|
|
unsigned consumed_;
|
|
ConsString* root_;
|
|
DISALLOW_COPY_AND_ASSIGN(ConsStringIteratorOp);
|
|
};
|
|
|
|
|
|
// Note: this class is not GC-safe.
|
|
class StringCharacterStream {
|
|
public:
|
|
inline StringCharacterStream(String* string,
|
|
ConsStringIteratorOp* op,
|
|
unsigned offset = 0);
|
|
inline uint16_t GetNext();
|
|
inline bool HasMore();
|
|
inline void Reset(String* string, unsigned offset = 0);
|
|
inline void VisitOneByteString(const uint8_t* chars, unsigned length);
|
|
inline void VisitTwoByteString(const uint16_t* chars, unsigned length);
|
|
|
|
private:
|
|
bool is_one_byte_;
|
|
union {
|
|
const uint8_t* buffer8_;
|
|
const uint16_t* buffer16_;
|
|
};
|
|
const uint8_t* end_;
|
|
ConsStringIteratorOp* op_;
|
|
DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class VectorIterator {
|
|
public:
|
|
VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
|
|
explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
|
|
T GetNext() { return data_[index_++]; }
|
|
bool has_more() { return index_ < data_.length(); }
|
|
private:
|
|
Vector<const T> data_;
|
|
int index_;
|
|
};
|
|
|
|
|
|
// The Oddball describes objects null, undefined, true, and false.
|
|
class Oddball: public HeapObject {
|
|
public:
|
|
// [to_string]: Cached to_string computed at startup.
|
|
DECL_ACCESSORS(to_string, String)
|
|
|
|
// [to_number]: Cached to_number computed at startup.
|
|
DECL_ACCESSORS(to_number, Object)
|
|
|
|
inline byte kind();
|
|
inline void set_kind(byte kind);
|
|
|
|
// Casting.
|
|
static inline Oddball* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(Oddball)
|
|
|
|
// Initialize the fields.
|
|
MUST_USE_RESULT MaybeObject* Initialize(Heap* heap,
|
|
const char* to_string,
|
|
Object* to_number,
|
|
byte kind);
|
|
|
|
// Layout description.
|
|
static const int kToStringOffset = HeapObject::kHeaderSize;
|
|
static const int kToNumberOffset = kToStringOffset + kPointerSize;
|
|
static const int kKindOffset = kToNumberOffset + kPointerSize;
|
|
static const int kSize = kKindOffset + kPointerSize;
|
|
|
|
static const byte kFalse = 0;
|
|
static const byte kTrue = 1;
|
|
static const byte kNotBooleanMask = ~1;
|
|
static const byte kTheHole = 2;
|
|
static const byte kNull = 3;
|
|
static const byte kArgumentMarker = 4;
|
|
static const byte kUndefined = 5;
|
|
static const byte kUninitialized = 6;
|
|
static const byte kOther = 7;
|
|
|
|
typedef FixedBodyDescriptor<kToStringOffset,
|
|
kToNumberOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
STATIC_CHECK(kKindOffset == Internals::kOddballKindOffset);
|
|
STATIC_CHECK(kNull == Internals::kNullOddballKind);
|
|
STATIC_CHECK(kUndefined == Internals::kUndefinedOddballKind);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
|
|
};
|
|
|
|
|
|
class Cell: public HeapObject {
|
|
public:
|
|
// [value]: value of the global property.
|
|
DECL_ACCESSORS(value, Object)
|
|
|
|
// Casting.
|
|
static inline Cell* cast(Object* obj);
|
|
|
|
static inline Cell* FromValueAddress(Address value) {
|
|
Object* result = FromAddress(value - kValueOffset);
|
|
ASSERT(result->IsCell() || result->IsPropertyCell());
|
|
return static_cast<Cell*>(result);
|
|
}
|
|
|
|
inline Address ValueAddress() {
|
|
return address() + kValueOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Cell)
|
|
DECLARE_VERIFIER(Cell)
|
|
|
|
// Layout description.
|
|
static const int kValueOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kValueOffset + kPointerSize;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kValueOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
|
|
};
|
|
|
|
|
|
class PropertyCell: public Cell {
|
|
public:
|
|
// [type]: type of the global property.
|
|
Type* type();
|
|
void set_type(Type* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
|
|
// [dependent_code]: dependent code that depends on the type of the global
|
|
// property.
|
|
DECL_ACCESSORS(dependent_code, DependentCode)
|
|
|
|
// Sets the value of the cell and updates the type field to be the union
|
|
// of the cell's current type and the value's type. If the change causes
|
|
// a change of the type of the cell's contents, code dependent on the cell
|
|
// will be deoptimized.
|
|
static void SetValueInferType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
// Computes the new type of the cell's contents for the given value, but
|
|
// without actually modifying the 'type' field.
|
|
static Handle<Type> UpdatedType(Handle<PropertyCell> cell,
|
|
Handle<Object> value);
|
|
|
|
void AddDependentCompilationInfo(CompilationInfo* info);
|
|
|
|
void AddDependentCode(Handle<Code> code);
|
|
|
|
// Casting.
|
|
static inline PropertyCell* cast(Object* obj);
|
|
|
|
inline Address TypeAddress() {
|
|
return address() + kTypeOffset;
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(PropertyCell)
|
|
DECLARE_VERIFIER(PropertyCell)
|
|
|
|
// Layout description.
|
|
static const int kTypeOffset = kValueOffset + kPointerSize;
|
|
static const int kDependentCodeOffset = kTypeOffset + kPointerSize;
|
|
static const int kSize = kDependentCodeOffset + kPointerSize;
|
|
|
|
static const int kPointerFieldsBeginOffset = kValueOffset;
|
|
static const int kPointerFieldsEndOffset = kDependentCodeOffset;
|
|
|
|
typedef FixedBodyDescriptor<kValueOffset,
|
|
kSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DECL_ACCESSORS(type_raw, Object)
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
|
|
};
|
|
|
|
|
|
// The JSProxy describes EcmaScript Harmony proxies
|
|
class JSProxy: public JSReceiver {
|
|
public:
|
|
// [handler]: The handler property.
|
|
DECL_ACCESSORS(handler, Object)
|
|
|
|
// [hash]: The hash code property (undefined if not initialized yet).
|
|
DECL_ACCESSORS(hash, Object)
|
|
|
|
// Casting.
|
|
static inline JSProxy* cast(Object* obj);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetPropertyWithHandler(
|
|
Object* receiver,
|
|
Name* name);
|
|
MUST_USE_RESULT MaybeObject* GetElementWithHandler(
|
|
Object* receiver,
|
|
uint32_t index);
|
|
|
|
// If the handler defines an accessor property with a setter, invoke it.
|
|
// If it defines an accessor property without a setter, or a data property
|
|
// that is read-only, throw. In all these cases set '*done' to true,
|
|
// otherwise set it to false.
|
|
static Handle<Object> SetPropertyViaPrototypesWithHandler(
|
|
Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode,
|
|
bool* done);
|
|
|
|
MUST_USE_RESULT PropertyAttributes GetPropertyAttributeWithHandler(
|
|
JSReceiver* receiver,
|
|
Name* name);
|
|
MUST_USE_RESULT PropertyAttributes GetElementAttributeWithHandler(
|
|
JSReceiver* receiver,
|
|
uint32_t index);
|
|
|
|
// Turn the proxy into an (empty) JSObject.
|
|
static void Fix(Handle<JSProxy> proxy);
|
|
|
|
// Initializes the body after the handler slot.
|
|
inline void InitializeBody(int object_size, Object* value);
|
|
|
|
// Invoke a trap by name. If the trap does not exist on this's handler,
|
|
// but derived_trap is non-NULL, invoke that instead. May cause GC.
|
|
Handle<Object> CallTrap(const char* name,
|
|
Handle<Object> derived_trap,
|
|
int argc,
|
|
Handle<Object> args[]);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSProxy)
|
|
DECLARE_VERIFIER(JSProxy)
|
|
|
|
// Layout description. We add padding so that a proxy has the same
|
|
// size as a virgin JSObject. This is essential for becoming a JSObject
|
|
// upon freeze.
|
|
static const int kHandlerOffset = HeapObject::kHeaderSize;
|
|
static const int kHashOffset = kHandlerOffset + kPointerSize;
|
|
static const int kPaddingOffset = kHashOffset + kPointerSize;
|
|
static const int kSize = JSObject::kHeaderSize;
|
|
static const int kHeaderSize = kPaddingOffset;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_CHECK(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kPaddingOffset,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
friend class JSReceiver;
|
|
|
|
static Handle<Object> SetPropertyWithHandler(Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
Handle<Name> name,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode);
|
|
static Handle<Object> SetElementWithHandler(Handle<JSProxy> proxy,
|
|
Handle<JSReceiver> receiver,
|
|
uint32_t index,
|
|
Handle<Object> value,
|
|
StrictModeFlag strict_mode);
|
|
|
|
static bool HasPropertyWithHandler(Handle<JSProxy> proxy, Handle<Name> name);
|
|
static bool HasElementWithHandler(Handle<JSProxy> proxy, uint32_t index);
|
|
|
|
static Handle<Object> DeletePropertyWithHandler(Handle<JSProxy> proxy,
|
|
Handle<Name> name,
|
|
DeleteMode mode);
|
|
static Handle<Object> DeleteElementWithHandler(Handle<JSProxy> proxy,
|
|
uint32_t index,
|
|
DeleteMode mode);
|
|
|
|
MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
|
|
static Handle<Object> GetIdentityHash(Handle<JSProxy> proxy,
|
|
CreationFlag flag);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
|
|
};
|
|
|
|
|
|
class JSFunctionProxy: public JSProxy {
|
|
public:
|
|
// [call_trap]: The call trap.
|
|
DECL_ACCESSORS(call_trap, Object)
|
|
|
|
// [construct_trap]: The construct trap.
|
|
DECL_ACCESSORS(construct_trap, Object)
|
|
|
|
// Casting.
|
|
static inline JSFunctionProxy* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSFunctionProxy)
|
|
DECLARE_VERIFIER(JSFunctionProxy)
|
|
|
|
// Layout description.
|
|
static const int kCallTrapOffset = JSProxy::kPaddingOffset;
|
|
static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
|
|
static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
|
|
static const int kSize = JSFunction::kSize;
|
|
static const int kPaddingSize = kSize - kPaddingOffset;
|
|
|
|
STATIC_CHECK(kPaddingSize >= 0);
|
|
|
|
typedef FixedBodyDescriptor<kHandlerOffset,
|
|
kConstructTrapOffset + kPointerSize,
|
|
kSize> BodyDescriptor;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
|
|
};
|
|
|
|
|
|
// The JSSet describes EcmaScript Harmony sets
|
|
class JSSet: public JSObject {
|
|
public:
|
|
// [set]: the backing hash set containing keys.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// Casting.
|
|
static inline JSSet* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSSet)
|
|
DECLARE_VERIFIER(JSSet)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kTableOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
|
|
};
|
|
|
|
|
|
// The JSMap describes EcmaScript Harmony maps
|
|
class JSMap: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// Casting.
|
|
static inline JSMap* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSMap)
|
|
DECLARE_VERIFIER(JSMap)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kTableOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
|
|
};
|
|
|
|
|
|
// Base class for both JSWeakMap and JSWeakSet
|
|
class JSWeakCollection: public JSObject {
|
|
public:
|
|
// [table]: the backing hash table mapping keys to values.
|
|
DECL_ACCESSORS(table, Object)
|
|
|
|
// [next]: linked list of encountered weak maps during GC.
|
|
DECL_ACCESSORS(next, Object)
|
|
|
|
static const int kTableOffset = JSObject::kHeaderSize;
|
|
static const int kNextOffset = kTableOffset + kPointerSize;
|
|
static const int kSize = kNextOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
|
|
};
|
|
|
|
|
|
// The JSWeakMap describes EcmaScript Harmony weak maps
|
|
class JSWeakMap: public JSWeakCollection {
|
|
public:
|
|
// Casting.
|
|
static inline JSWeakMap* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakMap)
|
|
DECLARE_VERIFIER(JSWeakMap)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
|
|
};
|
|
|
|
|
|
// The JSWeakSet describes EcmaScript Harmony weak sets
|
|
class JSWeakSet: public JSWeakCollection {
|
|
public:
|
|
// Casting.
|
|
static inline JSWeakSet* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSWeakSet)
|
|
DECLARE_VERIFIER(JSWeakSet)
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
|
|
};
|
|
|
|
|
|
class JSArrayBuffer: public JSObject {
|
|
public:
|
|
// [backing_store]: backing memory for this array
|
|
DECL_ACCESSORS(backing_store, void)
|
|
|
|
// [byte_length]: length in bytes
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [flags]
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline bool is_external();
|
|
inline void set_is_external(bool value);
|
|
|
|
// [weak_next]: linked list of array buffers.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
// [weak_first_array]: weak linked list of views.
|
|
DECL_ACCESSORS(weak_first_view, Object)
|
|
|
|
// Casting.
|
|
static inline JSArrayBuffer* cast(Object* obj);
|
|
|
|
// Neutering. Only neuters the buffer, not associated typed arrays.
|
|
void Neuter();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArrayBuffer)
|
|
DECLARE_VERIFIER(JSArrayBuffer)
|
|
|
|
static const int kBackingStoreOffset = JSObject::kHeaderSize;
|
|
static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
|
|
static const int kFlagOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kFlagOffset + kPointerSize;
|
|
static const int kWeakFirstViewOffset = kWeakNextOffset + kPointerSize;
|
|
static const int kSize = kWeakFirstViewOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
// Bit position in a flag
|
|
static const int kIsExternalBit = 0;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
|
|
};
|
|
|
|
|
|
class JSArrayBufferView: public JSObject {
|
|
public:
|
|
// [buffer]: ArrayBuffer that this typed array views.
|
|
DECL_ACCESSORS(buffer, Object)
|
|
|
|
// [byte_length]: offset of typed array in bytes.
|
|
DECL_ACCESSORS(byte_offset, Object)
|
|
|
|
// [byte_length]: length of typed array in bytes.
|
|
DECL_ACCESSORS(byte_length, Object)
|
|
|
|
// [weak_next]: linked list of typed arrays over the same array buffer.
|
|
DECL_ACCESSORS(weak_next, Object)
|
|
|
|
// Casting.
|
|
static inline JSArrayBufferView* cast(Object* obj);
|
|
|
|
DECLARE_VERIFIER(JSArrayBufferView)
|
|
|
|
static const int kBufferOffset = JSObject::kHeaderSize;
|
|
static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
|
|
static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
|
|
static const int kWeakNextOffset = kByteLengthOffset + kPointerSize;
|
|
static const int kViewSize = kWeakNextOffset + kPointerSize;
|
|
|
|
protected:
|
|
void NeuterView();
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
|
|
};
|
|
|
|
|
|
class JSTypedArray: public JSArrayBufferView {
|
|
public:
|
|
// [length]: length of typed array in elements.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Neutering. Only neuters this typed array.
|
|
void Neuter();
|
|
|
|
// Casting.
|
|
static inline JSTypedArray* cast(Object* obj);
|
|
|
|
ExternalArrayType type();
|
|
size_t element_size();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSTypedArray)
|
|
DECLARE_VERIFIER(JSTypedArray)
|
|
|
|
static const int kLengthOffset = kViewSize + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
|
|
};
|
|
|
|
|
|
class JSDataView: public JSArrayBufferView {
|
|
public:
|
|
// Only neuters this DataView
|
|
void Neuter();
|
|
|
|
// Casting.
|
|
static inline JSDataView* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSDataView)
|
|
DECLARE_VERIFIER(JSDataView)
|
|
|
|
static const int kSize = kViewSize;
|
|
|
|
static const int kSizeWithInternalFields =
|
|
kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
|
|
};
|
|
|
|
|
|
// Foreign describes objects pointing from JavaScript to C structures.
|
|
// Since they cannot contain references to JS HeapObjects they can be
|
|
// placed in old_data_space.
|
|
class Foreign: public HeapObject {
|
|
public:
|
|
// [address]: field containing the address.
|
|
inline Address foreign_address();
|
|
inline void set_foreign_address(Address value);
|
|
|
|
// Casting.
|
|
static inline Foreign* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
inline void ForeignIterateBody(ObjectVisitor* v);
|
|
|
|
template<typename StaticVisitor>
|
|
inline void ForeignIterateBody();
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(Foreign)
|
|
DECLARE_VERIFIER(Foreign)
|
|
|
|
// Layout description.
|
|
|
|
static const int kForeignAddressOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kForeignAddressOffset + kPointerSize;
|
|
|
|
STATIC_CHECK(kForeignAddressOffset == Internals::kForeignAddressOffset);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
|
|
};
|
|
|
|
|
|
// The JSArray describes JavaScript Arrays
|
|
// Such an array can be in one of two modes:
|
|
// - fast, backing storage is a FixedArray and length <= elements.length();
|
|
// Please note: push and pop can be used to grow and shrink the array.
|
|
// - slow, backing storage is a HashTable with numbers as keys.
|
|
class JSArray: public JSObject {
|
|
public:
|
|
// [length]: The length property.
|
|
DECL_ACCESSORS(length, Object)
|
|
|
|
// Overload the length setter to skip write barrier when the length
|
|
// is set to a smi. This matches the set function on FixedArray.
|
|
inline void set_length(Smi* length);
|
|
|
|
MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
|
|
Object* value);
|
|
|
|
// Initialize the array with the given capacity. The function may
|
|
// fail due to out-of-memory situations, but only if the requested
|
|
// capacity is non-zero.
|
|
MUST_USE_RESULT MaybeObject* Initialize(int capacity, int length = 0);
|
|
|
|
// Initializes the array to a certain length.
|
|
inline bool AllowsSetElementsLength();
|
|
// Can cause GC.
|
|
MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
|
|
|
|
// Set the content of the array to the content of storage.
|
|
MUST_USE_RESULT inline MaybeObject* SetContent(FixedArrayBase* storage);
|
|
|
|
// Casting.
|
|
static inline JSArray* cast(Object* obj);
|
|
|
|
// Uses handles. Ensures that the fixed array backing the JSArray has at
|
|
// least the stated size.
|
|
inline void EnsureSize(int minimum_size_of_backing_fixed_array);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(JSArray)
|
|
DECLARE_VERIFIER(JSArray)
|
|
|
|
// Number of element slots to pre-allocate for an empty array.
|
|
static const int kPreallocatedArrayElements = 4;
|
|
|
|
// Layout description.
|
|
static const int kLengthOffset = JSObject::kHeaderSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
private:
|
|
// Expand the fixed array backing of a fast-case JSArray to at least
|
|
// the requested size.
|
|
void Expand(int minimum_size_of_backing_fixed_array);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
|
|
};
|
|
|
|
|
|
Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
|
|
Handle<Map> initial_map);
|
|
|
|
|
|
// JSRegExpResult is just a JSArray with a specific initial map.
|
|
// This initial map adds in-object properties for "index" and "input"
|
|
// properties, as assigned by RegExp.prototype.exec, which allows
|
|
// faster creation of RegExp exec results.
|
|
// This class just holds constants used when creating the result.
|
|
// After creation the result must be treated as a JSArray in all regards.
|
|
class JSRegExpResult: public JSArray {
|
|
public:
|
|
// Offsets of object fields.
|
|
static const int kIndexOffset = JSArray::kSize;
|
|
static const int kInputOffset = kIndexOffset + kPointerSize;
|
|
static const int kSize = kInputOffset + kPointerSize;
|
|
// Indices of in-object properties.
|
|
static const int kIndexIndex = 0;
|
|
static const int kInputIndex = 1;
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
|
|
};
|
|
|
|
|
|
class AccessorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(name, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
DECL_ACCESSORS(expected_receiver_type, Object)
|
|
|
|
inline bool all_can_read();
|
|
inline void set_all_can_read(bool value);
|
|
|
|
inline bool all_can_write();
|
|
inline void set_all_can_write(bool value);
|
|
|
|
inline bool prohibits_overwriting();
|
|
inline void set_prohibits_overwriting(bool value);
|
|
|
|
inline PropertyAttributes property_attributes();
|
|
inline void set_property_attributes(PropertyAttributes attributes);
|
|
|
|
// Checks whether the given receiver is compatible with this accessor.
|
|
inline bool IsCompatibleReceiver(Object* receiver);
|
|
|
|
static inline AccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_VERIFIER(AccessorInfo)
|
|
|
|
// Append all descriptors to the array that are not already there.
|
|
// Return number added.
|
|
static int AppendUnique(Handle<Object> descriptors,
|
|
Handle<FixedArray> array,
|
|
int valid_descriptors);
|
|
|
|
static const int kNameOffset = HeapObject::kHeaderSize;
|
|
static const int kFlagOffset = kNameOffset + kPointerSize;
|
|
static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
|
|
|
|
private:
|
|
// Bit positions in flag.
|
|
static const int kAllCanReadBit = 0;
|
|
static const int kAllCanWriteBit = 1;
|
|
static const int kProhibitsOverwritingBit = 2;
|
|
class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
|
|
};
|
|
|
|
|
|
enum AccessorDescriptorType {
|
|
kDescriptorBitmaskCompare,
|
|
kDescriptorPointerCompare,
|
|
kDescriptorPrimitiveValue,
|
|
kDescriptorObjectDereference,
|
|
kDescriptorPointerDereference,
|
|
kDescriptorPointerShift,
|
|
kDescriptorReturnObject
|
|
};
|
|
|
|
|
|
struct BitmaskCompareDescriptor {
|
|
uint32_t bitmask;
|
|
uint32_t compare_value;
|
|
uint8_t size; // Must be in {1,2,4}.
|
|
};
|
|
|
|
|
|
struct PointerCompareDescriptor {
|
|
void* compare_value;
|
|
};
|
|
|
|
|
|
struct PrimitiveValueDescriptor {
|
|
v8::DeclaredAccessorDescriptorDataType data_type;
|
|
uint8_t bool_offset; // Must be in [0,7], used for kDescriptorBoolType.
|
|
};
|
|
|
|
|
|
struct ObjectDerefenceDescriptor {
|
|
uint8_t internal_field;
|
|
};
|
|
|
|
|
|
struct PointerShiftDescriptor {
|
|
int16_t byte_offset;
|
|
};
|
|
|
|
|
|
struct DeclaredAccessorDescriptorData {
|
|
AccessorDescriptorType type;
|
|
union {
|
|
struct BitmaskCompareDescriptor bitmask_compare_descriptor;
|
|
struct PointerCompareDescriptor pointer_compare_descriptor;
|
|
struct PrimitiveValueDescriptor primitive_value_descriptor;
|
|
struct ObjectDerefenceDescriptor object_dereference_descriptor;
|
|
struct PointerShiftDescriptor pointer_shift_descriptor;
|
|
};
|
|
};
|
|
|
|
|
|
class DeclaredAccessorDescriptor;
|
|
|
|
|
|
class DeclaredAccessorDescriptorIterator {
|
|
public:
|
|
explicit DeclaredAccessorDescriptorIterator(
|
|
DeclaredAccessorDescriptor* descriptor);
|
|
const DeclaredAccessorDescriptorData* Next();
|
|
bool Complete() const { return length_ == offset_; }
|
|
private:
|
|
uint8_t* array_;
|
|
const int length_;
|
|
int offset_;
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptorIterator);
|
|
};
|
|
|
|
|
|
class DeclaredAccessorDescriptor: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(serialized_data, ByteArray)
|
|
|
|
static inline DeclaredAccessorDescriptor* cast(Object* obj);
|
|
|
|
static Handle<DeclaredAccessorDescriptor> Create(
|
|
Isolate* isolate,
|
|
const DeclaredAccessorDescriptorData& data,
|
|
Handle<DeclaredAccessorDescriptor> previous);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DeclaredAccessorDescriptor)
|
|
DECLARE_VERIFIER(DeclaredAccessorDescriptor)
|
|
|
|
static const int kSerializedDataOffset = HeapObject::kHeaderSize;
|
|
static const int kSize = kSerializedDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptor);
|
|
};
|
|
|
|
|
|
class DeclaredAccessorInfo: public AccessorInfo {
|
|
public:
|
|
DECL_ACCESSORS(descriptor, DeclaredAccessorDescriptor)
|
|
|
|
static inline DeclaredAccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DeclaredAccessorInfo)
|
|
DECLARE_VERIFIER(DeclaredAccessorInfo)
|
|
|
|
static const int kDescriptorOffset = AccessorInfo::kSize;
|
|
static const int kSize = kDescriptorOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorInfo);
|
|
};
|
|
|
|
|
|
// An accessor must have a getter, but can have no setter.
|
|
//
|
|
// When setting a property, V8 searches accessors in prototypes.
|
|
// If an accessor was found and it does not have a setter,
|
|
// the request is ignored.
|
|
//
|
|
// If the accessor in the prototype has the READ_ONLY property attribute, then
|
|
// a new value is added to the local object when the property is set.
|
|
// This shadows the accessor in the prototype.
|
|
class ExecutableAccessorInfo: public AccessorInfo {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline ExecutableAccessorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ExecutableAccessorInfo)
|
|
DECLARE_VERIFIER(ExecutableAccessorInfo)
|
|
|
|
static const int kGetterOffset = AccessorInfo::kSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kDataOffset = kSetterOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
|
|
};
|
|
|
|
|
|
// Support for JavaScript accessors: A pair of a getter and a setter. Each
|
|
// accessor can either be
|
|
// * a pointer to a JavaScript function or proxy: a real accessor
|
|
// * undefined: considered an accessor by the spec, too, strangely enough
|
|
// * the hole: an accessor which has not been set
|
|
// * a pointer to a map: a transition used to ensure map sharing
|
|
// access_flags provides the ability to override access checks on access check
|
|
// failure.
|
|
class AccessorPair: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(access_flags, Smi)
|
|
|
|
inline void set_access_flags(v8::AccessControl access_control);
|
|
inline bool all_can_read();
|
|
inline bool all_can_write();
|
|
inline bool prohibits_overwriting();
|
|
|
|
static inline AccessorPair* cast(Object* obj);
|
|
|
|
static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
|
|
|
|
Object* get(AccessorComponent component) {
|
|
return component == ACCESSOR_GETTER ? getter() : setter();
|
|
}
|
|
|
|
void set(AccessorComponent component, Object* value) {
|
|
if (component == ACCESSOR_GETTER) {
|
|
set_getter(value);
|
|
} else {
|
|
set_setter(value);
|
|
}
|
|
}
|
|
|
|
// Note: Returns undefined instead in case of a hole.
|
|
Object* GetComponent(AccessorComponent component);
|
|
|
|
// Set both components, skipping arguments which are a JavaScript null.
|
|
void SetComponents(Object* getter, Object* setter) {
|
|
if (!getter->IsNull()) set_getter(getter);
|
|
if (!setter->IsNull()) set_setter(setter);
|
|
}
|
|
|
|
bool ContainsAccessor() {
|
|
return IsJSAccessor(getter()) || IsJSAccessor(setter());
|
|
}
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessorPair)
|
|
DECLARE_VERIFIER(AccessorPair)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kAccessFlagsOffset = kSetterOffset + kPointerSize;
|
|
static const int kSize = kAccessFlagsOffset + kPointerSize;
|
|
|
|
private:
|
|
static const int kAllCanReadBit = 0;
|
|
static const int kAllCanWriteBit = 1;
|
|
static const int kProhibitsOverwritingBit = 2;
|
|
|
|
// Strangely enough, in addition to functions and harmony proxies, the spec
|
|
// requires us to consider undefined as a kind of accessor, too:
|
|
// var obj = {};
|
|
// Object.defineProperty(obj, "foo", {get: undefined});
|
|
// assertTrue("foo" in obj);
|
|
bool IsJSAccessor(Object* obj) {
|
|
return obj->IsSpecFunction() || obj->IsUndefined();
|
|
}
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
|
|
};
|
|
|
|
|
|
class AccessCheckInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(named_callback, Object)
|
|
DECL_ACCESSORS(indexed_callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline AccessCheckInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(AccessCheckInfo)
|
|
DECLARE_VERIFIER(AccessCheckInfo)
|
|
|
|
static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
|
|
static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
|
|
};
|
|
|
|
|
|
class InterceptorInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(getter, Object)
|
|
DECL_ACCESSORS(setter, Object)
|
|
DECL_ACCESSORS(query, Object)
|
|
DECL_ACCESSORS(deleter, Object)
|
|
DECL_ACCESSORS(enumerator, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline InterceptorInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(InterceptorInfo)
|
|
DECLARE_VERIFIER(InterceptorInfo)
|
|
|
|
static const int kGetterOffset = HeapObject::kHeaderSize;
|
|
static const int kSetterOffset = kGetterOffset + kPointerSize;
|
|
static const int kQueryOffset = kSetterOffset + kPointerSize;
|
|
static const int kDeleterOffset = kQueryOffset + kPointerSize;
|
|
static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
|
|
static const int kDataOffset = kEnumeratorOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
|
|
};
|
|
|
|
|
|
class CallHandlerInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(callback, Object)
|
|
DECL_ACCESSORS(data, Object)
|
|
|
|
static inline CallHandlerInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(CallHandlerInfo)
|
|
DECLARE_VERIFIER(CallHandlerInfo)
|
|
|
|
static const int kCallbackOffset = HeapObject::kHeaderSize;
|
|
static const int kDataOffset = kCallbackOffset + kPointerSize;
|
|
static const int kSize = kDataOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
|
|
};
|
|
|
|
|
|
class TemplateInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(tag, Object)
|
|
DECL_ACCESSORS(property_list, Object)
|
|
DECL_ACCESSORS(property_accessors, Object)
|
|
|
|
DECLARE_VERIFIER(TemplateInfo)
|
|
|
|
static const int kTagOffset = HeapObject::kHeaderSize;
|
|
static const int kPropertyListOffset = kTagOffset + kPointerSize;
|
|
static const int kPropertyAccessorsOffset =
|
|
kPropertyListOffset + kPointerSize;
|
|
static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
|
|
};
|
|
|
|
|
|
class FunctionTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(serial_number, Object)
|
|
DECL_ACCESSORS(call_code, Object)
|
|
DECL_ACCESSORS(prototype_template, Object)
|
|
DECL_ACCESSORS(parent_template, Object)
|
|
DECL_ACCESSORS(named_property_handler, Object)
|
|
DECL_ACCESSORS(indexed_property_handler, Object)
|
|
DECL_ACCESSORS(instance_template, Object)
|
|
DECL_ACCESSORS(class_name, Object)
|
|
DECL_ACCESSORS(signature, Object)
|
|
DECL_ACCESSORS(instance_call_handler, Object)
|
|
DECL_ACCESSORS(access_check_info, Object)
|
|
DECL_ACCESSORS(flag, Smi)
|
|
|
|
inline int length();
|
|
inline void set_length(int value);
|
|
|
|
// Following properties use flag bits.
|
|
DECL_BOOLEAN_ACCESSORS(hidden_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(undetectable)
|
|
// If the bit is set, object instances created by this function
|
|
// requires access check.
|
|
DECL_BOOLEAN_ACCESSORS(needs_access_check)
|
|
DECL_BOOLEAN_ACCESSORS(read_only_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(remove_prototype)
|
|
DECL_BOOLEAN_ACCESSORS(do_not_cache)
|
|
|
|
static inline FunctionTemplateInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(FunctionTemplateInfo)
|
|
DECLARE_VERIFIER(FunctionTemplateInfo)
|
|
|
|
static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
|
|
static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
|
|
static const int kPrototypeTemplateOffset =
|
|
kCallCodeOffset + kPointerSize;
|
|
static const int kParentTemplateOffset =
|
|
kPrototypeTemplateOffset + kPointerSize;
|
|
static const int kNamedPropertyHandlerOffset =
|
|
kParentTemplateOffset + kPointerSize;
|
|
static const int kIndexedPropertyHandlerOffset =
|
|
kNamedPropertyHandlerOffset + kPointerSize;
|
|
static const int kInstanceTemplateOffset =
|
|
kIndexedPropertyHandlerOffset + kPointerSize;
|
|
static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
|
|
static const int kSignatureOffset = kClassNameOffset + kPointerSize;
|
|
static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
|
|
static const int kAccessCheckInfoOffset =
|
|
kInstanceCallHandlerOffset + kPointerSize;
|
|
static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
|
|
static const int kLengthOffset = kFlagOffset + kPointerSize;
|
|
static const int kSize = kLengthOffset + kPointerSize;
|
|
|
|
private:
|
|
// Bit position in the flag, from least significant bit position.
|
|
static const int kHiddenPrototypeBit = 0;
|
|
static const int kUndetectableBit = 1;
|
|
static const int kNeedsAccessCheckBit = 2;
|
|
static const int kReadOnlyPrototypeBit = 3;
|
|
static const int kRemovePrototypeBit = 4;
|
|
static const int kDoNotCacheBit = 5;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
|
|
};
|
|
|
|
|
|
class ObjectTemplateInfo: public TemplateInfo {
|
|
public:
|
|
DECL_ACCESSORS(constructor, Object)
|
|
DECL_ACCESSORS(internal_field_count, Object)
|
|
|
|
static inline ObjectTemplateInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(ObjectTemplateInfo)
|
|
DECLARE_VERIFIER(ObjectTemplateInfo)
|
|
|
|
static const int kConstructorOffset = TemplateInfo::kHeaderSize;
|
|
static const int kInternalFieldCountOffset =
|
|
kConstructorOffset + kPointerSize;
|
|
static const int kSize = kInternalFieldCountOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
class SignatureInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(receiver, Object)
|
|
DECL_ACCESSORS(args, Object)
|
|
|
|
static inline SignatureInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(SignatureInfo)
|
|
DECLARE_VERIFIER(SignatureInfo)
|
|
|
|
static const int kReceiverOffset = Struct::kHeaderSize;
|
|
static const int kArgsOffset = kReceiverOffset + kPointerSize;
|
|
static const int kSize = kArgsOffset + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
|
|
};
|
|
|
|
|
|
class TypeSwitchInfo: public Struct {
|
|
public:
|
|
DECL_ACCESSORS(types, Object)
|
|
|
|
static inline TypeSwitchInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(TypeSwitchInfo)
|
|
DECLARE_VERIFIER(TypeSwitchInfo)
|
|
|
|
static const int kTypesOffset = Struct::kHeaderSize;
|
|
static const int kSize = kTypesOffset + kPointerSize;
|
|
};
|
|
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// The DebugInfo class holds additional information for a function being
|
|
// debugged.
|
|
class DebugInfo: public Struct {
|
|
public:
|
|
// The shared function info for the source being debugged.
|
|
DECL_ACCESSORS(shared, SharedFunctionInfo)
|
|
// Code object for the original code.
|
|
DECL_ACCESSORS(original_code, Code)
|
|
// Code object for the patched code. This code object is the code object
|
|
// currently active for the function.
|
|
DECL_ACCESSORS(code, Code)
|
|
// Fixed array holding status information for each active break point.
|
|
DECL_ACCESSORS(break_points, FixedArray)
|
|
|
|
// Check if there is a break point at a code position.
|
|
bool HasBreakPoint(int code_position);
|
|
// Get the break point info object for a code position.
|
|
Object* GetBreakPointInfo(int code_position);
|
|
// Clear a break point.
|
|
static void ClearBreakPoint(Handle<DebugInfo> debug_info,
|
|
int code_position,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
|
|
int source_position, int statement_position,
|
|
Handle<Object> break_point_object);
|
|
// Get the break point objects for a code position.
|
|
Object* GetBreakPointObjects(int code_position);
|
|
// Find the break point info holding this break point object.
|
|
static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this function.
|
|
int GetBreakPointCount();
|
|
|
|
static inline DebugInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(DebugInfo)
|
|
DECLARE_VERIFIER(DebugInfo)
|
|
|
|
static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
|
|
static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
|
|
static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
|
|
static const int kActiveBreakPointsCountIndex =
|
|
kPatchedCodeIndex + kPointerSize;
|
|
static const int kBreakPointsStateIndex =
|
|
kActiveBreakPointsCountIndex + kPointerSize;
|
|
static const int kSize = kBreakPointsStateIndex + kPointerSize;
|
|
|
|
private:
|
|
static const int kNoBreakPointInfo = -1;
|
|
|
|
// Lookup the index in the break_points array for a code position.
|
|
int GetBreakPointInfoIndex(int code_position);
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
|
|
};
|
|
|
|
|
|
// The BreakPointInfo class holds information for break points set in a
|
|
// function. The DebugInfo object holds a BreakPointInfo object for each code
|
|
// position with one or more break points.
|
|
class BreakPointInfo: public Struct {
|
|
public:
|
|
// The position in the code for the break point.
|
|
DECL_ACCESSORS(code_position, Smi)
|
|
// The position in the source for the break position.
|
|
DECL_ACCESSORS(source_position, Smi)
|
|
// The position in the source for the last statement before this break
|
|
// position.
|
|
DECL_ACCESSORS(statement_position, Smi)
|
|
// List of related JavaScript break points.
|
|
DECL_ACCESSORS(break_point_objects, Object)
|
|
|
|
// Removes a break point.
|
|
static void ClearBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Set a break point.
|
|
static void SetBreakPoint(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Check if break point info has this break point object.
|
|
static bool HasBreakPointObject(Handle<BreakPointInfo> info,
|
|
Handle<Object> break_point_object);
|
|
// Get the number of break points for this code position.
|
|
int GetBreakPointCount();
|
|
|
|
static inline BreakPointInfo* cast(Object* obj);
|
|
|
|
// Dispatched behavior.
|
|
DECLARE_PRINTER(BreakPointInfo)
|
|
DECLARE_VERIFIER(BreakPointInfo)
|
|
|
|
static const int kCodePositionIndex = Struct::kHeaderSize;
|
|
static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
|
|
static const int kStatementPositionIndex =
|
|
kSourcePositionIndex + kPointerSize;
|
|
static const int kBreakPointObjectsIndex =
|
|
kStatementPositionIndex + kPointerSize;
|
|
static const int kSize = kBreakPointObjectsIndex + kPointerSize;
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
|
|
};
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
|
|
#undef DECL_BOOLEAN_ACCESSORS
|
|
#undef DECL_ACCESSORS
|
|
#undef DECLARE_VERIFIER
|
|
|
|
#define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
|
|
V(kStringTable, "string_table", "(Internalized strings)") \
|
|
V(kExternalStringsTable, "external_strings_table", "(External strings)") \
|
|
V(kStrongRootList, "strong_root_list", "(Strong roots)") \
|
|
V(kInternalizedString, "internalized_string", "(Internal string)") \
|
|
V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
|
|
V(kTop, "top", "(Isolate)") \
|
|
V(kRelocatable, "relocatable", "(Relocatable)") \
|
|
V(kDebug, "debug", "(Debugger)") \
|
|
V(kCompilationCache, "compilationcache", "(Compilation cache)") \
|
|
V(kHandleScope, "handlescope", "(Handle scope)") \
|
|
V(kBuiltins, "builtins", "(Builtins)") \
|
|
V(kGlobalHandles, "globalhandles", "(Global handles)") \
|
|
V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
|
|
V(kThreadManager, "threadmanager", "(Thread manager)") \
|
|
V(kExtensions, "Extensions", "(Extensions)")
|
|
|
|
class VisitorSynchronization : public AllStatic {
|
|
public:
|
|
#define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
|
|
enum SyncTag {
|
|
VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
|
|
kNumberOfSyncTags
|
|
};
|
|
#undef DECLARE_ENUM
|
|
|
|
static const char* const kTags[kNumberOfSyncTags];
|
|
static const char* const kTagNames[kNumberOfSyncTags];
|
|
};
|
|
|
|
// Abstract base class for visiting, and optionally modifying, the
|
|
// pointers contained in Objects. Used in GC and serialization/deserialization.
|
|
class ObjectVisitor BASE_EMBEDDED {
|
|
public:
|
|
virtual ~ObjectVisitor() {}
|
|
|
|
// Visits a contiguous arrays of pointers in the half-open range
|
|
// [start, end). Any or all of the values may be modified on return.
|
|
virtual void VisitPointers(Object** start, Object** end) = 0;
|
|
|
|
// Handy shorthand for visiting a single pointer.
|
|
virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
|
|
|
|
// To allow lazy clearing of inline caches the visitor has
|
|
// a rich interface for iterating over Code objects..
|
|
|
|
// Visits a code target in the instruction stream.
|
|
virtual void VisitCodeTarget(RelocInfo* rinfo);
|
|
|
|
// Visits a code entry in a JS function.
|
|
virtual void VisitCodeEntry(Address entry_address);
|
|
|
|
// Visits a global property cell reference in the instruction stream.
|
|
virtual void VisitCell(RelocInfo* rinfo);
|
|
|
|
// Visits a runtime entry in the instruction stream.
|
|
virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
|
|
|
|
// Visits the resource of an ASCII or two-byte string.
|
|
virtual void VisitExternalAsciiString(
|
|
v8::String::ExternalAsciiStringResource** resource) {}
|
|
virtual void VisitExternalTwoByteString(
|
|
v8::String::ExternalStringResource** resource) {}
|
|
|
|
// Visits a debug call target in the instruction stream.
|
|
virtual void VisitDebugTarget(RelocInfo* rinfo);
|
|
|
|
// Visits the byte sequence in a function's prologue that contains information
|
|
// about the code's age.
|
|
virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
|
|
|
|
// Visit pointer embedded into a code object.
|
|
virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference embedded into a code object.
|
|
virtual void VisitExternalReference(RelocInfo* rinfo);
|
|
|
|
// Visits an external reference. The value may be modified on return.
|
|
virtual void VisitExternalReference(Address* p) {}
|
|
|
|
// Visits a handle that has an embedder-assigned class ID.
|
|
virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
|
|
|
|
// Intended for serialization/deserialization checking: insert, or
|
|
// check for the presence of, a tag at this position in the stream.
|
|
// Also used for marking up GC roots in heap snapshots.
|
|
virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
|
|
};
|
|
|
|
|
|
class StructBodyDescriptor : public
|
|
FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
|
|
public:
|
|
static inline int SizeOf(Map* map, HeapObject* object) {
|
|
return map->instance_size();
|
|
}
|
|
};
|
|
|
|
|
|
// BooleanBit is a helper class for setting and getting a bit in an
|
|
// integer or Smi.
|
|
class BooleanBit : public AllStatic {
|
|
public:
|
|
static inline bool get(Smi* smi, int bit_position) {
|
|
return get(smi->value(), bit_position);
|
|
}
|
|
|
|
static inline bool get(int value, int bit_position) {
|
|
return (value & (1 << bit_position)) != 0;
|
|
}
|
|
|
|
static inline Smi* set(Smi* smi, int bit_position, bool v) {
|
|
return Smi::FromInt(set(smi->value(), bit_position, v));
|
|
}
|
|
|
|
static inline int set(int value, int bit_position, bool v) {
|
|
if (v) {
|
|
value |= (1 << bit_position);
|
|
} else {
|
|
value &= ~(1 << bit_position);
|
|
}
|
|
return value;
|
|
}
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_OBJECTS_H_
|