v8/src/factory.cc
Jakob Gruber e4b394a1f4 Revert "Reland "[runtime] Slightly optimize creation of class literals.""
This reverts commit 22932d6b43.

Reason for revert: TSAN https://build.chromium.org/p/client.v8/builders/V8%20Linux64%20TSAN/builds/18232

Original change's description:
> Reland "[runtime] Slightly optimize creation of class literals."
> 
> Bug: v8:5799
> Change-Id: I782ec131c7194aef20942a19750168a974913c3f
> Reviewed-on: https://chromium-review.googlesource.com/757337
> Commit-Queue: Igor Sheludko <ishell@chromium.org>
> Reviewed-by: Toon Verwaest <verwaest@chromium.org>
> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
> Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#49291}

TBR=ulan@chromium.org,rmcilroy@chromium.org,jarin@chromium.org,ishell@chromium.org,verwaest@chromium.org

Change-Id: I0742d25b0e2364efc696d19492ba20614a3821fa
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: v8:5799
Reviewed-on: https://chromium-review.googlesource.com/763458
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Commit-Queue: Jakob Gruber <jgruber@chromium.org>
Cr-Commit-Position: refs/heads/master@{#49303}
2017-11-10 16:00:31 +00:00

3280 lines
120 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/factory.h"
#include "src/accessors.h"
#include "src/allocation-site-scopes.h"
#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/compiler.h"
#include "src/conversions.h"
#include "src/isolate-inl.h"
#include "src/macro-assembler.h"
#include "src/objects/bigint-inl.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/frame-array-inl.h"
#include "src/objects/module.h"
#include "src/objects/scope-info.h"
#include "src/unicode-cache.h"
#include "src/unicode-decoder.h"
namespace v8 {
namespace internal {
// Calls the FUNCTION_CALL function and retries it up to three times
// to guarantee that any allocations performed during the call will
// succeed if there's enough memory.
//
// Warning: Do not use the identifiers __object__, __maybe_object__,
// __allocation__ or __scope__ in a call to this macro.
#define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
if (__allocation__.To(&__object__)) { \
DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \
}
#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
do { \
AllocationResult __allocation__ = FUNCTION_CALL; \
Object* __object__ = nullptr; \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
/* Two GCs before panicking. In newspace will almost always succeed. */ \
for (int __i__ = 0; __i__ < 2; __i__++) { \
(ISOLATE)->heap()->CollectGarbage( \
__allocation__.RetrySpace(), \
GarbageCollectionReason::kAllocationFailure); \
__allocation__ = FUNCTION_CALL; \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
} \
(ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
(ISOLATE)->heap()->CollectAllAvailableGarbage( \
GarbageCollectionReason::kLastResort); \
{ \
AlwaysAllocateScope __scope__(ISOLATE); \
__allocation__ = FUNCTION_CALL; \
} \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
/* TODO(1181417): Fix this. */ \
v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
return Handle<TYPE>(); \
} while (false)
template<typename T>
Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->Allocate(*map, space),
T);
}
template<typename T>
Handle<T> Factory::New(Handle<Map> map,
AllocationSpace space,
Handle<AllocationSite> allocation_site) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->Allocate(*map, space, *allocation_site),
T);
}
Handle<HeapObject> Factory::NewFillerObject(int size,
bool double_align,
AllocationSpace space) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateFillerObject(size, double_align, space),
HeapObject);
}
Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
Handle<PrototypeInfo> result =
Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE, TENURED));
result->set_prototype_users(WeakFixedArray::Empty());
result->set_registry_slot(PrototypeInfo::UNREGISTERED);
result->set_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
result->set_bit_field(0);
return result;
}
Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices) {
return Handle<EnumCache>::cast(NewTuple2(keys, indices, TENURED));
}
Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
PretenureFlag pretenure) {
Handle<Tuple2> result =
Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, pretenure));
result->set_value1(*value1);
result->set_value2(*value2);
return result;
}
Handle<Tuple3> Factory::NewTuple3(Handle<Object> value1, Handle<Object> value2,
Handle<Object> value3,
PretenureFlag pretenure) {
Handle<Tuple3> result =
Handle<Tuple3>::cast(NewStruct(TUPLE3_TYPE, pretenure));
result->set_value1(*value1);
result->set_value2(*value2);
result->set_value3(*value3);
return result;
}
Handle<ContextExtension> Factory::NewContextExtension(
Handle<ScopeInfo> scope_info, Handle<Object> extension) {
Handle<ContextExtension> result = Handle<ContextExtension>::cast(
NewStruct(CONTEXT_EXTENSION_TYPE, TENURED));
result->set_scope_info(*scope_info);
result->set_extension(*extension);
return result;
}
Handle<ConstantElementsPair> Factory::NewConstantElementsPair(
ElementsKind elements_kind, Handle<FixedArrayBase> constant_values) {
Handle<ConstantElementsPair> result =
Handle<ConstantElementsPair>::cast(NewStruct(TUPLE2_TYPE, TENURED));
result->set_elements_kind(elements_kind);
result->set_constant_values(*constant_values);
return result;
}
Handle<TemplateObjectDescription> Factory::NewTemplateObjectDescription(
int hash, Handle<FixedArray> raw_strings,
Handle<FixedArray> cooked_strings) {
DCHECK_EQ(raw_strings->length(), cooked_strings->length());
DCHECK_LT(0, raw_strings->length());
Handle<TemplateObjectDescription> result =
Handle<TemplateObjectDescription>::cast(NewStruct(TUPLE3_TYPE, TENURED));
result->set_hash(hash);
result->set_raw_strings(*raw_strings);
result->set_cooked_strings(*cooked_strings);
return result;
}
Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number,
const char* type_of, byte kind) {
Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
return oddball;
}
Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateFixedArray(size, pretenure),
FixedArray);
}
Handle<PropertyArray> Factory::NewPropertyArray(int size,
PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocatePropertyArray(size, pretenure),
PropertyArray);
}
MaybeHandle<FixedArray> Factory::TryNewFixedArray(int size,
PretenureFlag pretenure) {
DCHECK_LE(0, size);
AllocationResult allocation =
isolate()->heap()->AllocateFixedArray(size, pretenure);
Object* array = nullptr;
if (!allocation.To(&array)) return MaybeHandle<FixedArray>();
return Handle<FixedArray>(FixedArray::cast(array), isolate());
}
Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateFixedArrayWithFiller(size,
pretenure,
*the_hole_value()),
FixedArray);
}
Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
// TODO(ulan): As an experiment this temporarily returns an initialized fixed
// array. After getting canary/performance coverage, either remove the
// function or revert to returning uninitilized array.
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateFixedArray(size, NOT_TENURED),
FixedArray);
}
Handle<FeedbackVector> Factory::NewFeedbackVector(
Handle<SharedFunctionInfo> shared, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateFeedbackVector(*shared, pretenure),
FeedbackVector);
}
Handle<BoilerplateDescription> Factory::NewBoilerplateDescription(
int boilerplate, int all_properties, int index_keys, bool has_seen_proto) {
DCHECK_GE(boilerplate, 0);
DCHECK_GE(all_properties, index_keys);
DCHECK_GE(index_keys, 0);
int backing_store_size =
all_properties - index_keys - (has_seen_proto ? 1 : 0);
DCHECK_GE(backing_store_size, 0);
bool has_different_size_backing_store = boilerplate != backing_store_size;
// Space for name and value for every boilerplate property.
int size = 2 * boilerplate;
if (has_different_size_backing_store) {
// An extra entry for the backing store size.
size++;
}
Handle<BoilerplateDescription> description =
Handle<BoilerplateDescription>::cast(NewFixedArray(size, TENURED));
if (has_different_size_backing_store) {
DCHECK((boilerplate != (all_properties - index_keys)) || has_seen_proto);
description->set_backing_store_size(isolate(), backing_store_size);
}
return description;
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
FixedArrayBase);
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
int size,
PretenureFlag pretenure) {
DCHECK_LE(0, size);
Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
if (size > 0) {
Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, size);
}
return array;
}
Handle<FrameArray> Factory::NewFrameArray(int number_of_frames,
PretenureFlag pretenure) {
DCHECK_LE(0, number_of_frames);
Handle<FixedArray> result =
NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames));
result->set(FrameArray::kFrameCountIndex, Smi::kZero);
return Handle<FrameArray>::cast(result);
}
Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
int size, PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateSmallOrderedHashSet(size, pretenure),
SmallOrderedHashSet);
}
Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
int size, PretenureFlag pretenure) {
DCHECK_LE(0, size);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateSmallOrderedHashMap(size, pretenure),
SmallOrderedHashMap);
}
Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
}
Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
}
Handle<AccessorPair> Factory::NewAccessorPair() {
Handle<AccessorPair> accessors =
Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE, TENURED));
accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER);
accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER);
return accessors;
}
Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
Handle<TypeFeedbackInfo> info =
Handle<TypeFeedbackInfo>::cast(NewStruct(TUPLE3_TYPE, TENURED));
info->initialize_storage();
return info;
}
// Internalized strings are created in the old generation (data space).
Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
Utf8StringKey key(string, isolate()->heap()->HashSeed());
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
OneByteStringKey key(string, isolate()->heap()->HashSeed());
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeOneByteString(
Handle<SeqOneByteString> string, int from, int length) {
SeqOneByteSubStringKey key(string, from, length);
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
TwoByteStringKey key(string, isolate()->heap()->HashSeed());
return InternalizeStringWithKey(&key);
}
template<class StringTableKey>
Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
return StringTable::LookupKey(isolate(), key);
}
MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
PretenureFlag pretenure) {
int length = string.length();
if (length == 0) return empty_string();
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
NewRawOneByteString(string.length(), pretenure),
String);
DisallowHeapAllocation no_gc;
// Copy the characters into the new object.
CopyChars(SeqOneByteString::cast(*result)->GetChars(),
string.start(),
length);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
PretenureFlag pretenure) {
// Check for ASCII first since this is the common case.
const char* start = string.start();
int length = string.length();
int non_ascii_start = String::NonAsciiStart(start, length);
if (non_ascii_start >= length) {
// If the string is ASCII, we do not need to convert the characters
// since UTF8 is backwards compatible with ASCII.
return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
}
// Non-ASCII and we need to decode.
Access<UnicodeCache::Utf8Decoder>
decoder(isolate()->unicode_cache()->utf8_decoder());
decoder->Reset(string.start() + non_ascii_start,
length - non_ascii_start);
int utf16_length = static_cast<int>(decoder->Utf16Length());
DCHECK_GT(utf16_length, 0);
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
String);
// Copy ASCII portion.
uint16_t* data = result->GetChars();
const char* ascii_data = string.start();
for (int i = 0; i < non_ascii_start; i++) {
*data++ = *ascii_data++;
}
// Now write the remainder.
decoder->WriteUtf16(data, utf16_length);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int length,
PretenureFlag pretenure) {
// Check for ASCII first since this is the common case.
const char* start = reinterpret_cast<const char*>(str->GetChars() + begin);
int non_ascii_start = String::NonAsciiStart(start, length);
if (non_ascii_start >= length) {
// If the string is ASCII, we can just make a substring.
// TODO(v8): the pretenure flag is ignored in this case.
return NewSubString(str, begin, begin + length);
}
// Non-ASCII and we need to decode.
Access<UnicodeCache::Utf8Decoder> decoder(
isolate()->unicode_cache()->utf8_decoder());
decoder->Reset(start + non_ascii_start, length - non_ascii_start);
int utf16_length = static_cast<int>(decoder->Utf16Length());
DCHECK_GT(utf16_length, 0);
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String);
// Reset the decoder, because the original {str} may have moved.
const char* ascii_data =
reinterpret_cast<const char*>(str->GetChars() + begin);
decoder->Reset(ascii_data + non_ascii_start, length - non_ascii_start);
// Copy ASCII portion.
uint16_t* data = result->GetChars();
for (int i = 0; i < non_ascii_start; i++) {
*data++ = *ascii_data++;
}
// Now write the remainder.
decoder->WriteUtf16(data, utf16_length);
return result;
}
MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
int length,
PretenureFlag pretenure) {
if (length == 0) return empty_string();
if (String::IsOneByte(string, length)) {
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
NewRawOneByteString(length, pretenure),
String);
CopyChars(result->GetChars(), string, length);
return result;
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
NewRawTwoByteString(length, pretenure),
String);
CopyChars(result->GetChars(), string, length);
return result;
}
}
MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
PretenureFlag pretenure) {
return NewStringFromTwoByte(string.start(), string.length(), pretenure);
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const ZoneVector<uc16>* string, PretenureFlag pretenure) {
return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
pretenure);
}
Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
int chars,
uint32_t hash_field) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateInternalizedStringFromUtf8(
str, chars, hash_field),
String);
}
MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
Vector<const uint8_t> str,
uint32_t hash_field) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
String);
}
MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
Handle<SeqOneByteString> string, int offset, int length,
uint32_t hash_field) {
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
Vector<const uint8_t>(string->GetChars() + offset, length),
hash_field),
String);
}
MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
Vector<const uc16> str,
uint32_t hash_field) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
String);
}
Handle<String> Factory::NewInternalizedStringImpl(
Handle<String> string, int chars, uint32_t hash_field) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateInternalizedStringImpl(
*string, chars, hash_field),
String);
}
namespace {
MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) {
switch (string->map()->instance_type()) {
case STRING_TYPE:
return f->internalized_string_map();
case ONE_BYTE_STRING_TYPE:
return f->one_byte_internalized_string_map();
case EXTERNAL_STRING_TYPE:
return f->external_internalized_string_map();
case EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->external_one_byte_internalized_string_map();
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
return f->external_internalized_string_with_one_byte_data_map();
case SHORT_EXTERNAL_STRING_TYPE:
return f->short_external_internalized_string_map();
case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->short_external_one_byte_internalized_string_map();
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
return f->short_external_internalized_string_with_one_byte_data_map();
default: return MaybeHandle<Map>(); // No match found.
}
}
} // namespace
MaybeHandle<Map> Factory::InternalizedStringMapForString(
Handle<String> string) {
// If the string is in new space it cannot be used as internalized.
if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
return GetInternalizedStringMap(this, string);
}
template <class StringClass>
Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
Handle<StringClass> cast_string = Handle<StringClass>::cast(string);
Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked();
Handle<StringClass> external_string = New<StringClass>(map, OLD_SPACE);
external_string->set_length(cast_string->length());
external_string->set_hash_field(cast_string->hash_field());
external_string->set_resource(nullptr);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
template Handle<ExternalOneByteString>
Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
template Handle<ExternalTwoByteString>
Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
int length, PretenureFlag pretenure) {
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
}
DCHECK_GT(length, 0); // Use Factory::empty_string() instead.
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateRawOneByteString(length, pretenure),
SeqOneByteString);
}
MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
int length, PretenureFlag pretenure) {
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
}
DCHECK_GT(length, 0); // Use Factory::empty_string() instead.
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
SeqTwoByteString);
}
Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
if (code <= String::kMaxOneByteCharCodeU) {
{
DisallowHeapAllocation no_allocation;
Object* value = single_character_string_cache()->get(code);
if (value != *undefined_value()) {
return handle(String::cast(value), isolate());
}
}
uint8_t buffer[1];
buffer[0] = static_cast<uint8_t>(code);
Handle<String> result =
InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
single_character_string_cache()->set(code, *result);
return result;
}
DCHECK_LE(code, String::kMaxUtf16CodeUnitU);
Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
return result;
}
// Returns true for a character in a range. Both limits are inclusive.
static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
// This makes uses of the the unsigned wraparound.
return character - from <= to - from;
}
static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
uint16_t c1,
uint16_t c2) {
// Numeric strings have a different hash algorithm not known by
// LookupTwoCharsStringIfExists, so we skip this step for such strings.
if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
Handle<String> result;
if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
ToHandle(&result)) {
return result;
}
}
// Now we know the length is 2, we might as well make use of that fact
// when building the new string.
if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
// We can do this.
DCHECK(base::bits::IsPowerOfTwo(String::kMaxOneByteCharCodeU +
1)); // because of this.
Handle<SeqOneByteString> str =
isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
uint8_t* dest = str->GetChars();
dest[0] = static_cast<uint8_t>(c1);
dest[1] = static_cast<uint8_t>(c2);
return str;
} else {
Handle<SeqTwoByteString> str =
isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
uc16* dest = str->GetChars();
dest[0] = c1;
dest[1] = c2;
return str;
}
}
template<typename SinkChar, typename StringType>
Handle<String> ConcatStringContent(Handle<StringType> result,
Handle<String> first,
Handle<String> second) {
DisallowHeapAllocation pointer_stays_valid;
SinkChar* sink = result->GetChars();
String::WriteToFlat(*first, sink, 0, first->length());
String::WriteToFlat(*second, sink + first->length(), 0, second->length());
return result;
}
MaybeHandle<String> Factory::NewConsString(Handle<String> left,
Handle<String> right) {
if (left->IsThinString()) {
left = handle(Handle<ThinString>::cast(left)->actual(), isolate());
}
if (right->IsThinString()) {
right = handle(Handle<ThinString>::cast(right)->actual(), isolate());
}
int left_length = left->length();
if (left_length == 0) return right;
int right_length = right->length();
if (right_length == 0) return left;
int length = left_length + right_length;
if (length == 2) {
uint16_t c1 = left->Get(0);
uint16_t c2 = right->Get(0);
return MakeOrFindTwoCharacterString(isolate(), c1, c2);
}
// Make sure that an out of memory exception is thrown if the length
// of the new cons string is too large.
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
bool left_is_one_byte = left->IsOneByteRepresentation();
bool right_is_one_byte = right->IsOneByteRepresentation();
bool is_one_byte = left_is_one_byte && right_is_one_byte;
bool is_one_byte_data_in_two_byte_string = false;
if (!is_one_byte) {
// At least one of the strings uses two-byte representation so we
// can't use the fast case code for short one-byte strings below, but
// we can try to save memory if all chars actually fit in one-byte.
is_one_byte_data_in_two_byte_string =
left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
if (is_one_byte_data_in_two_byte_string) {
isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
}
}
// If the resulting string is small make a flat string.
if (length < ConsString::kMinLength) {
// Note that neither of the two inputs can be a slice because:
STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
DCHECK(left->IsFlat());
DCHECK(right->IsFlat());
STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
if (is_one_byte) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uint8_t* dest = result->GetChars();
// Copy left part.
const uint8_t* src =
left->IsExternalString()
? Handle<ExternalOneByteString>::cast(left)->GetChars()
: Handle<SeqOneByteString>::cast(left)->GetChars();
for (int i = 0; i < left_length; i++) *dest++ = src[i];
// Copy right part.
src = right->IsExternalString()
? Handle<ExternalOneByteString>::cast(right)->GetChars()
: Handle<SeqOneByteString>::cast(right)->GetChars();
for (int i = 0; i < right_length; i++) *dest++ = src[i];
return result;
}
return (is_one_byte_data_in_two_byte_string)
? ConcatStringContent<uint8_t>(
NewRawOneByteString(length).ToHandleChecked(), left, right)
: ConcatStringContent<uc16>(
NewRawTwoByteString(length).ToHandleChecked(), left, right);
}
bool one_byte = (is_one_byte || is_one_byte_data_in_two_byte_string);
return NewConsString(left, right, length, one_byte);
}
Handle<String> Factory::NewConsString(Handle<String> left, Handle<String> right,
int length, bool one_byte) {
DCHECK(!left->IsThinString());
DCHECK(!right->IsThinString());
DCHECK_GE(length, ConsString::kMinLength);
DCHECK_LE(length, String::kMaxLength);
Handle<ConsString> result =
one_byte ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE)
: New<ConsString>(cons_string_map(), NEW_SPACE);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->set_hash_field(String::kEmptyHashField);
result->set_length(length);
result->set_first(*left, mode);
result->set_second(*right, mode);
return result;
}
Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
DCHECK_GE(lead, 0xD800);
DCHECK_LE(lead, 0xDBFF);
DCHECK_GE(trail, 0xDC00);
DCHECK_LE(trail, 0xDFFF);
Handle<SeqTwoByteString> str =
isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
uc16* dest = str->GetChars();
dest[0] = lead;
dest[1] = trail;
return str;
}
Handle<String> Factory::NewProperSubString(Handle<String> str,
int begin,
int end) {
#if VERIFY_HEAP
if (FLAG_verify_heap) str->StringVerify();
#endif
DCHECK(begin > 0 || end < str->length());
str = String::Flatten(str);
int length = end - begin;
if (length <= 0) return empty_string();
if (length == 1) {
return LookupSingleCharacterStringFromCode(str->Get(begin));
}
if (length == 2) {
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the string
// table to prevent creation of many unnecessary strings.
uint16_t c1 = str->Get(begin);
uint16_t c2 = str->Get(begin + 1);
return MakeOrFindTwoCharacterString(isolate(), c1, c2);
}
if (!FLAG_string_slices || length < SlicedString::kMinLength) {
if (str->IsOneByteRepresentation()) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
uint8_t* dest = result->GetChars();
DisallowHeapAllocation no_gc;
String::WriteToFlat(*str, dest, begin, end);
return result;
} else {
Handle<SeqTwoByteString> result =
NewRawTwoByteString(length).ToHandleChecked();
uc16* dest = result->GetChars();
DisallowHeapAllocation no_gc;
String::WriteToFlat(*str, dest, begin, end);
return result;
}
}
int offset = begin;
if (str->IsSlicedString()) {
Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
str = Handle<String>(slice->parent(), isolate());
offset += slice->offset();
}
if (str->IsThinString()) {
Handle<ThinString> thin = Handle<ThinString>::cast(str);
str = handle(thin->actual(), isolate());
}
DCHECK(str->IsSeqString() || str->IsExternalString());
Handle<Map> map = str->IsOneByteRepresentation()
? sliced_one_byte_string_map()
: sliced_string_map();
Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
slice->set_hash_field(String::kEmptyHashField);
slice->set_length(length);
slice->set_parent(*str);
slice->set_offset(offset);
return slice;
}
MaybeHandle<String> Factory::NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map;
if (resource->IsCompressible()) {
// TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
map = short_external_one_byte_string_map();
} else {
map = external_one_byte_string_map();
}
Handle<ExternalOneByteString> external_string =
New<ExternalOneByteString>(map, NEW_SPACE);
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->set_resource(resource);
return external_string;
}
MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
// For small strings we check whether the resource contains only
// one byte characters. If yes, we use a different string map.
static const size_t kOneByteCheckLengthLimit = 32;
bool is_one_byte = length <= kOneByteCheckLengthLimit &&
String::IsOneByte(resource->data(), static_cast<int>(length));
Handle<Map> map;
if (resource->IsCompressible()) {
// TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
map = is_one_byte ? short_external_string_with_one_byte_data_map()
: short_external_string_map();
} else {
map = is_one_byte ? external_string_with_one_byte_data_map()
: external_string_map();
}
Handle<ExternalTwoByteString> external_string =
New<ExternalTwoByteString>(map, NEW_SPACE);
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->set_resource(resource);
return external_string;
}
Handle<ExternalOneByteString> Factory::NewNativeSourceString(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
DCHECK_LE(length, static_cast<size_t>(String::kMaxLength));
Handle<Map> map = native_source_string_map();
Handle<ExternalOneByteString> external_string =
New<ExternalOneByteString>(map, OLD_SPACE);
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->set_resource(resource);
return external_string;
}
Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
Handle<Map> map(isolate()->native_context()->string_iterator_map(),
isolate());
Handle<String> flat_string = String::Flatten(string);
Handle<JSStringIterator> iterator =
Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
iterator->set_string(*flat_string);
iterator->set_index(0);
return iterator;
}
Handle<Symbol> Factory::NewSymbol() {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateSymbol(),
Symbol);
}
Handle<Symbol> Factory::NewPrivateSymbol() {
Handle<Symbol> symbol = NewSymbol();
symbol->set_is_private(true);
return symbol;
}
Handle<Context> Factory::NewNativeContext() {
Handle<FixedArray> array =
NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
array->set_map_no_write_barrier(*native_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_native_context(*context);
context->set_errors_thrown(Smi::kZero);
context->set_math_random_index(Smi::kZero);
Handle<WeakCell> weak_cell = NewWeakCell(context);
context->set_self_weak_cell(*weak_cell);
DCHECK(context->IsNativeContext());
return context;
}
Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
Handle<FixedArray> array =
NewFixedArray(scope_info->ContextLength(), TENURED);
array->set_map_no_write_barrier(*script_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(function->context());
context->set_extension(*scope_info);
context->set_native_context(function->native_context());
DCHECK(context->IsScriptContext());
return context;
}
Handle<ScriptContextTable> Factory::NewScriptContextTable() {
Handle<FixedArray> array = NewFixedArray(1);
array->set_map_no_write_barrier(*script_context_table_map());
Handle<ScriptContextTable> context_table =
Handle<ScriptContextTable>::cast(array);
context_table->set_used(0);
return context_table;
}
Handle<Context> Factory::NewModuleContext(Handle<Module> module,
Handle<JSFunction> function,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
Handle<FixedArray> array =
NewFixedArray(scope_info->ContextLength(), TENURED);
array->set_map_no_write_barrier(*module_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(function->context());
context->set_extension(*module);
context->set_native_context(function->native_context());
DCHECK(context->IsModuleContext());
return context;
}
Handle<Context> Factory::NewFunctionContext(int length,
Handle<JSFunction> function,
ScopeType scope_type) {
DCHECK(function->shared()->scope_info()->scope_type() == scope_type);
DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
Handle<FixedArray> array = NewFixedArray(length);
Handle<Map> map;
switch (scope_type) {
case EVAL_SCOPE:
map = eval_context_map();
break;
case FUNCTION_SCOPE:
map = function_context_map();
break;
default:
UNREACHABLE();
}
array->set_map_no_write_barrier(*map);
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(function->context());
context->set_extension(*the_hole_value());
context->set_native_context(function->native_context());
return context;
}
Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<String> name,
Handle<Object> thrown_object) {
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
Handle<ContextExtension> extension = NewContextExtension(scope_info, name);
Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
array->set_map_no_write_barrier(*catch_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(*previous);
context->set_extension(*extension);
context->set_native_context(previous->native_context());
context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
return context;
}
Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped,
Handle<StringSet> whitelist) {
STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1);
DCHECK(scope_info->IsDebugEvaluateScope());
Handle<ContextExtension> context_extension = NewContextExtension(
scope_info, extension.is_null() ? Handle<Object>::cast(undefined_value())
: Handle<Object>::cast(extension));
Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 2);
array->set_map_no_write_barrier(*debug_evaluate_context_map());
Handle<Context> c = Handle<Context>::cast(array);
c->set_closure(wrapped.is_null() ? previous->closure() : wrapped->closure());
c->set_previous(*previous);
c->set_native_context(previous->native_context());
c->set_extension(*context_extension);
if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist);
return c;
}
Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension) {
Handle<ContextExtension> context_extension =
NewContextExtension(scope_info, extension);
Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
array->set_map_no_write_barrier(*with_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(*previous);
context->set_extension(*context_extension);
context->set_native_context(previous->native_context());
return context;
}
Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), BLOCK_SCOPE);
Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength());
array->set_map_no_write_barrier(*block_context_map());
Handle<Context> context = Handle<Context>::cast(array);
context->set_closure(*function);
context->set_previous(*previous);
context->set_extension(*scope_info);
context->set_native_context(previous->native_context());
return context;
}
Handle<Struct> Factory::NewStruct(InstanceType type, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateStruct(type, pretenure), Struct);
}
Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
int aliased_context_slot) {
Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, NOT_TENURED));
entry->set_aliased_context_slot(aliased_context_slot);
return entry;
}
Handle<AccessorInfo> Factory::NewAccessorInfo() {
Handle<AccessorInfo> info =
Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE, TENURED));
info->set_name(*empty_string());
info->set_flags(0); // Must clear the flags, it was initialized as undefined.
info->set_is_sloppy(true);
info->set_initial_property_attributes(NONE);
return info;
}
Handle<Script> Factory::NewScript(Handle<String> source) {
// Create and initialize script object.
Heap* heap = isolate()->heap();
Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE, TENURED));
script->set_source(*source);
script->set_name(heap->undefined_value());
script->set_id(isolate()->heap()->NextScriptId());
script->set_line_offset(0);
script->set_column_offset(0);
script->set_context_data(heap->undefined_value());
script->set_type(Script::TYPE_NORMAL);
script->set_wrapper(heap->undefined_value());
script->set_line_ends(heap->undefined_value());
script->set_eval_from_shared(heap->undefined_value());
script->set_eval_from_position(0);
script->set_shared_function_infos(*empty_fixed_array(), SKIP_WRITE_BARRIER);
script->set_flags(0);
script->set_host_defined_options(*empty_fixed_array());
heap->set_script_list(*WeakFixedArray::Add(script_list(), script));
return script;
}
Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateForeign(addr, pretenure),
Foreign);
}
Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
return NewForeign((Address) desc, TENURED);
}
Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateByteArray(length, pretenure),
ByteArray);
}
Handle<BytecodeArray> Factory::NewBytecodeArray(
int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
Handle<FixedArray> constant_pool) {
DCHECK_LE(0, length);
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
length, raw_bytecodes, frame_size,
parameter_count, *constant_pool),
BytecodeArray);
}
Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
int length, ExternalArrayType array_type, void* external_pointer,
PretenureFlag pretenure) {
DCHECK(0 <= length && length <= Smi::kMaxValue);
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
length, array_type, external_pointer, pretenure),
FixedTypedArrayBase);
}
Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
int length, ExternalArrayType array_type, bool initialize,
PretenureFlag pretenure) {
DCHECK(0 <= length && length <= Smi::kMaxValue);
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
length, array_type, initialize, pretenure),
FixedTypedArrayBase);
}
Handle<Cell> Factory::NewCell(Handle<Object> value) {
AllowDeferredHandleDereference convert_to_cell;
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateCell(*value),
Cell);
}
Handle<Cell> Factory::NewNoClosuresCell(Handle<Object> value) {
Handle<Cell> cell = NewCell(value);
cell->set_map_no_write_barrier(*no_closures_cell_map());
return cell;
}
Handle<Cell> Factory::NewOneClosureCell(Handle<Object> value) {
Handle<Cell> cell = NewCell(value);
cell->set_map_no_write_barrier(*one_closure_cell_map());
return cell;
}
Handle<Cell> Factory::NewManyClosuresCell(Handle<Object> value) {
Handle<Cell> cell = NewCell(value);
cell->set_map_no_write_barrier(*many_closures_cell_map());
return cell;
}
Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name) {
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocatePropertyCell(*name),
PropertyCell);
}
Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
// It is safe to dereference the value because we are embedding it
// in cell and not inspecting its fields.
AllowDeferredHandleDereference convert_to_cell;
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
WeakCell);
}
Handle<TransitionArray> Factory::NewTransitionArray(int capacity) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateTransitionArray(capacity),
TransitionArray);
}
Handle<AllocationSite> Factory::NewAllocationSite() {
Handle<Map> map = allocation_site_map();
Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
site->Initialize();
// Link the site
site->set_weak_next(isolate()->heap()->allocation_sites_list());
isolate()->heap()->set_allocation_sites_list(*site);
return site;
}
Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind,
int inobject_properties) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateMap(type, instance_size, elements_kind,
inobject_properties),
Map);
}
Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->CopyJSObject(*object, nullptr), JSObject);
}
Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
Handle<JSObject> object,
Handle<AllocationSite> site) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyJSObject(
*object, site.is_null() ? nullptr : *site),
JSObject);
}
Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
FixedArray);
}
Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
int grow_by,
PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->CopyArrayAndGrow(*array, grow_by, pretenure),
FixedArray);
}
Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
Handle<PropertyArray> array, int grow_by, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->CopyArrayAndGrow(*array, grow_by, pretenure),
PropertyArray);
}
Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
int new_len,
PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayUpTo(
*array, new_len, pretenure),
FixedArray);
}
Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyFixedArray(*array),
FixedArray);
}
Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
Handle<FixedArray> array) {
DCHECK(isolate()->heap()->InNewSpace(*array));
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
FixedArray);
}
Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
Handle<FixedDoubleArray> array) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyFixedDoubleArray(*array),
FixedDoubleArray);
}
Handle<FeedbackVector> Factory::CopyFeedbackVector(
Handle<FeedbackVector> array) {
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFeedbackVector(*array),
FeedbackVector);
}
Handle<Object> Factory::NewNumber(double value,
PretenureFlag pretenure) {
// Materialize as a SMI if possible
int32_t int_value;
if (DoubleToSmiInteger(value, &int_value)) {
return handle(Smi::FromInt(int_value), isolate());
}
// Materialize the value in the heap.
return NewHeapNumber(value, IMMUTABLE, pretenure);
}
Handle<Object> Factory::NewNumberFromInt(int32_t value,
PretenureFlag pretenure) {
if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
// Bypass NewNumber to avoid various redundant checks.
return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
}
Handle<Object> Factory::NewNumberFromUint(uint32_t value,
PretenureFlag pretenure) {
int32_t int32v = static_cast<int32_t>(value);
if (int32v >= 0 && Smi::IsValid(int32v)) {
return handle(Smi::FromInt(int32v), isolate());
}
return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
}
Handle<HeapNumber> Factory::NewHeapNumber(MutableMode mode,
PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateHeapNumber(mode, pretenure),
HeapNumber);
}
Handle<BigInt> Factory::NewBigInt(int length, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateBigInt(length, true, pretenure),
BigInt);
}
Handle<BigInt> Factory::NewBigIntRaw(int length, PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateBigInt(length, false, pretenure),
BigInt);
}
Handle<BigInt> Factory::NewBigIntFromSafeInteger(double value,
PretenureFlag pretenure) {
if (value == 0) return NewBigInt(0);
uint64_t absolute = std::abs(value);
#if V8_TARGET_ARCH_64_BIT
static_assert(sizeof(BigInt::digit_t) == sizeof(uint64_t),
"unexpected BigInt digit size");
Handle<BigInt> result = NewBigIntRaw(1);
result->set_digit(0, absolute);
#else
static_assert(sizeof(BigInt::digit_t) == sizeof(uint32_t),
"unexpected BigInt digit size");
Handle<BigInt> result = NewBigIntRaw(2);
result->set_digit(0, absolute);
result->set_digit(1, absolute >> 32);
#endif
result->set_sign(value < 0); // Treats -0 like 0.
return result;
}
Handle<BigInt> Factory::NewBigIntFromInt(int value, PretenureFlag pretenure) {
if (value == 0) return NewBigInt(0);
Handle<BigInt> result = NewBigIntRaw(1);
if (value > 0) {
result->set_digit(0, value);
} else if (value == kMinInt) {
STATIC_ASSERT(kMinInt == -kMaxInt - 1);
result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1);
result->set_sign(true);
} else {
result->set_digit(0, -value);
result->set_sign(true);
}
return result;
}
Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
MessageTemplate::Template template_index,
Handle<Object> arg0, Handle<Object> arg1,
Handle<Object> arg2) {
HandleScope scope(isolate());
if (isolate()->bootstrapper()->IsActive()) {
// During bootstrapping we cannot construct error objects.
return scope.CloseAndEscape(NewStringFromAsciiChecked(
MessageTemplate::TemplateString(template_index)));
}
if (arg0.is_null()) arg0 = undefined_value();
if (arg1.is_null()) arg1 = undefined_value();
if (arg2.is_null()) arg2 = undefined_value();
Handle<Object> result;
if (!ErrorUtils::MakeGenericError(isolate(), constructor, template_index,
arg0, arg1, arg2, SKIP_NONE)
.ToHandle(&result)) {
// If an exception is thrown while
// running the factory method, use the exception as the result.
DCHECK(isolate()->has_pending_exception());
result = handle(isolate()->pending_exception(), isolate());
isolate()->clear_pending_exception();
}
return scope.CloseAndEscape(result);
}
Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
Handle<String> message) {
// Construct a new error object. If an exception is thrown, use the exception
// as the result.
Handle<Object> no_caller;
MaybeHandle<Object> maybe_error =
ErrorUtils::Construct(isolate(), constructor, constructor, message,
SKIP_NONE, no_caller, false);
if (maybe_error.is_null()) {
DCHECK(isolate()->has_pending_exception());
maybe_error = handle(isolate()->pending_exception(), isolate());
isolate()->clear_pending_exception();
}
return maybe_error.ToHandleChecked();
}
Handle<Object> Factory::NewInvalidStringLengthError() {
if (FLAG_abort_on_stack_or_string_length_overflow) {
FATAL("Aborting on invalid string length");
}
// Invalidate the "string length" protector.
if (isolate()->IsStringLengthOverflowIntact()) {
isolate()->InvalidateStringLengthOverflowProtector();
}
return NewRangeError(MessageTemplate::kInvalidStringLength);
}
#define DEFINE_ERROR(NAME, name) \
Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
Handle<Object> arg0, Handle<Object> arg1, \
Handle<Object> arg2) { \
return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
arg2); \
}
DEFINE_ERROR(Error, error)
DEFINE_ERROR(EvalError, eval_error)
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
#undef DEFINE_ERROR
Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
Handle<SharedFunctionInfo> info,
Handle<Object> context_or_undefined,
PretenureFlag pretenure) {
AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
Handle<JSFunction> function = New<JSFunction>(map, space);
DCHECK(context_or_undefined->IsContext() ||
context_or_undefined->IsUndefined(isolate()));
function->initialize_properties();
function->initialize_elements();
function->set_shared(*info);
function->set_code(info->code());
function->set_context(*context_or_undefined);
function->set_feedback_vector_cell(*undefined_cell());
int header_size;
if (map->has_prototype_slot()) {
header_size = JSFunction::kSizeWithPrototype;
function->set_prototype_or_initial_map(*the_hole_value());
} else {
header_size = JSFunction::kSizeWithoutPrototype;
}
isolate()->heap()->InitializeJSObjectBody(*function, *map, header_size);
return function;
}
Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) {
NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
name, isolate()->sloppy_function_map(), LanguageMode::kSloppy);
Handle<JSFunction> result = NewFunction(args);
DCHECK(is_sloppy(result->shared()->language_mode()));
return result;
}
Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) {
DCHECK(!args.name_.is_null());
// Create the SharedFunctionInfo.
Handle<Context> context(isolate()->native_context());
Handle<Map> map = args.GetMap(isolate());
Handle<SharedFunctionInfo> info =
NewSharedFunctionInfo(args.name_, args.maybe_code_, map->is_constructor(),
kNormalFunction, args.maybe_builtin_id_);
// Proper language mode in shared function info will be set later.
DCHECK(is_sloppy(info->language_mode()));
DCHECK(!map->IsUndefined(isolate()));
#ifdef DEBUG
if (isolate()->bootstrapper()->IsActive()) {
Handle<Code> code;
bool has_code = args.maybe_code_.ToHandle(&code);
DCHECK(
// During bootstrapping some of these maps could be not created yet.
(*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) ||
(*map ==
context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) ||
(*map ==
context->get(
Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) ||
// Check if it's a creation of an empty or Proxy function during
// bootstrapping.
(has_code && (code->builtin_index() == Builtins::kEmptyFunction ||
code->builtin_index() == Builtins::kProxyConstructor)));
} else {
DCHECK(
(*map == *isolate()->sloppy_function_map()) ||
(*map == *isolate()->sloppy_function_without_prototype_map()) ||
(*map == *isolate()->sloppy_function_with_readonly_prototype_map()) ||
(*map == *isolate()->strict_function_map()) ||
(*map == *isolate()->strict_function_without_prototype_map()) ||
(*map == *isolate()->native_function_map()));
}
#endif
Handle<JSFunction> result = NewFunction(map, info, context);
if (args.should_set_prototype_) {
result->set_prototype_or_initial_map(
*args.maybe_prototype_.ToHandleChecked());
}
if (args.should_set_language_mode_) {
result->shared()->set_language_mode(args.language_mode_);
}
if (args.should_create_and_set_initial_map_) {
ElementsKind elements_kind;
switch (args.type_) {
case JS_ARRAY_TYPE:
elements_kind = PACKED_SMI_ELEMENTS;
break;
case JS_ARGUMENTS_TYPE:
elements_kind = PACKED_ELEMENTS;
break;
default:
elements_kind = TERMINAL_FAST_ELEMENTS_KIND;
break;
}
Handle<Map> initial_map = NewMap(args.type_, args.instance_size_,
elements_kind, args.inobject_properties_);
// TODO(littledan): Why do we have this is_generator test when
// NewFunctionPrototype already handles finding an appropriately
// shared prototype?
Handle<Object> prototype = args.maybe_prototype_.ToHandleChecked();
if (!IsResumableFunction(result->shared()->kind())) {
if (prototype->IsTheHole(isolate())) {
prototype = NewFunctionPrototype(result);
}
}
JSFunction::SetInitialMap(result, initial_map, prototype);
}
return result;
}
Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
// Make sure to use globals from the function's context, since the function
// can be from a different context.
Handle<Context> native_context(function->context()->native_context());
Handle<Map> new_map;
if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared()->kind()))) {
new_map = handle(native_context->async_generator_object_prototype_map());
} else if (IsResumableFunction(function->shared()->kind())) {
// Generator and async function prototypes can share maps since they
// don't have "constructor" properties.
new_map = handle(native_context->generator_object_prototype_map());
} else {
// Each function prototype gets a fresh map to avoid unwanted sharing of
// maps between prototypes of different constructors.
Handle<JSFunction> object_function(native_context->object_function());
DCHECK(object_function->has_initial_map());
new_map = handle(object_function->initial_map());
}
DCHECK(!new_map->is_prototype_map());
Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
if (!IsResumableFunction(function->shared()->kind())) {
JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
}
return prototype;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info,
Handle<Context> context,
PretenureFlag pretenure) {
Handle<Map> initial_map(
Map::cast(context->native_context()->get(info->function_map_index())));
return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
pretenure);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info, Handle<Context> context,
Handle<Cell> vector, PretenureFlag pretenure) {
Handle<Map> initial_map(
Map::cast(context->native_context()->get(info->function_map_index())));
return NewFunctionFromSharedFunctionInfo(initial_map, info, context, vector,
pretenure);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Object> context_or_undefined, PretenureFlag pretenure) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context_or_undefined, pretenure);
if (context_or_undefined->IsContext()) {
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result, pretenure);
}
return result;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Object> context_or_undefined, Handle<Cell> vector,
PretenureFlag pretenure) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context_or_undefined, pretenure);
// Bump the closure count that is encoded in the vector cell's map.
if (vector->map() == *no_closures_cell_map()) {
vector->set_map(*one_closure_cell_map());
} else if (vector->map() == *one_closure_cell_map()) {
vector->set_map(*many_closures_cell_map());
} else {
DCHECK_EQ(vector->map(), *many_closures_cell_map());
}
// Check that the optimized code in the feedback vector wasn't marked for
// deoptimization while not pointed to by any live JSFunction.
if (vector->value()->IsFeedbackVector()) {
FeedbackVector::cast(vector->value())
->EvictOptimizedCodeMarkedForDeoptimization(
*info, "new function from shared function info");
}
result->set_feedback_vector_cell(*vector);
if (context_or_undefined->IsContext()) {
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result, pretenure);
}
return result;
}
Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
Handle<FixedArray> array = NewFixedArray(length, TENURED);
array->set_map_no_write_barrier(*scope_info_map());
Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
return scope_info;
}
Handle<ModuleInfo> Factory::NewModuleInfo() {
Handle<FixedArray> array = NewFixedArray(ModuleInfo::kLength, TENURED);
array->set_map_no_write_barrier(*module_info_map());
return Handle<ModuleInfo>::cast(array);
}
Handle<PreParsedScopeData> Factory::NewPreParsedScopeData() {
Handle<PreParsedScopeData> result =
Handle<PreParsedScopeData>::cast(NewStruct(TUPLE2_TYPE, TENURED));
result->set_scope_data(PodArray<uint8_t>::cast(*empty_byte_array()));
result->set_child_data(*empty_fixed_array());
return result;
}
Handle<JSObject> Factory::NewExternal(void* value) {
Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
Handle<JSObject> external = NewJSObjectFromMap(external_map());
external->SetEmbedderField(0, *foreign);
return external;
}
Handle<CodeDataContainer> Factory::NewCodeDataContainer(int flags) {
Handle<CodeDataContainer> data_container =
New<CodeDataContainer>(code_data_container_map(), OLD_SPACE);
data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER);
data_container->set_kind_specific_flags(flags);
data_container->clear_padding();
return data_container;
}
Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->AllocateCode(object_size, immovable),
Code);
}
Handle<Code> Factory::NewCode(
const CodeDesc& desc, Code::Kind kind, Handle<Object> self_ref,
MaybeHandle<HandlerTable> maybe_handler_table,
MaybeHandle<ByteArray> maybe_source_position_table,
MaybeHandle<DeoptimizationData> maybe_deopt_data, bool immovable,
uint32_t stub_key, bool is_turbofanned, int stack_slots,
int safepoint_table_offset) {
Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
Handle<CodeDataContainer> data_container = NewCodeDataContainer(0);
Handle<HandlerTable> handler_table =
maybe_handler_table.is_null() ? HandlerTable::Empty(isolate())
: maybe_handler_table.ToHandleChecked();
Handle<ByteArray> source_position_table =
maybe_source_position_table.is_null()
? empty_byte_array()
: maybe_source_position_table.ToHandleChecked();
Handle<DeoptimizationData> deopt_data =
maybe_deopt_data.is_null() ? DeoptimizationData::Empty(isolate())
: maybe_deopt_data.ToHandleChecked();
bool has_unwinding_info = desc.unwinding_info != nullptr;
DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
(!has_unwinding_info && desc.unwinding_info_size == 0));
// Compute size.
int body_size = desc.instr_size;
int unwinding_info_size_field_size = kInt64Size;
if (has_unwinding_info) {
body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
unwinding_info_size_field_size;
}
int obj_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
CodeSpaceMemoryModificationScope code_allocation(isolate()->heap());
Handle<Code> code = NewCodeRaw(obj_size, immovable);
DCHECK(!isolate()->heap()->memory_allocator()->code_range()->valid() ||
isolate()->heap()->memory_allocator()->code_range()->contains(
code->address()) ||
obj_size <= isolate()->heap()->code_space()->AreaSize());
// The code object has not been fully initialized yet. We rely on the
// fact that no allocation will happen from this point on.
DisallowHeapAllocation no_gc;
code->set_instruction_size(desc.instr_size);
code->set_relocation_info(*reloc_info);
code->initialize_flags(kind);
code->set_has_unwinding_info(has_unwinding_info);
code->set_is_turbofanned(is_turbofanned);
code->set_stack_slots(stack_slots);
code->set_safepoint_table_offset(safepoint_table_offset);
code->set_code_data_container(*data_container);
code->set_has_tagged_params(true);
code->set_deoptimization_data(*deopt_data);
code->set_stub_key(stub_key);
code->set_handler_table(*handler_table);
code->set_source_position_table(*source_position_table);
code->set_protected_instructions(*empty_fixed_array(), SKIP_WRITE_BARRIER);
code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
code->set_builtin_index(-1);
code->set_trap_handler_index(Smi::FromInt(-1));
switch (code->kind()) {
case Code::OPTIMIZED_FUNCTION:
code->set_marked_for_deoptimization(false);
break;
case Code::JS_TO_WASM_FUNCTION:
case Code::C_WASM_ENTRY:
case Code::WASM_FUNCTION:
code->set_has_tagged_params(false);
break;
default:
break;
}
// Allow self references to created code object by patching the handle to
// point to the newly allocated Code object.
if (!self_ref.is_null()) *(self_ref.location()) = *code;
// Migrate generated code.
// The generated code can contain Object** values (typically from handles)
// that are dereferenced during the copy to point directly to the actual heap
// objects. These pointers can include references to the code object itself,
// through the self_reference parameter.
code->CopyFrom(desc);
code->clear_padding();
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) code->ObjectVerify();
#endif
return code;
}
Handle<Code> Factory::NewCodeForDeserialization(uint32_t size) {
const bool kNotImmovable = false;
return NewCodeRaw(size, kNotImmovable);
}
Handle<Code> Factory::CopyCode(Handle<Code> code) {
Handle<CodeDataContainer> data_container =
NewCodeDataContainer(code->code_data_container()->kind_specific_flags());
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyCode(*code, *data_container), Code);
}
Handle<BytecodeArray> Factory::CopyBytecodeArray(
Handle<BytecodeArray> bytecode_array) {
CALL_HEAP_FUNCTION(isolate(),
isolate()->heap()->CopyBytecodeArray(*bytecode_array),
BytecodeArray);
}
Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
PretenureFlag pretenure) {
JSFunction::EnsureHasInitialMap(constructor);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
}
Handle<JSObject> Factory::NewJSObjectWithNullProto(PretenureFlag pretenure) {
Handle<JSObject> result =
NewJSObject(isolate()->object_function(), pretenure);
Handle<Map> new_map =
Map::Copy(Handle<Map>(result->map()), "ObjectWithNullProto");
Map::SetPrototype(new_map, null_value());
JSObject::MigrateToMap(result, new_map);
return result;
}
Handle<JSGlobalObject> Factory::NewJSGlobalObject(
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map());
DCHECK(map->is_dictionary_map());
// Make sure no field properties are described in the initial map.
// This guarantees us that normalizing the properties does not
// require us to change property values to PropertyCells.
DCHECK_EQ(map->NextFreePropertyIndex(), 0);
// Make sure we don't have a ton of pre-allocated slots in the
// global objects. They will be unused once we normalize the object.
DCHECK_EQ(map->UnusedPropertyFields(), 0);
DCHECK_EQ(map->GetInObjectProperties(), 0);
// Initial size of the backing store to avoid resize of the storage during
// bootstrapping. The size differs between the JS global object ad the
// builtins object.
int initial_size = 64;
// Allocate a dictionary object for backing storage.
int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
Handle<GlobalDictionary> dictionary =
GlobalDictionary::New(isolate(), at_least_space_for);
// The global object might be created from an object template with accessors.
// Fill these accessors into the dictionary.
Handle<DescriptorArray> descs(map->instance_descriptors());
for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
PropertyDetails details = descs->GetDetails(i);
// Only accessors are expected.
DCHECK_EQ(kAccessor, details.kind());
PropertyDetails d(kAccessor, details.attributes(),
PropertyCellType::kMutable);
Handle<Name> name(descs->GetKey(i));
Handle<PropertyCell> cell = NewPropertyCell(name);
cell->set_value(descs->GetValue(i));
// |dictionary| already contains enough space for all properties.
USE(GlobalDictionary::Add(dictionary, name, cell, d));
}
// Allocate the global object and initialize it with the backing store.
Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE);
isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
// Create a new map for the global object.
Handle<Map> new_map = Map::CopyDropDescriptors(map);
new_map->set_may_have_interesting_symbols(true);
new_map->set_dictionary_map(true);
// Set up the global object as a normalized object.
global->set_global_dictionary(*dictionary);
global->synchronized_set_map(*new_map);
// Make sure result is a global object with properties in dictionary.
DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
return global;
}
Handle<JSObject> Factory::NewJSObjectFromMap(
Handle<Map> map,
PretenureFlag pretenure,
Handle<AllocationSite> allocation_site) {
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateJSObjectFromMap(
*map, pretenure,
allocation_site.is_null() ? nullptr : *allocation_site),
JSObject);
}
Handle<JSObject> Factory::NewSlowJSObjectFromMap(Handle<Map> map, int capacity,
PretenureFlag pretenure) {
DCHECK(map->is_dictionary_map());
Handle<NameDictionary> object_properties =
NameDictionary::New(isolate(), capacity);
Handle<JSObject> js_object = NewJSObjectFromMap(map, pretenure);
js_object->set_raw_properties_or_hash(*object_properties);
return js_object;
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
PretenureFlag pretenure) {
Context* native_context = isolate()->raw_native_context();
Map* map = native_context->GetInitialJSArrayMap(elements_kind);
if (map == nullptr) {
JSFunction* array_function = native_context->array_function();
map = array_function->initial_map();
}
return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
int capacity,
ArrayStorageAllocationMode mode,
PretenureFlag pretenure) {
Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
NewJSArrayStorage(array, length, capacity, mode);
return array;
}
Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
ElementsKind elements_kind,
int length,
PretenureFlag pretenure) {
DCHECK(length <= elements->length());
Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
array->set_elements(*elements);
array->set_length(Smi::FromInt(length));
JSObject::ValidateElements(*array);
return array;
}
void Factory::NewJSArrayStorage(Handle<JSArray> array,
int length,
int capacity,
ArrayStorageAllocationMode mode) {
DCHECK(capacity >= length);
if (capacity == 0) {
array->set_length(Smi::kZero);
array->set_elements(*empty_fixed_array());
return;
}
HandleScope inner_scope(isolate());
Handle<FixedArrayBase> elms;
ElementsKind elements_kind = array->GetElementsKind();
if (IsDoubleElementsKind(elements_kind)) {
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewFixedDoubleArray(capacity);
} else {
DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedDoubleArrayWithHoles(capacity);
}
} else {
DCHECK(IsSmiOrObjectElementsKind(elements_kind));
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewUninitializedFixedArray(capacity);
} else {
DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedArrayWithHoles(capacity);
}
}
array->set_elements(*elms);
array->set_length(Smi::FromInt(length));
}
Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
Handle<Map> map = isolate()->js_module_namespace_map();
Handle<JSModuleNamespace> module_namespace(
Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
FieldIndex index = FieldIndex::ForDescriptor(
*map, JSModuleNamespace::kToStringTagFieldIndex);
module_namespace->FastPropertyAtPut(index,
isolate()->heap()->Module_string());
return module_namespace;
}
Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
Handle<JSFunction> function) {
DCHECK(IsResumableFunction(function->shared()->kind()));
JSFunction::EnsureHasInitialMap(function);
Handle<Map> map(function->initial_map());
DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateJSObjectFromMap(*map),
JSGeneratorObject);
}
Handle<Module> Factory::NewModule(Handle<SharedFunctionInfo> code) {
Handle<ModuleInfo> module_info(code->scope_info()->ModuleDescriptorInfo(),
isolate());
Handle<ObjectHashTable> exports =
ObjectHashTable::New(isolate(), module_info->RegularExportCount());
Handle<FixedArray> regular_exports =
NewFixedArray(module_info->RegularExportCount());
Handle<FixedArray> regular_imports =
NewFixedArray(module_info->regular_imports()->length());
int requested_modules_length = module_info->module_requests()->length();
Handle<FixedArray> requested_modules =
requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
: empty_fixed_array();
Handle<Module> module = Handle<Module>::cast(NewStruct(MODULE_TYPE, TENURED));
module->set_code(*code);
module->set_exports(*exports);
module->set_regular_exports(*regular_exports);
module->set_regular_imports(*regular_imports);
module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
module->set_module_namespace(isolate()->heap()->undefined_value());
module->set_requested_modules(*requested_modules);
module->set_script(Script::cast(code->script()));
module->set_status(Module::kUninstantiated);
module->set_exception(isolate()->heap()->the_hole_value());
module->set_import_meta(isolate()->heap()->the_hole_value());
module->set_dfs_index(-1);
module->set_dfs_ancestor_index(-1);
return module;
}
Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
PretenureFlag pretenure) {
Handle<JSFunction> array_buffer_fun(
shared == SharedFlag::kShared
? isolate()->native_context()->shared_array_buffer_fun()
: isolate()->native_context()->array_buffer_fun());
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
*array_buffer_fun, pretenure),
JSArrayBuffer);
}
Handle<JSDataView> Factory::NewJSDataView() {
Handle<JSFunction> data_view_fun(
isolate()->native_context()->data_view_fun());
CALL_HEAP_FUNCTION(
isolate(),
isolate()->heap()->AllocateJSObject(*data_view_fun),
JSDataView);
}
Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
bool done) {
Handle<Map> map(isolate()->native_context()->iterator_result_map());
Handle<JSIteratorResult> js_iter_result =
Handle<JSIteratorResult>::cast(NewJSObjectFromMap(map));
js_iter_result->set_value(*value);
js_iter_result->set_done(*ToBoolean(done));
return js_iter_result;
}
Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator) {
Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map());
Handle<JSAsyncFromSyncIterator> iterator =
Handle<JSAsyncFromSyncIterator>::cast(NewJSObjectFromMap(map));
iterator->set_sync_iterator(*sync_iterator);
return iterator;
}
Handle<JSMap> Factory::NewJSMap() {
Handle<Map> map(isolate()->native_context()->js_map_map());
Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
JSMap::Initialize(js_map, isolate());
return js_map;
}
Handle<JSSet> Factory::NewJSSet() {
Handle<Map> map(isolate()->native_context()->js_set_map());
Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
JSSet::Initialize(js_set, isolate());
return js_set;
}
Handle<JSMapIterator> Factory::NewJSMapIterator(Handle<Map> map,
Handle<OrderedHashMap> table,
int index) {
Handle<JSMapIterator> result =
Handle<JSMapIterator>::cast(NewJSObjectFromMap(map));
result->set_table(*table);
result->set_index(Smi::FromInt(index));
return result;
}
Handle<JSSetIterator> Factory::NewJSSetIterator(Handle<Map> map,
Handle<OrderedHashSet> table,
int index) {
Handle<JSSetIterator> result =
Handle<JSSetIterator>::cast(NewJSObjectFromMap(map));
result->set_table(*table);
result->set_index(Smi::FromInt(index));
return result;
}
ExternalArrayType Factory::GetArrayTypeFromElementsKind(ElementsKind kind) {
switch (kind) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS: \
return kExternal##Type##Array;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
default:
UNREACHABLE();
}
#undef TYPED_ARRAY_CASE
}
size_t Factory::GetExternalArrayElementSize(ExternalArrayType type) {
switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return size;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
default:
UNREACHABLE();
}
#undef TYPED_ARRAY_CASE
}
namespace {
ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return TYPE##_ELEMENTS;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
}
UNREACHABLE();
#undef TYPED_ARRAY_CASE
}
size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
switch (kind) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS: \
return size;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
default:
UNREACHABLE();
}
#undef TYPED_ARRAY_CASE
}
JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
Context* native_context = isolate->context()->native_context();
switch (type) {
#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return native_context->type##_array_fun();
TYPED_ARRAYS(TYPED_ARRAY_FUN)
#undef TYPED_ARRAY_FUN
default:
UNREACHABLE();
}
}
JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
Context* native_context = isolate->context()->native_context();
switch (elements_kind) {
#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS: \
return native_context->type##_array_fun();
TYPED_ARRAYS(TYPED_ARRAY_FUN)
#undef TYPED_ARRAY_FUN
default:
UNREACHABLE();
}
}
void SetupArrayBufferView(i::Isolate* isolate,
i::Handle<i::JSArrayBufferView> obj,
i::Handle<i::JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length,
PretenureFlag pretenure = NOT_TENURED) {
DCHECK(byte_offset + byte_length <=
static_cast<size_t>(buffer->byte_length()->Number()));
DCHECK_EQ(obj->GetEmbedderFieldCount(),
v8::ArrayBufferView::kEmbedderFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
obj->SetEmbedderField(i, Smi::kZero);
}
obj->set_buffer(*buffer);
i::Handle<i::Object> byte_offset_object =
isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
obj->set_byte_offset(*byte_offset_object);
i::Handle<i::Object> byte_length_object =
isolate->factory()->NewNumberFromSize(byte_length, pretenure);
obj->set_byte_length(*byte_length_object);
}
} // namespace
Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
PretenureFlag pretenure) {
Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
*typed_array_fun_handle, pretenure),
JSTypedArray);
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
PretenureFlag pretenure) {
Handle<JSFunction> typed_array_fun_handle(
GetTypedArrayFun(elements_kind, isolate()));
CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
*typed_array_fun_handle, pretenure),
JSTypedArray);
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length,
PretenureFlag pretenure) {
Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
size_t element_size = GetExternalArrayElementSize(type);
ElementsKind elements_kind = GetExternalArrayElementsKind(type);
CHECK_EQ(byte_offset % element_size, 0);
CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
size_t byte_length = length * element_size;
SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
pretenure);
Handle<Object> length_object = NewNumberFromSize(length, pretenure);
obj->set_length(*length_object);
Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
static_cast<int>(length), type,
static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
JSObject::SetMapAndElements(obj, map, elements);
return obj;
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
size_t number_of_elements,
PretenureFlag pretenure) {
Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
DCHECK_EQ(obj->GetEmbedderFieldCount(),
v8::ArrayBufferView::kEmbedderFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
obj->SetEmbedderField(i, Smi::kZero);
}
size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
CHECK(number_of_elements <=
(std::numeric_limits<size_t>::max() / element_size));
CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
size_t byte_length = number_of_elements * element_size;
obj->set_byte_offset(Smi::kZero);
i::Handle<i::Object> byte_length_object =
NewNumberFromSize(byte_length, pretenure);
obj->set_byte_length(*byte_length_object);
Handle<Object> length_object =
NewNumberFromSize(number_of_elements, pretenure);
obj->set_length(*length_object);
Handle<JSArrayBuffer> buffer =
NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
JSArrayBuffer::Setup(buffer, isolate(), true, nullptr, byte_length,
SharedFlag::kNotShared);
obj->set_buffer(*buffer);
Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
static_cast<int>(number_of_elements), array_type, true, pretenure);
obj->set_elements(*elements);
return obj;
}
Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset,
size_t byte_length) {
Handle<JSDataView> obj = NewJSDataView();
SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
return obj;
}
MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
Vector<Handle<Object>> bound_args) {
DCHECK(target_function->IsCallable());
STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
if (bound_args.length() >= Code::kMaxArguments) {
THROW_NEW_ERROR(isolate(),
NewRangeError(MessageTemplate::kTooManyArguments),
JSBoundFunction);
}
// Determine the prototype of the {target_function}.
Handle<Object> prototype;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), prototype,
JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
SaveContext save(isolate());
isolate()->set_context(*target_function->GetCreationContext());
// Create the [[BoundArguments]] for the result.
Handle<FixedArray> bound_arguments;
if (bound_args.length() == 0) {
bound_arguments = empty_fixed_array();
} else {
bound_arguments = NewFixedArray(bound_args.length());
for (int i = 0; i < bound_args.length(); ++i) {
bound_arguments->set(i, *bound_args[i]);
}
}
// Setup the map for the JSBoundFunction instance.
Handle<Map> map = target_function->IsConstructor()
? isolate()->bound_function_with_constructor_map()
: isolate()->bound_function_without_constructor_map();
if (map->prototype() != *prototype) {
map = Map::TransitionToPrototype(map, prototype);
}
DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
// Setup the JSBoundFunction instance.
Handle<JSBoundFunction> result =
Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
result->set_bound_target_function(*target_function);
result->set_bound_this(*bound_this);
result->set_bound_arguments(*bound_arguments);
return result;
}
// ES6 section 9.5.15 ProxyCreate (target, handler)
Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler) {
// Allocate the proxy object.
Handle<Map> map;
if (target->IsCallable()) {
if (target->IsConstructor()) {
map = Handle<Map>(isolate()->proxy_constructor_map());
} else {
map = Handle<Map>(isolate()->proxy_callable_map());
}
} else {
map = Handle<Map>(isolate()->proxy_map());
}
DCHECK(map->prototype()->IsNull(isolate()));
Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
result->initialize_properties();
result->set_target(*target);
result->set_handler(*handler);
return result;
}
Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
// Create an empty shell of a JSGlobalProxy that needs to be reinitialized
// via ReinitializeJSGlobalProxy later.
Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
// Maintain invariant expected from any JSGlobalProxy.
map->set_is_access_check_needed(true);
map->set_may_have_interesting_symbols(true);
CALL_HEAP_FUNCTION(
isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
JSGlobalProxy);
}
void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
Handle<Map> old_map(object->map(), isolate());
// The proxy's hash should be retained across reinitialization.
Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
isolate());
if (old_map->is_prototype_map()) {
map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy");
map->set_is_prototype_map(true);
}
JSObject::NotifyMapChange(old_map, map, isolate());
old_map->NotifyLeafMapLayoutChange();
// Check that the already allocated object has the same size and type as
// objects allocated using the constructor.
DCHECK(map->instance_size() == old_map->instance_size());
DCHECK(map->instance_type() == old_map->instance_type());
// In order to keep heap in consistent state there must be no allocations
// before object re-initialization is finished.
DisallowHeapAllocation no_allocation;
// Reset the map for the object.
object->synchronized_set_map(*map);
Heap* heap = isolate()->heap();
// Reinitialize the object from the constructor map.
heap->InitializeJSObjectFromMap(*object, *raw_properties_or_hash, *map);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
MaybeHandle<String> name, FunctionKind kind, Handle<Code> code,
Handle<ScopeInfo> scope_info) {
DCHECK(IsValidFunctionKind(kind));
Handle<SharedFunctionInfo> shared =
NewSharedFunctionInfo(name, code, IsConstructable(kind), kind);
shared->set_scope_info(*scope_info);
shared->set_outer_scope_info(*the_hole_value());
if (IsGeneratorFunction(kind)) {
shared->set_instance_class_name(isolate()->heap()->Generator_string());
}
return shared;
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForLiteral(
FunctionLiteral* literal, Handle<Script> script) {
Handle<Code> code = BUILTIN_CODE(isolate(), CompileLazy);
Handle<ScopeInfo> scope_info(ScopeInfo::Empty(isolate()));
Handle<SharedFunctionInfo> result =
NewSharedFunctionInfo(literal->name(), literal->kind(), code, scope_info);
SharedFunctionInfo::InitFromFunctionLiteral(result, literal);
SharedFunctionInfo::SetScript(result, script, false);
return result;
}
Handle<JSMessageObject> Factory::NewJSMessageObject(
MessageTemplate::Template message, Handle<Object> argument,
int start_position, int end_position, Handle<Object> script,
Handle<Object> stack_frames) {
Handle<Map> map = message_object_map();
Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
message_obj->set_raw_properties_or_hash(*empty_fixed_array(),
SKIP_WRITE_BARRIER);
message_obj->initialize_elements();
message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
message_obj->set_type(message);
message_obj->set_argument(*argument);
message_obj->set_start_position(start_position);
message_obj->set_end_position(end_position);
message_obj->set_script(*script);
message_obj->set_stack_frames(*stack_frames);
message_obj->set_error_level(v8::Isolate::kMessageError);
return message_obj;
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
MaybeHandle<String> maybe_name, MaybeHandle<Code> maybe_code,
bool is_constructor, FunctionKind kind, int maybe_builtin_index) {
// Function names are assumed to be flat elsewhere. Must flatten before
// allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI.
Handle<String> shared_name;
bool has_shared_name = maybe_name.ToHandle(&shared_name);
if (has_shared_name) {
shared_name = String::Flatten(shared_name, TENURED);
}
Handle<Map> map = shared_function_info_map();
Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
// Set pointer fields.
share->set_raw_name(has_shared_name
? *shared_name
: SharedFunctionInfo::kNoSharedNameSentinel);
Handle<Code> code;
if (!maybe_code.ToHandle(&code)) {
code = BUILTIN_CODE(isolate(), Illegal);
}
Object* function_data = (Builtins::IsBuiltinId(maybe_builtin_index) &&
Builtins::IsLazy(maybe_builtin_index))
? Smi::FromInt(maybe_builtin_index)
: Object::cast(*undefined_value());
share->set_function_data(function_data, SKIP_WRITE_BARRIER);
share->set_code(*code);
share->set_scope_info(ScopeInfo::Empty(isolate()));
share->set_outer_scope_info(*the_hole_value());
DCHECK(!Builtins::IsLazy(Builtins::kConstructedNonConstructable));
Handle<Code> construct_stub =
is_constructor ? isolate()->builtins()->JSConstructStubGeneric()
: BUILTIN_CODE(isolate(), ConstructedNonConstructable);
share->SetConstructStub(*construct_stub);
share->set_instance_class_name(*Object_string());
share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
share->set_debug_info(Smi::kZero, SKIP_WRITE_BARRIER);
share->set_function_identifier(*undefined_value(), SKIP_WRITE_BARRIER);
StaticFeedbackVectorSpec empty_spec;
Handle<FeedbackMetadata> feedback_metadata =
FeedbackMetadata::New(isolate(), &empty_spec);
share->set_feedback_metadata(*feedback_metadata, SKIP_WRITE_BARRIER);
share->set_function_literal_id(FunctionLiteral::kIdTypeInvalid);
#if V8_SFI_HAS_UNIQUE_ID
share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
#endif
// Set integer fields (smi or int, depending on the architecture).
share->set_length(0);
share->set_internal_formal_parameter_count(0);
share->set_expected_nof_properties(0);
share->set_start_position_and_type(0);
share->set_end_position(0);
share->set_function_token_position(0);
// All compiler hints default to false or 0.
share->set_compiler_hints(0);
share->set_kind(kind);
share->set_preparsed_scope_data(*null_value());
share->clear_padding();
// Link into the list.
Handle<Object> new_noscript_list =
WeakFixedArray::Add(noscript_shared_function_infos(), share);
isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list);
#ifdef VERIFY_HEAP
share->SharedFunctionInfoVerify();
#endif
return share;
}
static inline int NumberCacheHash(Handle<FixedArray> cache,
Handle<Object> number) {
int mask = (cache->length() >> 1) - 1;
if (number->IsSmi()) {
return Handle<Smi>::cast(number)->value() & mask;
} else {
int64_t bits = bit_cast<int64_t>(number->Number());
return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
}
}
Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
DisallowHeapAllocation no_gc;
int hash = NumberCacheHash(number_string_cache(), number);
Object* key = number_string_cache()->get(hash * 2);
if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
key->Number() == number->Number())) {
return Handle<String>(
String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
}
return undefined_value();
}
void Factory::SetNumberStringCache(Handle<Object> number,
Handle<String> string) {
int hash = NumberCacheHash(number_string_cache(), number);
if (number_string_cache()->get(hash * 2) != *undefined_value()) {
int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
if (number_string_cache()->length() != full_size) {
Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
isolate()->heap()->set_number_string_cache(*new_cache);
return;
}
}
number_string_cache()->set(hash * 2, *number);
number_string_cache()->set(hash * 2 + 1, *string);
}
Handle<String> Factory::NumberToString(Handle<Object> number,
bool check_number_string_cache) {
isolate()->counters()->number_to_string_runtime()->Increment();
if (check_number_string_cache) {
Handle<Object> cached = GetNumberStringCache(number);
if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
}
char arr[100];
Vector<char> buffer(arr, arraysize(arr));
const char* str;
if (number->IsSmi()) {
int num = Handle<Smi>::cast(number)->value();
str = IntToCString(num, buffer);
} else {
double num = Handle<HeapNumber>::cast(number)->value();
str = DoubleToCString(num, buffer);
}
// We tenure the allocated string since it is referenced from the
// number-string cache which lives in the old space.
Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
SetNumberStringCache(number, js_string);
return js_string;
}
Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
DCHECK(!shared->HasDebugInfo());
Heap* heap = isolate()->heap();
Handle<DebugInfo> debug_info =
Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE, TENURED));
debug_info->set_flags(DebugInfo::kNone);
debug_info->set_shared(*shared);
debug_info->set_debugger_hints(shared->debugger_hints());
debug_info->set_debug_bytecode_array(heap->undefined_value());
debug_info->set_break_points(heap->empty_fixed_array());
// Link debug info to function.
shared->set_debug_info(*debug_info);
return debug_info;
}
Handle<CoverageInfo> Factory::NewCoverageInfo(
const ZoneVector<SourceRange>& slots) {
const int slot_count = static_cast<int>(slots.size());
const int length = CoverageInfo::FixedArrayLengthForSlotCount(slot_count);
Handle<CoverageInfo> info =
Handle<CoverageInfo>::cast(NewUninitializedFixedArray(length));
for (int i = 0; i < slot_count; i++) {
SourceRange range = slots[i];
info->InitializeSlot(i, range.start, range.end);
}
return info;
}
Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
Handle<BreakPointInfo> new_break_point_info =
Handle<BreakPointInfo>::cast(NewStruct(TUPLE2_TYPE, TENURED));
new_break_point_info->set_source_position(source_position);
new_break_point_info->set_break_point_objects(*undefined_value());
return new_break_point_info;
}
Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
Handle<BreakPoint> new_break_point =
Handle<BreakPoint>::cast(NewStruct(TUPLE2_TYPE, TENURED));
new_break_point->set_id(id);
new_break_point->set_condition(*condition);
return new_break_point;
}
Handle<StackFrameInfo> Factory::NewStackFrameInfo() {
Handle<StackFrameInfo> stack_frame_info = Handle<StackFrameInfo>::cast(
NewStruct(STACK_FRAME_INFO_TYPE, NOT_TENURED));
stack_frame_info->set_line_number(0);
stack_frame_info->set_column_number(0);
stack_frame_info->set_script_id(0);
stack_frame_info->set_script_name(Smi::kZero);
stack_frame_info->set_script_name_or_source_url(Smi::kZero);
stack_frame_info->set_function_name(Smi::kZero);
stack_frame_info->set_flag(0);
return stack_frame_info;
}
Handle<SourcePositionTableWithFrameCache>
Factory::NewSourcePositionTableWithFrameCache(
Handle<ByteArray> source_position_table,
Handle<NumberDictionary> stack_frame_cache) {
Handle<SourcePositionTableWithFrameCache>
source_position_table_with_frame_cache =
Handle<SourcePositionTableWithFrameCache>::cast(
NewStruct(TUPLE2_TYPE, TENURED));
source_position_table_with_frame_cache->set_source_position_table(
*source_position_table);
source_position_table_with_frame_cache->set_stack_frame_cache(
*stack_frame_cache);
return source_position_table_with_frame_cache;
}
Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
int length) {
bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
!callee->shared()->has_simple_parameters();
Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
: isolate()->sloppy_arguments_map();
AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
false);
DCHECK(!isolate()->has_pending_exception());
Handle<JSObject> result = NewJSObjectFromMap(map);
Handle<Smi> value(Smi::FromInt(length), isolate());
Object::SetProperty(result, length_string(), value, LanguageMode::kStrict)
.Assert();
if (!strict_mode_callee) {
Object::SetProperty(result, callee_string(), callee, LanguageMode::kStrict)
.Assert();
}
return result;
}
Handle<JSWeakMap> Factory::NewJSWeakMap() {
// TODO(adamk): Currently the map is only created three times per
// isolate. If it's created more often, the map should be moved into the
// strong root list.
Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
}
Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> native_context,
int number_of_properties) {
DCHECK(native_context->IsNativeContext());
const int kMapCacheSize = 128;
// We do not cache maps for too many properties or when running builtin code.
if (isolate()->bootstrapper()->IsActive()) {
return Map::Create(isolate(), number_of_properties);
}
// Use initial slow object proto map for too many properties.
if (number_of_properties > kMapCacheSize) {
return handle(native_context->slow_object_with_object_prototype_map(),
isolate());
}
if (number_of_properties == 0) {
// Reuse the initial map of the Object function if the literal has no
// predeclared properties.
return handle(native_context->object_function()->initial_map(), isolate());
}
int cache_index = number_of_properties - 1;
Handle<Object> maybe_cache(native_context->map_cache(), isolate());
if (maybe_cache->IsUndefined(isolate())) {
// Allocate the new map cache for the native context.
maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
native_context->set_map_cache(*maybe_cache);
} else {
// Check to see whether there is a matching element in the cache.
Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
Object* result = cache->get(cache_index);
if (result->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(result);
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
DCHECK(!map->is_dictionary_map());
return handle(map, isolate());
}
}
}
// Create a new map and add it to the cache.
Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
Handle<Map> map = Map::Create(isolate(), number_of_properties);
DCHECK(!map->is_dictionary_map());
Handle<WeakCell> cell = NewWeakCell(map);
cache->set(cache_index, *cell);
return map;
}
void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
Handle<Object> data) {
Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
store->set(JSRegExp::kSourceIndex, *source);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kAtomPatternIndex, *data);
regexp->set_data(*store);
}
void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
int capture_count) {
Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
store->set(JSRegExp::kSourceIndex, *source);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::kZero);
store->set(JSRegExp::kIrregexpCaptureCountIndex,
Smi::FromInt(capture_count));
store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
regexp->set_data(*store);
}
Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
// Initially, the last match info consists of all fixed fields plus space for
// the match itself (i.e., 2 capture indices).
static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
RegExpMatchInfo::kInitialCaptureIndices;
Handle<FixedArray> elems = NewFixedArray(kInitialSize);
Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
result->SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
result->SetLastSubject(*empty_string());
result->SetLastInput(*undefined_value());
result->SetCapture(0, 0);
result->SetCapture(1, 0);
return result;
}
Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
if (Name::Equals(name, undefined_string())) return undefined_value();
if (Name::Equals(name, NaN_string())) return nan_value();
if (Name::Equals(name, Infinity_string())) return infinity_value();
return Handle<Object>::null();
}
Handle<Object> Factory::ToBoolean(bool value) {
return value ? true_value() : false_value();
}
Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
switch (hint) {
case ToPrimitiveHint::kDefault:
return default_string();
case ToPrimitiveHint::kNumber:
return number_string();
case ToPrimitiveHint::kString:
return string_string();
}
UNREACHABLE();
}
Handle<Map> Factory::CreateSloppyFunctionMap(
FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int descriptors_count = has_prototype ? 5 : 4;
int inobject_properties_count = 0;
if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kPointerSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
map->set_has_prototype_slot(has_prototype);
map->set_is_constructor(has_prototype);
map->set_is_callable();
Handle<JSFunction> empty_function;
if (maybe_empty_function.ToHandle(&empty_function)) {
Map::SetPrototype(map, empty_function);
}
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(map, descriptors_count);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(&d);
}
STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(name, field_index++, roc_attribs,
Representation::Tagged());
map->AppendDescriptor(&d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(&d);
}
{ // Add arguments accessor.
Descriptor d = Descriptor::AccessorConstant(
arguments_string(), function_arguments_accessor(), ro_attribs);
map->AppendDescriptor(&d);
}
{ // Add caller accessor.
Descriptor d = Descriptor::AccessorConstant(
caller_string(), function_caller_accessor(), ro_attribs);
map->AppendDescriptor(&d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(&d);
}
DCHECK_EQ(inobject_properties_count, field_index);
return map;
}
Handle<Map> Factory::CreateStrictFunctionMap(
FunctionMode function_mode, Handle<JSFunction> empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int inobject_properties_count = 0;
if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
if (IsFunctionModeWithHomeObject(function_mode)) ++inobject_properties_count;
int descriptors_count = (IsFunctionModeWithPrototype(function_mode) ? 3 : 2) +
inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kPointerSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
map->set_has_prototype_slot(has_prototype);
map->set_is_constructor(has_prototype);
map->set_is_callable();
Map::SetPrototype(map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(map, descriptors_count);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(&d);
}
STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(name, field_index++, roc_attribs,
Representation::Tagged());
map->AppendDescriptor(&d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(&d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(&d);
}
if (IsFunctionModeWithHomeObject(function_mode)) {
// Add home object field.
Handle<Name> name = isolate()->factory()->home_object_symbol();
Descriptor d = Descriptor::DataField(name, field_index++, DONT_ENUM,
Representation::Tagged());
map->AppendDescriptor(&d);
}
DCHECK_EQ(inobject_properties_count, field_index);
return map;
}
Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
Handle<Map> map = NewMap(JS_FUNCTION_TYPE, JSFunction::kSizeWithPrototype);
map->set_has_prototype_slot(true);
map->set_is_constructor(true);
map->set_is_callable();
Map::SetPrototype(map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(map, 2);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(&d);
}
{
// Add prototype accessor.
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), rw_attribs);
map->AppendDescriptor(&d);
}
return map;
}
// static
NewFunctionArgs NewFunctionArgs::ForWasm(Handle<String> name, Handle<Code> code,
Handle<Map> map) {
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.maybe_code_ = code;
args.language_mode_ = LanguageMode::kSloppy;
args.prototype_mutability_ = MUTABLE;
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltin(Handle<String> name,
Handle<Code> code, Handle<Map> map,
int builtin_id) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.maybe_code_ = code;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = LanguageMode::kStrict;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForFunctionWithoutCode(
Handle<String> name, Handle<Map> map, LanguageMode language_mode) {
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.language_mode_ = language_mode;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltinWithPrototype(
Handle<String> name, Handle<Code> code, Handle<Object> prototype,
InstanceType type, int instance_size, int inobject_properties,
int builtin_id, MutableMode prototype_mutability) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.maybe_code_ = code;
args.type_ = type;
args.instance_size_ = instance_size;
args.inobject_properties_ = inobject_properties;
args.maybe_prototype_ = prototype;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = LanguageMode::kStrict;
args.prototype_mutability_ = prototype_mutability;
args.SetShouldCreateAndSetInitialMap();
args.SetShouldSetPrototype();
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltinWithoutPrototype(
Handle<String> name, Handle<Code> code, int builtin_id,
LanguageMode language_mode) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.maybe_code_ = code;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = language_mode;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
void NewFunctionArgs::SetShouldCreateAndSetInitialMap() {
// Needed to create the initial map.
maybe_prototype_.Assert();
DCHECK_NE(kUninitialized, instance_size_);
DCHECK_NE(kUninitialized, inobject_properties_);
should_create_and_set_initial_map_ = true;
}
void NewFunctionArgs::SetShouldSetPrototype() {
maybe_prototype_.Assert();
should_set_prototype_ = true;
}
void NewFunctionArgs::SetShouldSetLanguageMode() {
DCHECK(language_mode_ == LanguageMode::kStrict ||
language_mode_ == LanguageMode::kSloppy);
should_set_language_mode_ = true;
}
Handle<Map> NewFunctionArgs::GetMap(Isolate* isolate) const {
if (!maybe_map_.is_null()) {
return maybe_map_.ToHandleChecked();
} else if (maybe_prototype_.is_null()) {
return is_strict(language_mode_)
? isolate->strict_function_without_prototype_map()
: isolate->sloppy_function_without_prototype_map();
} else {
DCHECK(!maybe_prototype_.is_null());
switch (prototype_mutability_) {
case MUTABLE:
return is_strict(language_mode_) ? isolate->strict_function_map()
: isolate->sloppy_function_map();
case IMMUTABLE:
return is_strict(language_mode_)
? isolate->strict_function_with_readonly_prototype_map()
: isolate->sloppy_function_with_readonly_prototype_map();
}
}
UNREACHABLE();
}
} // namespace internal
} // namespace v8