v8/src/unique.h
bmeurer@chromium.org 2bbeb652ee [turbofan] Fix the node matchers.
E.g. make sure that Int32Matcher matches only int32 constants, and
Float64Matcher matches only float64 constants.

Also remove the confusing CommonOperatorTraits, which are too easy
to use in a wrong way.

TEST=compiler-unittests,cctest
R=mstarzinger@chromium.org

Review URL: https://codereview.chromium.org/552653003

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@23768 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-09-08 09:16:11 +00:00

348 lines
10 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HYDROGEN_UNIQUE_H_
#define V8_HYDROGEN_UNIQUE_H_
#include "src/handles.h"
#include "src/objects.h"
#include "src/string-stream.h"
#include "src/utils.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
template <typename T>
class UniqueSet;
// Represents a handle to an object on the heap, but with the additional
// ability of checking for equality and hashing without accessing the heap.
//
// Creating a Unique<T> requires first dereferencing the handle to obtain
// the address of the object, which is used as the hashcode and the basis for
// comparison. The object can be moved later by the GC, but comparison
// and hashing use the old address of the object, without dereferencing it.
//
// Careful! Comparison of two Uniques is only correct if both were created
// in the same "era" of GC or if at least one is a non-movable object.
template <typename T>
class Unique {
public:
Unique<T>() : raw_address_(NULL) {}
// TODO(titzer): make private and introduce a uniqueness scope.
explicit Unique(Handle<T> handle) {
if (handle.is_null()) {
raw_address_ = NULL;
} else {
// This is a best-effort check to prevent comparing Unique<T>'s created
// in different GC eras; we require heap allocation to be disallowed at
// creation time.
// NOTE: we currently consider maps to be non-movable, so no special
// assurance is required for creating a Unique<Map>.
// TODO(titzer): other immortable immovable objects are also fine.
DCHECK(!AllowHeapAllocation::IsAllowed() || handle->IsMap());
raw_address_ = reinterpret_cast<Address>(*handle);
DCHECK_NE(raw_address_, NULL); // Non-null should imply non-zero address.
}
handle_ = handle;
}
// TODO(titzer): this is a hack to migrate to Unique<T> incrementally.
Unique(Address raw_address, Handle<T> handle)
: raw_address_(raw_address), handle_(handle) { }
// Constructor for handling automatic up casting.
// Eg. Unique<JSFunction> can be passed when Unique<Object> is expected.
template <class S> Unique(Unique<S> uniq) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
raw_address_ = uniq.raw_address_;
handle_ = uniq.handle_;
}
template <typename U>
inline bool operator==(const Unique<U>& other) const {
DCHECK(IsInitialized() && other.IsInitialized());
return raw_address_ == other.raw_address_;
}
template <typename U>
inline bool operator!=(const Unique<U>& other) const {
DCHECK(IsInitialized() && other.IsInitialized());
return raw_address_ != other.raw_address_;
}
inline intptr_t Hashcode() const {
DCHECK(IsInitialized());
return reinterpret_cast<intptr_t>(raw_address_);
}
inline bool IsNull() const {
DCHECK(IsInitialized());
return raw_address_ == NULL;
}
inline bool IsKnownGlobal(void* global) const {
DCHECK(IsInitialized());
return raw_address_ == reinterpret_cast<Address>(global);
}
inline Handle<T> handle() const {
return handle_;
}
template <class S> static Unique<T> cast(Unique<S> that) {
return Unique<T>(that.raw_address_, Handle<T>::cast(that.handle_));
}
inline bool IsInitialized() const {
return raw_address_ != NULL || handle_.is_null();
}
// TODO(titzer): this is a hack to migrate to Unique<T> incrementally.
static Unique<T> CreateUninitialized(Handle<T> handle) {
return Unique<T>(reinterpret_cast<Address>(NULL), handle);
}
static Unique<T> CreateImmovable(Handle<T> handle) {
return Unique<T>(reinterpret_cast<Address>(*handle), handle);
}
friend class UniqueSet<T>; // Uses internal details for speed.
template <class U>
friend class Unique; // For comparing raw_address values.
protected:
Address raw_address_;
Handle<T> handle_;
friend class SideEffectsTracker;
};
template <typename T>
class UniqueSet FINAL : public ZoneObject {
public:
// Constructor. A new set will be empty.
UniqueSet() : size_(0), capacity_(0), array_(NULL) { }
// Capacity constructor. A new set will be empty.
UniqueSet(int capacity, Zone* zone)
: size_(0), capacity_(capacity),
array_(zone->NewArray<Unique<T> >(capacity)) {
DCHECK(capacity <= kMaxCapacity);
}
// Singleton constructor.
UniqueSet(Unique<T> uniq, Zone* zone)
: size_(1), capacity_(1), array_(zone->NewArray<Unique<T> >(1)) {
array_[0] = uniq;
}
// Add a new element to this unique set. Mutates this set. O(|this|).
void Add(Unique<T> uniq, Zone* zone) {
DCHECK(uniq.IsInitialized());
// Keep the set sorted by the {raw_address} of the unique elements.
for (int i = 0; i < size_; i++) {
if (array_[i] == uniq) return;
if (array_[i].raw_address_ > uniq.raw_address_) {
// Insert in the middle.
Grow(size_ + 1, zone);
for (int j = size_ - 1; j >= i; j--) array_[j + 1] = array_[j];
array_[i] = uniq;
size_++;
return;
}
}
// Append the element to the the end.
Grow(size_ + 1, zone);
array_[size_++] = uniq;
}
// Remove an element from this set. Mutates this set. O(|this|)
void Remove(Unique<T> uniq) {
for (int i = 0; i < size_; i++) {
if (array_[i] == uniq) {
while (++i < size_) array_[i - 1] = array_[i];
size_--;
return;
}
}
}
// Compare this set against another set. O(|this|).
bool Equals(const UniqueSet<T>* that) const {
if (that->size_ != this->size_) return false;
for (int i = 0; i < this->size_; i++) {
if (this->array_[i] != that->array_[i]) return false;
}
return true;
}
// Check whether this set contains the given element. O(|this|)
// TODO(titzer): use binary search for large sets to make this O(log|this|)
template <typename U>
bool Contains(const Unique<U> elem) const {
for (int i = 0; i < this->size_; ++i) {
Unique<T> cand = this->array_[i];
if (cand.raw_address_ >= elem.raw_address_) {
return cand.raw_address_ == elem.raw_address_;
}
}
return false;
}
// Check if this set is a subset of the given set. O(|this| + |that|).
bool IsSubset(const UniqueSet<T>* that) const {
if (that->size_ < this->size_) return false;
int j = 0;
for (int i = 0; i < this->size_; i++) {
Unique<T> sought = this->array_[i];
while (true) {
if (sought == that->array_[j++]) break;
// Fail whenever there are more elements in {this} than {that}.
if ((this->size_ - i) > (that->size_ - j)) return false;
}
}
return true;
}
// Returns a new set representing the intersection of this set and the other.
// O(|this| + |that|).
UniqueSet<T>* Intersect(const UniqueSet<T>* that, Zone* zone) const {
if (that->size_ == 0 || this->size_ == 0) return new(zone) UniqueSet<T>();
UniqueSet<T>* out = new(zone) UniqueSet<T>(
Min(this->size_, that->size_), zone);
int i = 0, j = 0, k = 0;
while (i < this->size_ && j < that->size_) {
Unique<T> a = this->array_[i];
Unique<T> b = that->array_[j];
if (a == b) {
out->array_[k++] = a;
i++;
j++;
} else if (a.raw_address_ < b.raw_address_) {
i++;
} else {
j++;
}
}
out->size_ = k;
return out;
}
// Returns a new set representing the union of this set and the other.
// O(|this| + |that|).
UniqueSet<T>* Union(const UniqueSet<T>* that, Zone* zone) const {
if (that->size_ == 0) return this->Copy(zone);
if (this->size_ == 0) return that->Copy(zone);
UniqueSet<T>* out = new(zone) UniqueSet<T>(
this->size_ + that->size_, zone);
int i = 0, j = 0, k = 0;
while (i < this->size_ && j < that->size_) {
Unique<T> a = this->array_[i];
Unique<T> b = that->array_[j];
if (a == b) {
out->array_[k++] = a;
i++;
j++;
} else if (a.raw_address_ < b.raw_address_) {
out->array_[k++] = a;
i++;
} else {
out->array_[k++] = b;
j++;
}
}
while (i < this->size_) out->array_[k++] = this->array_[i++];
while (j < that->size_) out->array_[k++] = that->array_[j++];
out->size_ = k;
return out;
}
// Returns a new set representing all elements from this set which are not in
// that set. O(|this| * |that|).
UniqueSet<T>* Subtract(const UniqueSet<T>* that, Zone* zone) const {
if (that->size_ == 0) return this->Copy(zone);
UniqueSet<T>* out = new(zone) UniqueSet<T>(this->size_, zone);
int i = 0, j = 0;
while (i < this->size_) {
Unique<T> cand = this->array_[i];
if (!that->Contains(cand)) {
out->array_[j++] = cand;
}
i++;
}
out->size_ = j;
return out;
}
// Makes an exact copy of this set. O(|this|).
UniqueSet<T>* Copy(Zone* zone) const {
UniqueSet<T>* copy = new(zone) UniqueSet<T>(this->size_, zone);
copy->size_ = this->size_;
memcpy(copy->array_, this->array_, this->size_ * sizeof(Unique<T>));
return copy;
}
void Clear() {
size_ = 0;
}
inline int size() const {
return size_;
}
inline Unique<T> at(int index) const {
DCHECK(index >= 0 && index < size_);
return array_[index];
}
private:
// These sets should be small, since operations are implemented with simple
// linear algorithms. Enforce a maximum size.
static const int kMaxCapacity = 65535;
uint16_t size_;
uint16_t capacity_;
Unique<T>* array_;
// Grow the size of internal storage to be at least {size} elements.
void Grow(int size, Zone* zone) {
CHECK(size < kMaxCapacity); // Enforce maximum size.
if (capacity_ < size) {
int new_capacity = 2 * capacity_ + size;
if (new_capacity > kMaxCapacity) new_capacity = kMaxCapacity;
Unique<T>* new_array = zone->NewArray<Unique<T> >(new_capacity);
if (size_ > 0) {
memcpy(new_array, array_, size_ * sizeof(Unique<T>));
}
capacity_ = new_capacity;
array_ = new_array;
}
}
};
} } // namespace v8::internal
#endif // V8_HYDROGEN_UNIQUE_H_