v8/src/register-allocator.h
kmillikin@chromium.org 9c829fafe9 Change the register allocator so that it no longer tracks references
to the platform-specific reserved registers.  They are always in use
for their intended purpose, cannot appear in the virtual frame, and
can be freely used without allocation in the code generator.

Review URL: http://codereview.chromium.org/113837

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@2061 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-05-27 07:53:47 +00:00

387 lines
12 KiB
C++

// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_REGISTER_ALLOCATOR_H_
#define V8_REGISTER_ALLOCATOR_H_
#include "macro-assembler.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/register-allocator-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/register-allocator-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/register-allocator-arm.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// StaticType
//
// StaticType represent the type of an expression or a word at runtime.
// The types are ordered by knowledge, so that if a value can come about
// in more than one way, and there are different static types inferred
// for the different ways, the types can be combined to a type that we
// are still certain of (possibly just "unknown").
class StaticType BASE_EMBEDDED {
public:
StaticType() : static_type_(UNKNOWN_TYPE) {}
static StaticType unknown() { return StaticType(); }
static StaticType smi() { return StaticType(SMI_TYPE); }
static StaticType jsstring() { return StaticType(STRING_TYPE); }
static StaticType heap_object() { return StaticType(HEAP_OBJECT_TYPE); }
// Accessors
bool is_unknown() { return static_type_ == UNKNOWN_TYPE; }
bool is_smi() { return static_type_ == SMI_TYPE; }
bool is_heap_object() { return (static_type_ & HEAP_OBJECT_TYPE) != 0; }
bool is_jsstring() { return static_type_ == STRING_TYPE; }
bool operator==(StaticType other) const {
return static_type_ == other.static_type_;
}
// Find the best approximating type for a value.
// The argument must not be NULL.
static StaticType TypeOf(Object* object) {
// Remember to make the most specific tests first. A string is also a heap
// object, so test for string-ness first.
if (object->IsSmi()) return smi();
if (object->IsString()) return jsstring();
if (object->IsHeapObject()) return heap_object();
return unknown();
}
// Merges two static types to a type that combines the knowledge
// of both. If there is no way to combine (e.g., being a string *and*
// being a smi), the resulting type is unknown.
StaticType merge(StaticType other) {
StaticType x(
static_cast<StaticTypeEnum>(static_type_ & other.static_type_));
return x;
}
private:
enum StaticTypeEnum {
// Numbers are chosen so that least upper bound of the following
// partial order is implemented by bitwise "and":
//
// string
// |
// heap-object smi
// \ /
// unknown
//
UNKNOWN_TYPE = 0x00,
SMI_TYPE = 0x01,
HEAP_OBJECT_TYPE = 0x02,
STRING_TYPE = 0x04 | HEAP_OBJECT_TYPE
};
explicit StaticType(StaticTypeEnum static_type) : static_type_(static_type) {}
// StaticTypeEnum static_type_;
StaticTypeEnum static_type_;
friend class FrameElement;
friend class Result;
};
// -------------------------------------------------------------------------
// Results
//
// Results encapsulate the compile-time values manipulated by the code
// generator. They can represent registers or constants.
class Result BASE_EMBEDDED {
public:
enum Type {
INVALID,
REGISTER,
CONSTANT
};
// Construct an invalid result.
Result() { invalidate(); }
// Construct a register Result.
explicit Result(Register reg);
// Construct a register Result with a known static type.
Result(Register reg, StaticType static_type);
// Construct a Result whose value is a compile-time constant.
explicit Result(Handle<Object> value) {
value_ = StaticTypeField::encode(StaticType::TypeOf(*value).static_type_)
| TypeField::encode(CONSTANT)
| DataField::encode(ConstantList()->length());
ConstantList()->Add(value);
}
// The copy constructor and assignment operators could each create a new
// register reference.
Result(const Result& other) {
other.CopyTo(this);
}
Result& operator=(const Result& other) {
if (this != &other) {
Unuse();
other.CopyTo(this);
}
return *this;
}
inline ~Result();
// Static indirection table for handles to constants. If a Result
// represents a constant, the data contains an index into this table
// of handles to the actual constants.
typedef ZoneList<Handle<Object> > ZoneObjectList;
static ZoneObjectList* ConstantList() {
static ZoneObjectList list(10);
return &list;
}
// Clear the constants indirection table.
static void ClearConstantList() {
ConstantList()->Clear();
}
inline void Unuse();
StaticType static_type() const {
return StaticType(StaticTypeField::decode(value_));
}
void set_static_type(StaticType type) {
value_ = value_ & ~StaticTypeField::mask();
value_ = value_ | StaticTypeField::encode(type.static_type_);
}
Type type() const { return TypeField::decode(value_); }
void invalidate() { value_ = TypeField::encode(INVALID); }
bool is_valid() const { return type() != INVALID; }
bool is_register() const { return type() == REGISTER; }
bool is_constant() const { return type() == CONSTANT; }
Register reg() const {
ASSERT(is_register());
uint32_t reg = DataField::decode(value_);
Register result;
result.code_ = reg;
return result;
}
Handle<Object> handle() const {
ASSERT(type() == CONSTANT);
return ConstantList()->at(DataField::decode(value_));
}
// Move this result to an arbitrary register. The register is not
// necessarily spilled from the frame or even singly-referenced outside
// it.
void ToRegister();
// Move this result to a specified register. The register is spilled from
// the frame, and the register is singly-referenced (by this result)
// outside the frame.
void ToRegister(Register reg);
private:
uint32_t value_;
class StaticTypeField: public BitField<StaticType::StaticTypeEnum, 0, 3> {};
class TypeField: public BitField<Type, 3, 2> {};
class DataField: public BitField<uint32_t, 5, 32 - 6> {};
inline void CopyTo(Result* destination) const;
friend class CodeGeneratorScope;
};
// -------------------------------------------------------------------------
// Register file
//
// The register file tracks reference counts for the processor registers.
// It is used by both the register allocator and the virtual frame.
class RegisterFile BASE_EMBEDDED {
public:
RegisterFile() { Reset(); }
void Reset() {
for (int i = 0; i < kNumRegisters; i++) {
ref_counts_[i] = 0;
}
}
// Predicates and accessors for the reference counts.
bool is_used(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num] > 0;
}
int count(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num];
}
// Record a use of a register by incrementing its reference count.
void Use(int num) {
ASSERT(0 <= num && num < kNumRegisters);
ref_counts_[num]++;
}
// Record that a register will no longer be used by decrementing its
// reference count.
void Unuse(int num) {
ASSERT(is_used(num));
ref_counts_[num]--;
}
// Copy the reference counts from this register file to the other.
void CopyTo(RegisterFile* other) {
for (int i = 0; i < kNumRegisters; i++) {
other->ref_counts_[i] = ref_counts_[i];
}
}
private:
static const int kNumRegisters = RegisterAllocatorConstants::kNumRegisters;
int ref_counts_[kNumRegisters];
// Very fast inlined loop to find a free register. Used in
// RegisterAllocator::AllocateWithoutSpilling. Returns
// kInvalidRegister if no free register found.
int ScanForFreeRegister() {
for (int i = 0; i < RegisterAllocatorConstants::kNumRegisters; i++) {
if (!is_used(i)) return i;
}
return RegisterAllocatorConstants::kInvalidRegister;
}
friend class RegisterAllocator;
};
// -------------------------------------------------------------------------
// Register allocator
//
class RegisterAllocator BASE_EMBEDDED {
public:
static const int kNumRegisters =
RegisterAllocatorConstants::kNumRegisters;
static const int kInvalidRegister =
RegisterAllocatorConstants::kInvalidRegister;
explicit RegisterAllocator(CodeGenerator* cgen) : cgen_(cgen) {}
// True if the register is reserved by the code generator, false if it
// can be freely used by the allocator Defined in the
// platform-specific XXX-inl.h files..
static inline bool IsReserved(Register reg);
// Convert between (unreserved) assembler registers and allocator
// numbers. Defined in the platform-specific XXX-inl.h files.
static inline int ToNumber(Register reg);
static inline Register ToRegister(int num);
// Predicates and accessors for the registers' reference counts.
bool is_used(int num) { return registers_.is_used(num); }
bool is_used(Register reg) { return registers_.is_used(ToNumber(reg)); }
int count(int num) { return registers_.count(num); }
int count(Register reg) { return registers_.count(ToNumber(reg)); }
// Explicitly record a reference to a register.
void Use(int num) { registers_.Use(num); }
void Use(Register reg) { registers_.Use(ToNumber(reg)); }
// Explicitly record that a register will no longer be used.
void Unuse(int num) { registers_.Unuse(num); }
void Unuse(Register reg) { registers_.Unuse(ToNumber(reg)); }
// Reset the register reference counts to free all non-reserved registers.
void Reset() { registers_.Reset(); }
// Initialize the register allocator for entry to a JS function. On
// entry, the (non-reserved) registers used by the JS calling
// convention are referenced and the other (non-reserved) registers
// are free.
inline void Initialize();
// Allocate a free register and return a register result if possible or
// fail and return an invalid result.
Result Allocate();
// Allocate a specific register if possible, spilling it from the
// current frame if necessary, or else fail and return an invalid
// result.
Result Allocate(Register target);
// Allocate a free register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateWithoutSpilling();
// Allocate a free byte register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateByteRegisterWithoutSpilling();
// Copy the internal state to a register file, to be restored later by
// RestoreFrom.
void SaveTo(RegisterFile* register_file) {
registers_.CopyTo(register_file);
}
// Restore the internal state.
void RestoreFrom(RegisterFile* register_file) {
register_file->CopyTo(&registers_);
}
private:
CodeGenerator* cgen_;
RegisterFile registers_;
};
} } // namespace v8::internal
#endif // V8_REGISTER_ALLOCATOR_H_