4f5337a2b6
When compiling on a laptop I like to concatenate the small test files. This makes a big difference to compile times. These changes make that easier. R=ulan@chromium.org BUG= Review URL: https://codereview.chromium.org/1163803002 Cr-Commit-Position: refs/heads/master@{#28742}
292 lines
9.6 KiB
C++
292 lines
9.6 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/hydrogen-range-analysis.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
class Pending {
|
|
public:
|
|
Pending(HBasicBlock* block, int last_changed_range)
|
|
: block_(block), last_changed_range_(last_changed_range) {}
|
|
|
|
HBasicBlock* block() const { return block_; }
|
|
int last_changed_range() const { return last_changed_range_; }
|
|
|
|
private:
|
|
HBasicBlock* block_;
|
|
int last_changed_range_;
|
|
};
|
|
|
|
|
|
void HRangeAnalysisPhase::TraceRange(const char* msg, ...) {
|
|
if (FLAG_trace_range) {
|
|
va_list arguments;
|
|
va_start(arguments, msg);
|
|
base::OS::VPrint(msg, arguments);
|
|
va_end(arguments);
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::Run() {
|
|
HBasicBlock* block(graph()->entry_block());
|
|
ZoneList<Pending> stack(graph()->blocks()->length(), zone());
|
|
while (block != NULL) {
|
|
TraceRange("Analyzing block B%d\n", block->block_id());
|
|
|
|
// Infer range based on control flow.
|
|
if (block->predecessors()->length() == 1) {
|
|
HBasicBlock* pred = block->predecessors()->first();
|
|
if (pred->end()->IsCompareNumericAndBranch()) {
|
|
InferControlFlowRange(HCompareNumericAndBranch::cast(pred->end()),
|
|
block);
|
|
}
|
|
}
|
|
|
|
// Process phi instructions.
|
|
for (int i = 0; i < block->phis()->length(); ++i) {
|
|
HPhi* phi = block->phis()->at(i);
|
|
InferRange(phi);
|
|
}
|
|
|
|
// Go through all instructions of the current block.
|
|
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
|
|
HValue* value = it.Current();
|
|
InferRange(value);
|
|
|
|
// Compute the bailout-on-minus-zero flag.
|
|
if (value->IsChange()) {
|
|
HChange* instr = HChange::cast(value);
|
|
// Propagate flags for negative zero checks upwards from conversions
|
|
// int32-to-tagged and int32-to-double.
|
|
Representation from = instr->value()->representation();
|
|
DCHECK(from.Equals(instr->from()));
|
|
if (from.IsSmiOrInteger32()) {
|
|
DCHECK(instr->to().IsTagged() ||
|
|
instr->to().IsDouble() ||
|
|
instr->to().IsSmiOrInteger32());
|
|
PropagateMinusZeroChecks(instr->value());
|
|
}
|
|
} else if (value->IsCompareMinusZeroAndBranch()) {
|
|
HCompareMinusZeroAndBranch* instr =
|
|
HCompareMinusZeroAndBranch::cast(value);
|
|
if (instr->value()->representation().IsSmiOrInteger32()) {
|
|
PropagateMinusZeroChecks(instr->value());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Continue analysis in all dominated blocks.
|
|
const ZoneList<HBasicBlock*>* dominated_blocks(block->dominated_blocks());
|
|
if (!dominated_blocks->is_empty()) {
|
|
// Continue with first dominated block, and push the
|
|
// remaining blocks on the stack (in reverse order).
|
|
int last_changed_range = changed_ranges_.length();
|
|
for (int i = dominated_blocks->length() - 1; i > 0; --i) {
|
|
stack.Add(Pending(dominated_blocks->at(i), last_changed_range), zone());
|
|
}
|
|
block = dominated_blocks->at(0);
|
|
} else if (!stack.is_empty()) {
|
|
// Pop next pending block from stack.
|
|
Pending pending = stack.RemoveLast();
|
|
RollBackTo(pending.last_changed_range());
|
|
block = pending.block();
|
|
} else {
|
|
// All blocks done.
|
|
block = NULL;
|
|
}
|
|
}
|
|
|
|
// The ranges are not valid anymore due to SSI vs. SSA!
|
|
PoisonRanges();
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::PoisonRanges() {
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < graph()->blocks()->length(); ++i) {
|
|
HBasicBlock* block = graph()->blocks()->at(i);
|
|
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
|
|
HInstruction* instr = it.Current();
|
|
if (instr->HasRange()) instr->PoisonRange();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::InferControlFlowRange(HCompareNumericAndBranch* test,
|
|
HBasicBlock* dest) {
|
|
DCHECK((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
|
|
if (test->representation().IsSmiOrInteger32()) {
|
|
Token::Value op = test->token();
|
|
if (test->SecondSuccessor() == dest) {
|
|
op = Token::NegateCompareOp(op);
|
|
}
|
|
Token::Value inverted_op = Token::ReverseCompareOp(op);
|
|
UpdateControlFlowRange(op, test->left(), test->right());
|
|
UpdateControlFlowRange(inverted_op, test->right(), test->left());
|
|
}
|
|
}
|
|
|
|
|
|
// We know that value [op] other. Use this information to update the range on
|
|
// value.
|
|
void HRangeAnalysisPhase::UpdateControlFlowRange(Token::Value op,
|
|
HValue* value,
|
|
HValue* other) {
|
|
Range temp_range;
|
|
Range* range = other->range() != NULL ? other->range() : &temp_range;
|
|
Range* new_range = NULL;
|
|
|
|
TraceRange("Control flow range infer %d %s %d\n",
|
|
value->id(),
|
|
Token::Name(op),
|
|
other->id());
|
|
|
|
if (op == Token::EQ || op == Token::EQ_STRICT) {
|
|
// The same range has to apply for value.
|
|
new_range = range->Copy(graph()->zone());
|
|
} else if (op == Token::LT || op == Token::LTE) {
|
|
new_range = range->CopyClearLower(graph()->zone());
|
|
if (op == Token::LT) {
|
|
new_range->AddConstant(-1);
|
|
}
|
|
} else if (op == Token::GT || op == Token::GTE) {
|
|
new_range = range->CopyClearUpper(graph()->zone());
|
|
if (op == Token::GT) {
|
|
new_range->AddConstant(1);
|
|
}
|
|
}
|
|
|
|
if (new_range != NULL && !new_range->IsMostGeneric()) {
|
|
AddRange(value, new_range);
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::InferRange(HValue* value) {
|
|
DCHECK(!value->HasRange());
|
|
if (!value->representation().IsNone()) {
|
|
value->ComputeInitialRange(graph()->zone());
|
|
Range* range = value->range();
|
|
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
|
|
value->id(),
|
|
value->Mnemonic(),
|
|
range->lower(),
|
|
range->upper());
|
|
}
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::RollBackTo(int index) {
|
|
DCHECK(index <= changed_ranges_.length());
|
|
for (int i = index; i < changed_ranges_.length(); ++i) {
|
|
changed_ranges_[i]->RemoveLastAddedRange();
|
|
}
|
|
changed_ranges_.Rewind(index);
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::AddRange(HValue* value, Range* range) {
|
|
Range* original_range = value->range();
|
|
value->AddNewRange(range, graph()->zone());
|
|
changed_ranges_.Add(value, zone());
|
|
Range* new_range = value->range();
|
|
TraceRange("Updated range of %d set to [%d,%d]\n",
|
|
value->id(),
|
|
new_range->lower(),
|
|
new_range->upper());
|
|
if (original_range != NULL) {
|
|
TraceRange("Original range was [%d,%d]\n",
|
|
original_range->lower(),
|
|
original_range->upper());
|
|
}
|
|
TraceRange("New information was [%d,%d]\n",
|
|
range->lower(),
|
|
range->upper());
|
|
}
|
|
|
|
|
|
void HRangeAnalysisPhase::PropagateMinusZeroChecks(HValue* value) {
|
|
DCHECK(worklist_.is_empty());
|
|
DCHECK(in_worklist_.IsEmpty());
|
|
|
|
AddToWorklist(value);
|
|
while (!worklist_.is_empty()) {
|
|
value = worklist_.RemoveLast();
|
|
|
|
if (value->IsPhi()) {
|
|
// For phis, we must propagate the check to all of its inputs.
|
|
HPhi* phi = HPhi::cast(value);
|
|
for (int i = 0; i < phi->OperandCount(); ++i) {
|
|
AddToWorklist(phi->OperandAt(i));
|
|
}
|
|
} else if (value->IsUnaryMathOperation()) {
|
|
HUnaryMathOperation* instr = HUnaryMathOperation::cast(value);
|
|
if (instr->representation().IsSmiOrInteger32() &&
|
|
!instr->value()->representation().Equals(instr->representation())) {
|
|
if (instr->value()->range() == NULL ||
|
|
instr->value()->range()->CanBeMinusZero()) {
|
|
instr->SetFlag(HValue::kBailoutOnMinusZero);
|
|
}
|
|
}
|
|
if (instr->RequiredInputRepresentation(0).IsSmiOrInteger32() &&
|
|
instr->representation().Equals(
|
|
instr->RequiredInputRepresentation(0))) {
|
|
AddToWorklist(instr->value());
|
|
}
|
|
} else if (value->IsChange()) {
|
|
HChange* instr = HChange::cast(value);
|
|
if (!instr->from().IsSmiOrInteger32() &&
|
|
!instr->CanTruncateToInt32() &&
|
|
(instr->value()->range() == NULL ||
|
|
instr->value()->range()->CanBeMinusZero())) {
|
|
instr->SetFlag(HValue::kBailoutOnMinusZero);
|
|
}
|
|
} else if (value->IsForceRepresentation()) {
|
|
HForceRepresentation* instr = HForceRepresentation::cast(value);
|
|
AddToWorklist(instr->value());
|
|
} else if (value->IsMod()) {
|
|
HMod* instr = HMod::cast(value);
|
|
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
|
|
instr->SetFlag(HValue::kBailoutOnMinusZero);
|
|
AddToWorklist(instr->left());
|
|
}
|
|
} else if (value->IsDiv() || value->IsMul()) {
|
|
HBinaryOperation* instr = HBinaryOperation::cast(value);
|
|
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
|
|
instr->SetFlag(HValue::kBailoutOnMinusZero);
|
|
}
|
|
AddToWorklist(instr->right());
|
|
AddToWorklist(instr->left());
|
|
} else if (value->IsMathFloorOfDiv()) {
|
|
HMathFloorOfDiv* instr = HMathFloorOfDiv::cast(value);
|
|
instr->SetFlag(HValue::kBailoutOnMinusZero);
|
|
} else if (value->IsAdd() || value->IsSub()) {
|
|
HBinaryOperation* instr = HBinaryOperation::cast(value);
|
|
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
|
|
// Propagate to the left argument. If the left argument cannot be -0,
|
|
// then the result of the add/sub operation cannot be either.
|
|
AddToWorklist(instr->left());
|
|
}
|
|
} else if (value->IsMathMinMax()) {
|
|
HMathMinMax* instr = HMathMinMax::cast(value);
|
|
AddToWorklist(instr->right());
|
|
AddToWorklist(instr->left());
|
|
}
|
|
}
|
|
|
|
in_worklist_.Clear();
|
|
DCHECK(in_worklist_.IsEmpty());
|
|
DCHECK(worklist_.is_empty());
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|