v8/src/mark-compact.cc
ager@chromium.org 89278730bb Make the code flushing candidate field explicit in code objects.
This way it is counted and the rounding of the size will just work
without extra tweaking if you want to add an extra field to code
objects.

R=vegorov@chromium.org
BUG=
TEST=

Review URL: http://codereview.chromium.org/6969037

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7872 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-05-12 13:13:00 +00:00

3139 lines
105 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "compilation-cache.h"
#include "execution.h"
#include "heap-profiler.h"
#include "gdb-jit.h"
#include "global-handles.h"
#include "ic-inl.h"
#include "liveobjectlist-inl.h"
#include "mark-compact.h"
#include "objects-visiting.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// MarkCompactCollector
MarkCompactCollector::MarkCompactCollector() : // NOLINT
#ifdef DEBUG
state_(IDLE),
#endif
force_compaction_(false),
compacting_collection_(false),
compact_on_next_gc_(false),
previous_marked_count_(0),
tracer_(NULL),
#ifdef DEBUG
live_young_objects_size_(0),
live_old_pointer_objects_size_(0),
live_old_data_objects_size_(0),
live_code_objects_size_(0),
live_map_objects_size_(0),
live_cell_objects_size_(0),
live_lo_objects_size_(0),
live_bytes_(0),
#endif
heap_(NULL),
code_flusher_(NULL) { }
void MarkCompactCollector::CollectGarbage() {
// Make sure that Prepare() has been called. The individual steps below will
// update the state as they proceed.
ASSERT(state_ == PREPARE_GC);
// Prepare has selected whether to compact the old generation or not.
// Tell the tracer.
if (IsCompacting()) tracer_->set_is_compacting();
MarkLiveObjects();
if (FLAG_collect_maps) ClearNonLiveTransitions();
SweepLargeObjectSpace();
if (IsCompacting()) {
GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_COMPACT);
EncodeForwardingAddresses();
heap()->MarkMapPointersAsEncoded(true);
UpdatePointers();
heap()->MarkMapPointersAsEncoded(false);
heap()->isolate()->pc_to_code_cache()->Flush();
RelocateObjects();
} else {
SweepSpaces();
heap()->isolate()->pc_to_code_cache()->Flush();
}
Finish();
// Save the count of marked objects remaining after the collection and
// null out the GC tracer.
previous_marked_count_ = tracer_->marked_count();
ASSERT(previous_marked_count_ == 0);
tracer_ = NULL;
}
void MarkCompactCollector::Prepare(GCTracer* tracer) {
// Rather than passing the tracer around we stash it in a static member
// variable.
tracer_ = tracer;
#ifdef DEBUG
ASSERT(state_ == IDLE);
state_ = PREPARE_GC;
#endif
ASSERT(!FLAG_always_compact || !FLAG_never_compact);
compacting_collection_ =
FLAG_always_compact || force_compaction_ || compact_on_next_gc_;
compact_on_next_gc_ = false;
if (FLAG_never_compact) compacting_collection_ = false;
if (!heap()->map_space()->MapPointersEncodable())
compacting_collection_ = false;
if (FLAG_collect_maps) CreateBackPointers();
#ifdef ENABLE_GDB_JIT_INTERFACE
if (FLAG_gdbjit) {
// If GDBJIT interface is active disable compaction.
compacting_collection_ = false;
}
#endif
PagedSpaces spaces;
for (PagedSpace* space = spaces.next();
space != NULL; space = spaces.next()) {
space->PrepareForMarkCompact(compacting_collection_);
}
#ifdef DEBUG
live_bytes_ = 0;
live_young_objects_size_ = 0;
live_old_pointer_objects_size_ = 0;
live_old_data_objects_size_ = 0;
live_code_objects_size_ = 0;
live_map_objects_size_ = 0;
live_cell_objects_size_ = 0;
live_lo_objects_size_ = 0;
#endif
}
void MarkCompactCollector::Finish() {
#ifdef DEBUG
ASSERT(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
state_ = IDLE;
#endif
// The stub cache is not traversed during GC; clear the cache to
// force lazy re-initialization of it. This must be done after the
// GC, because it relies on the new address of certain old space
// objects (empty string, illegal builtin).
heap()->isolate()->stub_cache()->Clear();
heap()->external_string_table_.CleanUp();
// If we've just compacted old space there's no reason to check the
// fragmentation limit. Just return.
if (HasCompacted()) return;
// We compact the old generation on the next GC if it has gotten too
// fragmented (ie, we could recover an expected amount of space by
// reclaiming the waste and free list blocks).
static const int kFragmentationLimit = 15; // Percent.
static const int kFragmentationAllowed = 1 * MB; // Absolute.
intptr_t old_gen_recoverable = 0;
intptr_t old_gen_used = 0;
OldSpaces spaces;
for (OldSpace* space = spaces.next(); space != NULL; space = spaces.next()) {
old_gen_recoverable += space->Waste() + space->AvailableFree();
old_gen_used += space->Size();
}
int old_gen_fragmentation =
static_cast<int>((old_gen_recoverable * 100.0) / old_gen_used);
if (old_gen_fragmentation > kFragmentationLimit &&
old_gen_recoverable > kFragmentationAllowed) {
compact_on_next_gc_ = true;
}
}
// -------------------------------------------------------------------------
// Phase 1: tracing and marking live objects.
// before: all objects are in normal state.
// after: a live object's map pointer is marked as '00'.
// Marking all live objects in the heap as part of mark-sweep or mark-compact
// collection. Before marking, all objects are in their normal state. After
// marking, live objects' map pointers are marked indicating that the object
// has been found reachable.
//
// The marking algorithm is a (mostly) depth-first (because of possible stack
// overflow) traversal of the graph of objects reachable from the roots. It
// uses an explicit stack of pointers rather than recursion. The young
// generation's inactive ('from') space is used as a marking stack. The
// objects in the marking stack are the ones that have been reached and marked
// but their children have not yet been visited.
//
// The marking stack can overflow during traversal. In that case, we set an
// overflow flag. When the overflow flag is set, we continue marking objects
// reachable from the objects on the marking stack, but no longer push them on
// the marking stack. Instead, we mark them as both marked and overflowed.
// When the stack is in the overflowed state, objects marked as overflowed
// have been reached and marked but their children have not been visited yet.
// After emptying the marking stack, we clear the overflow flag and traverse
// the heap looking for objects marked as overflowed, push them on the stack,
// and continue with marking. This process repeats until all reachable
// objects have been marked.
class CodeFlusher {
public:
explicit CodeFlusher(Isolate* isolate)
: isolate_(isolate),
jsfunction_candidates_head_(NULL),
shared_function_info_candidates_head_(NULL) {}
void AddCandidate(SharedFunctionInfo* shared_info) {
SetNextCandidate(shared_info, shared_function_info_candidates_head_);
shared_function_info_candidates_head_ = shared_info;
}
void AddCandidate(JSFunction* function) {
ASSERT(function->unchecked_code() ==
function->unchecked_shared()->unchecked_code());
SetNextCandidate(function, jsfunction_candidates_head_);
jsfunction_candidates_head_ = function;
}
void ProcessCandidates() {
ProcessSharedFunctionInfoCandidates();
ProcessJSFunctionCandidates();
}
private:
void ProcessJSFunctionCandidates() {
Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile);
JSFunction* candidate = jsfunction_candidates_head_;
JSFunction* next_candidate;
while (candidate != NULL) {
next_candidate = GetNextCandidate(candidate);
SharedFunctionInfo* shared = candidate->unchecked_shared();
Code* code = shared->unchecked_code();
if (!code->IsMarked()) {
shared->set_code(lazy_compile);
candidate->set_code(lazy_compile);
} else {
candidate->set_code(shared->unchecked_code());
}
candidate = next_candidate;
}
jsfunction_candidates_head_ = NULL;
}
void ProcessSharedFunctionInfoCandidates() {
Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile);
SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
SharedFunctionInfo* next_candidate;
while (candidate != NULL) {
next_candidate = GetNextCandidate(candidate);
SetNextCandidate(candidate, NULL);
Code* code = candidate->unchecked_code();
if (!code->IsMarked()) {
candidate->set_code(lazy_compile);
}
candidate = next_candidate;
}
shared_function_info_candidates_head_ = NULL;
}
static JSFunction** GetNextCandidateField(JSFunction* candidate) {
return reinterpret_cast<JSFunction**>(
candidate->address() + JSFunction::kCodeEntryOffset);
}
static JSFunction* GetNextCandidate(JSFunction* candidate) {
return *GetNextCandidateField(candidate);
}
static void SetNextCandidate(JSFunction* candidate,
JSFunction* next_candidate) {
*GetNextCandidateField(candidate) = next_candidate;
}
static SharedFunctionInfo** GetNextCandidateField(
SharedFunctionInfo* candidate) {
Code* code = candidate->unchecked_code();
return reinterpret_cast<SharedFunctionInfo**>(
code->address() + Code::kNextCodeFlushingCandidateOffset);
}
static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
return *GetNextCandidateField(candidate);
}
static void SetNextCandidate(SharedFunctionInfo* candidate,
SharedFunctionInfo* next_candidate) {
*GetNextCandidateField(candidate) = next_candidate;
}
Isolate* isolate_;
JSFunction* jsfunction_candidates_head_;
SharedFunctionInfo* shared_function_info_candidates_head_;
DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
};
MarkCompactCollector::~MarkCompactCollector() {
if (code_flusher_ != NULL) {
delete code_flusher_;
code_flusher_ = NULL;
}
}
static inline HeapObject* ShortCircuitConsString(Object** p) {
// Optimization: If the heap object pointed to by p is a non-symbol
// cons string whose right substring is HEAP->empty_string, update
// it in place to its left substring. Return the updated value.
//
// Here we assume that if we change *p, we replace it with a heap object
// (ie, the left substring of a cons string is always a heap object).
//
// The check performed is:
// object->IsConsString() && !object->IsSymbol() &&
// (ConsString::cast(object)->second() == HEAP->empty_string())
// except the maps for the object and its possible substrings might be
// marked.
HeapObject* object = HeapObject::cast(*p);
MapWord map_word = object->map_word();
map_word.ClearMark();
InstanceType type = map_word.ToMap()->instance_type();
if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object;
Object* second = reinterpret_cast<ConsString*>(object)->unchecked_second();
Heap* heap = map_word.ToMap()->heap();
if (second != heap->raw_unchecked_empty_string()) {
return object;
}
// Since we don't have the object's start, it is impossible to update the
// page dirty marks. Therefore, we only replace the string with its left
// substring when page dirty marks do not change.
Object* first = reinterpret_cast<ConsString*>(object)->unchecked_first();
if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
*p = first;
return HeapObject::cast(first);
}
class StaticMarkingVisitor : public StaticVisitorBase {
public:
static inline void IterateBody(Map* map, HeapObject* obj) {
table_.GetVisitor(map)(map, obj);
}
static void Initialize() {
table_.Register(kVisitShortcutCandidate,
&FixedBodyVisitor<StaticMarkingVisitor,
ConsString::BodyDescriptor,
void>::Visit);
table_.Register(kVisitConsString,
&FixedBodyVisitor<StaticMarkingVisitor,
ConsString::BodyDescriptor,
void>::Visit);
table_.Register(kVisitFixedArray,
&FlexibleBodyVisitor<StaticMarkingVisitor,
FixedArray::BodyDescriptor,
void>::Visit);
table_.Register(kVisitGlobalContext,
&FixedBodyVisitor<StaticMarkingVisitor,
Context::MarkCompactBodyDescriptor,
void>::Visit);
table_.Register(kVisitByteArray, &DataObjectVisitor::Visit);
table_.Register(kVisitSeqAsciiString, &DataObjectVisitor::Visit);
table_.Register(kVisitSeqTwoByteString, &DataObjectVisitor::Visit);
table_.Register(kVisitOddball,
&FixedBodyVisitor<StaticMarkingVisitor,
Oddball::BodyDescriptor,
void>::Visit);
table_.Register(kVisitMap,
&FixedBodyVisitor<StaticMarkingVisitor,
Map::BodyDescriptor,
void>::Visit);
table_.Register(kVisitCode, &VisitCode);
table_.Register(kVisitSharedFunctionInfo,
&VisitSharedFunctionInfoAndFlushCode);
table_.Register(kVisitJSFunction,
&VisitJSFunctionAndFlushCode);
table_.Register(kVisitPropertyCell,
&FixedBodyVisitor<StaticMarkingVisitor,
JSGlobalPropertyCell::BodyDescriptor,
void>::Visit);
table_.RegisterSpecializations<DataObjectVisitor,
kVisitDataObject,
kVisitDataObjectGeneric>();
table_.RegisterSpecializations<JSObjectVisitor,
kVisitJSObject,
kVisitJSObjectGeneric>();
table_.RegisterSpecializations<StructObjectVisitor,
kVisitStruct,
kVisitStructGeneric>();
}
INLINE(static void VisitPointer(Heap* heap, Object** p)) {
MarkObjectByPointer(heap, p);
}
INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
// Mark all objects pointed to in [start, end).
const int kMinRangeForMarkingRecursion = 64;
if (end - start >= kMinRangeForMarkingRecursion) {
if (VisitUnmarkedObjects(heap, start, end)) return;
// We are close to a stack overflow, so just mark the objects.
}
for (Object** p = start; p < end; p++) MarkObjectByPointer(heap, p);
}
static inline void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
Code* code = Code::GetCodeFromTargetAddress(rinfo->target_address());
if (FLAG_cleanup_ics_at_gc && code->is_inline_cache_stub()) {
IC::Clear(rinfo->pc());
// Please note targets for cleared inline cached do not have to be
// marked since they are contained in HEAP->non_monomorphic_cache().
} else {
heap->mark_compact_collector()->MarkObject(code);
}
}
static void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) {
ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL);
Object* cell = rinfo->target_cell();
Object* old_cell = cell;
VisitPointer(heap, &cell);
if (cell != old_cell) {
rinfo->set_target_cell(reinterpret_cast<JSGlobalPropertyCell*>(cell));
}
}
static inline void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) {
ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
rinfo->IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
rinfo->IsPatchedDebugBreakSlotSequence()));
HeapObject* code = Code::GetCodeFromTargetAddress(rinfo->call_address());
heap->mark_compact_collector()->MarkObject(code);
}
// Mark object pointed to by p.
INLINE(static void MarkObjectByPointer(Heap* heap, Object** p)) {
if (!(*p)->IsHeapObject()) return;
HeapObject* object = ShortCircuitConsString(p);
if (!object->IsMarked()) {
heap->mark_compact_collector()->MarkUnmarkedObject(object);
}
}
// Visit an unmarked object.
INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
HeapObject* obj)) {
#ifdef DEBUG
ASSERT(Isolate::Current()->heap()->Contains(obj));
ASSERT(!obj->IsMarked());
#endif
Map* map = obj->map();
collector->SetMark(obj);
// Mark the map pointer and the body.
if (!map->IsMarked()) collector->MarkUnmarkedObject(map);
IterateBody(map, obj);
}
// Visit all unmarked objects pointed to by [start, end).
// Returns false if the operation fails (lack of stack space).
static inline bool VisitUnmarkedObjects(Heap* heap,
Object** start,
Object** end) {
// Return false is we are close to the stack limit.
StackLimitCheck check(heap->isolate());
if (check.HasOverflowed()) return false;
MarkCompactCollector* collector = heap->mark_compact_collector();
// Visit the unmarked objects.
for (Object** p = start; p < end; p++) {
if (!(*p)->IsHeapObject()) continue;
HeapObject* obj = HeapObject::cast(*p);
if (obj->IsMarked()) continue;
VisitUnmarkedObject(collector, obj);
}
return true;
}
static inline void VisitExternalReference(Address* p) { }
static inline void VisitRuntimeEntry(RelocInfo* rinfo) { }
private:
class DataObjectVisitor {
public:
template<int size>
static void VisitSpecialized(Map* map, HeapObject* object) {
}
static void Visit(Map* map, HeapObject* object) {
}
};
typedef FlexibleBodyVisitor<StaticMarkingVisitor,
JSObject::BodyDescriptor,
void> JSObjectVisitor;
typedef FlexibleBodyVisitor<StaticMarkingVisitor,
StructBodyDescriptor,
void> StructObjectVisitor;
static void VisitCode(Map* map, HeapObject* object) {
reinterpret_cast<Code*>(object)->CodeIterateBody<StaticMarkingVisitor>(
map->heap());
}
// Code flushing support.
// How many collections newly compiled code object will survive before being
// flushed.
static const int kCodeAgeThreshold = 5;
inline static bool HasSourceCode(Heap* heap, SharedFunctionInfo* info) {
Object* undefined = heap->raw_unchecked_undefined_value();
return (info->script() != undefined) &&
(reinterpret_cast<Script*>(info->script())->source() != undefined);
}
inline static bool IsCompiled(JSFunction* function) {
return function->unchecked_code() !=
function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
}
inline static bool IsCompiled(SharedFunctionInfo* function) {
return function->unchecked_code() !=
function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
}
inline static bool IsFlushable(Heap* heap, JSFunction* function) {
SharedFunctionInfo* shared_info = function->unchecked_shared();
// Code is either on stack, in compilation cache or referenced
// by optimized version of function.
if (function->unchecked_code()->IsMarked()) {
shared_info->set_code_age(0);
return false;
}
// We do not flush code for optimized functions.
if (function->code() != shared_info->unchecked_code()) {
return false;
}
return IsFlushable(heap, shared_info);
}
inline static bool IsFlushable(Heap* heap, SharedFunctionInfo* shared_info) {
// Code is either on stack, in compilation cache or referenced
// by optimized version of function.
if (shared_info->unchecked_code()->IsMarked()) {
shared_info->set_code_age(0);
return false;
}
// The function must be compiled and have the source code available,
// to be able to recompile it in case we need the function again.
if (!(shared_info->is_compiled() && HasSourceCode(heap, shared_info))) {
return false;
}
// We never flush code for Api functions.
Object* function_data = shared_info->function_data();
if (function_data->IsHeapObject() &&
(SafeMap(function_data)->instance_type() ==
FUNCTION_TEMPLATE_INFO_TYPE)) {
return false;
}
// Only flush code for functions.
if (shared_info->code()->kind() != Code::FUNCTION) return false;
// Function must be lazy compilable.
if (!shared_info->allows_lazy_compilation()) return false;
// If this is a full script wrapped in a function we do no flush the code.
if (shared_info->is_toplevel()) return false;
// Age this shared function info.
if (shared_info->code_age() < kCodeAgeThreshold) {
shared_info->set_code_age(shared_info->code_age() + 1);
return false;
}
return true;
}
static bool FlushCodeForFunction(Heap* heap, JSFunction* function) {
if (!IsFlushable(heap, function)) return false;
// This function's code looks flushable. But we have to postpone the
// decision until we see all functions that point to the same
// SharedFunctionInfo because some of them might be optimized.
// That would make the nonoptimized version of the code nonflushable,
// because it is required for bailing out from optimized code.
heap->mark_compact_collector()->code_flusher()->AddCandidate(function);
return true;
}
static inline Map* SafeMap(Object* obj) {
MapWord map_word = HeapObject::cast(obj)->map_word();
map_word.ClearMark();
map_word.ClearOverflow();
return map_word.ToMap();
}
static inline bool IsJSBuiltinsObject(Object* obj) {
return obj->IsHeapObject() &&
(SafeMap(obj)->instance_type() == JS_BUILTINS_OBJECT_TYPE);
}
static inline bool IsValidNotBuiltinContext(Object* ctx) {
if (!ctx->IsHeapObject()) return false;
Map* map = SafeMap(ctx);
Heap* heap = map->heap();
if (!(map == heap->raw_unchecked_context_map() ||
map == heap->raw_unchecked_catch_context_map() ||
map == heap->raw_unchecked_global_context_map())) {
return false;
}
Context* context = reinterpret_cast<Context*>(ctx);
if (IsJSBuiltinsObject(context->global())) {
return false;
}
return true;
}
static void VisitSharedFunctionInfoGeneric(Map* map, HeapObject* object) {
SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(object);
if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap();
FixedBodyVisitor<StaticMarkingVisitor,
SharedFunctionInfo::BodyDescriptor,
void>::Visit(map, object);
}
static void VisitSharedFunctionInfoAndFlushCode(Map* map,
HeapObject* object) {
MarkCompactCollector* collector = map->heap()->mark_compact_collector();
if (!collector->is_code_flushing_enabled()) {
VisitSharedFunctionInfoGeneric(map, object);
return;
}
VisitSharedFunctionInfoAndFlushCodeGeneric(map, object, false);
}
static void VisitSharedFunctionInfoAndFlushCodeGeneric(
Map* map, HeapObject* object, bool known_flush_code_candidate) {
Heap* heap = map->heap();
SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(object);
if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap();
if (!known_flush_code_candidate) {
known_flush_code_candidate = IsFlushable(heap, shared);
if (known_flush_code_candidate) {
heap->mark_compact_collector()->code_flusher()->AddCandidate(shared);
}
}
VisitSharedFunctionInfoFields(heap, object, known_flush_code_candidate);
}
static void VisitCodeEntry(Heap* heap, Address entry_address) {
Object* code = Code::GetObjectFromEntryAddress(entry_address);
Object* old_code = code;
VisitPointer(heap, &code);
if (code != old_code) {
Memory::Address_at(entry_address) =
reinterpret_cast<Code*>(code)->entry();
}
}
static void VisitJSFunctionAndFlushCode(Map* map, HeapObject* object) {
Heap* heap = map->heap();
MarkCompactCollector* collector = heap->mark_compact_collector();
if (!collector->is_code_flushing_enabled()) {
VisitJSFunction(map, object);
return;
}
JSFunction* jsfunction = reinterpret_cast<JSFunction*>(object);
// The function must have a valid context and not be a builtin.
bool flush_code_candidate = false;
if (IsValidNotBuiltinContext(jsfunction->unchecked_context())) {
flush_code_candidate = FlushCodeForFunction(heap, jsfunction);
}
if (!flush_code_candidate) {
collector->MarkObject(jsfunction->unchecked_shared()->unchecked_code());
if (jsfunction->unchecked_code()->kind() == Code::OPTIMIZED_FUNCTION) {
// For optimized functions we should retain both non-optimized version
// of it's code and non-optimized version of all inlined functions.
// This is required to support bailing out from inlined code.
DeoptimizationInputData* data =
reinterpret_cast<DeoptimizationInputData*>(
jsfunction->unchecked_code()->unchecked_deoptimization_data());
FixedArray* literals = data->UncheckedLiteralArray();
for (int i = 0, count = data->InlinedFunctionCount()->value();
i < count;
i++) {
JSFunction* inlined = reinterpret_cast<JSFunction*>(literals->get(i));
collector->MarkObject(inlined->unchecked_shared()->unchecked_code());
}
}
}
VisitJSFunctionFields(map,
reinterpret_cast<JSFunction*>(object),
flush_code_candidate);
}
static void VisitJSFunction(Map* map, HeapObject* object) {
VisitJSFunctionFields(map,
reinterpret_cast<JSFunction*>(object),
false);
}
#define SLOT_ADDR(obj, offset) \
reinterpret_cast<Object**>((obj)->address() + offset)
static inline void VisitJSFunctionFields(Map* map,
JSFunction* object,
bool flush_code_candidate) {
Heap* heap = map->heap();
MarkCompactCollector* collector = heap->mark_compact_collector();
VisitPointers(heap,
SLOT_ADDR(object, JSFunction::kPropertiesOffset),
SLOT_ADDR(object, JSFunction::kCodeEntryOffset));
if (!flush_code_candidate) {
VisitCodeEntry(heap, object->address() + JSFunction::kCodeEntryOffset);
} else {
// Don't visit code object.
// Visit shared function info to avoid double checking of it's
// flushability.
SharedFunctionInfo* shared_info = object->unchecked_shared();
if (!shared_info->IsMarked()) {
Map* shared_info_map = shared_info->map();
collector->SetMark(shared_info);
collector->MarkObject(shared_info_map);
VisitSharedFunctionInfoAndFlushCodeGeneric(shared_info_map,
shared_info,
true);
}
}
VisitPointers(heap,
SLOT_ADDR(object,
JSFunction::kCodeEntryOffset + kPointerSize),
SLOT_ADDR(object, JSFunction::kNonWeakFieldsEndOffset));
// Don't visit the next function list field as it is a weak reference.
}
static void VisitSharedFunctionInfoFields(Heap* heap,
HeapObject* object,
bool flush_code_candidate) {
VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kNameOffset));
if (!flush_code_candidate) {
VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kCodeOffset));
}
VisitPointers(heap,
SLOT_ADDR(object, SharedFunctionInfo::kScopeInfoOffset),
SLOT_ADDR(object, SharedFunctionInfo::kSize));
}
#undef SLOT_ADDR
typedef void (*Callback)(Map* map, HeapObject* object);
static VisitorDispatchTable<Callback> table_;
};
VisitorDispatchTable<StaticMarkingVisitor::Callback>
StaticMarkingVisitor::table_;
class MarkingVisitor : public ObjectVisitor {
public:
explicit MarkingVisitor(Heap* heap) : heap_(heap) { }
void VisitPointer(Object** p) {
StaticMarkingVisitor::VisitPointer(heap_, p);
}
void VisitPointers(Object** start, Object** end) {
StaticMarkingVisitor::VisitPointers(heap_, start, end);
}
void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) {
StaticMarkingVisitor::VisitCodeTarget(heap, rinfo);
}
void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) {
StaticMarkingVisitor::VisitGlobalPropertyCell(heap, rinfo);
}
void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) {
StaticMarkingVisitor::VisitDebugTarget(heap, rinfo);
}
private:
Heap* heap_;
};
class CodeMarkingVisitor : public ThreadVisitor {
public:
explicit CodeMarkingVisitor(MarkCompactCollector* collector)
: collector_(collector) {}
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
collector_->MarkObject(it.frame()->unchecked_code());
}
}
private:
MarkCompactCollector* collector_;
};
class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
public:
explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
: collector_(collector) {}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) VisitPointer(p);
}
void VisitPointer(Object** slot) {
Object* obj = *slot;
if (obj->IsSharedFunctionInfo()) {
SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
collector_->MarkObject(shared->unchecked_code());
collector_->MarkObject(shared);
}
}
private:
MarkCompactCollector* collector_;
};
void MarkCompactCollector::PrepareForCodeFlushing() {
ASSERT(heap() == Isolate::Current()->heap());
if (!FLAG_flush_code) {
EnableCodeFlushing(false);
return;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
if (heap()->isolate()->debug()->IsLoaded() ||
heap()->isolate()->debug()->has_break_points()) {
EnableCodeFlushing(false);
return;
}
#endif
EnableCodeFlushing(true);
// Ensure that empty descriptor array is marked. Method MarkDescriptorArray
// relies on it being marked before any other descriptor array.
MarkObject(heap()->raw_unchecked_empty_descriptor_array());
// Make sure we are not referencing the code from the stack.
ASSERT(this == heap()->mark_compact_collector());
for (StackFrameIterator it; !it.done(); it.Advance()) {
MarkObject(it.frame()->unchecked_code());
}
// Iterate the archived stacks in all threads to check if
// the code is referenced.
CodeMarkingVisitor code_marking_visitor(this);
heap()->isolate()->thread_manager()->IterateArchivedThreads(
&code_marking_visitor);
SharedFunctionInfoMarkingVisitor visitor(this);
heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
ProcessMarkingStack();
}
// Visitor class for marking heap roots.
class RootMarkingVisitor : public ObjectVisitor {
public:
explicit RootMarkingVisitor(Heap* heap)
: collector_(heap->mark_compact_collector()) { }
void VisitPointer(Object** p) {
MarkObjectByPointer(p);
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
}
private:
void MarkObjectByPointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
// Replace flat cons strings in place.
HeapObject* object = ShortCircuitConsString(p);
if (object->IsMarked()) return;
Map* map = object->map();
// Mark the object.
collector_->SetMark(object);
// Mark the map pointer and body, and push them on the marking stack.
collector_->MarkObject(map);
StaticMarkingVisitor::IterateBody(map, object);
// Mark all the objects reachable from the map and body. May leave
// overflowed objects in the heap.
collector_->EmptyMarkingStack();
}
MarkCompactCollector* collector_;
};
// Helper class for pruning the symbol table.
class SymbolTableCleaner : public ObjectVisitor {
public:
explicit SymbolTableCleaner(Heap* heap)
: heap_(heap), pointers_removed_(0) { }
virtual void VisitPointers(Object** start, Object** end) {
// Visit all HeapObject pointers in [start, end).
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) {
// Check if the symbol being pruned is an external symbol. We need to
// delete the associated external data as this symbol is going away.
// Since no objects have yet been moved we can safely access the map of
// the object.
if ((*p)->IsExternalString()) {
heap_->FinalizeExternalString(String::cast(*p));
}
// Set the entry to null_value (as deleted).
*p = heap_->raw_unchecked_null_value();
pointers_removed_++;
}
}
}
int PointersRemoved() {
return pointers_removed_;
}
private:
Heap* heap_;
int pointers_removed_;
};
// Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
// are retained.
class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
public:
virtual Object* RetainAs(Object* object) {
MapWord first_word = HeapObject::cast(object)->map_word();
if (first_word.IsMarked()) {
return object;
} else {
return NULL;
}
}
};
void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) {
ASSERT(!object->IsMarked());
ASSERT(HEAP->Contains(object));
if (object->IsMap()) {
Map* map = Map::cast(object);
if (FLAG_cleanup_caches_in_maps_at_gc) {
map->ClearCodeCache(heap());
}
SetMark(map);
if (FLAG_collect_maps &&
map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
map->instance_type() <= JS_FUNCTION_TYPE) {
MarkMapContents(map);
} else {
marking_stack_.Push(map);
}
} else {
SetMark(object);
marking_stack_.Push(object);
}
}
void MarkCompactCollector::MarkMapContents(Map* map) {
// Mark prototype transitions array but don't push it into marking stack.
// This will make references from it weak. We will clean dead prototype
// transitions in ClearNonLiveTransitions.
FixedArray* prototype_transitions = map->unchecked_prototype_transitions();
if (!prototype_transitions->IsMarked()) SetMark(prototype_transitions);
MarkDescriptorArray(reinterpret_cast<DescriptorArray*>(
*HeapObject::RawField(map, Map::kInstanceDescriptorsOffset)));
// Mark the Object* fields of the Map.
// Since the descriptor array has been marked already, it is fine
// that one of these fields contains a pointer to it.
Object** start_slot = HeapObject::RawField(map,
Map::kPointerFieldsBeginOffset);
Object** end_slot = HeapObject::RawField(map, Map::kPointerFieldsEndOffset);
StaticMarkingVisitor::VisitPointers(map->heap(), start_slot, end_slot);
}
void MarkCompactCollector::MarkDescriptorArray(
DescriptorArray* descriptors) {
if (descriptors->IsMarked()) return;
// Empty descriptor array is marked as a root before any maps are marked.
ASSERT(descriptors != HEAP->raw_unchecked_empty_descriptor_array());
SetMark(descriptors);
FixedArray* contents = reinterpret_cast<FixedArray*>(
descriptors->get(DescriptorArray::kContentArrayIndex));
ASSERT(contents->IsHeapObject());
ASSERT(!contents->IsMarked());
ASSERT(contents->IsFixedArray());
ASSERT(contents->length() >= 2);
SetMark(contents);
// Contents contains (value, details) pairs. If the details say that the type
// of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION,
// EXTERNAL_ARRAY_TRANSITION or NULL_DESCRIPTOR, we don't mark the value as
// live. Only for MAP_TRANSITION, EXTERNAL_ARRAY_TRANSITION and
// CONSTANT_TRANSITION is the value an Object* (a Map*).
for (int i = 0; i < contents->length(); i += 2) {
// If the pair (value, details) at index i, i+1 is not
// a transition or null descriptor, mark the value.
PropertyDetails details(Smi::cast(contents->get(i + 1)));
if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) {
HeapObject* object = reinterpret_cast<HeapObject*>(contents->get(i));
if (object->IsHeapObject() && !object->IsMarked()) {
SetMark(object);
marking_stack_.Push(object);
}
}
}
// The DescriptorArray descriptors contains a pointer to its contents array,
// but the contents array is already marked.
marking_stack_.Push(descriptors);
}
void MarkCompactCollector::CreateBackPointers() {
HeapObjectIterator iterator(heap()->map_space());
for (HeapObject* next_object = iterator.next();
next_object != NULL; next_object = iterator.next()) {
if (next_object->IsMap()) { // Could also be ByteArray on free list.
Map* map = Map::cast(next_object);
if (map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
map->instance_type() <= JS_FUNCTION_TYPE) {
map->CreateBackPointers();
} else {
ASSERT(map->instance_descriptors() == heap()->empty_descriptor_array());
}
}
}
}
static int OverflowObjectSize(HeapObject* obj) {
// Recover the normal map pointer, it might be marked as live and
// overflowed.
MapWord map_word = obj->map_word();
map_word.ClearMark();
map_word.ClearOverflow();
return obj->SizeFromMap(map_word.ToMap());
}
class OverflowedObjectsScanner : public AllStatic {
public:
// Fill the marking stack with overflowed objects returned by the given
// iterator. Stop when the marking stack is filled or the end of the space
// is reached, whichever comes first.
template<class T>
static inline void ScanOverflowedObjects(MarkCompactCollector* collector,
T* it) {
// The caller should ensure that the marking stack is initially not full,
// so that we don't waste effort pointlessly scanning for objects.
ASSERT(!collector->marking_stack_.is_full());
for (HeapObject* object = it->next(); object != NULL; object = it->next()) {
if (object->IsOverflowed()) {
object->ClearOverflow();
ASSERT(object->IsMarked());
ASSERT(HEAP->Contains(object));
collector->marking_stack_.Push(object);
if (collector->marking_stack_.is_full()) return;
}
}
}
};
bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
return (*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked();
}
void MarkCompactCollector::MarkSymbolTable() {
SymbolTable* symbol_table = heap()->raw_unchecked_symbol_table();
// Mark the symbol table itself.
SetMark(symbol_table);
// Explicitly mark the prefix.
MarkingVisitor marker(heap());
symbol_table->IteratePrefix(&marker);
ProcessMarkingStack();
}
void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
// Mark the heap roots including global variables, stack variables,
// etc., and all objects reachable from them.
heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
// Handle the symbol table specially.
MarkSymbolTable();
// There may be overflowed objects in the heap. Visit them now.
while (marking_stack_.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack();
}
}
void MarkCompactCollector::MarkObjectGroups() {
List<ObjectGroup*>* object_groups =
heap()->isolate()->global_handles()->object_groups();
int last = 0;
for (int i = 0; i < object_groups->length(); i++) {
ObjectGroup* entry = object_groups->at(i);
ASSERT(entry != NULL);
Object*** objects = entry->objects_;
bool group_marked = false;
for (size_t j = 0; j < entry->length_; j++) {
Object* object = *objects[j];
if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) {
group_marked = true;
break;
}
}
if (!group_marked) {
(*object_groups)[last++] = entry;
continue;
}
// An object in the group is marked, so mark all heap objects in
// the group.
for (size_t j = 0; j < entry->length_; ++j) {
if ((*objects[j])->IsHeapObject()) {
MarkObject(HeapObject::cast(*objects[j]));
}
}
// Once the entire group has been marked, dispose it because it's
// not needed anymore.
entry->Dispose();
}
object_groups->Rewind(last);
}
void MarkCompactCollector::MarkImplicitRefGroups() {
List<ImplicitRefGroup*>* ref_groups =
heap()->isolate()->global_handles()->implicit_ref_groups();
int last = 0;
for (int i = 0; i < ref_groups->length(); i++) {
ImplicitRefGroup* entry = ref_groups->at(i);
ASSERT(entry != NULL);
if (!(*entry->parent_)->IsMarked()) {
(*ref_groups)[last++] = entry;
continue;
}
Object*** children = entry->children_;
// A parent object is marked, so mark all child heap objects.
for (size_t j = 0; j < entry->length_; ++j) {
if ((*children[j])->IsHeapObject()) {
MarkObject(HeapObject::cast(*children[j]));
}
}
// Once the entire group has been marked, dispose it because it's
// not needed anymore.
entry->Dispose();
}
ref_groups->Rewind(last);
}
// Mark all objects reachable from the objects on the marking stack.
// Before: the marking stack contains zero or more heap object pointers.
// After: the marking stack is empty, and all objects reachable from the
// marking stack have been marked, or are overflowed in the heap.
void MarkCompactCollector::EmptyMarkingStack() {
while (!marking_stack_.is_empty()) {
HeapObject* object = marking_stack_.Pop();
ASSERT(object->IsHeapObject());
ASSERT(heap()->Contains(object));
ASSERT(object->IsMarked());
ASSERT(!object->IsOverflowed());
// Because the object is marked, we have to recover the original map
// pointer and use it to mark the object's body.
MapWord map_word = object->map_word();
map_word.ClearMark();
Map* map = map_word.ToMap();
MarkObject(map);
StaticMarkingVisitor::IterateBody(map, object);
}
}
// Sweep the heap for overflowed objects, clear their overflow bits, and
// push them on the marking stack. Stop early if the marking stack fills
// before sweeping completes. If sweeping completes, there are no remaining
// overflowed objects in the heap so the overflow flag on the markings stack
// is cleared.
void MarkCompactCollector::RefillMarkingStack() {
ASSERT(marking_stack_.overflowed());
SemiSpaceIterator new_it(heap()->new_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &new_it);
if (marking_stack_.is_full()) return;
HeapObjectIterator old_pointer_it(heap()->old_pointer_space(),
&OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &old_pointer_it);
if (marking_stack_.is_full()) return;
HeapObjectIterator old_data_it(heap()->old_data_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &old_data_it);
if (marking_stack_.is_full()) return;
HeapObjectIterator code_it(heap()->code_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &code_it);
if (marking_stack_.is_full()) return;
HeapObjectIterator map_it(heap()->map_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &map_it);
if (marking_stack_.is_full()) return;
HeapObjectIterator cell_it(heap()->cell_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &cell_it);
if (marking_stack_.is_full()) return;
LargeObjectIterator lo_it(heap()->lo_space(), &OverflowObjectSize);
OverflowedObjectsScanner::ScanOverflowedObjects(this, &lo_it);
if (marking_stack_.is_full()) return;
marking_stack_.clear_overflowed();
}
// Mark all objects reachable (transitively) from objects on the marking
// stack. Before: the marking stack contains zero or more heap object
// pointers. After: the marking stack is empty and there are no overflowed
// objects in the heap.
void MarkCompactCollector::ProcessMarkingStack() {
EmptyMarkingStack();
while (marking_stack_.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack();
}
}
void MarkCompactCollector::ProcessExternalMarking() {
bool work_to_do = true;
ASSERT(marking_stack_.is_empty());
while (work_to_do) {
MarkObjectGroups();
MarkImplicitRefGroups();
work_to_do = !marking_stack_.is_empty();
ProcessMarkingStack();
}
}
void MarkCompactCollector::MarkLiveObjects() {
GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_MARK);
// The recursive GC marker detects when it is nearing stack overflow,
// and switches to a different marking system. JS interrupts interfere
// with the C stack limit check.
PostponeInterruptsScope postpone(heap()->isolate());
#ifdef DEBUG
ASSERT(state_ == PREPARE_GC);
state_ = MARK_LIVE_OBJECTS;
#endif
// The to space contains live objects, the from space is used as a marking
// stack.
marking_stack_.Initialize(heap()->new_space()->FromSpaceLow(),
heap()->new_space()->FromSpaceHigh());
ASSERT(!marking_stack_.overflowed());
PrepareForCodeFlushing();
RootMarkingVisitor root_visitor(heap());
MarkRoots(&root_visitor);
// The objects reachable from the roots are marked, yet unreachable
// objects are unmarked. Mark objects reachable due to host
// application specific logic.
ProcessExternalMarking();
// The objects reachable from the roots or object groups are marked,
// yet unreachable objects are unmarked. Mark objects reachable
// only from weak global handles.
//
// First we identify nonlive weak handles and mark them as pending
// destruction.
heap()->isolate()->global_handles()->IdentifyWeakHandles(
&IsUnmarkedHeapObject);
// Then we mark the objects and process the transitive closure.
heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
while (marking_stack_.overflowed()) {
RefillMarkingStack();
EmptyMarkingStack();
}
// Repeat host application specific marking to mark unmarked objects
// reachable from the weak roots.
ProcessExternalMarking();
// Prune the symbol table removing all symbols only pointed to by the
// symbol table. Cannot use symbol_table() here because the symbol
// table is marked.
SymbolTable* symbol_table = heap()->raw_unchecked_symbol_table();
SymbolTableCleaner v(heap());
symbol_table->IterateElements(&v);
symbol_table->ElementsRemoved(v.PointersRemoved());
heap()->external_string_table_.Iterate(&v);
heap()->external_string_table_.CleanUp();
// Process the weak references.
MarkCompactWeakObjectRetainer mark_compact_object_retainer;
heap()->ProcessWeakReferences(&mark_compact_object_retainer);
// Remove object groups after marking phase.
heap()->isolate()->global_handles()->RemoveObjectGroups();
heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
// Flush code from collected candidates.
if (is_code_flushing_enabled()) {
code_flusher_->ProcessCandidates();
}
// Clean up dead objects from the runtime profiler.
heap()->isolate()->runtime_profiler()->RemoveDeadSamples();
}
#ifdef DEBUG
void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) {
live_bytes_ += obj->Size();
if (heap()->new_space()->Contains(obj)) {
live_young_objects_size_ += obj->Size();
} else if (heap()->map_space()->Contains(obj)) {
ASSERT(obj->IsMap());
live_map_objects_size_ += obj->Size();
} else if (heap()->cell_space()->Contains(obj)) {
ASSERT(obj->IsJSGlobalPropertyCell());
live_cell_objects_size_ += obj->Size();
} else if (heap()->old_pointer_space()->Contains(obj)) {
live_old_pointer_objects_size_ += obj->Size();
} else if (heap()->old_data_space()->Contains(obj)) {
live_old_data_objects_size_ += obj->Size();
} else if (heap()->code_space()->Contains(obj)) {
live_code_objects_size_ += obj->Size();
} else if (heap()->lo_space()->Contains(obj)) {
live_lo_objects_size_ += obj->Size();
} else {
UNREACHABLE();
}
}
#endif // DEBUG
void MarkCompactCollector::SweepLargeObjectSpace() {
#ifdef DEBUG
ASSERT(state_ == MARK_LIVE_OBJECTS);
state_ =
compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES;
#endif
// Deallocate unmarked objects and clear marked bits for marked objects.
heap()->lo_space()->FreeUnmarkedObjects();
}
// Safe to use during marking phase only.
bool MarkCompactCollector::SafeIsMap(HeapObject* object) {
MapWord metamap = object->map_word();
metamap.ClearMark();
return metamap.ToMap()->instance_type() == MAP_TYPE;
}
void MarkCompactCollector::ClearNonLiveTransitions() {
HeapObjectIterator map_iterator(heap()->map_space(), &SizeOfMarkedObject);
// Iterate over the map space, setting map transitions that go from
// a marked map to an unmarked map to null transitions. At the same time,
// set all the prototype fields of maps back to their original value,
// dropping the back pointers temporarily stored in the prototype field.
// Setting the prototype field requires following the linked list of
// back pointers, reversing them all at once. This allows us to find
// those maps with map transitions that need to be nulled, and only
// scan the descriptor arrays of those maps, not all maps.
// All of these actions are carried out only on maps of JSObjects
// and related subtypes.
for (HeapObject* obj = map_iterator.next();
obj != NULL; obj = map_iterator.next()) {
Map* map = reinterpret_cast<Map*>(obj);
if (!map->IsMarked() && map->IsByteArray()) continue;
ASSERT(SafeIsMap(map));
// Only JSObject and subtypes have map transitions and back pointers.
if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue;
if (map->instance_type() > JS_FUNCTION_TYPE) continue;
if (map->IsMarked() && map->attached_to_shared_function_info()) {
// This map is used for inobject slack tracking and has been detached
// from SharedFunctionInfo during the mark phase.
// Since it survived the GC, reattach it now.
map->unchecked_constructor()->unchecked_shared()->AttachInitialMap(map);
}
// Clear dead prototype transitions.
FixedArray* prototype_transitions = map->unchecked_prototype_transitions();
if (prototype_transitions->length() > 0) {
int finger = Smi::cast(prototype_transitions->get(0))->value();
int new_finger = 1;
for (int i = 1; i < finger; i += 2) {
Object* prototype = prototype_transitions->get(i);
Object* cached_map = prototype_transitions->get(i + 1);
if (HeapObject::cast(prototype)->IsMarked() &&
HeapObject::cast(cached_map)->IsMarked()) {
if (new_finger != i) {
prototype_transitions->set_unchecked(heap_,
new_finger,
prototype,
UPDATE_WRITE_BARRIER);
prototype_transitions->set_unchecked(heap_,
new_finger + 1,
cached_map,
SKIP_WRITE_BARRIER);
}
new_finger += 2;
}
}
// Fill slots that became free with undefined value.
Object* undefined = heap()->raw_unchecked_undefined_value();
for (int i = new_finger; i < finger; i++) {
prototype_transitions->set_unchecked(heap_,
i,
undefined,
SKIP_WRITE_BARRIER);
}
prototype_transitions->set_unchecked(0, Smi::FromInt(new_finger));
}
// Follow the chain of back pointers to find the prototype.
Map* current = map;
while (SafeIsMap(current)) {
current = reinterpret_cast<Map*>(current->prototype());
ASSERT(current->IsHeapObject());
}
Object* real_prototype = current;
// Follow back pointers, setting them to prototype,
// clearing map transitions when necessary.
current = map;
bool on_dead_path = !current->IsMarked();
Object* next;
while (SafeIsMap(current)) {
next = current->prototype();
// There should never be a dead map above a live map.
ASSERT(on_dead_path || current->IsMarked());
// A live map above a dead map indicates a dead transition.
// This test will always be false on the first iteration.
if (on_dead_path && current->IsMarked()) {
on_dead_path = false;
current->ClearNonLiveTransitions(heap(), real_prototype);
}
*HeapObject::RawField(current, Map::kPrototypeOffset) =
real_prototype;
current = reinterpret_cast<Map*>(next);
}
}
}
// -------------------------------------------------------------------------
// Phase 2: Encode forwarding addresses.
// When compacting, forwarding addresses for objects in old space and map
// space are encoded in their map pointer word (along with an encoding of
// their map pointers).
//
// The excact encoding is described in the comments for class MapWord in
// objects.h.
//
// An address range [start, end) can have both live and non-live objects.
// Maximal non-live regions are marked so they can be skipped on subsequent
// sweeps of the heap. A distinguished map-pointer encoding is used to mark
// free regions of one-word size (in which case the next word is the start
// of a live object). A second distinguished map-pointer encoding is used
// to mark free regions larger than one word, and the size of the free
// region (including the first word) is written to the second word of the
// region.
//
// Any valid map page offset must lie in the object area of the page, so map
// page offsets less than Page::kObjectStartOffset are invalid. We use a
// pair of distinguished invalid map encodings (for single word and multiple
// words) to indicate free regions in the page found during computation of
// forwarding addresses and skipped over in subsequent sweeps.
// Encode a free region, defined by the given start address and size, in the
// first word or two of the region.
void EncodeFreeRegion(Address free_start, int free_size) {
ASSERT(free_size >= kIntSize);
if (free_size == kIntSize) {
Memory::uint32_at(free_start) = MarkCompactCollector::kSingleFreeEncoding;
} else {
ASSERT(free_size >= 2 * kIntSize);
Memory::uint32_at(free_start) = MarkCompactCollector::kMultiFreeEncoding;
Memory::int_at(free_start + kIntSize) = free_size;
}
#ifdef DEBUG
// Zap the body of the free region.
if (FLAG_enable_slow_asserts) {
for (int offset = 2 * kIntSize;
offset < free_size;
offset += kPointerSize) {
Memory::Address_at(free_start + offset) = kZapValue;
}
}
#endif
}
// Try to promote all objects in new space. Heap numbers and sequential
// strings are promoted to the code space, large objects to large object space,
// and all others to the old space.
inline MaybeObject* MCAllocateFromNewSpace(Heap* heap,
HeapObject* object,
int object_size) {
MaybeObject* forwarded;
if (object_size > heap->MaxObjectSizeInPagedSpace()) {
forwarded = Failure::Exception();
} else {
OldSpace* target_space = heap->TargetSpace(object);
ASSERT(target_space == heap->old_pointer_space() ||
target_space == heap->old_data_space());
forwarded = target_space->MCAllocateRaw(object_size);
}
Object* result;
if (!forwarded->ToObject(&result)) {
result = heap->new_space()->MCAllocateRaw(object_size)->ToObjectUnchecked();
}
return result;
}
// Allocation functions for the paged spaces call the space's MCAllocateRaw.
MUST_USE_RESULT inline MaybeObject* MCAllocateFromOldPointerSpace(
Heap *heap,
HeapObject* ignore,
int object_size) {
return heap->old_pointer_space()->MCAllocateRaw(object_size);
}
MUST_USE_RESULT inline MaybeObject* MCAllocateFromOldDataSpace(
Heap* heap,
HeapObject* ignore,
int object_size) {
return heap->old_data_space()->MCAllocateRaw(object_size);
}
MUST_USE_RESULT inline MaybeObject* MCAllocateFromCodeSpace(
Heap* heap,
HeapObject* ignore,
int object_size) {
return heap->code_space()->MCAllocateRaw(object_size);
}
MUST_USE_RESULT inline MaybeObject* MCAllocateFromMapSpace(
Heap* heap,
HeapObject* ignore,
int object_size) {
return heap->map_space()->MCAllocateRaw(object_size);
}
MUST_USE_RESULT inline MaybeObject* MCAllocateFromCellSpace(
Heap* heap, HeapObject* ignore, int object_size) {
return heap->cell_space()->MCAllocateRaw(object_size);
}
// The forwarding address is encoded at the same offset as the current
// to-space object, but in from space.
inline void EncodeForwardingAddressInNewSpace(Heap* heap,
HeapObject* old_object,
int object_size,
Object* new_object,
int* ignored) {
int offset =
heap->new_space()->ToSpaceOffsetForAddress(old_object->address());
Memory::Address_at(heap->new_space()->FromSpaceLow() + offset) =
HeapObject::cast(new_object)->address();
}
// The forwarding address is encoded in the map pointer of the object as an
// offset (in terms of live bytes) from the address of the first live object
// in the page.
inline void EncodeForwardingAddressInPagedSpace(Heap* heap,
HeapObject* old_object,
int object_size,
Object* new_object,
int* offset) {
// Record the forwarding address of the first live object if necessary.
if (*offset == 0) {
Page::FromAddress(old_object->address())->mc_first_forwarded =
HeapObject::cast(new_object)->address();
}
MapWord encoding =
MapWord::EncodeAddress(old_object->map()->address(), *offset);
old_object->set_map_word(encoding);
*offset += object_size;
ASSERT(*offset <= Page::kObjectAreaSize);
}
// Most non-live objects are ignored.
inline void IgnoreNonLiveObject(HeapObject* object, Isolate* isolate) {}
// Function template that, given a range of addresses (eg, a semispace or a
// paged space page), iterates through the objects in the range to clear
// mark bits and compute and encode forwarding addresses. As a side effect,
// maximal free chunks are marked so that they can be skipped on subsequent
// sweeps.
//
// The template parameters are an allocation function, a forwarding address
// encoding function, and a function to process non-live objects.
template<MarkCompactCollector::AllocationFunction Alloc,
MarkCompactCollector::EncodingFunction Encode,
MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
inline void EncodeForwardingAddressesInRange(MarkCompactCollector* collector,
Address start,
Address end,
int* offset) {
// The start address of the current free region while sweeping the space.
// This address is set when a transition from live to non-live objects is
// encountered. A value (an encoding of the 'next free region' pointer)
// is written to memory at this address when a transition from non-live to
// live objects is encountered.
Address free_start = NULL;
// A flag giving the state of the previously swept object. Initially true
// to ensure that free_start is initialized to a proper address before
// trying to write to it.
bool is_prev_alive = true;
int object_size; // Will be set on each iteration of the loop.
for (Address current = start; current < end; current += object_size) {
HeapObject* object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
collector->tracer()->decrement_marked_count();
object_size = object->Size();
Object* forwarded =
Alloc(collector->heap(), object, object_size)->ToObjectUnchecked();
Encode(collector->heap(), object, object_size, forwarded, offset);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("forward %p -> %p.\n", object->address(),
HeapObject::cast(forwarded)->address());
}
#endif
if (!is_prev_alive) { // Transition from non-live to live.
EncodeFreeRegion(free_start, static_cast<int>(current - free_start));
is_prev_alive = true;
}
} else { // Non-live object.
object_size = object->Size();
ProcessNonLive(object, collector->heap()->isolate());
if (is_prev_alive) { // Transition from live to non-live.
free_start = current;
is_prev_alive = false;
}
LiveObjectList::ProcessNonLive(object);
}
}
// If we ended on a free region, mark it.
if (!is_prev_alive) {
EncodeFreeRegion(free_start, static_cast<int>(end - free_start));
}
}
// Functions to encode the forwarding pointers in each compactable space.
void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() {
int ignored;
EncodeForwardingAddressesInRange<MCAllocateFromNewSpace,
EncodeForwardingAddressInNewSpace,
IgnoreNonLiveObject>(
this,
heap()->new_space()->bottom(),
heap()->new_space()->top(),
&ignored);
}
template<MarkCompactCollector::AllocationFunction Alloc,
MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace(
PagedSpace* space) {
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
// The offset of each live object in the page from the first live object
// in the page.
int offset = 0;
EncodeForwardingAddressesInRange<Alloc,
EncodeForwardingAddressInPagedSpace,
ProcessNonLive>(
this,
p->ObjectAreaStart(),
p->AllocationTop(),
&offset);
}
}
// We scavange new space simultaneously with sweeping. This is done in two
// passes.
// The first pass migrates all alive objects from one semispace to another or
// promotes them to old space. Forwading address is written directly into
// first word of object without any encoding. If object is dead we are writing
// NULL as a forwarding address.
// The second pass updates pointers to new space in all spaces. It is possible
// to encounter pointers to dead objects during traversal of dirty regions we
// should clear them to avoid encountering them during next dirty regions
// iteration.
static void MigrateObject(Heap* heap,
Address dst,
Address src,
int size,
bool to_old_space) {
if (to_old_space) {
heap->CopyBlockToOldSpaceAndUpdateRegionMarks(dst, src, size);
} else {
heap->CopyBlock(dst, src, size);
}
Memory::Address_at(src) = dst;
}
class StaticPointersToNewGenUpdatingVisitor : public
StaticNewSpaceVisitor<StaticPointersToNewGenUpdatingVisitor> {
public:
static inline void VisitPointer(Heap* heap, Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Address old_addr = obj->address();
if (heap->new_space()->Contains(obj)) {
ASSERT(heap->InFromSpace(*p));
*p = HeapObject::FromAddress(Memory::Address_at(old_addr));
}
}
};
// Visitor for updating pointers from live objects in old spaces to new space.
// It does not expect to encounter pointers to dead objects.
class PointersToNewGenUpdatingVisitor: public ObjectVisitor {
public:
explicit PointersToNewGenUpdatingVisitor(Heap* heap) : heap_(heap) { }
void VisitPointer(Object** p) {
StaticPointersToNewGenUpdatingVisitor::VisitPointer(heap_, p);
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
StaticPointersToNewGenUpdatingVisitor::VisitPointer(heap_, p);
}
}
void VisitCodeTarget(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
VisitPointer(&target);
rinfo->set_target_address(Code::cast(target)->instruction_start());
}
void VisitDebugTarget(RelocInfo* rinfo) {
ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
rinfo->IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
rinfo->IsPatchedDebugBreakSlotSequence()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
VisitPointer(&target);
rinfo->set_call_address(Code::cast(target)->instruction_start());
}
private:
Heap* heap_;
};
// Visitor for updating pointers from live objects in old spaces to new space.
// It can encounter pointers to dead objects in new space when traversing map
// space (see comment for MigrateObject).
static void UpdatePointerToNewGen(HeapObject** p) {
if (!(*p)->IsHeapObject()) return;
Address old_addr = (*p)->address();
ASSERT(HEAP->InFromSpace(*p));
Address new_addr = Memory::Address_at(old_addr);
if (new_addr == NULL) {
// We encountered pointer to a dead object. Clear it so we will
// not visit it again during next iteration of dirty regions.
*p = NULL;
} else {
*p = HeapObject::FromAddress(new_addr);
}
}
static String* UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
Object** p) {
Address old_addr = HeapObject::cast(*p)->address();
Address new_addr = Memory::Address_at(old_addr);
return String::cast(HeapObject::FromAddress(new_addr));
}
static bool TryPromoteObject(Heap* heap, HeapObject* object, int object_size) {
Object* result;
if (object_size > heap->MaxObjectSizeInPagedSpace()) {
MaybeObject* maybe_result =
heap->lo_space()->AllocateRawFixedArray(object_size);
if (maybe_result->ToObject(&result)) {
HeapObject* target = HeapObject::cast(result);
MigrateObject(heap, target->address(), object->address(), object_size,
true);
heap->mark_compact_collector()->tracer()->
increment_promoted_objects_size(object_size);
return true;
}
} else {
OldSpace* target_space = heap->TargetSpace(object);
ASSERT(target_space == heap->old_pointer_space() ||
target_space == heap->old_data_space());
MaybeObject* maybe_result = target_space->AllocateRaw(object_size);
if (maybe_result->ToObject(&result)) {
HeapObject* target = HeapObject::cast(result);
MigrateObject(heap,
target->address(),
object->address(),
object_size,
target_space == heap->old_pointer_space());
heap->mark_compact_collector()->tracer()->
increment_promoted_objects_size(object_size);
return true;
}
}
return false;
}
static void SweepNewSpace(Heap* heap, NewSpace* space) {
heap->CheckNewSpaceExpansionCriteria();
Address from_bottom = space->bottom();
Address from_top = space->top();
// Flip the semispaces. After flipping, to space is empty, from space has
// live objects.
space->Flip();
space->ResetAllocationInfo();
int size = 0;
int survivors_size = 0;
// First pass: traverse all objects in inactive semispace, remove marks,
// migrate live objects and write forwarding addresses.
for (Address current = from_bottom; current < from_top; current += size) {
HeapObject* object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
heap->mark_compact_collector()->tracer()->decrement_marked_count();
size = object->Size();
survivors_size += size;
// Aggressively promote young survivors to the old space.
if (TryPromoteObject(heap, object, size)) {
continue;
}
// Promotion failed. Just migrate object to another semispace.
// Allocation cannot fail at this point: semispaces are of equal size.
Object* target = space->AllocateRaw(size)->ToObjectUnchecked();
MigrateObject(heap,
HeapObject::cast(target)->address(),
current,
size,
false);
} else {
// Process the dead object before we write a NULL into its header.
LiveObjectList::ProcessNonLive(object);
size = object->Size();
Memory::Address_at(current) = NULL;
}
}
// Second pass: find pointers to new space and update them.
PointersToNewGenUpdatingVisitor updating_visitor(heap);
// Update pointers in to space.
Address current = space->bottom();
while (current < space->top()) {
HeapObject* object = HeapObject::FromAddress(current);
current +=
StaticPointersToNewGenUpdatingVisitor::IterateBody(object->map(),
object);
}
// Update roots.
heap->IterateRoots(&updating_visitor, VISIT_ALL_IN_SCAVENGE);
LiveObjectList::IterateElements(&updating_visitor);
// Update pointers in old spaces.
heap->IterateDirtyRegions(heap->old_pointer_space(),
&Heap::IteratePointersInDirtyRegion,
&UpdatePointerToNewGen,
heap->WATERMARK_SHOULD_BE_VALID);
heap->lo_space()->IterateDirtyRegions(&UpdatePointerToNewGen);
// Update pointers from cells.
HeapObjectIterator cell_iterator(heap->cell_space());
for (HeapObject* cell = cell_iterator.next();
cell != NULL;
cell = cell_iterator.next()) {
if (cell->IsJSGlobalPropertyCell()) {
Address value_address =
reinterpret_cast<Address>(cell) +
(JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
updating_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
}
}
// Update pointer from the global contexts list.
updating_visitor.VisitPointer(heap->global_contexts_list_address());
// Update pointers from external string table.
heap->UpdateNewSpaceReferencesInExternalStringTable(
&UpdateNewSpaceReferenceInExternalStringTableEntry);
// All pointers were updated. Update auxiliary allocation info.
heap->IncrementYoungSurvivorsCounter(survivors_size);
space->set_age_mark(space->top());
// Update JSFunction pointers from the runtime profiler.
heap->isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
}
static void SweepSpace(Heap* heap, PagedSpace* space) {
PageIterator it(space, PageIterator::PAGES_IN_USE);
// During sweeping of paged space we are trying to find longest sequences
// of pages without live objects and free them (instead of putting them on
// the free list).
// Page preceding current.
Page* prev = Page::FromAddress(NULL);
// First empty page in a sequence.
Page* first_empty_page = Page::FromAddress(NULL);
// Page preceding first empty page.
Page* prec_first_empty_page = Page::FromAddress(NULL);
// If last used page of space ends with a sequence of dead objects
// we can adjust allocation top instead of puting this free area into
// the free list. Thus during sweeping we keep track of such areas
// and defer their deallocation until the sweeping of the next page
// is done: if one of the next pages contains live objects we have
// to put such area into the free list.
Address last_free_start = NULL;
int last_free_size = 0;
while (it.has_next()) {
Page* p = it.next();
bool is_previous_alive = true;
Address free_start = NULL;
HeapObject* object;
for (Address current = p->ObjectAreaStart();
current < p->AllocationTop();
current += object->Size()) {
object = HeapObject::FromAddress(current);
if (object->IsMarked()) {
object->ClearMark();
heap->mark_compact_collector()->tracer()->decrement_marked_count();
if (!is_previous_alive) { // Transition from free to live.
space->DeallocateBlock(free_start,
static_cast<int>(current - free_start),
true);
is_previous_alive = true;
}
} else {
heap->mark_compact_collector()->ReportDeleteIfNeeded(
object, heap->isolate());
if (is_previous_alive) { // Transition from live to free.
free_start = current;
is_previous_alive = false;
}
LiveObjectList::ProcessNonLive(object);
}
// The object is now unmarked for the call to Size() at the top of the
// loop.
}
bool page_is_empty = (p->ObjectAreaStart() == p->AllocationTop())
|| (!is_previous_alive && free_start == p->ObjectAreaStart());
if (page_is_empty) {
// This page is empty. Check whether we are in the middle of
// sequence of empty pages and start one if not.
if (!first_empty_page->is_valid()) {
first_empty_page = p;
prec_first_empty_page = prev;
}
if (!is_previous_alive) {
// There are dead objects on this page. Update space accounting stats
// without putting anything into free list.
int size_in_bytes = static_cast<int>(p->AllocationTop() - free_start);
if (size_in_bytes > 0) {
space->DeallocateBlock(free_start, size_in_bytes, false);
}
}
} else {
// This page is not empty. Sequence of empty pages ended on the previous
// one.
if (first_empty_page->is_valid()) {
space->FreePages(prec_first_empty_page, prev);
prec_first_empty_page = first_empty_page = Page::FromAddress(NULL);
}
// If there is a free ending area on one of the previous pages we have
// deallocate that area and put it on the free list.
if (last_free_size > 0) {
Page::FromAddress(last_free_start)->
SetAllocationWatermark(last_free_start);
space->DeallocateBlock(last_free_start, last_free_size, true);
last_free_start = NULL;
last_free_size = 0;
}
// If the last region of this page was not live we remember it.
if (!is_previous_alive) {
ASSERT(last_free_size == 0);
last_free_size = static_cast<int>(p->AllocationTop() - free_start);
last_free_start = free_start;
}
}
prev = p;
}
// We reached end of space. See if we need to adjust allocation top.
Address new_allocation_top = NULL;
if (first_empty_page->is_valid()) {
// Last used pages in space are empty. We can move allocation top backwards
// to the beginning of first empty page.
ASSERT(prev == space->AllocationTopPage());
new_allocation_top = first_empty_page->ObjectAreaStart();
}
if (last_free_size > 0) {
// There was a free ending area on the previous page.
// Deallocate it without putting it into freelist and move allocation
// top to the beginning of this free area.
space->DeallocateBlock(last_free_start, last_free_size, false);
new_allocation_top = last_free_start;
}
if (new_allocation_top != NULL) {
#ifdef DEBUG
Page* new_allocation_top_page = Page::FromAllocationTop(new_allocation_top);
if (!first_empty_page->is_valid()) {
ASSERT(new_allocation_top_page == space->AllocationTopPage());
} else if (last_free_size > 0) {
ASSERT(new_allocation_top_page == prec_first_empty_page);
} else {
ASSERT(new_allocation_top_page == first_empty_page);
}
#endif
space->SetTop(new_allocation_top);
}
}
void MarkCompactCollector::EncodeForwardingAddresses() {
ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
// Objects in the active semispace of the young generation may be
// relocated to the inactive semispace (if not promoted). Set the
// relocation info to the beginning of the inactive semispace.
heap()->new_space()->MCResetRelocationInfo();
// Compute the forwarding pointers in each space.
EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldPointerSpace,
ReportDeleteIfNeeded>(
heap()->old_pointer_space());
EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldDataSpace,
IgnoreNonLiveObject>(
heap()->old_data_space());
EncodeForwardingAddressesInPagedSpace<MCAllocateFromCodeSpace,
ReportDeleteIfNeeded>(
heap()->code_space());
EncodeForwardingAddressesInPagedSpace<MCAllocateFromCellSpace,
IgnoreNonLiveObject>(
heap()->cell_space());
// Compute new space next to last after the old and code spaces have been
// compacted. Objects in new space can be promoted to old or code space.
EncodeForwardingAddressesInNewSpace();
// Compute map space last because computing forwarding addresses
// overwrites non-live objects. Objects in the other spaces rely on
// non-live map pointers to get the sizes of non-live objects.
EncodeForwardingAddressesInPagedSpace<MCAllocateFromMapSpace,
IgnoreNonLiveObject>(
heap()->map_space());
// Write relocation info to the top page, so we can use it later. This is
// done after promoting objects from the new space so we get the correct
// allocation top.
heap()->old_pointer_space()->MCWriteRelocationInfoToPage();
heap()->old_data_space()->MCWriteRelocationInfoToPage();
heap()->code_space()->MCWriteRelocationInfoToPage();
heap()->map_space()->MCWriteRelocationInfoToPage();
heap()->cell_space()->MCWriteRelocationInfoToPage();
}
class MapIterator : public HeapObjectIterator {
public:
explicit MapIterator(Heap* heap)
: HeapObjectIterator(heap->map_space(), &SizeCallback) { }
MapIterator(Heap* heap, Address start)
: HeapObjectIterator(heap->map_space(), start, &SizeCallback) { }
private:
static int SizeCallback(HeapObject* unused) {
USE(unused);
return Map::kSize;
}
};
class MapCompact {
public:
explicit MapCompact(Heap* heap, int live_maps)
: heap_(heap),
live_maps_(live_maps),
to_evacuate_start_(heap->map_space()->TopAfterCompaction(live_maps)),
vacant_map_it_(heap),
map_to_evacuate_it_(heap, to_evacuate_start_),
first_map_to_evacuate_(
reinterpret_cast<Map*>(HeapObject::FromAddress(to_evacuate_start_))) {
}
void CompactMaps() {
// As we know the number of maps to evacuate beforehand,
// we stop then there is no more vacant maps.
for (Map* next_vacant_map = NextVacantMap();
next_vacant_map;
next_vacant_map = NextVacantMap()) {
EvacuateMap(next_vacant_map, NextMapToEvacuate());
}
#ifdef DEBUG
CheckNoMapsToEvacuate();
#endif
}
void UpdateMapPointersInRoots() {
MapUpdatingVisitor map_updating_visitor;
heap()->IterateRoots(&map_updating_visitor, VISIT_ONLY_STRONG);
heap()->isolate()->global_handles()->IterateWeakRoots(
&map_updating_visitor);
LiveObjectList::IterateElements(&map_updating_visitor);
}
void UpdateMapPointersInPagedSpace(PagedSpace* space) {
ASSERT(space != heap()->map_space());
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
UpdateMapPointersInRange(heap(),
p->ObjectAreaStart(),
p->AllocationTop());
}
}
void UpdateMapPointersInNewSpace() {
NewSpace* space = heap()->new_space();
UpdateMapPointersInRange(heap(), space->bottom(), space->top());
}
void UpdateMapPointersInLargeObjectSpace() {
LargeObjectIterator it(heap()->lo_space());
for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
UpdateMapPointersInObject(heap(), obj);
}
void Finish() {
heap()->map_space()->FinishCompaction(to_evacuate_start_, live_maps_);
}
inline Heap* heap() const { return heap_; }
private:
Heap* heap_;
int live_maps_;
Address to_evacuate_start_;
MapIterator vacant_map_it_;
MapIterator map_to_evacuate_it_;
Map* first_map_to_evacuate_;
// Helper class for updating map pointers in HeapObjects.
class MapUpdatingVisitor: public ObjectVisitor {
public:
MapUpdatingVisitor() {}
void VisitPointer(Object** p) {
UpdateMapPointer(p);
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) UpdateMapPointer(p);
}
private:
void UpdateMapPointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* old_map = reinterpret_cast<HeapObject*>(*p);
// Moved maps are tagged with overflowed map word. They are the only
// objects those map word is overflowed as marking is already complete.
MapWord map_word = old_map->map_word();
if (!map_word.IsOverflowed()) return;
*p = GetForwardedMap(map_word);
}
};
static Map* NextMap(MapIterator* it, HeapObject* last, bool live) {
while (true) {
HeapObject* next = it->next();
ASSERT(next != NULL);
if (next == last)
return NULL;
ASSERT(!next->IsOverflowed());
ASSERT(!next->IsMarked());
ASSERT(next->IsMap() || FreeListNode::IsFreeListNode(next));
if (next->IsMap() == live)
return reinterpret_cast<Map*>(next);
}
}
Map* NextVacantMap() {
Map* map = NextMap(&vacant_map_it_, first_map_to_evacuate_, false);
ASSERT(map == NULL || FreeListNode::IsFreeListNode(map));
return map;
}
Map* NextMapToEvacuate() {
Map* map = NextMap(&map_to_evacuate_it_, NULL, true);
ASSERT(map != NULL);
ASSERT(map->IsMap());
return map;
}
static void EvacuateMap(Map* vacant_map, Map* map_to_evacuate) {
ASSERT(FreeListNode::IsFreeListNode(vacant_map));
ASSERT(map_to_evacuate->IsMap());
ASSERT(Map::kSize % 4 == 0);
map_to_evacuate->heap()->CopyBlockToOldSpaceAndUpdateRegionMarks(
vacant_map->address(), map_to_evacuate->address(), Map::kSize);
ASSERT(vacant_map->IsMap()); // Due to memcpy above.
MapWord forwarding_map_word = MapWord::FromMap(vacant_map);
forwarding_map_word.SetOverflow();
map_to_evacuate->set_map_word(forwarding_map_word);
ASSERT(map_to_evacuate->map_word().IsOverflowed());
ASSERT(GetForwardedMap(map_to_evacuate->map_word()) == vacant_map);
}
static Map* GetForwardedMap(MapWord map_word) {
ASSERT(map_word.IsOverflowed());
map_word.ClearOverflow();
Map* new_map = map_word.ToMap();
ASSERT_MAP_ALIGNED(new_map->address());
return new_map;
}
static int UpdateMapPointersInObject(Heap* heap, HeapObject* obj) {
ASSERT(!obj->IsMarked());
Map* map = obj->map();
ASSERT(heap->map_space()->Contains(map));
MapWord map_word = map->map_word();
ASSERT(!map_word.IsMarked());
if (map_word.IsOverflowed()) {
Map* new_map = GetForwardedMap(map_word);
ASSERT(heap->map_space()->Contains(new_map));
obj->set_map(new_map);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n",
obj->address(),
reinterpret_cast<void*>(map),
reinterpret_cast<void*>(new_map));
}
#endif
}
int size = obj->SizeFromMap(map);
MapUpdatingVisitor map_updating_visitor;
obj->IterateBody(map->instance_type(), size, &map_updating_visitor);
return size;
}
static void UpdateMapPointersInRange(Heap* heap, Address start, Address end) {
HeapObject* object;
int size;
for (Address current = start; current < end; current += size) {
object = HeapObject::FromAddress(current);
size = UpdateMapPointersInObject(heap, object);
ASSERT(size > 0);
}
}
#ifdef DEBUG
void CheckNoMapsToEvacuate() {
if (!FLAG_enable_slow_asserts)
return;
for (HeapObject* obj = map_to_evacuate_it_.next();
obj != NULL; obj = map_to_evacuate_it_.next())
ASSERT(FreeListNode::IsFreeListNode(obj));
}
#endif
};
void MarkCompactCollector::SweepSpaces() {
GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP);
ASSERT(state_ == SWEEP_SPACES);
ASSERT(!IsCompacting());
// Noncompacting collections simply sweep the spaces to clear the mark
// bits and free the nonlive blocks (for old and map spaces). We sweep
// the map space last because freeing non-live maps overwrites them and
// the other spaces rely on possibly non-live maps to get the sizes for
// non-live objects.
SweepSpace(heap(), heap()->old_pointer_space());
SweepSpace(heap(), heap()->old_data_space());
SweepSpace(heap(), heap()->code_space());
SweepSpace(heap(), heap()->cell_space());
{ GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP_NEWSPACE);
SweepNewSpace(heap(), heap()->new_space());
}
SweepSpace(heap(), heap()->map_space());
heap()->IterateDirtyRegions(heap()->map_space(),
&heap()->IteratePointersInDirtyMapsRegion,
&UpdatePointerToNewGen,
heap()->WATERMARK_SHOULD_BE_VALID);
intptr_t live_maps_size = heap()->map_space()->Size();
int live_maps = static_cast<int>(live_maps_size / Map::kSize);
ASSERT(live_map_objects_size_ == live_maps_size);
if (heap()->map_space()->NeedsCompaction(live_maps)) {
MapCompact map_compact(heap(), live_maps);
map_compact.CompactMaps();
map_compact.UpdateMapPointersInRoots();
PagedSpaces spaces;
for (PagedSpace* space = spaces.next();
space != NULL; space = spaces.next()) {
if (space == heap()->map_space()) continue;
map_compact.UpdateMapPointersInPagedSpace(space);
}
map_compact.UpdateMapPointersInNewSpace();
map_compact.UpdateMapPointersInLargeObjectSpace();
map_compact.Finish();
}
}
// Iterate the live objects in a range of addresses (eg, a page or a
// semispace). The live regions of the range have been linked into a list.
// The first live region is [first_live_start, first_live_end), and the last
// address in the range is top. The callback function is used to get the
// size of each live object.
int MarkCompactCollector::IterateLiveObjectsInRange(
Address start,
Address end,
LiveObjectCallback size_func) {
int live_objects_size = 0;
Address current = start;
while (current < end) {
uint32_t encoded_map = Memory::uint32_at(current);
if (encoded_map == kSingleFreeEncoding) {
current += kPointerSize;
} else if (encoded_map == kMultiFreeEncoding) {
current += Memory::int_at(current + kIntSize);
} else {
int size = (this->*size_func)(HeapObject::FromAddress(current));
current += size;
live_objects_size += size;
}
}
return live_objects_size;
}
int MarkCompactCollector::IterateLiveObjects(
NewSpace* space, LiveObjectCallback size_f) {
ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f);
}
int MarkCompactCollector::IterateLiveObjects(
PagedSpace* space, LiveObjectCallback size_f) {
ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
int total = 0;
PageIterator it(space, PageIterator::PAGES_IN_USE);
while (it.has_next()) {
Page* p = it.next();
total += IterateLiveObjectsInRange(p->ObjectAreaStart(),
p->AllocationTop(),
size_f);
}
return total;
}
// -------------------------------------------------------------------------
// Phase 3: Update pointers
// Helper class for updating pointers in HeapObjects.
class UpdatingVisitor: public ObjectVisitor {
public:
explicit UpdatingVisitor(Heap* heap) : heap_(heap) {}
void VisitPointer(Object** p) {
UpdatePointer(p);
}
void VisitPointers(Object** start, Object** end) {
// Mark all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) UpdatePointer(p);
}
void VisitCodeTarget(RelocInfo* rinfo) {
ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
VisitPointer(&target);
rinfo->set_target_address(
reinterpret_cast<Code*>(target)->instruction_start());
}
void VisitDebugTarget(RelocInfo* rinfo) {
ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
rinfo->IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
rinfo->IsPatchedDebugBreakSlotSequence()));
Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
VisitPointer(&target);
rinfo->set_call_address(
reinterpret_cast<Code*>(target)->instruction_start());
}
inline Heap* heap() const { return heap_; }
private:
void UpdatePointer(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Address old_addr = obj->address();
Address new_addr;
ASSERT(!heap()->InFromSpace(obj));
if (heap()->new_space()->Contains(obj)) {
Address forwarding_pointer_addr =
heap()->new_space()->FromSpaceLow() +
heap()->new_space()->ToSpaceOffsetForAddress(old_addr);
new_addr = Memory::Address_at(forwarding_pointer_addr);
#ifdef DEBUG
ASSERT(heap()->old_pointer_space()->Contains(new_addr) ||
heap()->old_data_space()->Contains(new_addr) ||
heap()->new_space()->FromSpaceContains(new_addr) ||
heap()->lo_space()->Contains(HeapObject::FromAddress(new_addr)));
if (heap()->new_space()->FromSpaceContains(new_addr)) {
ASSERT(heap()->new_space()->FromSpaceOffsetForAddress(new_addr) <=
heap()->new_space()->ToSpaceOffsetForAddress(old_addr));
}
#endif
} else if (heap()->lo_space()->Contains(obj)) {
// Don't move objects in the large object space.
return;
} else {
#ifdef DEBUG
PagedSpaces spaces;
PagedSpace* original_space = spaces.next();
while (original_space != NULL) {
if (original_space->Contains(obj)) break;
original_space = spaces.next();
}
ASSERT(original_space != NULL);
#endif
new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj);
ASSERT(original_space->Contains(new_addr));
ASSERT(original_space->MCSpaceOffsetForAddress(new_addr) <=
original_space->MCSpaceOffsetForAddress(old_addr));
}
*p = HeapObject::FromAddress(new_addr);
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n",
reinterpret_cast<Address>(p), old_addr, new_addr);
}
#endif
}
Heap* heap_;
};
void MarkCompactCollector::UpdatePointers() {
#ifdef DEBUG
ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
state_ = UPDATE_POINTERS;
#endif
UpdatingVisitor updating_visitor(heap());
heap()->isolate()->runtime_profiler()->UpdateSamplesAfterCompact(
&updating_visitor);
heap()->IterateRoots(&updating_visitor, VISIT_ONLY_STRONG);
heap()->isolate()->global_handles()->IterateWeakRoots(&updating_visitor);
// Update the pointer to the head of the weak list of global contexts.
updating_visitor.VisitPointer(&heap()->global_contexts_list_);
LiveObjectList::IterateElements(&updating_visitor);
int live_maps_size = IterateLiveObjects(
heap()->map_space(), &MarkCompactCollector::UpdatePointersInOldObject);
int live_pointer_olds_size = IterateLiveObjects(
heap()->old_pointer_space(),
&MarkCompactCollector::UpdatePointersInOldObject);
int live_data_olds_size = IterateLiveObjects(
heap()->old_data_space(),
&MarkCompactCollector::UpdatePointersInOldObject);
int live_codes_size = IterateLiveObjects(
heap()->code_space(), &MarkCompactCollector::UpdatePointersInOldObject);
int live_cells_size = IterateLiveObjects(
heap()->cell_space(), &MarkCompactCollector::UpdatePointersInOldObject);
int live_news_size = IterateLiveObjects(
heap()->new_space(), &MarkCompactCollector::UpdatePointersInNewObject);
// Large objects do not move, the map word can be updated directly.
LargeObjectIterator it(heap()->lo_space());
for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
UpdatePointersInNewObject(obj);
}
USE(live_maps_size);
USE(live_pointer_olds_size);
USE(live_data_olds_size);
USE(live_codes_size);
USE(live_cells_size);
USE(live_news_size);
ASSERT(live_maps_size == live_map_objects_size_);
ASSERT(live_data_olds_size == live_old_data_objects_size_);
ASSERT(live_pointer_olds_size == live_old_pointer_objects_size_);
ASSERT(live_codes_size == live_code_objects_size_);
ASSERT(live_cells_size == live_cell_objects_size_);
ASSERT(live_news_size == live_young_objects_size_);
}
int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) {
// Keep old map pointers
Map* old_map = obj->map();
ASSERT(old_map->IsHeapObject());
Address forwarded = GetForwardingAddressInOldSpace(old_map);
ASSERT(heap()->map_space()->Contains(old_map));
ASSERT(heap()->map_space()->Contains(forwarded));
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(),
forwarded);
}
#endif
// Update the map pointer.
obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(forwarded)));
// We have to compute the object size relying on the old map because
// map objects are not relocated yet.
int obj_size = obj->SizeFromMap(old_map);
// Update pointers in the object body.
UpdatingVisitor updating_visitor(heap());
obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor);
return obj_size;
}
int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) {
// Decode the map pointer.
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(heap()->map_space());
ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr)));
// At this point, the first word of map_addr is also encoded, cannot
// cast it to Map* using Map::cast.
Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr));
int obj_size = obj->SizeFromMap(map);
InstanceType type = map->instance_type();
// Update map pointer.
Address new_map_addr = GetForwardingAddressInOldSpace(map);
int offset = encoding.DecodeOffset();
obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset));
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("update %p : %p -> %p\n", obj->address(),
map_addr, new_map_addr);
}
#endif
// Update pointers in the object body.
UpdatingVisitor updating_visitor(heap());
obj->IterateBody(type, obj_size, &updating_visitor);
return obj_size;
}
Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) {
// Object should either in old or map space.
MapWord encoding = obj->map_word();
// Offset to the first live object's forwarding address.
int offset = encoding.DecodeOffset();
Address obj_addr = obj->address();
// Find the first live object's forwarding address.
Page* p = Page::FromAddress(obj_addr);
Address first_forwarded = p->mc_first_forwarded;
// Page start address of forwarded address.
Page* forwarded_page = Page::FromAddress(first_forwarded);
int forwarded_offset = forwarded_page->Offset(first_forwarded);
// Find end of allocation in the page of first_forwarded.
int mc_top_offset = forwarded_page->AllocationWatermarkOffset();
// Check if current object's forward pointer is in the same page
// as the first live object's forwarding pointer
if (forwarded_offset + offset < mc_top_offset) {
// In the same page.
return first_forwarded + offset;
}
// Must be in the next page, NOTE: this may cross chunks.
Page* next_page = forwarded_page->next_page();
ASSERT(next_page->is_valid());
offset -= (mc_top_offset - forwarded_offset);
offset += Page::kObjectStartOffset;
ASSERT_PAGE_OFFSET(offset);
ASSERT(next_page->OffsetToAddress(offset) < next_page->AllocationTop());
return next_page->OffsetToAddress(offset);
}
// -------------------------------------------------------------------------
// Phase 4: Relocate objects
void MarkCompactCollector::RelocateObjects() {
#ifdef DEBUG
ASSERT(state_ == UPDATE_POINTERS);
state_ = RELOCATE_OBJECTS;
#endif
// Relocates objects, always relocate map objects first. Relocating
// objects in other space relies on map objects to get object size.
int live_maps_size = IterateLiveObjects(
heap()->map_space(), &MarkCompactCollector::RelocateMapObject);
int live_pointer_olds_size = IterateLiveObjects(
heap()->old_pointer_space(),
&MarkCompactCollector::RelocateOldPointerObject);
int live_data_olds_size = IterateLiveObjects(
heap()->old_data_space(), &MarkCompactCollector::RelocateOldDataObject);
int live_codes_size = IterateLiveObjects(
heap()->code_space(), &MarkCompactCollector::RelocateCodeObject);
int live_cells_size = IterateLiveObjects(
heap()->cell_space(), &MarkCompactCollector::RelocateCellObject);
int live_news_size = IterateLiveObjects(
heap()->new_space(), &MarkCompactCollector::RelocateNewObject);
USE(live_maps_size);
USE(live_pointer_olds_size);
USE(live_data_olds_size);
USE(live_codes_size);
USE(live_cells_size);
USE(live_news_size);
ASSERT(live_maps_size == live_map_objects_size_);
ASSERT(live_data_olds_size == live_old_data_objects_size_);
ASSERT(live_pointer_olds_size == live_old_pointer_objects_size_);
ASSERT(live_codes_size == live_code_objects_size_);
ASSERT(live_cells_size == live_cell_objects_size_);
ASSERT(live_news_size == live_young_objects_size_);
// Flip from and to spaces
heap()->new_space()->Flip();
heap()->new_space()->MCCommitRelocationInfo();
// Set age_mark to bottom in to space
Address mark = heap()->new_space()->bottom();
heap()->new_space()->set_age_mark(mark);
PagedSpaces spaces;
for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next())
space->MCCommitRelocationInfo();
heap()->CheckNewSpaceExpansionCriteria();
heap()->IncrementYoungSurvivorsCounter(live_news_size);
}
int MarkCompactCollector::RelocateMapObject(HeapObject* obj) {
// Recover map pointer.
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(heap()->map_space());
ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr)));
// Get forwarding address before resetting map pointer
Address new_addr = GetForwardingAddressInOldSpace(obj);
// Reset map pointer. The meta map object may not be copied yet so
// Map::cast does not yet work.
obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));
Address old_addr = obj->address();
if (new_addr != old_addr) {
// Move contents.
heap()->MoveBlockToOldSpaceAndUpdateRegionMarks(new_addr,
old_addr,
Map::kSize);
}
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", old_addr, new_addr);
}
#endif
return Map::kSize;
}
static inline int RestoreMap(HeapObject* obj,
PagedSpace* space,
Address new_addr,
Address map_addr) {
// This must be a non-map object, and the function relies on the
// assumption that the Map space is compacted before the other paged
// spaces (see RelocateObjects).
// Reset map pointer.
obj->set_map(Map::cast(HeapObject::FromAddress(map_addr)));
int obj_size = obj->Size();
ASSERT_OBJECT_SIZE(obj_size);
ASSERT(space->MCSpaceOffsetForAddress(new_addr) <=
space->MCSpaceOffsetForAddress(obj->address()));
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", obj->address(), new_addr);
}
#endif
return obj_size;
}
int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj,
PagedSpace* space) {
// Recover map pointer.
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(heap()->map_space());
ASSERT(heap()->map_space()->Contains(map_addr));
// Get forwarding address before resetting map pointer.
Address new_addr = GetForwardingAddressInOldSpace(obj);
// Reset the map pointer.
int obj_size = RestoreMap(obj, space, new_addr, map_addr);
Address old_addr = obj->address();
if (new_addr != old_addr) {
// Move contents.
if (space == heap()->old_data_space()) {
heap()->MoveBlock(new_addr, old_addr, obj_size);
} else {
heap()->MoveBlockToOldSpaceAndUpdateRegionMarks(new_addr,
old_addr,
obj_size);
}
}
ASSERT(!HeapObject::FromAddress(new_addr)->IsCode());
HeapObject* copied_to = HeapObject::FromAddress(new_addr);
if (copied_to->IsSharedFunctionInfo()) {
PROFILE(heap()->isolate(),
SharedFunctionInfoMoveEvent(old_addr, new_addr));
}
HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr));
return obj_size;
}
int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) {
return RelocateOldNonCodeObject(obj, heap()->old_pointer_space());
}
int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) {
return RelocateOldNonCodeObject(obj, heap()->old_data_space());
}
int MarkCompactCollector::RelocateCellObject(HeapObject* obj) {
return RelocateOldNonCodeObject(obj, heap()->cell_space());
}
int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) {
// Recover map pointer.
MapWord encoding = obj->map_word();
Address map_addr = encoding.DecodeMapAddress(heap()->map_space());
ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr)));
// Get forwarding address before resetting map pointer
Address new_addr = GetForwardingAddressInOldSpace(obj);
// Reset the map pointer.
int obj_size = RestoreMap(obj, heap()->code_space(), new_addr, map_addr);
Address old_addr = obj->address();
if (new_addr != old_addr) {
// Move contents.
heap()->MoveBlock(new_addr, old_addr, obj_size);
}
HeapObject* copied_to = HeapObject::FromAddress(new_addr);
if (copied_to->IsCode()) {
// May also update inline cache target.
Code::cast(copied_to)->Relocate(new_addr - old_addr);
// Notify the logger that compiled code has moved.
PROFILE(heap()->isolate(), CodeMoveEvent(old_addr, new_addr));
}
HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr));
return obj_size;
}
int MarkCompactCollector::RelocateNewObject(HeapObject* obj) {
int obj_size = obj->Size();
// Get forwarding address
Address old_addr = obj->address();
int offset = heap()->new_space()->ToSpaceOffsetForAddress(old_addr);
Address new_addr =
Memory::Address_at(heap()->new_space()->FromSpaceLow() + offset);
#ifdef DEBUG
if (heap()->new_space()->FromSpaceContains(new_addr)) {
ASSERT(heap()->new_space()->FromSpaceOffsetForAddress(new_addr) <=
heap()->new_space()->ToSpaceOffsetForAddress(old_addr));
} else {
ASSERT(heap()->TargetSpace(obj) == heap()->old_pointer_space() ||
heap()->TargetSpace(obj) == heap()->old_data_space());
}
#endif
// New and old addresses cannot overlap.
if (heap()->InNewSpace(HeapObject::FromAddress(new_addr))) {
heap()->CopyBlock(new_addr, old_addr, obj_size);
} else {
heap()->CopyBlockToOldSpaceAndUpdateRegionMarks(new_addr,
old_addr,
obj_size);
}
#ifdef DEBUG
if (FLAG_gc_verbose) {
PrintF("relocate %p -> %p\n", old_addr, new_addr);
}
#endif
HeapObject* copied_to = HeapObject::FromAddress(new_addr);
if (copied_to->IsSharedFunctionInfo()) {
PROFILE(heap()->isolate(),
SharedFunctionInfoMoveEvent(old_addr, new_addr));
}
HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr));
return obj_size;
}
void MarkCompactCollector::EnableCodeFlushing(bool enable) {
if (enable) {
if (code_flusher_ != NULL) return;
code_flusher_ = new CodeFlusher(heap()->isolate());
} else {
if (code_flusher_ == NULL) return;
delete code_flusher_;
code_flusher_ = NULL;
}
}
void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
Isolate* isolate) {
#ifdef ENABLE_GDB_JIT_INTERFACE
if (obj->IsCode()) {
GDBJITInterface::RemoveCode(reinterpret_cast<Code*>(obj));
}
#endif
#ifdef ENABLE_LOGGING_AND_PROFILING
if (obj->IsCode()) {
PROFILE(isolate, CodeDeleteEvent(obj->address()));
}
#endif
}
int MarkCompactCollector::SizeOfMarkedObject(HeapObject* obj) {
MapWord map_word = obj->map_word();
map_word.ClearMark();
return obj->SizeFromMap(map_word.ToMap());
}
void MarkCompactCollector::Initialize() {
StaticPointersToNewGenUpdatingVisitor::Initialize();
StaticMarkingVisitor::Initialize();
}
} } // namespace v8::internal