v8/test/cctest/test-assembler-x64.cc
Jakob Kummerow cfc6a5c2c6 Reland: [cleanup] Refactor the Factory
There is no good reason to have the meat of most objects' initialization
logic in heap.cc, all wrapped by the CALL_HEAP_FUNCTION macro. Instead,
this CL changes the protocol between Heap and Factory to be AllocateRaw,
and all object initialization work after (possibly retried) successful
raw allocation happens in the Factory.

This saves about 20KB of binary size on x64.

Original review: https://chromium-review.googlesource.com/c/v8/v8/+/959533
Originally landed as r52416 / f9a2e24bbc

Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng
Change-Id: Id072cbe6b3ed30afd339c7e502844b99ca12a647
Reviewed-on: https://chromium-review.googlesource.com/1000540
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#52492}
2018-04-09 19:52:22 +00:00

2540 lines
70 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <iostream>
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/base/utils/random-number-generator.h"
#include "src/double.h"
#include "src/heap/factory.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/ostreams.h"
#include "src/simulator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first six arguments
// in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows,
// where the first four integer arguments are passed in RCX, RDX, R8 and R9.
typedef int(F0)();
typedef int(F1)(int64_t x);
typedef int(F2)(int64_t x, int64_t y);
typedef unsigned(F3)(double x);
typedef uint64_t(F4)(uint64_t* x, uint64_t* y);
typedef uint64_t(F5)(uint64_t x);
#ifdef _WIN64
static const Register arg1 = rcx;
static const Register arg2 = rdx;
#else
static const Register arg1 = rdi;
static const Register arg2 = rsi;
#endif
#define __ masm.
TEST(AssemblerX64ReturnOperation) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that copies argument 2 and returns it.
__ movq(rax, arg2);
__ nop();
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64StackOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that copies argument 2 and returns it.
// We compile without stack frame pointers, so the gdb debugger shows
// incorrect stack frames when debugging this function (which has them).
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
__ popq(rax);
__ popq(rax);
__ popq(rax);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64ArithmeticOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that adds arguments returning the sum.
__ movq(rax, arg2);
__ addq(rax, arg1);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(5, result);
}
TEST(AssemblerX64CmpbOperation) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a function that compare argument byte returing 1 if equal else 0.
// On Windows, it compares rcx with rdx which does not require REX prefix;
// on Linux, it compares rdi with rsi which requires REX prefix.
Label done;
__ movq(rax, Immediate(1));
__ cmpb(arg1, arg2);
__ j(equal, &done);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(0x1002, 0x2002);
CHECK_EQ(1, result);
result = f.Call(0x1002, 0x2003);
CHECK_EQ(0, result);
}
TEST(AssemblerX64ImulOperation) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that multiplies arguments returning the high
// word.
__ movq(rax, arg2);
__ imulq(arg1);
__ movq(rax, rdx);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(0, result);
result = f.Call(0x100000000l, 0x100000000l);
CHECK_EQ(1, result);
result = f.Call(-0x100000000l, 0x100000000l);
CHECK_EQ(-1, result);
}
TEST(AssemblerX64testbwqOperation) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ pushq(rbx);
__ pushq(rdi);
__ pushq(rsi);
__ pushq(r12);
__ pushq(r13);
__ pushq(r14);
__ pushq(r15);
// Assemble a simple function that tests testb and testw
Label bad;
Label done;
// Test immediate testb and testw
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(4));
__ movq(rcx, Immediate(8));
__ movq(rdx, Immediate(16));
__ movq(rsi, Immediate(32));
__ movq(rdi, Immediate(64));
__ movq(r10, Immediate(128));
__ movq(r11, Immediate(0));
__ movq(r12, Immediate(0));
__ movq(r13, Immediate(0));
__ testb(rax, Immediate(2));
__ j(zero, &bad);
__ testb(rbx, Immediate(4));
__ j(zero, &bad);
__ testb(rcx, Immediate(8));
__ j(zero, &bad);
__ testb(rdx, Immediate(16));
__ j(zero, &bad);
__ testb(rsi, Immediate(32));
__ j(zero, &bad);
__ testb(rdi, Immediate(64));
__ j(zero, &bad);
__ testb(r10, Immediate(128));
__ j(zero, &bad);
__ testw(rax, Immediate(2));
__ j(zero, &bad);
__ testw(rbx, Immediate(4));
__ j(zero, &bad);
__ testw(rcx, Immediate(8));
__ j(zero, &bad);
__ testw(rdx, Immediate(16));
__ j(zero, &bad);
__ testw(rsi, Immediate(32));
__ j(zero, &bad);
__ testw(rdi, Immediate(64));
__ j(zero, &bad);
__ testw(r10, Immediate(128));
__ j(zero, &bad);
// Test reg, reg testb and testw
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(2));
__ testb(rax, rbx);
__ j(zero, &bad);
__ movq(rbx, Immediate(4));
__ movq(rax, Immediate(4));
__ testb(rbx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(8));
__ testb(rcx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(16));
__ testb(rdx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(32));
__ testb(rsi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(64));
__ testb(rdi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(128));
__ testb(r10, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(2));
__ testw(rax, rbx);
__ j(zero, &bad);
__ movq(rbx, Immediate(4));
__ movq(rax, Immediate(4));
__ testw(rbx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(8));
__ testw(rcx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(16));
__ testw(rdx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(32));
__ testw(rsi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(64));
__ testw(rdi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(128));
__ testw(r10, rax);
__ j(zero, &bad);
// Test diffrrent extended register coding combinations.
__ movq(rax, Immediate(5));
__ movq(r11, Immediate(5));
__ testb(r11, rax);
__ j(zero, &bad);
__ testb(rax, r11);
__ j(zero, &bad);
__ testw(r11, rax);
__ j(zero, &bad);
__ testw(rax, r11);
__ j(zero, &bad);
__ movq(r11, Immediate(3));
__ movq(r12, Immediate(3));
__ movq(rdi, Immediate(3));
__ testb(r12, rdi);
__ j(zero, &bad);
__ testb(rdi, r12);
__ j(zero, &bad);
__ testb(r12, r11);
__ j(zero, &bad);
__ testb(r11, r12);
__ j(zero, &bad);
__ testw(r12, r11);
__ j(zero, &bad);
__ testw(r11, r12);
__ j(zero, &bad);
// Test sign-extended imediate tests
__ movq(r11, Immediate(2));
__ shlq(r11, Immediate(32));
__ testq(r11, Immediate(-1));
__ j(zero, &bad);
// All tests passed
__ movq(rax, Immediate(1));
__ jmp(&done);
__ bind(&bad);
__ movq(rax, Immediate(0));
__ bind(&done);
__ popq(r15);
__ popq(r14);
__ popq(r13);
__ popq(r12);
__ popq(rsi);
__ popq(rdi);
__ popq(rbx);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(0, 0);
CHECK_EQ(1, result);
}
TEST(AssemblerX64XchglOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(rax, Operand(arg1, 0));
__ movq(r11, Operand(arg2, 0));
__ xchgl(rax, r11);
__ movq(Operand(arg1, 0), rax);
__ movq(Operand(arg2, 0), r11);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
auto f = GeneratedCode<F4>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 40000000), left);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 20000000), right);
USE(result);
}
TEST(AssemblerX64OrlOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(rax, Operand(arg2, 0));
__ orl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
auto f = GeneratedCode<F4>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 60000000), left);
USE(result);
}
TEST(AssemblerX64RollOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(rax, arg1);
__ roll(rax, Immediate(1));
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t src = V8_2PART_UINT64_C(0x10000000, C0000000);
auto f = GeneratedCode<F5>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(src);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 80000001), result);
}
TEST(AssemblerX64SublOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(rax, Operand(arg2, 0));
__ subl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
auto f = GeneratedCode<F4>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, E0000000), left);
USE(result);
}
TEST(AssemblerX64TestlOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Set rax with the ZF flag of the testl instruction.
Label done;
__ movq(rax, Immediate(1));
__ movq(r11, Operand(arg2, 0));
__ testl(Operand(arg1, 0), r11);
__ j(zero, &done, Label::kNear);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 00000000);
auto f = GeneratedCode<F4>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(&left, &right);
CHECK_EQ(1u, result);
}
TEST(AssemblerX64TestwOperations) {
typedef uint16_t(F)(uint16_t * x);
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Set rax with the ZF flag of the testl instruction.
Label done;
__ movq(rax, Immediate(1));
__ testw(Operand(arg1, 0), Immediate(0xF0F0));
__ j(not_zero, &done, Label::kNear);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint16_t operand = 0x8000;
auto f = GeneratedCode<F>::FromAddress(CcTest::i_isolate(), buffer);
uint16_t result = f.Call(&operand);
CHECK_EQ(1u, result);
}
TEST(AssemblerX64XorlOperations) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(rax, Operand(arg2, 0));
__ xorl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 60000000);
auto f = GeneratedCode<F4>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 40000000), left);
USE(result);
}
TEST(AssemblerX64MemoryOperands) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that copies argument 2 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
const int kStackElementSize = 8;
__ movq(rax, Operand(rbp, -3 * kStackElementSize));
__ popq(arg2);
__ popq(arg2);
__ popq(arg2);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64ControlFlow) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble a simple function that copies argument 1 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ movq(rax, arg1);
Label target;
__ jmp(&target);
__ movq(rax, arg2);
__ bind(&target);
__ popq(rbp);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F2>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64LoopImmediates) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
// Assemble two loops using rax as counter, and verify the ending counts.
Label Fail;
__ movq(rax, Immediate(-3));
Label Loop1_test;
Label Loop1_body;
__ jmp(&Loop1_test);
__ bind(&Loop1_body);
__ addq(rax, Immediate(7));
__ bind(&Loop1_test);
__ cmpq(rax, Immediate(20));
__ j(less_equal, &Loop1_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(25));
__ j(not_equal, &Fail);
Label Loop2_test;
Label Loop2_body;
__ movq(rax, Immediate(0x11FEED00));
__ jmp(&Loop2_test);
__ bind(&Loop2_body);
__ addq(rax, Immediate(-0x1100));
__ bind(&Loop2_test);
__ cmpq(rax, Immediate(0x11FE8000));
__ j(greater, &Loop2_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(0x11FE7600));
__ j(not_equal, &Fail);
__ movq(rax, Immediate(1));
__ ret(0);
__ bind(&Fail);
__ movq(rax, Immediate(0));
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
// Call the function from C++.
auto f = GeneratedCode<F0>::FromAddress(CcTest::i_isolate(), buffer);
int result = f.Call();
CHECK_EQ(1, result);
}
TEST(OperandRegisterDependency) {
int offsets[4] = {0, 1, 0xFED, 0xBEEFCAD};
for (int i = 0; i < 4; i++) {
int offset = offsets[i];
CHECK(Operand(rax, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, offset).AddressUsesRegister(rsp));
CHECK(!Operand(rsp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, offset).AddressUsesRegister(r15));
CHECK(Operand(rbp, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rbp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, offset).AddressUsesRegister(r13));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13));
}
}
TEST(AssemblerX64LabelChaining) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Assembler masm(CcTest::i_isolate(), nullptr, 0);
Label target;
__ j(equal, &target);
__ j(not_equal, &target);
__ bind(&target);
__ nop();
}
TEST(AssemblerMultiByteNop) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
byte buffer[1024];
Isolate* isolate = CcTest::i_isolate();
Assembler masm(isolate, buffer, sizeof(buffer));
__ pushq(rbx);
__ pushq(rcx);
__ pushq(rdx);
__ pushq(rdi);
__ pushq(rsi);
__ movq(rax, Immediate(1));
__ movq(rbx, Immediate(2));
__ movq(rcx, Immediate(3));
__ movq(rdx, Immediate(4));
__ movq(rdi, Immediate(5));
__ movq(rsi, Immediate(6));
for (int i = 0; i < 16; i++) {
int before = masm.pc_offset();
__ Nop(i);
CHECK_EQ(masm.pc_offset() - before, i);
}
Label fail;
__ cmpq(rax, Immediate(1));
__ j(not_equal, &fail);
__ cmpq(rbx, Immediate(2));
__ j(not_equal, &fail);
__ cmpq(rcx, Immediate(3));
__ j(not_equal, &fail);
__ cmpq(rdx, Immediate(4));
__ j(not_equal, &fail);
__ cmpq(rdi, Immediate(5));
__ j(not_equal, &fail);
__ cmpq(rsi, Immediate(6));
__ j(not_equal, &fail);
__ movq(rax, Immediate(42));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
__ bind(&fail);
__ movq(rax, Immediate(13));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F0>::FromCode(*code);
int res = f.Call();
CHECK_EQ(42, res);
}
#ifdef __GNUC__
#define ELEMENT_COUNT 4u
void DoSSE2(const v8::FunctionCallbackInfo<v8::Value>& args) {
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
byte buffer[1024];
CHECK(args[0]->IsArray());
v8::Local<v8::Array> vec = v8::Local<v8::Array>::Cast(args[0]);
CHECK_EQ(ELEMENT_COUNT, vec->Length());
Isolate* isolate = CcTest::i_isolate();
Assembler masm(isolate, buffer, sizeof(buffer));
// Remove return address from the stack for fix stack frame alignment.
__ popq(rcx);
// Store input vector on the stack.
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
__ movl(rax, Immediate(vec->Get(context, i)
.ToLocalChecked()
->Int32Value(context)
.FromJust()));
__ shlq(rax, Immediate(0x20));
__ orq(rax, Immediate(vec->Get(context, ++i)
.ToLocalChecked()
->Int32Value(context)
.FromJust()));
__ pushq(rax);
}
// Read vector into a xmm register.
__ xorps(xmm0, xmm0);
__ movdqa(xmm0, Operand(rsp, 0));
// Create mask and store it in the return register.
__ movmskps(rax, xmm0);
// Remove unused data from the stack.
__ addq(rsp, Immediate(ELEMENT_COUNT * sizeof(int32_t)));
// Restore return address.
__ pushq(rcx);
__ ret(0);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
auto f = GeneratedCode<F0>::FromCode(*code);
int res = f.Call();
args.GetReturnValue().Set(v8::Integer::New(CcTest::isolate(), res));
}
TEST(StackAlignmentForSSE2) {
CcTest::InitializeVM();
CHECK_EQ(0, v8::base::OS::ActivationFrameAlignment() % 16);
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handle_scope(isolate);
v8::Local<v8::ObjectTemplate> global_template =
v8::ObjectTemplate::New(isolate);
global_template->Set(v8_str("do_sse2"),
v8::FunctionTemplate::New(isolate, DoSSE2));
LocalContext env(nullptr, global_template);
CompileRun(
"function foo(vec) {"
" return do_sse2(vec);"
"}");
v8::Local<v8::Object> global_object = env->Global();
v8::Local<v8::Function> foo = v8::Local<v8::Function>::Cast(
global_object->Get(env.local(), v8_str("foo")).ToLocalChecked());
int32_t vec[ELEMENT_COUNT] = { -1, 1, 1, 1 };
v8::Local<v8::Array> v8_vec = v8::Array::New(isolate, ELEMENT_COUNT);
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
v8_vec->Set(env.local(), i, v8_num(vec[i])).FromJust();
}
v8::Local<v8::Value> args[] = { v8_vec };
v8::Local<v8::Value> result =
foo->Call(env.local(), global_object, 1, args).ToLocalChecked();
// The mask should be 0b1000.
CHECK_EQ(8, result->Int32Value(env.local()).FromJust());
}
#undef ELEMENT_COUNT
#endif // __GNUC__
TEST(AssemblerX64Extractps) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(SSE4_1)) return;
v8::HandleScope scope(CcTest::isolate());
byte buffer[256];
Isolate* isolate = CcTest::i_isolate();
Assembler masm(isolate, buffer, sizeof(buffer));
{
CpuFeatureScope fscope2(&masm, SSE4_1);
__ extractps(rax, xmm0, 0x1);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F3>::FromCode(*code);
uint64_t value1 = V8_2PART_UINT64_C(0x12345678, 87654321);
CHECK_EQ(0x12345678u, f.Call(uint64_to_double(value1)));
uint64_t value2 = V8_2PART_UINT64_C(0x87654321, 12345678);
CHECK_EQ(0x87654321u, f.Call(uint64_to_double(value2)));
}
typedef int(F6)(float x, float y);
TEST(AssemblerX64SSE) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
__ movaps(xmm2, xmm1);
__ addps(xmm2, xmm0);
__ mulps(xmm2, xmm1);
__ subps(xmm2, xmm0);
__ divps(xmm2, xmm1);
__ cvttss2si(rax, xmm2);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F6>::FromCode(*code);
CHECK_EQ(2, f.Call(1.0, 2.0));
}
TEST(AssemblerX64SSE3) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(SSE3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, SSE3);
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
__ haddps(xmm1, xmm0);
__ cvttss2si(rax, xmm1);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F6>::FromCode(*code);
CHECK_EQ(4, f.Call(1.0, 2.0));
}
typedef int(F7)(double x, double y, double z);
TEST(AssemblerX64FMA_sd) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, FMA3);
Label exit;
// argument in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ addsd(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132sd
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ addsd(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F7>::FromCode(*code);
CHECK_EQ(
0, f.Call(0.000092662107262076, -2.460774966188315, -1.0958787393627414));
}
typedef int(F8)(float x, float y, float z);
TEST(AssemblerX64FMA_ss) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, FMA3);
Label exit;
// arguments in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ addss(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132ss
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ addss(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F8>::FromCode(*code);
CHECK_EQ(0, f.Call(9.26621069e-05f, -2.4607749f, -1.09587872f));
}
TEST(AssemblerX64SSE_ss) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler masm(isolate, buffer, sizeof(buffer));
{
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ movl(rax, Immediate(0));
__ movaps(xmm3, xmm0);
__ maxss(xmm3, xmm1);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ movaps(xmm3, xmm1);
__ minss(xmm3, xmm2);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ movaps(xmm3, xmm2);
__ subss(xmm3, xmm1);
__ ucomiss(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ movaps(xmm3, xmm0);
__ addss(xmm3, xmm1);
__ ucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ movaps(xmm3, xmm0);
__ divss(xmm3, xmm1);
__ mulss(xmm3, xmm2);
__ mulss(xmm3, xmm1);
__ ucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F8>::FromCode(*code);
int res = f.Call(1.0f, 2.0f, 3.0f);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64AVX_ss) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler masm(isolate, buffer, sizeof(buffer));
{
CpuFeatureScope avx_scope(&masm, AVX);
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand
__ movl(rdx, Immediate(0xC2F64000)); // -123.125
__ vmovd(xmm4, rdx);
__ vmovss(Operand(rsp, 0), xmm4);
__ vmovss(xmm5, Operand(rsp, 0));
__ vmovaps(xmm6, xmm5);
__ vmovd(rcx, xmm6);
__ cmpl(rcx, rdx);
__ movl(rax, Immediate(9));
__ j(not_equal, &exit);
__ movl(rax, Immediate(0));
__ vmaxss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ vminss(xmm3, xmm1, xmm2);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ vsubss(xmm3, xmm2, xmm1);
__ vucomiss(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ vaddss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ vmulss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ vdivss(xmm3, xmm0, xmm1);
__ vmulss(xmm3, xmm3, xmm2);
__ vmulss(xmm3, xmm3, xmm1);
__ vucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize * 2));
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F8>::FromCode(*code);
int res = f.Call(1.0f, 2.0f, 3.0f);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64AVX_sd) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler masm(isolate, buffer, sizeof(buffer));
{
CpuFeatureScope avx_scope(&masm, AVX);
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand
__ movl(rax, Immediate(0));
__ vmaxsd(xmm4, xmm0, xmm1);
__ vmovsd(Operand(rsp, kDoubleSize), xmm4);
__ vmovsd(xmm5, Operand(rsp, kDoubleSize));
__ vmovsd(xmm6, xmm6, xmm5);
__ vmovapd(xmm3, xmm6);
// Test vcvtss2sd & vcvtsd2ss
__ movl(rax, Immediate(9));
__ movq(rdx, uint64_t{0x426D1A0000000000});
__ movq(Operand(rsp, 0), rdx);
__ vcvtsd2ss(xmm6, xmm6, Operand(rsp, 0));
__ vcvtss2sd(xmm7, xmm6, xmm6);
__ vcvtsd2ss(xmm8, xmm7, xmm7);
__ vmovss(Operand(rsp, 0), xmm8);
__ vcvtss2sd(xmm9, xmm8, Operand(rsp, 0));
__ vmovq(rcx, xmm9);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vcvttsd2si
__ movl(rax, Immediate(10));
__ movl(rdx, Immediate(123));
__ vcvtlsi2sd(xmm6, xmm6, rdx);
__ vcvttsd2si(rcx, xmm6);
__ cmpl(rcx, rdx);
__ j(not_equal, &exit);
__ xorl(rcx, rcx);
__ vmovsd(Operand(rsp, 0), xmm6);
__ vcvttsd2si(rcx, Operand(rsp, 0));
__ cmpl(rcx, rdx);
__ j(not_equal, &exit);
// Test vcvttsd2siq
__ movl(rax, Immediate(11));
__ movq(rdx, uint64_t{0x426D1A94A2000000}); // 1.0e12
__ vmovq(xmm6, rdx);
__ vcvttsd2siq(rcx, xmm6);
__ movq(rdx, uint64_t{1000000000000});
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ xorq(rcx, rcx);
__ vmovsd(Operand(rsp, 0), xmm6);
__ vcvttsd2siq(rcx, Operand(rsp, 0));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vmovmskpd
__ movl(rax, Immediate(12));
__ movq(rdx, uint64_t{0x426D1A94A2000000}); // 1.0e12
__ vmovq(xmm6, rdx);
__ movq(rdx, uint64_t{0xC26D1A94A2000000}); // -1.0e12
__ vmovq(xmm7, rdx);
__ shufps(xmm6, xmm7, 0x44);
__ vmovmskpd(rdx, xmm6);
__ cmpl(rdx, Immediate(2));
__ j(not_equal, &exit);
// Test vpcmpeqd
__ movq(rdx, uint64_t{0x0123456789ABCDEF});
__ movq(rcx, uint64_t{0x0123456788888888});
__ vmovq(xmm6, rdx);
__ vmovq(xmm7, rcx);
__ vpcmpeqd(xmm8, xmm6, xmm7);
__ vmovq(rdx, xmm8);
__ movq(rcx, uint64_t{0xFFFFFFFF00000000});
__ cmpq(rcx, rdx);
__ movl(rax, Immediate(13));
__ j(not_equal, &exit);
// Test vpsllq, vpsrlq
__ movl(rax, Immediate(13));
__ movq(rdx, uint64_t{0x0123456789ABCDEF});
__ vmovq(xmm6, rdx);
__ vpsrlq(xmm7, xmm6, 4);
__ vmovq(rdx, xmm7);
__ movq(rcx, uint64_t{0x00123456789ABCDE});
__ cmpq(rdx, rcx);
__ j(not_equal, &exit);
__ vpsllq(xmm7, xmm6, 12);
__ vmovq(rdx, xmm7);
__ movq(rcx, uint64_t{0x3456789ABCDEF000});
__ cmpq(rdx, rcx);
__ j(not_equal, &exit);
// Test vandpd, vorpd, vxorpd
__ movl(rax, Immediate(14));
__ movl(rdx, Immediate(0x00FF00FF));
__ movl(rcx, Immediate(0x0F0F0F0F));
__ vmovd(xmm4, rdx);
__ vmovd(xmm5, rcx);
__ vandpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x000F000F));
__ j(not_equal, &exit);
__ vorpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x0FFF0FFF));
__ j(not_equal, &exit);
__ vxorpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x0FF00FF0));
__ j(not_equal, &exit);
// Test vsqrtsd
__ movl(rax, Immediate(15));
__ movq(rdx, uint64_t{0x4004000000000000}); // 2.5
__ vmovq(xmm4, rdx);
__ vmulsd(xmm5, xmm4, xmm4);
__ vmovsd(Operand(rsp, 0), xmm5);
__ vsqrtsd(xmm6, xmm5, xmm5);
__ vmovq(rcx, xmm6);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ vsqrtsd(xmm7, xmm7, Operand(rsp, 0));
__ vmovq(rcx, xmm7);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vroundsd
__ movl(rax, Immediate(16));
__ movq(rdx, uint64_t{0x4002000000000000}); // 2.25
__ vmovq(xmm4, rdx);
__ vroundsd(xmm5, xmm4, xmm4, kRoundUp);
__ movq(rcx, uint64_t{0x4008000000000000}); // 3.0
__ vmovq(xmm6, rcx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtlsi2sd
__ movl(rax, Immediate(17));
__ movl(rdx, Immediate(6));
__ movq(rcx, uint64_t{0x4018000000000000}); // 6.0
__ vmovq(xmm5, rcx);
__ vcvtlsi2sd(xmm6, xmm6, rdx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
__ movl(Operand(rsp, 0), rdx);
__ vcvtlsi2sd(xmm7, xmm7, Operand(rsp, 0));
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtqsi2sd
__ movl(rax, Immediate(18));
__ movq(rdx, uint64_t{0x2000000000000000}); // 2 << 0x3C
__ movq(rcx, uint64_t{0x43C0000000000000});
__ vmovq(xmm5, rcx);
__ vcvtqsi2sd(xmm6, xmm6, rdx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtsd2si
__ movl(rax, Immediate(19));
__ movq(rdx, uint64_t{0x4018000000000000}); // 6.0
__ vmovq(xmm5, rdx);
__ vcvtsd2si(rcx, xmm5);
__ cmpl(rcx, Immediate(6));
__ j(not_equal, &exit);
__ movq(rdx, uint64_t{0x3FF0000000000000}); // 1.0
__ vmovq(xmm7, rdx);
__ vmulsd(xmm1, xmm1, xmm7);
__ movq(Operand(rsp, 0), rdx);
__ vmovq(xmm6, Operand(rsp, 0));
__ vmulsd(xmm1, xmm1, xmm6);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ vminsd(xmm3, xmm1, xmm2);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ vsubsd(xmm3, xmm2, xmm1);
__ vucomisd(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ vaddsd(xmm3, xmm0, xmm1);
__ vucomisd(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ vmulsd(xmm3, xmm0, xmm1);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ vdivsd(xmm3, xmm0, xmm1);
__ vmulsd(xmm3, xmm3, xmm2);
__ vmulsd(xmm3, xmm3, xmm1);
__ vucomisd(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize * 2));
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F7>::FromCode(*code);
int res = f.Call(1.0, 2.0, 3.0);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64BMI1) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(BMI1)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, BMI1);
Label exit;
__ movq(rcx, uint64_t{0x1122334455667788}); // source operand
__ pushq(rcx); // For memory operand
// andn
__ movq(rdx, uint64_t{0x1000000020000000});
__ movl(rax, Immediate(1)); // Test number
__ andnq(r8, rdx, rcx);
__ movq(r9, uint64_t{0x0122334455667788}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnq(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0122334455667788}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnl(r8, rdx, rcx);
__ movq(r9, uint64_t{0x0000000055667788}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnl(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000055667788}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// bextr
__ movq(rdx, uint64_t{0x0000000000002808});
__ incq(rax);
__ bextrq(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000003344556677}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrq(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000003344556677}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrl(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000000556677}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrl(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000000556677}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsi
__ incq(rax);
__ blsiq(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000008}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsiq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000008}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsil(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000008}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsil(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000008}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsmsk
__ incq(rax);
__ blsmskq(r8, rcx);
__ movq(r9, uint64_t{0x000000000000000F}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x000000000000000F}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskl(r8, rcx);
__ movq(r9, uint64_t{0x000000000000000F}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskl(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x000000000000000F}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsr
__ incq(rax);
__ blsrq(r8, rcx);
__ movq(r9, uint64_t{0x1122334455667780}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x1122334455667780}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrl(r8, rcx);
__ movq(r9, uint64_t{0x0000000055667780}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrl(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000055667780}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// tzcnt
__ incq(rax);
__ tzcntq(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntl(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntl(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F0>::FromCode(*code);
CHECK_EQ(0, f.Call());
}
TEST(AssemblerX64LZCNT) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(LZCNT)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, LZCNT);
Label exit;
__ movq(rcx, uint64_t{0x1122334455667788}); // source operand
__ pushq(rcx); // For memory operand
__ movl(rax, Immediate(1)); // Test number
__ lzcntq(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000003}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntl(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000001}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntl(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000001}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F0>::FromCode(*code);
CHECK_EQ(0, f.Call());
}
TEST(AssemblerX64POPCNT) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(POPCNT)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, POPCNT);
Label exit;
__ movq(rcx, uint64_t{0x1111111111111100}); // source operand
__ pushq(rcx); // For memory operand
__ movl(rax, Immediate(1)); // Test number
__ popcntq(r8, rcx);
__ movq(r9, uint64_t{0x000000000000000E}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntq(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x000000000000000E}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntl(r8, rcx);
__ movq(r9, uint64_t{0x0000000000000006}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntl(r8, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000000000006}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F0>::FromCode(*code);
CHECK_EQ(0, f.Call());
}
TEST(AssemblerX64BMI2) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(BMI2)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[2048];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&masm, BMI2);
Label exit;
__ pushq(rbx); // save rbx
__ movq(rcx, uint64_t{0x1122334455667788}); // source operand
__ pushq(rcx); // For memory operand
// bzhi
__ movq(rdx, uint64_t{0x0000000000000009});
__ movl(rax, Immediate(1)); // Test number
__ bzhiq(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000000000188}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhiq(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000000000188}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhil(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000000000188}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhil(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000000000188}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// mulx
__ movq(rdx, uint64_t{0x0000000000001000});
__ incq(rax);
__ mulxq(r8, r9, rcx);
__ movq(rbx, uint64_t{0x0000000000000112}); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, uint64_t{0x2334455667788000}); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxq(r8, r9, Operand(rsp, 0));
__ movq(rbx, uint64_t{0x0000000000000112}); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, uint64_t{0x2334455667788000}); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxl(r8, r9, rcx);
__ movq(rbx, uint64_t{0x0000000000000556}); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, uint64_t{0x0000000067788000}); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxl(r8, r9, Operand(rsp, 0));
__ movq(rbx, uint64_t{0x0000000000000556}); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, uint64_t{0x0000000067788000}); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
// pdep
__ movq(rdx, uint64_t{0xFFFFFFFFFFFFFFF0});
__ incq(rax);
__ pdepq(r8, rdx, rcx);
__ movq(r9, uint64_t{0x1122334455667400}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepq(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x1122334455667400}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepl(r8, rdx, rcx);
__ movq(r9, uint64_t{0x0000000055667400}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepl(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000055667400}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// pext
__ movq(rdx, uint64_t{0xFFFFFFFFFFFFFFF0});
__ incq(rax);
__ pextq(r8, rdx, rcx);
__ movq(r9, uint64_t{0x0000000003FFFFFE}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextq(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x0000000003FFFFFE}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextl(r8, rdx, rcx);
__ movq(r9, uint64_t{0x000000000000FFFE}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextl(r8, rdx, Operand(rsp, 0));
__ movq(r9, uint64_t{0x000000000000FFFE}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// sarx
__ movq(rdx, uint64_t{0x0000000000000004});
__ incq(rax);
__ sarxq(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxl(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000005566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000005566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// shlx
__ movq(rdx, uint64_t{0x0000000000000004});
__ incq(rax);
__ shlxq(r8, rcx, rdx);
__ movq(r9, uint64_t{0x1223344556677880}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x1223344556677880}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxl(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000056677880}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000056677880}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// shrx
__ movq(rdx, uint64_t{0x0000000000000004});
__ incq(rax);
__ shrxq(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxl(r8, rcx, rdx);
__ movq(r9, uint64_t{0x0000000005566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, uint64_t{0x0000000005566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// rorx
__ incq(rax);
__ rorxq(r8, rcx, 0x4);
__ movq(r9, uint64_t{0x8112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxq(r8, Operand(rsp, 0), 0x4);
__ movq(r9, uint64_t{0x8112233445566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxl(r8, rcx, 0x4);
__ movq(r9, uint64_t{0x0000000085566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxl(r8, Operand(rsp, 0), 0x4);
__ movq(r9, uint64_t{0x0000000085566778}); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F0>::FromCode(*code);
CHECK_EQ(0, f.Call());
}
TEST(AssemblerX64JumpTables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler masm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kNumCases; ++i) {
int res = f.Call(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(AssemblerX64JumpTables2) {
// Test jump tables with backwards jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler masm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kNumCases; ++i) {
int res = f.Call(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(AssemblerX64PslldWithXmm15) {
CcTest::InitializeVM();
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(&allocated);
Assembler masm(CcTest::i_isolate(), buffer, static_cast<int>(allocated));
__ movq(xmm15, arg1);
__ pslld(xmm15, 1);
__ movq(rax, xmm15);
__ ret(0);
CodeDesc desc;
masm.GetCode(CcTest::i_isolate(), &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
auto f = GeneratedCode<F5>::FromAddress(CcTest::i_isolate(), buffer);
uint64_t result = f.Call(uint64_t{0x1122334455667788});
CHECK_EQ(uint64_t{0x22446688AACCEF10}, result);
}
typedef float(F9)(float x, float y);
TEST(AssemblerX64vmovups) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler masm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope avx_scope(&masm, AVX);
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
// copy xmm1 to xmm0 through the stack to test the "vmovups reg, mem".
__ subq(rsp, Immediate(kSimd128Size));
__ vmovups(Operand(rsp, 0), xmm1);
__ vmovups(xmm0, Operand(rsp, 0));
__ addq(rsp, Immediate(kSimd128Size));
__ ret(0);
}
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
auto f = GeneratedCode<F9>::FromCode(*code);
CHECK_EQ(-1.5, f.Call(1.5, -1.5));
}
#undef __
} // namespace internal
} // namespace v8