cfc6a5c2c6
There is no good reason to have the meat of most objects' initialization
logic in heap.cc, all wrapped by the CALL_HEAP_FUNCTION macro. Instead,
this CL changes the protocol between Heap and Factory to be AllocateRaw,
and all object initialization work after (possibly retried) successful
raw allocation happens in the Factory.
This saves about 20KB of binary size on x64.
Original review: https://chromium-review.googlesource.com/c/v8/v8/+/959533
Originally landed as r52416 / f9a2e24bbc
Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng
Change-Id: Id072cbe6b3ed30afd339c7e502844b99ca12a647
Reviewed-on: https://chromium-review.googlesource.com/1000540
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#52492}
819 lines
25 KiB
C++
819 lines
25 KiB
C++
// Copyright 2015 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <set>
|
|
|
|
#include "src/heap/factory-inl.h"
|
|
#include "src/identity-map.h"
|
|
#include "src/isolate.h"
|
|
#include "src/objects.h"
|
|
#include "src/zone/zone.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Helper for testing. A "friend" of the IdentityMapBase class, it is able to
|
|
// "move" objects to simulate GC for testing the internals of the map.
|
|
class IdentityMapTester : public HandleAndZoneScope {
|
|
public:
|
|
IdentityMap<void*, ZoneAllocationPolicy> map;
|
|
|
|
IdentityMapTester() : map(heap(), ZoneAllocationPolicy(main_zone())) {}
|
|
|
|
Heap* heap() { return isolate()->heap(); }
|
|
Isolate* isolate() { return main_isolate(); }
|
|
|
|
void TestGetFind(Handle<Object> key1, void* val1, Handle<Object> key2,
|
|
void* val2) {
|
|
CHECK_NULL(map.Find(key1));
|
|
CHECK_NULL(map.Find(key2));
|
|
|
|
// Set {key1} the first time.
|
|
void** entry = map.Get(key1);
|
|
CHECK_NOT_NULL(entry);
|
|
*entry = val1;
|
|
|
|
for (int i = 0; i < 3; i++) { // Get and find {key1} K times.
|
|
{
|
|
void** nentry = map.Get(key1);
|
|
CHECK_EQ(entry, nentry);
|
|
CHECK_EQ(val1, *nentry);
|
|
CHECK_NULL(map.Find(key2));
|
|
}
|
|
{
|
|
void** nentry = map.Find(key1);
|
|
CHECK_EQ(entry, nentry);
|
|
CHECK_EQ(val1, *nentry);
|
|
CHECK_NULL(map.Find(key2));
|
|
}
|
|
}
|
|
|
|
// Set {key2} the first time.
|
|
void** entry2 = map.Get(key2);
|
|
CHECK_NOT_NULL(entry2);
|
|
*entry2 = val2;
|
|
|
|
for (int i = 0; i < 3; i++) { // Get and find {key1} and {key2} K times.
|
|
{
|
|
void** nentry = map.Get(key2);
|
|
CHECK_EQ(entry2, nentry);
|
|
CHECK_EQ(val2, *nentry);
|
|
}
|
|
{
|
|
void** nentry = map.Find(key2);
|
|
CHECK_EQ(entry2, nentry);
|
|
CHECK_EQ(val2, *nentry);
|
|
}
|
|
{
|
|
void** nentry = map.Find(key1);
|
|
CHECK_EQ(val1, *nentry);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestFindDelete(Handle<Object> key1, void* val1, Handle<Object> key2,
|
|
void* val2) {
|
|
CHECK_NULL(map.Find(key1));
|
|
CHECK_NULL(map.Find(key2));
|
|
|
|
// Set {key1} and {key2} for the first time.
|
|
void** entry1 = map.Get(key1);
|
|
CHECK_NOT_NULL(entry1);
|
|
*entry1 = val1;
|
|
void** entry2 = map.Get(key2);
|
|
CHECK_NOT_NULL(entry2);
|
|
*entry2 = val2;
|
|
|
|
for (int i = 0; i < 3; i++) { // Find {key1} and {key2} 3 times.
|
|
{
|
|
void** nentry = map.Find(key2);
|
|
CHECK_EQ(val2, *nentry);
|
|
}
|
|
{
|
|
void** nentry = map.Find(key1);
|
|
CHECK_EQ(val1, *nentry);
|
|
}
|
|
}
|
|
|
|
// Delete {key1}
|
|
void* deleted_entry_1 = map.Delete(key1);
|
|
CHECK_NOT_NULL(deleted_entry_1);
|
|
deleted_entry_1 = val1;
|
|
|
|
for (int i = 0; i < 3; i++) { // Find {key1} and not {key2} 3 times.
|
|
{
|
|
void** nentry = map.Find(key1);
|
|
CHECK_NULL(nentry);
|
|
}
|
|
{
|
|
void** nentry = map.Find(key2);
|
|
CHECK_EQ(val2, *nentry);
|
|
}
|
|
}
|
|
|
|
// Delete {key2}
|
|
void* deleted_entry_2 = map.Delete(key2);
|
|
CHECK_NOT_NULL(deleted_entry_2);
|
|
deleted_entry_2 = val2;
|
|
|
|
for (int i = 0; i < 3; i++) { // Don't find {key1} and {key2} 3 times.
|
|
{
|
|
void** nentry = map.Find(key1);
|
|
CHECK_NULL(nentry);
|
|
}
|
|
{
|
|
void** nentry = map.Find(key2);
|
|
CHECK_NULL(nentry);
|
|
}
|
|
}
|
|
}
|
|
|
|
Handle<Smi> smi(int value) {
|
|
return Handle<Smi>(Smi::FromInt(value), isolate());
|
|
}
|
|
|
|
Handle<Object> num(double value) {
|
|
return isolate()->factory()->NewNumber(value);
|
|
}
|
|
|
|
void SimulateGCByIncrementingSmisBy(int shift) {
|
|
for (int i = 0; i < map.capacity_; i++) {
|
|
if (map.keys_[i]->IsSmi()) {
|
|
map.keys_[i] = Smi::FromInt(Smi::ToInt(map.keys_[i]) + shift);
|
|
}
|
|
}
|
|
map.gc_counter_ = -1;
|
|
}
|
|
|
|
void CheckFind(Handle<Object> key, void* value) {
|
|
void** entry = map.Find(key);
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(value, *entry);
|
|
}
|
|
|
|
void CheckGet(Handle<Object> key, void* value) {
|
|
void** entry = map.Get(key);
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(value, *entry);
|
|
}
|
|
|
|
void CheckDelete(Handle<Object> key, void* value) {
|
|
void* entry = map.Delete(key);
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(value, entry);
|
|
}
|
|
|
|
void PrintMap() {
|
|
PrintF("{\n");
|
|
for (int i = 0; i < map.capacity_; i++) {
|
|
PrintF(" %3d: %p => %p\n", i, reinterpret_cast<void*>(map.keys_[i]),
|
|
reinterpret_cast<void*>(map.values_[i]));
|
|
}
|
|
PrintF("}\n");
|
|
}
|
|
|
|
void Resize() { map.Resize(map.capacity_ * 4); }
|
|
|
|
void Rehash() { map.Rehash(); }
|
|
};
|
|
|
|
TEST(Find_smi_not_found) {
|
|
IdentityMapTester t;
|
|
for (int i = 0; i < 100; i++) {
|
|
CHECK_NULL(t.map.Find(t.smi(i)));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Find_num_not_found) {
|
|
IdentityMapTester t;
|
|
for (int i = 0; i < 100; i++) {
|
|
CHECK_NULL(t.map.Find(t.num(i + 0.2)));
|
|
}
|
|
}
|
|
|
|
TEST(Delete_smi_not_found) {
|
|
IdentityMapTester t;
|
|
for (int i = 0; i < 100; i++) {
|
|
CHECK_NULL(t.map.Delete(t.smi(i)));
|
|
}
|
|
}
|
|
|
|
TEST(Delete_num_not_found) {
|
|
IdentityMapTester t;
|
|
for (int i = 0; i < 100; i++) {
|
|
CHECK_NULL(t.map.Delete(t.num(i + 0.2)));
|
|
}
|
|
}
|
|
|
|
TEST(GetFind_smi_0) {
|
|
IdentityMapTester t;
|
|
t.TestGetFind(t.smi(0), t.isolate(), t.smi(1), t.heap());
|
|
}
|
|
|
|
TEST(GetFind_smi_13) {
|
|
IdentityMapTester t;
|
|
t.TestGetFind(t.smi(13), t.isolate(), t.smi(17), t.heap());
|
|
}
|
|
|
|
TEST(GetFind_num_13) {
|
|
IdentityMapTester t;
|
|
t.TestGetFind(t.num(13.1), t.isolate(), t.num(17.1), t.heap());
|
|
}
|
|
|
|
TEST(Delete_smi_13) {
|
|
IdentityMapTester t;
|
|
t.TestFindDelete(t.smi(13), t.isolate(), t.smi(17), t.heap());
|
|
CHECK(t.map.empty());
|
|
}
|
|
|
|
TEST(Delete_num_13) {
|
|
IdentityMapTester t;
|
|
t.TestFindDelete(t.num(13.1), t.isolate(), t.num(17.1), t.heap());
|
|
CHECK(t.map.empty());
|
|
}
|
|
|
|
TEST(GetFind_smi_17m) {
|
|
const int kInterval = 17;
|
|
const int kShift = 1099;
|
|
IdentityMapTester t;
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.map.Set(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
}
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.CheckFind(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
}
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.CheckGet(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
}
|
|
|
|
for (int i = 1; i < 100; i++) {
|
|
void** entry = t.map.Find(t.smi(i));
|
|
if ((i % kInterval) != 1) {
|
|
CHECK_NULL(entry);
|
|
} else {
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(reinterpret_cast<void*>(i + kShift), *entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Delete_smi_17m) {
|
|
const int kInterval = 17;
|
|
const int kShift = 1099;
|
|
IdentityMapTester t;
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.map.Set(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
}
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.CheckFind(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
}
|
|
|
|
for (int i = 1; i < 100; i += kInterval) {
|
|
t.CheckDelete(t.smi(i), reinterpret_cast<void*>(i + kShift));
|
|
for (int j = 1; j < 100; j += kInterval) {
|
|
void** entry = t.map.Find(t.smi(j));
|
|
if (j <= i) {
|
|
CHECK_NULL(entry);
|
|
} else {
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(reinterpret_cast<void*>(j + kShift), *entry);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GetFind_num_1000) {
|
|
const int kPrime = 137;
|
|
IdentityMapTester t;
|
|
int val1;
|
|
int val2;
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
t.TestGetFind(t.smi(i * kPrime), &val1, t.smi(i * kPrime + 1), &val2);
|
|
}
|
|
}
|
|
|
|
TEST(Delete_num_1000) {
|
|
const int kPrime = 137;
|
|
IdentityMapTester t;
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
t.map.Set(t.smi(i * kPrime), reinterpret_cast<void*>(i * kPrime));
|
|
}
|
|
|
|
// Delete every second value in reverse.
|
|
for (int i = 999; i >= 0; i -= 2) {
|
|
void* entry = t.map.Delete(t.smi(i * kPrime));
|
|
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), entry);
|
|
}
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
void** entry = t.map.Find(t.smi(i * kPrime));
|
|
if (i % 2) {
|
|
CHECK_NULL(entry);
|
|
} else {
|
|
CHECK_NOT_NULL(entry);
|
|
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), *entry);
|
|
}
|
|
}
|
|
|
|
// Delete the rest.
|
|
for (int i = 0; i < 1000; i += 2) {
|
|
void* entry = t.map.Delete(t.smi(i * kPrime));
|
|
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), entry);
|
|
}
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
void** entry = t.map.Find(t.smi(i * kPrime));
|
|
CHECK_NULL(entry);
|
|
}
|
|
}
|
|
|
|
TEST(GetFind_smi_gc) {
|
|
const int kKey = 33;
|
|
const int kShift = 1211;
|
|
IdentityMapTester t;
|
|
|
|
t.map.Set(t.smi(kKey), &t);
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
t.CheckFind(t.smi(kKey + kShift), &t);
|
|
t.CheckGet(t.smi(kKey + kShift), &t);
|
|
}
|
|
|
|
TEST(Delete_smi_gc) {
|
|
const int kKey = 33;
|
|
const int kShift = 1211;
|
|
IdentityMapTester t;
|
|
|
|
t.map.Set(t.smi(kKey), &t);
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
t.CheckDelete(t.smi(kKey + kShift), &t);
|
|
}
|
|
|
|
TEST(GetFind_smi_gc2) {
|
|
int kKey1 = 1;
|
|
int kKey2 = 33;
|
|
const int kShift = 1211;
|
|
IdentityMapTester t;
|
|
|
|
t.map.Set(t.smi(kKey1), &kKey1);
|
|
t.map.Set(t.smi(kKey2), &kKey2);
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
t.CheckFind(t.smi(kKey1 + kShift), &kKey1);
|
|
t.CheckGet(t.smi(kKey1 + kShift), &kKey1);
|
|
t.CheckFind(t.smi(kKey2 + kShift), &kKey2);
|
|
t.CheckGet(t.smi(kKey2 + kShift), &kKey2);
|
|
}
|
|
|
|
TEST(Delete_smi_gc2) {
|
|
int kKey1 = 1;
|
|
int kKey2 = 33;
|
|
const int kShift = 1211;
|
|
IdentityMapTester t;
|
|
|
|
t.map.Set(t.smi(kKey1), &kKey1);
|
|
t.map.Set(t.smi(kKey2), &kKey2);
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
t.CheckDelete(t.smi(kKey1 + kShift), &kKey1);
|
|
t.CheckDelete(t.smi(kKey2 + kShift), &kKey2);
|
|
}
|
|
|
|
TEST(GetFind_smi_gc_n) {
|
|
const int kShift = 12011;
|
|
IdentityMapTester t;
|
|
int keys[12] = {1, 2, 7, 8, 15, 23,
|
|
1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32};
|
|
// Initialize the map first.
|
|
for (size_t i = 0; i < arraysize(keys); i += 2) {
|
|
t.TestGetFind(t.smi(keys[i]), &keys[i], t.smi(keys[i + 1]), &keys[i + 1]);
|
|
}
|
|
// Check the above initialization.
|
|
for (size_t i = 0; i < arraysize(keys); i++) {
|
|
t.CheckFind(t.smi(keys[i]), &keys[i]);
|
|
}
|
|
// Simulate a GC by "moving" the smis in the internal keys array.
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
// Check that searching for the incremented smis finds the same values.
|
|
for (size_t i = 0; i < arraysize(keys); i++) {
|
|
t.CheckFind(t.smi(keys[i] + kShift), &keys[i]);
|
|
}
|
|
// Check that searching for the incremented smis gets the same values.
|
|
for (size_t i = 0; i < arraysize(keys); i++) {
|
|
t.CheckGet(t.smi(keys[i] + kShift), &keys[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Delete_smi_gc_n) {
|
|
const int kShift = 12011;
|
|
IdentityMapTester t;
|
|
int keys[12] = {1, 2, 7, 8, 15, 23,
|
|
1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32};
|
|
// Initialize the map first.
|
|
for (size_t i = 0; i < arraysize(keys); i++) {
|
|
t.map.Set(t.smi(keys[i]), &keys[i]);
|
|
}
|
|
// Simulate a GC by "moving" the smis in the internal keys array.
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
// Check that deleting for the incremented smis finds the same values.
|
|
for (size_t i = 0; i < arraysize(keys); i++) {
|
|
t.CheckDelete(t.smi(keys[i] + kShift), &keys[i]);
|
|
}
|
|
}
|
|
|
|
TEST(GetFind_smi_num_gc_n) {
|
|
const int kShift = 12019;
|
|
IdentityMapTester t;
|
|
int smi_keys[] = {1, 2, 7, 15, 23};
|
|
Handle<Object> num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4),
|
|
t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8),
|
|
t.num(9.9), t.num(10.1)};
|
|
// Initialize the map first.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.map.Set(t.smi(smi_keys[i]), &smi_keys[i]);
|
|
}
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.map.Set(num_keys[i], &num_keys[i]);
|
|
}
|
|
// Check the above initialization.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.CheckFind(t.smi(smi_keys[i]), &smi_keys[i]);
|
|
}
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.CheckFind(num_keys[i], &num_keys[i]);
|
|
}
|
|
|
|
// Simulate a GC by moving SMIs.
|
|
// Ironically the SMIs "move", but the heap numbers don't!
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
|
|
// Check that searching for the incremented smis finds the same values.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.CheckFind(t.smi(smi_keys[i] + kShift), &smi_keys[i]);
|
|
t.CheckGet(t.smi(smi_keys[i] + kShift), &smi_keys[i]);
|
|
}
|
|
|
|
// Check that searching for the numbers finds the same values.
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.CheckFind(num_keys[i], &num_keys[i]);
|
|
t.CheckGet(num_keys[i], &num_keys[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Delete_smi_num_gc_n) {
|
|
const int kShift = 12019;
|
|
IdentityMapTester t;
|
|
int smi_keys[] = {1, 2, 7, 15, 23};
|
|
Handle<Object> num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4),
|
|
t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8),
|
|
t.num(9.9), t.num(10.1)};
|
|
// Initialize the map first.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.map.Set(t.smi(smi_keys[i]), &smi_keys[i]);
|
|
}
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.map.Set(num_keys[i], &num_keys[i]);
|
|
}
|
|
|
|
// Simulate a GC by moving SMIs.
|
|
// Ironically the SMIs "move", but the heap numbers don't!
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
|
|
// Check that deleting for the incremented smis finds the same values.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.CheckDelete(t.smi(smi_keys[i] + kShift), &smi_keys[i]);
|
|
}
|
|
|
|
// Check that deleting the numbers finds the same values.
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.CheckDelete(num_keys[i], &num_keys[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Delete_smi_resizes) {
|
|
const int kKeyCount = 1024;
|
|
const int kValueOffset = 27;
|
|
IdentityMapTester t;
|
|
|
|
// Insert one element to initialize map.
|
|
t.map.Set(t.smi(0), reinterpret_cast<void*>(kValueOffset));
|
|
|
|
int initial_capacity = t.map.capacity();
|
|
CHECK_LT(initial_capacity, kKeyCount);
|
|
|
|
// Insert another kKeyCount - 1 keys.
|
|
for (int i = 1; i < kKeyCount; i++) {
|
|
t.map.Set(t.smi(i), reinterpret_cast<void*>(i + kValueOffset));
|
|
}
|
|
|
|
// Check capacity increased.
|
|
CHECK_GT(t.map.capacity(), initial_capacity);
|
|
CHECK_GE(t.map.capacity(), kKeyCount);
|
|
|
|
// Delete all the keys.
|
|
for (int i = 0; i < kKeyCount; i++) {
|
|
t.CheckDelete(t.smi(i), reinterpret_cast<void*>(i + kValueOffset));
|
|
}
|
|
|
|
// Should resize back to initial capacity.
|
|
CHECK_EQ(t.map.capacity(), initial_capacity);
|
|
}
|
|
|
|
TEST(Iterator_smi_num) {
|
|
IdentityMapTester t;
|
|
int smi_keys[] = {1, 2, 7, 15, 23};
|
|
Handle<Object> num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4),
|
|
t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8),
|
|
t.num(9.9), t.num(10.1)};
|
|
// Initialize the map.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.map.Set(t.smi(smi_keys[i]), reinterpret_cast<void*>(i));
|
|
}
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.map.Set(num_keys[i], reinterpret_cast<void*>(i + 5));
|
|
}
|
|
|
|
// Check iterator sees all values once.
|
|
std::set<intptr_t> seen;
|
|
{
|
|
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(&t.map);
|
|
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
|
|
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
|
|
seen.insert(reinterpret_cast<intptr_t>(**it));
|
|
}
|
|
}
|
|
for (intptr_t i = 0; i < 15; i++) {
|
|
CHECK(seen.find(i) != seen.end());
|
|
}
|
|
}
|
|
|
|
TEST(Iterator_smi_num_gc) {
|
|
const int kShift = 16039;
|
|
IdentityMapTester t;
|
|
int smi_keys[] = {1, 2, 7, 15, 23};
|
|
Handle<Object> num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4),
|
|
t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8),
|
|
t.num(9.9), t.num(10.1)};
|
|
// Initialize the map.
|
|
for (size_t i = 0; i < arraysize(smi_keys); i++) {
|
|
t.map.Set(t.smi(smi_keys[i]), reinterpret_cast<void*>(i));
|
|
}
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.map.Set(num_keys[i], reinterpret_cast<void*>(i + 5));
|
|
}
|
|
|
|
// Simulate GC by moving the SMIs.
|
|
t.SimulateGCByIncrementingSmisBy(kShift);
|
|
|
|
// Check iterator sees all values.
|
|
std::set<intptr_t> seen;
|
|
{
|
|
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(&t.map);
|
|
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
|
|
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
|
|
seen.insert(reinterpret_cast<intptr_t>(**it));
|
|
}
|
|
}
|
|
for (intptr_t i = 0; i < 15; i++) {
|
|
CHECK(seen.find(i) != seen.end());
|
|
}
|
|
}
|
|
|
|
void IterateCollisionTest(int stride) {
|
|
for (int load = 15; load <= 120; load = load * 2) {
|
|
IdentityMapTester t;
|
|
|
|
{ // Add entries to the map.
|
|
HandleScope scope(t.isolate());
|
|
int next = 1;
|
|
for (int i = 0; i < load; i++) {
|
|
t.map.Set(t.smi(next), reinterpret_cast<void*>(next));
|
|
t.CheckFind(t.smi(next), reinterpret_cast<void*>(next));
|
|
next = next + stride;
|
|
}
|
|
}
|
|
// Iterate through the map and check we see all elements only once.
|
|
std::set<intptr_t> seen;
|
|
{
|
|
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(
|
|
&t.map);
|
|
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
|
|
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
|
|
seen.insert(reinterpret_cast<intptr_t>(**it));
|
|
}
|
|
}
|
|
// Check get and find on map.
|
|
{
|
|
HandleScope scope(t.isolate());
|
|
int next = 1;
|
|
for (int i = 0; i < load; i++) {
|
|
CHECK(seen.find(next) != seen.end());
|
|
t.CheckFind(t.smi(next), reinterpret_cast<void*>(next));
|
|
t.CheckGet(t.smi(next), reinterpret_cast<void*>(next));
|
|
next = next + stride;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(IterateCollisions_1) { IterateCollisionTest(1); }
|
|
TEST(IterateCollisions_2) { IterateCollisionTest(2); }
|
|
TEST(IterateCollisions_3) { IterateCollisionTest(3); }
|
|
TEST(IterateCollisions_5) { IterateCollisionTest(5); }
|
|
TEST(IterateCollisions_7) { IterateCollisionTest(7); }
|
|
|
|
void CollisionTest(int stride, bool rehash = false, bool resize = false) {
|
|
for (int load = 15; load <= 120; load = load * 2) {
|
|
IdentityMapTester t;
|
|
|
|
{ // Add entries to the map.
|
|
HandleScope scope(t.isolate());
|
|
int next = 1;
|
|
for (int i = 0; i < load; i++) {
|
|
t.map.Set(t.smi(next), reinterpret_cast<void*>(next));
|
|
t.CheckFind(t.smi(next), reinterpret_cast<void*>(next));
|
|
next = next + stride;
|
|
}
|
|
}
|
|
if (resize) t.Resize(); // Explicit resize (internal method).
|
|
if (rehash) t.Rehash(); // Explicit rehash (internal method).
|
|
{ // Check find and get.
|
|
HandleScope scope(t.isolate());
|
|
int next = 1;
|
|
for (int i = 0; i < load; i++) {
|
|
t.CheckFind(t.smi(next), reinterpret_cast<void*>(next));
|
|
t.CheckGet(t.smi(next), reinterpret_cast<void*>(next));
|
|
next = next + stride;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Collisions_1) { CollisionTest(1); }
|
|
TEST(Collisions_2) { CollisionTest(2); }
|
|
TEST(Collisions_3) { CollisionTest(3); }
|
|
TEST(Collisions_5) { CollisionTest(5); }
|
|
TEST(Collisions_7) { CollisionTest(7); }
|
|
TEST(Resize) { CollisionTest(9, false, true); }
|
|
TEST(Rehash) { CollisionTest(11, true, false); }
|
|
|
|
TEST(ExplicitGC) {
|
|
IdentityMapTester t;
|
|
Handle<Object> num_keys[] = {t.num(2.1), t.num(2.4), t.num(3.3), t.num(4.3),
|
|
t.num(7.5), t.num(6.4), t.num(7.3), t.num(8.3),
|
|
t.num(8.9), t.num(10.4)};
|
|
|
|
// Insert some objects that should be in new space.
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.map.Set(num_keys[i], &num_keys[i]);
|
|
}
|
|
|
|
// Do an explicit, real GC.
|
|
t.heap()->CollectGarbage(i::NEW_SPACE, i::GarbageCollectionReason::kTesting);
|
|
|
|
// Check that searching for the numbers finds the same values.
|
|
for (size_t i = 0; i < arraysize(num_keys); i++) {
|
|
t.CheckFind(num_keys[i], &num_keys[i]);
|
|
t.CheckGet(num_keys[i], &num_keys[i]);
|
|
}
|
|
}
|
|
|
|
TEST(CanonicalHandleScope) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = CcTest::heap();
|
|
HandleScope outer(isolate);
|
|
CanonicalHandleScope outer_canonical(isolate);
|
|
|
|
// Deduplicate smi handles.
|
|
std::vector<Handle<Object>> smi_handles;
|
|
for (int i = 0; i < 100; i++) {
|
|
smi_handles.push_back(Handle<Object>(Smi::FromInt(i), isolate));
|
|
}
|
|
Object** next_handle = isolate->handle_scope_data()->next;
|
|
for (int i = 0; i < 100; i++) {
|
|
Handle<Object> new_smi = Handle<Object>(Smi::FromInt(i), isolate);
|
|
Handle<Object> old_smi = smi_handles[i];
|
|
CHECK_EQ(new_smi.location(), old_smi.location());
|
|
}
|
|
// Check that no new handles have been allocated.
|
|
CHECK_EQ(next_handle, isolate->handle_scope_data()->next);
|
|
|
|
// Deduplicate root list items.
|
|
Handle<String> empty_string(heap->empty_string());
|
|
Handle<Map> free_space_map(heap->free_space_map());
|
|
Handle<Symbol> uninitialized_symbol(heap->uninitialized_symbol());
|
|
CHECK_EQ(isolate->factory()->empty_string().location(),
|
|
empty_string.location());
|
|
CHECK_EQ(isolate->factory()->free_space_map().location(),
|
|
free_space_map.location());
|
|
CHECK_EQ(isolate->factory()->uninitialized_symbol().location(),
|
|
uninitialized_symbol.location());
|
|
// Check that no new handles have been allocated.
|
|
CHECK_EQ(next_handle, isolate->handle_scope_data()->next);
|
|
|
|
// Test ordinary heap objects.
|
|
Handle<HeapNumber> number1 = isolate->factory()->NewHeapNumber(3.3);
|
|
Handle<String> string1 =
|
|
isolate->factory()->NewStringFromAsciiChecked("test");
|
|
next_handle = isolate->handle_scope_data()->next;
|
|
Handle<HeapNumber> number2(*number1);
|
|
Handle<String> string2(*string1);
|
|
CHECK_EQ(number1.location(), number2.location());
|
|
CHECK_EQ(string1.location(), string2.location());
|
|
CcTest::CollectAllGarbage();
|
|
Handle<HeapNumber> number3(*number2);
|
|
Handle<String> string3(*string2);
|
|
CHECK_EQ(number1.location(), number3.location());
|
|
CHECK_EQ(string1.location(), string3.location());
|
|
// Check that no new handles have been allocated.
|
|
CHECK_EQ(next_handle, isolate->handle_scope_data()->next);
|
|
|
|
// Inner handle scope do not create canonical handles.
|
|
{
|
|
HandleScope inner(isolate);
|
|
Handle<HeapNumber> number4(*number1);
|
|
Handle<String> string4(*string1);
|
|
CHECK_NE(number1.location(), number4.location());
|
|
CHECK_NE(string1.location(), string4.location());
|
|
|
|
// Nested canonical scope does not conflict with outer canonical scope,
|
|
// but does not canonicalize across scopes.
|
|
CanonicalHandleScope inner_canonical(isolate);
|
|
Handle<HeapNumber> number5(*number4);
|
|
Handle<String> string5(*string4);
|
|
CHECK_NE(number4.location(), number5.location());
|
|
CHECK_NE(string4.location(), string5.location());
|
|
CHECK_NE(number1.location(), number5.location());
|
|
CHECK_NE(string1.location(), string5.location());
|
|
|
|
Handle<HeapNumber> number6(*number1);
|
|
Handle<String> string6(*string1);
|
|
CHECK_NE(number4.location(), number6.location());
|
|
CHECK_NE(string4.location(), string6.location());
|
|
CHECK_NE(number1.location(), number6.location());
|
|
CHECK_NE(string1.location(), string6.location());
|
|
CHECK_EQ(number5.location(), number6.location());
|
|
CHECK_EQ(string5.location(), string6.location());
|
|
}
|
|
}
|
|
|
|
TEST(GCShortCutting) {
|
|
ManualGCScope manual_gc_scope;
|
|
IdentityMapTester t;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
const int kDummyValue = 0;
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
// Insert a varying number of Smis as padding to ensure some tests straddle
|
|
// a boundary where the thin string short cutting will cause size_ to be
|
|
// greater to capacity_ if not corrected by IdentityMap
|
|
// (see crbug.com/704132).
|
|
for (int j = 0; j < i; j++) {
|
|
t.map.Set(t.smi(j), reinterpret_cast<void*>(kDummyValue));
|
|
}
|
|
|
|
Handle<String> thin_string =
|
|
factory->NewStringFromAsciiChecked("thin_string");
|
|
Handle<String> internalized_string =
|
|
factory->InternalizeString(thin_string);
|
|
DCHECK_IMPLIES(FLAG_thin_strings, thin_string->IsThinString());
|
|
DCHECK_NE(*thin_string, *internalized_string);
|
|
|
|
// Insert both keys into the map.
|
|
t.map.Set(thin_string, &thin_string);
|
|
t.map.Set(internalized_string, &internalized_string);
|
|
|
|
// Do an explicit, real GC, this should short-cut the thin string to point
|
|
// to the internalized string.
|
|
t.heap()->CollectGarbage(i::NEW_SPACE,
|
|
i::GarbageCollectionReason::kTesting);
|
|
DCHECK_IMPLIES(FLAG_thin_strings && !FLAG_optimize_for_size,
|
|
*thin_string == *internalized_string);
|
|
|
|
// Check that getting the object points to one of the handles.
|
|
void** thin_string_entry = t.map.Get(thin_string);
|
|
CHECK(*thin_string_entry == &thin_string ||
|
|
*thin_string_entry == &internalized_string);
|
|
void** internalized_string_entry = t.map.Get(internalized_string);
|
|
CHECK(*internalized_string_entry == &thin_string ||
|
|
*internalized_string_entry == &internalized_string);
|
|
|
|
// Trigger resize.
|
|
for (int j = 0; j < 16; j++) {
|
|
t.map.Set(t.smi(j + 16), reinterpret_cast<void*>(kDummyValue));
|
|
}
|
|
t.map.Clear();
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|