v8/test/unittests/heap/cppgc/heap-statistics-collector-unittest.cc
Michael Lippautz 6241875073 cppgc: Add support for double-word aligned allocations
Adds support for double-word aligned, i.e., 8 bytes on 32-bit
platforms and 16 bytes on 64-bit platforms, objects in Oilpan.

Changes:
- Adds generic alignment APIs and overrides.
- Internal logic to support double-word aligned allocations on LABs.
- Adjusts natural alignment of large objects to follow double-word.
- Adds a new static_assert() that suggests users file a bug if higher
  alignment is required.
- Statically checks that no allocations with non-default alignment
  target custom spaces that support compaction.

Bug: v8:12295
Change-Id: I05766ce2349055d5d78b68919be00e7ee91d5505
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3218150
Reviewed-by: Anton Bikineev <bikineev@chromium.org>
Commit-Queue: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/main@{#77348}
2021-10-12 13:18:16 +00:00

182 lines
7.5 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/cppgc/heap-statistics-collector.h"
#include "include/cppgc/heap-statistics.h"
#include "include/cppgc/persistent.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/heap/cppgc/globals.h"
#include "test/unittests/heap/cppgc/tests.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cppgc {
namespace internal {
class HeapStatisticsCollectorTest : public testing::TestWithHeap {};
TEST_F(HeapStatisticsCollectorTest, EmptyHeapBriefStatisitcs) {
HeapStatistics brief_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kBrief);
EXPECT_EQ(HeapStatistics::DetailLevel::kBrief, brief_stats.detail_level);
EXPECT_EQ(0u, brief_stats.used_size_bytes);
EXPECT_EQ(0u, brief_stats.used_size_bytes);
EXPECT_TRUE(brief_stats.space_stats.empty());
}
TEST_F(HeapStatisticsCollectorTest, EmptyHeapDetailedStatisitcs) {
HeapStatistics detailed_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kDetailed);
EXPECT_EQ(HeapStatistics::DetailLevel::kDetailed,
detailed_stats.detail_level);
EXPECT_EQ(0u, detailed_stats.used_size_bytes);
EXPECT_EQ(0u, detailed_stats.used_size_bytes);
EXPECT_EQ(RawHeap::kNumberOfRegularSpaces, detailed_stats.space_stats.size());
for (HeapStatistics::SpaceStatistics& space_stats :
detailed_stats.space_stats) {
EXPECT_EQ(0u, space_stats.used_size_bytes);
EXPECT_EQ(0u, space_stats.used_size_bytes);
EXPECT_TRUE(space_stats.page_stats.empty());
if (space_stats.name == "LargePageSpace") {
// Large page space has no free list.
EXPECT_TRUE(space_stats.free_list_stats.bucket_size.empty());
EXPECT_TRUE(space_stats.free_list_stats.free_count.empty());
EXPECT_TRUE(space_stats.free_list_stats.free_size.empty());
} else {
EXPECT_EQ(kPageSizeLog2, space_stats.free_list_stats.bucket_size.size());
EXPECT_EQ(kPageSizeLog2, space_stats.free_list_stats.free_count.size());
EXPECT_EQ(kPageSizeLog2, space_stats.free_list_stats.free_size.size());
}
}
}
namespace {
template <size_t Size>
class GCed : public GarbageCollected<GCed<Size>> {
public:
void Trace(Visitor*) const {}
private:
char array_[Size];
};
} // namespace
TEST_F(HeapStatisticsCollectorTest, NonEmptyNormalPage) {
MakeGarbageCollected<GCed<1>>(GetHeap()->GetAllocationHandle());
static constexpr size_t used_size =
RoundUp<kAllocationGranularity>(1 + sizeof(HeapObjectHeader));
HeapStatistics detailed_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kDetailed);
EXPECT_EQ(HeapStatistics::DetailLevel::kDetailed,
detailed_stats.detail_level);
EXPECT_EQ(kPageSize, detailed_stats.committed_size_bytes);
EXPECT_EQ(kPageSize, detailed_stats.resident_size_bytes);
EXPECT_EQ(used_size, detailed_stats.used_size_bytes);
EXPECT_EQ(RawHeap::kNumberOfRegularSpaces, detailed_stats.space_stats.size());
bool found_non_empty_space = false;
for (const HeapStatistics::SpaceStatistics& space_stats :
detailed_stats.space_stats) {
if (space_stats.page_stats.empty()) {
EXPECT_EQ(0u, space_stats.committed_size_bytes);
EXPECT_EQ(0u, space_stats.resident_size_bytes);
EXPECT_EQ(0u, space_stats.used_size_bytes);
continue;
}
EXPECT_NE("LargePageSpace", space_stats.name);
EXPECT_FALSE(found_non_empty_space);
found_non_empty_space = true;
EXPECT_EQ(kPageSize, space_stats.committed_size_bytes);
EXPECT_EQ(kPageSize, space_stats.resident_size_bytes);
EXPECT_EQ(used_size, space_stats.used_size_bytes);
EXPECT_EQ(1u, space_stats.page_stats.size());
EXPECT_EQ(kPageSize, space_stats.page_stats.back().committed_size_bytes);
EXPECT_EQ(kPageSize, space_stats.page_stats.back().resident_size_bytes);
EXPECT_EQ(used_size, space_stats.page_stats.back().used_size_bytes);
}
EXPECT_TRUE(found_non_empty_space);
}
TEST_F(HeapStatisticsCollectorTest, NonEmptyLargePage) {
MakeGarbageCollected<GCed<kLargeObjectSizeThreshold>>(
GetHeap()->GetAllocationHandle());
static constexpr size_t used_size = RoundUp<kAllocationGranularity>(
kLargeObjectSizeThreshold + sizeof(HeapObjectHeader));
static constexpr size_t committed_size =
RoundUp<kAllocationGranularity>(used_size + LargePage::PageHeaderSize());
HeapStatistics detailed_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kDetailed);
EXPECT_EQ(HeapStatistics::DetailLevel::kDetailed,
detailed_stats.detail_level);
EXPECT_EQ(committed_size, detailed_stats.committed_size_bytes);
EXPECT_EQ(committed_size, detailed_stats.resident_size_bytes);
EXPECT_EQ(used_size, detailed_stats.used_size_bytes);
EXPECT_EQ(RawHeap::kNumberOfRegularSpaces, detailed_stats.space_stats.size());
bool found_non_empty_space = false;
for (const HeapStatistics::SpaceStatistics& space_stats :
detailed_stats.space_stats) {
if (space_stats.page_stats.empty()) {
EXPECT_EQ(0u, space_stats.committed_size_bytes);
EXPECT_EQ(0u, space_stats.used_size_bytes);
continue;
}
EXPECT_EQ("LargePageSpace", space_stats.name);
EXPECT_FALSE(found_non_empty_space);
found_non_empty_space = true;
EXPECT_EQ(committed_size, space_stats.committed_size_bytes);
EXPECT_EQ(committed_size, space_stats.resident_size_bytes);
EXPECT_EQ(used_size, space_stats.used_size_bytes);
EXPECT_EQ(1u, space_stats.page_stats.size());
EXPECT_EQ(committed_size,
space_stats.page_stats.back().committed_size_bytes);
EXPECT_EQ(committed_size,
space_stats.page_stats.back().resident_size_bytes);
EXPECT_EQ(used_size, space_stats.page_stats.back().used_size_bytes);
}
EXPECT_TRUE(found_non_empty_space);
}
TEST_F(HeapStatisticsCollectorTest, BriefStatisticsWithDiscardingOnNormalPage) {
if (!Sweeper::CanDiscardMemory()) return;
Persistent<GCed<1>> holder =
MakeGarbageCollected<GCed<1>>(GetHeap()->GetAllocationHandle());
ConservativeMemoryDiscardingGC();
HeapStatistics brief_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kBrief);
// Do not enforce exact resident_size_bytes here as this is an implementation
// detail of the sweeper.
EXPECT_GT(brief_stats.committed_size_bytes, brief_stats.resident_size_bytes);
}
TEST_F(HeapStatisticsCollectorTest,
DetailedStatisticsWithDiscardingOnNormalPage) {
if (!Sweeper::CanDiscardMemory()) return;
Persistent<GCed<1>> holder =
MakeGarbageCollected<GCed<1>>(GetHeap()->GetAllocationHandle());
ConservativeMemoryDiscardingGC();
HeapStatistics detailed_stats = Heap::From(GetHeap())->CollectStatistics(
HeapStatistics::DetailLevel::kDetailed);
// Do not enforce exact resident_size_bytes here as this is an implementation
// detail of the sweeper.
EXPECT_GT(detailed_stats.committed_size_bytes,
detailed_stats.resident_size_bytes);
bool found_page = false;
for (const auto& space_stats : detailed_stats.space_stats) {
if (space_stats.committed_size_bytes == 0) continue;
// We should find a single page here that contains memory that was
// discarded.
EXPECT_EQ(1u, space_stats.page_stats.size());
const auto& page_stats = space_stats.page_stats[0];
EXPECT_GT(page_stats.committed_size_bytes, page_stats.resident_size_bytes);
found_page = true;
}
EXPECT_TRUE(found_page);
}
} // namespace internal
} // namespace cppgc