v8/test/unittests/heap/heap-unittest.cc
Ulan Degenbaev e423f00403 [api] Add a way to specify the max heap size in ResourceConstraints
The new API function is called ConfigureDefaultsFromHeapSize and
accepts two parameters: the initial and the maximum heap size.
Based on the given limits the function computes the default size
for the young and the old generation.

The patch also cleans up the existing functions to make them
consistent in terms of units and heap structure.

Bug: v8:9306
Change-Id: If2200a9cdb45b0b818a373207efe4e6426f7b688
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1631593
Commit-Queue: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/master@{#62017}
2019-06-06 10:22:56 +00:00

165 lines
5.6 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include <iostream>
#include <limits>
#include "src/handles/handles-inl.h"
#include "src/heap/heap.h"
#include "src/heap/spaces-inl.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
using HeapTest = TestWithIsolate;
using HeapWithPointerCompressionTest = TestWithIsolateAndPointerCompression;
TEST(Heap, YoungGenerationSizeFromOldGenerationSize) {
const size_t MB = static_cast<size_t>(i::MB);
const size_t KB = static_cast<size_t>(i::KB);
const size_t pm = i::Heap::kPointerMultiplier;
ASSERT_EQ(3 * 512u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(128u * pm * MB));
ASSERT_EQ(3 * 2048u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(256u * pm * MB));
ASSERT_EQ(3 * 4096u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(512u * pm * MB));
ASSERT_EQ(3 * 8192u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(1024u * pm * MB));
}
TEST(Heap, GenerationSizesFromHeapSize) {
const size_t MB = static_cast<size_t>(i::MB);
const size_t KB = static_cast<size_t>(i::KB);
const size_t pm = i::Heap::kPointerMultiplier;
size_t old, young;
i::Heap::GenerationSizesFromHeapSize(1 * KB, &young, &old);
ASSERT_EQ(0u, old);
ASSERT_EQ(0u, young);
i::Heap::GenerationSizesFromHeapSize(1 * KB + 3 * 512u * pm * KB, &young,
&old);
ASSERT_EQ(1 * KB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(128 * pm * MB + 3 * 512 * pm * KB,
&young, &old);
ASSERT_EQ(128u * pm * MB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(256u * pm * MB + 3 * 2048 * pm * KB,
&young, &old);
ASSERT_EQ(256u * pm * MB, old);
ASSERT_EQ(3 * 2048u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(512u * pm * MB + 3 * 4096 * pm * KB,
&young, &old);
ASSERT_EQ(512u * pm * MB, old);
ASSERT_EQ(3 * 4096u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(1024u * pm * MB + 3 * 8192 * pm * KB,
&young, &old);
ASSERT_EQ(1024u * pm * MB, old);
ASSERT_EQ(3 * 8192u * pm * KB, young);
}
TEST(Heap, HeapSizeFromPhysicalMemory) {
const size_t MB = static_cast<size_t>(i::MB);
const size_t pm = i::Heap::kPointerMultiplier;
// The expected value is old_generation_size + 3 * semi_space_size.
ASSERT_EQ(128 * pm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(0u));
ASSERT_EQ(128 * pm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(512u * MB));
ASSERT_EQ(256 * pm * MB + 3 * 2048 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(1024u * MB));
ASSERT_EQ(512 * pm * MB + 3 * 4096 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(2048u * MB));
ASSERT_EQ(
1024 * pm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(4096u) * MB));
ASSERT_EQ(
1024 * pm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(8192u) * MB));
}
TEST_F(HeapTest, ASLR) {
#if V8_TARGET_ARCH_X64
#if V8_OS_MACOSX
Heap* heap = i_isolate()->heap();
std::set<void*> hints;
for (int i = 0; i < 1000; i++) {
hints.insert(heap->GetRandomMmapAddr());
}
if (hints.size() == 1) {
EXPECT_TRUE((*hints.begin()) == nullptr);
EXPECT_TRUE(i::GetRandomMmapAddr() == nullptr);
} else {
// It is unlikely that 1000 random samples will collide to less then 500
// values.
EXPECT_GT(hints.size(), 500u);
const uintptr_t kRegionMask = 0xFFFFFFFFu;
void* first = *hints.begin();
for (void* hint : hints) {
uintptr_t diff = reinterpret_cast<uintptr_t>(first) ^
reinterpret_cast<uintptr_t>(hint);
EXPECT_LE(diff, kRegionMask);
}
}
#endif // V8_OS_MACOSX
#endif // V8_TARGET_ARCH_X64
}
TEST_F(HeapTest, ExternalLimitDefault) {
Heap* heap = i_isolate()->heap();
EXPECT_EQ(kExternalAllocationSoftLimit,
heap->isolate()->isolate_data()->external_memory_limit_);
}
TEST_F(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling) {
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(+10 * MB);
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(-10 * MB);
Heap* heap = i_isolate()->heap();
EXPECT_GE(heap->isolate()->isolate_data()->external_memory_limit_,
kExternalAllocationSoftLimit);
}
#if V8_TARGET_ARCH_64_BIT
TEST_F(HeapWithPointerCompressionTest, HeapLayout) {
// Produce some garbage.
RunJS(
"let ar = [];"
"for (let i = 0; i < 100; i++) {"
" ar.push(Array(i));"
"}"
"ar.push(Array(32 * 1024 * 1024));");
Address isolate_root = i_isolate()->isolate_root();
EXPECT_TRUE(IsAligned(isolate_root, size_t{4} * GB));
// Check that all memory chunks belong this region.
base::AddressRegion heap_reservation(isolate_root - size_t{2} * GB,
size_t{4} * GB);
OldGenerationMemoryChunkIterator iter(i_isolate()->heap());
for (;;) {
MemoryChunk* chunk = iter.next();
if (chunk == nullptr) break;
Address address = chunk->address();
size_t size = chunk->area_end() - address;
EXPECT_TRUE(heap_reservation.contains(address, size));
}
}
#endif // V8_TARGET_ARCH_64_BIT
} // namespace internal
} // namespace v8