v8/src/profiler/profile-generator.cc
alph 7068caf5fd Add CollectSample API function to CpuProfiler
It allows embedder to inject a stack sample on demand.

BUG=chromium:579191
LOG=N

Review URL: https://codereview.chromium.org/1631043002

Cr-Commit-Position: refs/heads/master@{#33527}
2016-01-26 20:48:28 +00:00

700 lines
22 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/profiler/profile-generator.h"
#include "src/ast/scopeinfo.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/global-handles.h"
#include "src/profiler/profile-generator-inl.h"
#include "src/profiler/sampler.h"
#include "src/splay-tree-inl.h"
#include "src/unicode.h"
namespace v8 {
namespace internal {
JITLineInfoTable::JITLineInfoTable() {}
JITLineInfoTable::~JITLineInfoTable() {}
void JITLineInfoTable::SetPosition(int pc_offset, int line) {
DCHECK(pc_offset >= 0);
DCHECK(line > 0); // The 1-based number of the source line.
if (GetSourceLineNumber(pc_offset) != line) {
pc_offset_map_.insert(std::make_pair(pc_offset, line));
}
}
int JITLineInfoTable::GetSourceLineNumber(int pc_offset) const {
PcOffsetMap::const_iterator it = pc_offset_map_.lower_bound(pc_offset);
if (it == pc_offset_map_.end()) {
if (pc_offset_map_.empty()) return v8::CpuProfileNode::kNoLineNumberInfo;
return (--pc_offset_map_.end())->second;
}
return it->second;
}
const char* const CodeEntry::kEmptyNamePrefix = "";
const char* const CodeEntry::kEmptyResourceName = "";
const char* const CodeEntry::kEmptyBailoutReason = "";
const char* const CodeEntry::kNoDeoptReason = "";
CodeEntry::~CodeEntry() {
delete line_info_;
}
uint32_t CodeEntry::GetHash() const {
uint32_t hash = ComputeIntegerHash(tag(), v8::internal::kZeroHashSeed);
if (script_id_ != v8::UnboundScript::kNoScriptId) {
hash ^= ComputeIntegerHash(static_cast<uint32_t>(script_id_),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(static_cast<uint32_t>(position_),
v8::internal::kZeroHashSeed);
} else {
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed);
}
return hash;
}
bool CodeEntry::IsSameFunctionAs(CodeEntry* entry) const {
if (this == entry) return true;
if (script_id_ != v8::UnboundScript::kNoScriptId) {
return script_id_ == entry->script_id_ && position_ == entry->position_;
}
return name_prefix_ == entry->name_prefix_ && name_ == entry->name_ &&
resource_name_ == entry->resource_name_ &&
line_number_ == entry->line_number_;
}
void CodeEntry::SetBuiltinId(Builtins::Name id) {
bit_field_ = TagField::update(bit_field_, Logger::BUILTIN_TAG);
bit_field_ = BuiltinIdField::update(bit_field_, id);
}
int CodeEntry::GetSourceLine(int pc_offset) const {
if (line_info_ && !line_info_->empty()) {
return line_info_->GetSourceLineNumber(pc_offset);
}
return v8::CpuProfileNode::kNoLineNumberInfo;
}
void CodeEntry::FillFunctionInfo(SharedFunctionInfo* shared) {
if (!shared->script()->IsScript()) return;
Script* script = Script::cast(shared->script());
set_script_id(script->id());
set_position(shared->start_position());
set_bailout_reason(GetBailoutReason(shared->disable_optimization_reason()));
}
CpuProfileDeoptInfo CodeEntry::GetDeoptInfo() {
DCHECK(has_deopt_info());
CpuProfileDeoptInfo info;
info.deopt_reason = deopt_reason_;
if (inlined_function_infos_.empty()) {
info.stack.push_back(CpuProfileDeoptFrame(
{script_id_, position_ + deopt_position_.position()}));
return info;
}
// Copy the only branch from the inlining tree where the deopt happened.
SourcePosition position = deopt_position_;
int inlining_id = InlinedFunctionInfo::kNoParentId;
for (size_t i = 0; i < inlined_function_infos_.size(); ++i) {
InlinedFunctionInfo& current_info = inlined_function_infos_.at(i);
if (std::binary_search(current_info.deopt_pc_offsets.begin(),
current_info.deopt_pc_offsets.end(), pc_offset_)) {
inlining_id = static_cast<int>(i);
break;
}
}
while (inlining_id != InlinedFunctionInfo::kNoParentId) {
InlinedFunctionInfo& inlined_info = inlined_function_infos_.at(inlining_id);
info.stack.push_back(
CpuProfileDeoptFrame({inlined_info.script_id,
inlined_info.start_position + position.raw()}));
position = inlined_info.inline_position;
inlining_id = inlined_info.parent_id;
}
return info;
}
void ProfileNode::CollectDeoptInfo(CodeEntry* entry) {
deopt_infos_.push_back(entry->GetDeoptInfo());
entry->clear_deopt_info();
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry) {
HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry));
return map_entry != NULL ?
reinterpret_cast<ProfileNode*>(map_entry->value) : NULL;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.LookupOrInsert(entry, CodeEntryHash(entry));
ProfileNode* node = reinterpret_cast<ProfileNode*>(map_entry->value);
if (node == NULL) {
// New node added.
node = new ProfileNode(tree_, entry);
map_entry->value = node;
children_list_.Add(node);
}
return node;
}
void ProfileNode::IncrementLineTicks(int src_line) {
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) return;
// Increment a hit counter of a certain source line.
// Add a new source line if not found.
HashMap::Entry* e =
line_ticks_.LookupOrInsert(reinterpret_cast<void*>(src_line), src_line);
DCHECK(e);
e->value = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(e->value) + 1);
}
bool ProfileNode::GetLineTicks(v8::CpuProfileNode::LineTick* entries,
unsigned int length) const {
if (entries == NULL || length == 0) return false;
unsigned line_count = line_ticks_.occupancy();
if (line_count == 0) return true;
if (length < line_count) return false;
v8::CpuProfileNode::LineTick* entry = entries;
for (HashMap::Entry* p = line_ticks_.Start(); p != NULL;
p = line_ticks_.Next(p), entry++) {
entry->line =
static_cast<unsigned int>(reinterpret_cast<uintptr_t>(p->key));
entry->hit_count =
static_cast<unsigned int>(reinterpret_cast<uintptr_t>(p->value));
}
return true;
}
void ProfileNode::Print(int indent) {
base::OS::Print("%5u %*s %s%s %d #%d", self_ticks_, indent, "",
entry_->name_prefix(), entry_->name(), entry_->script_id(),
id());
if (entry_->resource_name()[0] != '\0')
base::OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
base::OS::Print("\n");
for (size_t i = 0; i < deopt_infos_.size(); ++i) {
CpuProfileDeoptInfo& info = deopt_infos_[i];
base::OS::Print(
"%*s;;; deopted at script_id: %d position: %d with reason '%s'.\n",
indent + 10, "", info.stack[0].script_id, info.stack[0].position,
info.deopt_reason);
for (size_t index = 1; index < info.stack.size(); ++index) {
base::OS::Print("%*s;;; Inline point: script_id %d position: %d.\n",
indent + 10, "", info.stack[index].script_id,
info.stack[index].position);
}
}
const char* bailout_reason = entry_->bailout_reason();
if (bailout_reason != GetBailoutReason(BailoutReason::kNoReason) &&
bailout_reason != CodeEntry::kEmptyBailoutReason) {
base::OS::Print("%*s bailed out due to '%s'\n", indent + 10, "",
bailout_reason);
}
for (HashMap::Entry* p = children_.Start();
p != NULL;
p = children_.Next(p)) {
reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree(Isolate* isolate)
: root_entry_(Logger::FUNCTION_TAG, "(root)"),
next_node_id_(1),
root_(new ProfileNode(this, &root_entry_)),
isolate_(isolate),
next_function_id_(1),
function_ids_(ProfileNode::CodeEntriesMatch) {}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
unsigned ProfileTree::GetFunctionId(const ProfileNode* node) {
CodeEntry* code_entry = node->entry();
HashMap::Entry* entry =
function_ids_.LookupOrInsert(code_entry, code_entry->GetHash());
if (!entry->value) {
entry->value = reinterpret_cast<void*>(next_function_id_++);
}
return static_cast<unsigned>(reinterpret_cast<uintptr_t>(entry->value));
}
ProfileNode* ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path,
int src_line, bool update_stats) {
ProfileNode* node = root_;
CodeEntry* last_entry = NULL;
for (CodeEntry** entry = path.start() + path.length() - 1;
entry != path.start() - 1;
--entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
last_entry = *entry;
}
}
if (last_entry && last_entry->has_deopt_info()) {
node->CollectDeoptInfo(last_entry);
}
if (update_stats) {
node->IncrementSelfTicks();
if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) {
node->IncrementLineTicks(src_line);
}
}
return node;
}
struct NodesPair {
NodesPair(ProfileNode* src, ProfileNode* dst)
: src(src), dst(dst) { }
ProfileNode* src;
ProfileNode* dst;
};
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
INLINE(ProfileNode* current_child()) {
return node->children()->at(child_idx_);
}
INLINE(bool has_current_child()) {
return child_idx_ < node->children()->length();
}
INLINE(void next_child()) { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
List<Position> stack(10);
stack.Add(Position(root_));
while (stack.length() > 0) {
Position& current = stack.last();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.Add(Position(current.current_child()));
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.length() > 1) {
Position& parent = stack[stack.length() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.RemoveLast();
}
}
}
CpuProfile::CpuProfile(Isolate* isolate, const char* title, bool record_samples)
: title_(title),
record_samples_(record_samples),
start_time_(base::TimeTicks::HighResolutionNow()),
top_down_(isolate) {}
void CpuProfile::AddPath(base::TimeTicks timestamp,
const Vector<CodeEntry*>& path, int src_line,
bool update_stats) {
ProfileNode* top_frame_node =
top_down_.AddPathFromEnd(path, src_line, update_stats);
if (record_samples_) {
timestamps_.Add(timestamp);
samples_.Add(top_frame_node);
}
}
void CpuProfile::CalculateTotalTicksAndSamplingRate() {
end_time_ = base::TimeTicks::HighResolutionNow();
}
void CpuProfile::Print() {
base::OS::Print("[Top down]:\n");
top_down_.Print();
}
CodeMap::~CodeMap() {}
const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL;
void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) {
DeleteAllCoveredCode(addr, addr + size);
CodeTree::Locator locator;
tree_.Insert(addr, &locator);
locator.set_value(CodeEntryInfo(entry, size));
}
void CodeMap::DeleteAllCoveredCode(Address start, Address end) {
List<Address> to_delete;
Address addr = end - 1;
while (addr >= start) {
CodeTree::Locator locator;
if (!tree_.FindGreatestLessThan(addr, &locator)) break;
Address start2 = locator.key(), end2 = start2 + locator.value().size;
if (start2 < end && start < end2) to_delete.Add(start2);
addr = start2 - 1;
}
for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]);
}
CodeEntry* CodeMap::FindEntry(Address addr) {
CodeTree::Locator locator;
if (tree_.FindGreatestLessThan(addr, &locator)) {
// locator.key() <= addr. Need to check that addr is within entry.
const CodeEntryInfo& entry = locator.value();
if (addr < (locator.key() + entry.size)) {
return entry.entry;
}
}
return NULL;
}
void CodeMap::MoveCode(Address from, Address to) {
if (from == to) return;
CodeTree::Locator locator;
if (!tree_.Find(from, &locator)) return;
CodeEntryInfo entry = locator.value();
tree_.Remove(from);
AddCode(to, entry.entry, entry.size);
}
void CodeMap::CodeTreePrinter::Call(
const Address& key, const CodeMap::CodeEntryInfo& value) {
base::OS::Print("%p %5d %s\n", key, value.size, value.entry->name());
}
void CodeMap::Print() {
CodeTreePrinter printer;
tree_.ForEach(&printer);
}
CpuProfilesCollection::CpuProfilesCollection(Heap* heap)
: function_and_resource_names_(heap),
isolate_(heap->isolate()),
current_profiles_semaphore_(1) {}
static void DeleteCodeEntry(CodeEntry** entry_ptr) {
delete *entry_ptr;
}
static void DeleteCpuProfile(CpuProfile** profile_ptr) {
delete *profile_ptr;
}
CpuProfilesCollection::~CpuProfilesCollection() {
finished_profiles_.Iterate(DeleteCpuProfile);
current_profiles_.Iterate(DeleteCpuProfile);
code_entries_.Iterate(DeleteCodeEntry);
}
bool CpuProfilesCollection::StartProfiling(const char* title,
bool record_samples) {
current_profiles_semaphore_.Wait();
if (current_profiles_.length() >= kMaxSimultaneousProfiles) {
current_profiles_semaphore_.Signal();
return false;
}
for (int i = 0; i < current_profiles_.length(); ++i) {
if (strcmp(current_profiles_[i]->title(), title) == 0) {
// Ignore attempts to start profile with the same title...
current_profiles_semaphore_.Signal();
// ... though return true to force it collect a sample.
return true;
}
}
current_profiles_.Add(new CpuProfile(isolate_, title, record_samples));
current_profiles_semaphore_.Signal();
return true;
}
CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) {
const int title_len = StrLength(title);
CpuProfile* profile = NULL;
current_profiles_semaphore_.Wait();
for (int i = current_profiles_.length() - 1; i >= 0; --i) {
if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) {
profile = current_profiles_.Remove(i);
break;
}
}
current_profiles_semaphore_.Signal();
if (profile == NULL) return NULL;
profile->CalculateTotalTicksAndSamplingRate();
finished_profiles_.Add(profile);
return profile;
}
bool CpuProfilesCollection::IsLastProfile(const char* title) {
// Called from VM thread, and only it can mutate the list,
// so no locking is needed here.
if (current_profiles_.length() != 1) return false;
return StrLength(title) == 0
|| strcmp(current_profiles_[0]->title(), title) == 0;
}
void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) {
// Called from VM thread for a completed profile.
for (int i = 0; i < finished_profiles_.length(); i++) {
if (profile == finished_profiles_[i]) {
finished_profiles_.Remove(i);
return;
}
}
UNREACHABLE();
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
base::TimeTicks timestamp, const Vector<CodeEntry*>& path, int src_line,
bool update_stats) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_.Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
current_profiles_[i]->AddPath(timestamp, path, src_line, update_stats);
}
current_profiles_semaphore_.Signal();
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(
Logger::LogEventsAndTags tag, const char* name, const char* name_prefix,
const char* resource_name, int line_number, int column_number,
JITLineInfoTable* line_info, Address instruction_start) {
CodeEntry* code_entry =
new CodeEntry(tag, name, name_prefix, resource_name, line_number,
column_number, line_info, instruction_start);
code_entries_.Add(code_entry);
return code_entry;
}
const char* const ProfileGenerator::kProgramEntryName =
"(program)";
const char* const ProfileGenerator::kIdleEntryName =
"(idle)";
const char* const ProfileGenerator::kGarbageCollectorEntryName =
"(garbage collector)";
const char* const ProfileGenerator::kUnresolvedFunctionName =
"(unresolved function)";
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles),
program_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)),
idle_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kIdleEntryName)),
gc_entry_(
profiles->NewCodeEntry(Logger::BUILTIN_TAG,
kGarbageCollectorEntryName)),
unresolved_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG,
kUnresolvedFunctionName)) {
}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
// Allocate space for stack frames + pc + function + vm-state.
ScopedVector<CodeEntry*> entries(sample.frames_count + 3);
// As actual number of decoded code entries may vary, initialize
// entries vector with NULL values.
CodeEntry** entry = entries.start();
memset(entry, 0, entries.length() * sizeof(*entry));
// The ProfileNode knows nothing about all versions of generated code for
// the same JS function. The line number information associated with
// the latest version of generated code is used to find a source line number
// for a JS function. Then, the detected source line is passed to
// ProfileNode to increase the tick count for this source line.
int src_line = v8::CpuProfileNode::kNoLineNumberInfo;
bool src_line_not_found = true;
if (sample.pc != NULL) {
if (sample.has_external_callback && sample.state == EXTERNAL &&
sample.top_frame_type == StackFrame::EXIT) {
// Don't use PC when in external callback code, as it can point
// inside callback's code, and we will erroneously report
// that a callback calls itself.
*entry++ = code_map_.FindEntry(sample.external_callback);
} else {
CodeEntry* pc_entry = code_map_.FindEntry(sample.pc);
// If there is no pc_entry we're likely in native code.
// Find out, if top of stack was pointing inside a JS function
// meaning that we have encountered a frameless invocation.
if (!pc_entry && (sample.top_frame_type == StackFrame::JAVA_SCRIPT ||
sample.top_frame_type == StackFrame::OPTIMIZED)) {
pc_entry = code_map_.FindEntry(sample.tos);
}
// If pc is in the function code before it set up stack frame or after the
// frame was destroyed SafeStackFrameIterator incorrectly thinks that
// ebp contains return address of the current function and skips caller's
// frame. Check for this case and just skip such samples.
if (pc_entry) {
int pc_offset =
static_cast<int>(sample.pc - pc_entry->instruction_start());
src_line = pc_entry->GetSourceLine(pc_offset);
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) {
src_line = pc_entry->line_number();
}
src_line_not_found = false;
*entry++ = pc_entry;
if (pc_entry->builtin_id() == Builtins::kFunctionPrototypeApply ||
pc_entry->builtin_id() == Builtins::kFunctionPrototypeCall) {
// When current function is either the Function.prototype.apply or the
// Function.prototype.call builtin the top frame is either frame of
// the calling JS function or internal frame.
// In the latter case we know the caller for sure but in the
// former case we don't so we simply replace the frame with
// 'unresolved' entry.
if (sample.top_frame_type == StackFrame::JAVA_SCRIPT) {
*entry++ = unresolved_entry_;
}
}
}
}
for (const Address* stack_pos = sample.stack,
*stack_end = stack_pos + sample.frames_count;
stack_pos != stack_end;
++stack_pos) {
*entry = code_map_.FindEntry(*stack_pos);
// Skip unresolved frames (e.g. internal frame) and get source line of
// the first JS caller.
if (src_line_not_found && *entry) {
int pc_offset =
static_cast<int>(*stack_pos - (*entry)->instruction_start());
src_line = (*entry)->GetSourceLine(pc_offset);
if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) {
src_line = (*entry)->line_number();
}
src_line_not_found = false;
}
entry++;
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (CodeEntry** e = entries.start(); e != entry; ++e) {
if (*e != NULL) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
*entry++ = EntryForVMState(sample.state);
}
}
profiles_->AddPathToCurrentProfiles(sample.timestamp, entries, src_line,
sample.update_stats);
}
CodeEntry* ProfileGenerator::EntryForVMState(StateTag tag) {
switch (tag) {
case GC:
return gc_entry_;
case JS:
case COMPILER:
// DOM events handlers are reported as OTHER / EXTERNAL entries.
// To avoid confusing people, let's put all these entries into
// one bucket.
case OTHER:
case EXTERNAL:
return program_entry_;
case IDLE:
return idle_entry_;
default: return NULL;
}
}
} // namespace internal
} // namespace v8