v8/test/cctest/wasm/test-jump-table-assembler.cc
Jakob Kummerow 27e1ac1a79 [wasm][mac] Support w^x codespaces for Apple Silicon
Apple's upcoming arm64 devices will prevent rwx access to memory,
but in turn provide a new per-thread way to switch between write
and execute permissions. This patch puts that system to use for
the WebAssembly subsystem.
The approach relies on CodeSpaceWriteScope objects for now. That
isn't optimal for background threads (which could stay in "write"
mode permanently instead of toggling), but its simplicity makes
it a good first step.

Background:
https://developer.apple.com/documentation/apple_silicon/porting_just-in-time_compilers_to_apple_silicon

Bug: chromium:1117591
Change-Id: I3b60f0efd34c0fed924dfc71ee2c7805801c5d42
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2378307
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Reviewed-by: Thibaud Michaud <thibaudm@chromium.org>
Cr-Commit-Position: refs/heads/master@{#69791}
2020-09-09 20:57:52 +00:00

301 lines
11 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <bitset>
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/execution/simulator.h"
#include "src/utils/utils.h"
#include "src/wasm/code-space-access.h"
#include "src/wasm/jump-table-assembler.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
namespace wasm {
#if 0
#define TRACE(...) PrintF(__VA_ARGS__)
#else
#define TRACE(...)
#endif
#define __ masm.
namespace {
static volatile int global_stop_bit = 0;
constexpr int kJumpTableSlotCount = 128;
constexpr uint32_t kJumpTableSize =
JumpTableAssembler::SizeForNumberOfSlots(kJumpTableSlotCount);
// Must be a safe commit page size.
#if V8_OS_MACOSX && V8_HOST_ARCH_ARM64
// See kAppleArmPageSize in platform-posix.cc.
constexpr size_t kThunkBufferSize = 1 << 14;
#else
constexpr size_t kThunkBufferSize = 4 * KB;
#endif
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// We need the branches (from CompileJumpTableThunk) to be within near-call
// range of the jump table slots. The address hint to AllocateAssemblerBuffer
// is not reliable enough to guarantee that we can always achieve this with
// separate allocations, so we generate all code in a single
// kMaxCodeMemory-sized chunk.
constexpr size_t kAssemblerBufferSize = WasmCodeAllocator::kMaxCodeSpaceSize;
constexpr uint32_t kAvailableBufferSlots =
(WasmCodeAllocator::kMaxCodeSpaceSize - kJumpTableSize) / kThunkBufferSize;
constexpr uint32_t kBufferSlotStartOffset =
RoundUp<kThunkBufferSize>(kJumpTableSize);
#else
constexpr size_t kAssemblerBufferSize = kJumpTableSize;
constexpr uint32_t kAvailableBufferSlots = 0;
constexpr uint32_t kBufferSlotStartOffset = 0;
#endif
Address AllocateJumpTableThunk(
Address jump_target, byte* thunk_slot_buffer,
std::bitset<kAvailableBufferSlots>* used_slots,
std::vector<std::unique_ptr<TestingAssemblerBuffer>>* thunk_buffers) {
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// To guarantee that the branch range lies within the near-call range,
// generate the thunk in the same (kMaxWasmCodeSpaceSize-sized) buffer as the
// jump_target itself.
//
// Allocate a slot that we haven't already used. This is necessary because
// each test iteration expects to generate two unique addresses and we leave
// each slot executable (and not writable).
base::RandomNumberGenerator* rng =
CcTest::i_isolate()->random_number_generator();
// Ensure a chance of completion without too much thrashing.
DCHECK(used_slots->count() < (used_slots->size() / 2));
int buffer_index;
do {
buffer_index = rng->NextInt(kAvailableBufferSlots);
} while (used_slots->test(buffer_index));
used_slots->set(buffer_index);
return reinterpret_cast<Address>(thunk_slot_buffer +
buffer_index * kThunkBufferSize);
#else
USE(thunk_slot_buffer);
USE(used_slots);
thunk_buffers->emplace_back(
AllocateAssemblerBuffer(kThunkBufferSize, GetRandomMmapAddr()));
return reinterpret_cast<Address>(thunk_buffers->back()->start());
#endif
}
void CompileJumpTableThunk(Address thunk, Address jump_target) {
MacroAssembler masm(nullptr, AssemblerOptions{}, CodeObjectRequired::kNo,
ExternalAssemblerBuffer(reinterpret_cast<void*>(thunk),
kThunkBufferSize));
Label exit;
Register scratch = kReturnRegister0;
Address stop_bit_address = reinterpret_cast<Address>(&global_stop_bit);
#if V8_TARGET_ARCH_X64
__ Move(scratch, stop_bit_address, RelocInfo::NONE);
__ testl(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ Jump(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_IA32
__ Move(scratch, Immediate(stop_bit_address, RelocInfo::NONE));
__ test(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ jmp(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_ARM
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ ldr(scratch, MemOperand(scratch, 0));
__ tst(scratch, Operand(1));
__ b(ne, &exit);
__ Jump(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_ARM64
UseScratchRegisterScope temps(&masm);
temps.Exclude(x16);
scratch = x16;
__ Mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ Ldr(scratch, MemOperand(scratch, 0));
__ Tbnz(scratch, 0, &exit);
__ Mov(scratch, Immediate(jump_target, RelocInfo::NONE));
__ Br(scratch);
#elif V8_TARGET_ARCH_PPC64
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ LoadP(scratch, MemOperand(scratch));
__ cmpi(scratch, Operand::Zero());
__ bne(&exit);
__ mov(scratch, Operand(jump_target, RelocInfo::NONE));
__ Jump(scratch);
#elif V8_TARGET_ARCH_S390X
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ LoadP(scratch, MemOperand(scratch));
__ CmpP(scratch, Operand(0));
__ bne(&exit);
__ mov(scratch, Operand(jump_target, RelocInfo::NONE));
__ Jump(scratch);
#elif V8_TARGET_ARCH_MIPS64
__ li(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ Lw(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_MIPS
__ li(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ lw(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NONE);
#else
#error Unsupported architecture
#endif
__ bind(&exit);
__ Ret();
FlushInstructionCache(thunk, kThunkBufferSize);
CHECK(SetPermissions(GetPlatformPageAllocator(), thunk, kThunkBufferSize,
v8::PageAllocator::kReadExecute));
}
class JumpTableRunner : public v8::base::Thread {
public:
JumpTableRunner(Address slot_address, int runner_id)
: Thread(Options("JumpTableRunner")),
slot_address_(slot_address),
runner_id_(runner_id) {}
void Run() override {
TRACE("Runner #%d is starting ...\n", runner_id_);
SwitchMemoryPermissionsToExecutable();
GeneratedCode<void>::FromAddress(CcTest::i_isolate(), slot_address_).Call();
TRACE("Runner #%d is stopping ...\n", runner_id_);
USE(runner_id_);
}
private:
Address slot_address_;
int runner_id_;
};
class JumpTablePatcher : public v8::base::Thread {
public:
JumpTablePatcher(Address slot_start, uint32_t slot_index, Address thunk1,
Address thunk2, base::Mutex* jump_table_mutex)
: Thread(Options("JumpTablePatcher")),
slot_start_(slot_start),
slot_index_(slot_index),
thunks_{thunk1, thunk2},
jump_table_mutex_(jump_table_mutex) {}
void Run() override {
TRACE("Patcher %p is starting ...\n", this);
SwitchMemoryPermissionsToWritable();
Address slot_address =
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_);
// First, emit code to the two thunks.
for (Address thunk : thunks_) {
CompileJumpTableThunk(thunk, slot_address);
}
// Then, repeatedly patch the jump table to jump to one of the two thunks.
constexpr int kNumberOfPatchIterations = 64;
for (int i = 0; i < kNumberOfPatchIterations; ++i) {
TRACE(" patcher %p patch slot " V8PRIxPTR_FMT
" to thunk #%d (" V8PRIxPTR_FMT ")\n",
this, slot_address, i % 2, thunks_[i % 2]);
base::MutexGuard jump_table_guard(jump_table_mutex_);
JumpTableAssembler::PatchJumpTableSlot(
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_),
kNullAddress, thunks_[i % 2]);
}
TRACE("Patcher %p is stopping ...\n", this);
}
private:
Address slot_start_;
uint32_t slot_index_;
Address thunks_[2];
base::Mutex* jump_table_mutex_;
};
} // namespace
// This test is intended to stress concurrent patching of jump-table slots. It
// uses the following setup:
// 1) Picks a particular slot of the jump-table. Slots are iterated over to
// ensure multiple entries (at different offset alignments) are tested.
// 2) Starts multiple runners that spin through the above slot. The runners
// use thunk code that will jump to the same jump-table slot repeatedly
// until the {global_stop_bit} indicates a test-end condition.
// 3) Start a patcher that repeatedly patches the jump-table slot back and
// forth between two thunk. If there is a race then chances are high that
// one of the runners is currently executing the jump-table slot.
TEST(JumpTablePatchingStress) {
constexpr int kNumberOfRunnerThreads = 5;
constexpr int kNumberOfPatcherThreads = 3;
STATIC_ASSERT(kAssemblerBufferSize >= kJumpTableSize);
auto buffer = AllocateAssemblerBuffer(kAssemblerBufferSize);
byte* thunk_slot_buffer = buffer->start() + kBufferSlotStartOffset;
std::bitset<kAvailableBufferSlots> used_thunk_slots;
buffer->MakeWritableAndExecutable();
SwitchMemoryPermissionsToWritable();
// Iterate through jump-table slots to hammer at different alignments within
// the jump-table, thereby increasing stress for variable-length ISAs.
Address slot_start = reinterpret_cast<Address>(buffer->start());
for (int slot = 0; slot < kJumpTableSlotCount; ++slot) {
TRACE("Hammering on jump table slot #%d ...\n", slot);
uint32_t slot_offset = JumpTableAssembler::JumpSlotIndexToOffset(slot);
std::vector<std::unique_ptr<TestingAssemblerBuffer>> thunk_buffers;
// Patch the jump table slot to jump to itself. This will later be patched
// by the patchers.
Address slot_addr =
slot_start + JumpTableAssembler::JumpSlotIndexToOffset(slot);
JumpTableAssembler::PatchJumpTableSlot(slot_addr, kNullAddress, slot_addr);
// For each patcher, generate two thunks where this patcher can emit code
// which finally jumps back to {slot} in the jump table.
std::vector<Address> patcher_thunks;
for (int i = 0; i < 2 * kNumberOfPatcherThreads; ++i) {
Address thunk =
AllocateJumpTableThunk(slot_start + slot_offset, thunk_slot_buffer,
&used_thunk_slots, &thunk_buffers);
ZapCode(thunk, kThunkBufferSize);
patcher_thunks.push_back(thunk);
TRACE(" generated jump thunk: " V8PRIxPTR_FMT "\n",
patcher_thunks.back());
}
// Start multiple runner threads that execute the jump table slot
// concurrently.
std::list<JumpTableRunner> runners;
for (int runner = 0; runner < kNumberOfRunnerThreads; ++runner) {
runners.emplace_back(slot_start + slot_offset, runner);
}
// Start multiple patcher thread that concurrently generate code and insert
// jumps to that into the jump table slot.
std::list<JumpTablePatcher> patchers;
// Only one patcher should modify the jump table at a time.
base::Mutex jump_table_mutex;
for (int i = 0; i < kNumberOfPatcherThreads; ++i) {
patchers.emplace_back(slot_start, slot, patcher_thunks[2 * i],
patcher_thunks[2 * i + 1], &jump_table_mutex);
}
global_stop_bit = 0; // Signal runners to keep going.
for (auto& runner : runners) CHECK(runner.Start());
for (auto& patcher : patchers) CHECK(patcher.Start());
for (auto& patcher : patchers) patcher.Join();
global_stop_bit = -1; // Signal runners to stop.
for (auto& runner : runners) runner.Join();
}
}
#undef __
#undef TRACE
} // namespace wasm
} // namespace internal
} // namespace v8