v8/test/unittests/compiler/graph-reducer-unittest.cc
bmeurer 7b33409ba3 [turbofan] Add support for advanced reducers.
An AdvancedReducer is basically a regular Reducer with an editor
that can perform graph editing operations beyond changing or
replacing the node that is currently being reduced. The GraphReducer
is the default implementation of the AdvancedReducer::Editor interface.

The ControlReducerImpl is now just an AdvancedReducer, which
temporarily requires a Finish method in the reducer to implement
the dead node trimming until we move that to the GraphReducer
(which in turn requires that all loops are connected to End).

Review URL: https://codereview.chromium.org/1122423003

Cr-Commit-Position: refs/heads/master@{#28251}
2015-05-06 10:12:52 +00:00

737 lines
20 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "test/unittests/compiler/graph-reducer-unittest.h"
#include "test/unittests/test-utils.h"
using testing::_;
using testing::DefaultValue;
using testing::Return;
using testing::Sequence;
using testing::StrictMock;
namespace v8 {
namespace internal {
namespace compiler {
namespace {
struct TestOperator : public Operator {
TestOperator(Operator::Opcode opcode, Operator::Properties properties,
const char* op_name, size_t value_in, size_t value_out)
: Operator(opcode, properties, op_name, value_in, 0, 0, value_out, 0, 0) {
}
};
const uint8_t kOpcodeA0 = 10;
const uint8_t kOpcodeA1 = 11;
const uint8_t kOpcodeA2 = 12;
const uint8_t kOpcodeB0 = 20;
const uint8_t kOpcodeB1 = 21;
const uint8_t kOpcodeB2 = 22;
const uint8_t kOpcodeC0 = 30;
const uint8_t kOpcodeC1 = 31;
const uint8_t kOpcodeC2 = 32;
static TestOperator kOpA0(kOpcodeA0, Operator::kNoWrite, "opa1", 0, 1);
static TestOperator kOpA1(kOpcodeA1, Operator::kNoProperties, "opa2", 1, 1);
static TestOperator kOpA2(kOpcodeA2, Operator::kNoProperties, "opa3", 2, 1);
static TestOperator kOpB0(kOpcodeB0, Operator::kNoWrite, "opa0", 0, 0);
static TestOperator kOpB1(kOpcodeB1, Operator::kNoWrite, "opa1", 1, 0);
static TestOperator kOpB2(kOpcodeB2, Operator::kNoWrite, "opa2", 2, 0);
static TestOperator kOpC0(kOpcodeC0, Operator::kNoWrite, "opc0", 0, 0);
static TestOperator kOpC1(kOpcodeC1, Operator::kNoWrite, "opc1", 1, 0);
static TestOperator kOpC2(kOpcodeC2, Operator::kNoWrite, "opc2", 2, 0);
struct MockReducer : public Reducer {
MOCK_METHOD1(Reduce, Reduction(Node*));
};
// Replaces all "A" operators with "B" operators without creating new nodes.
class InPlaceABReducer final : public Reducer {
public:
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
node->set_op(&kOpB0);
return Replace(node);
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
node->set_op(&kOpB1);
return Replace(node);
case kOpcodeA2:
EXPECT_EQ(2, node->InputCount());
node->set_op(&kOpB2);
return Replace(node);
}
return NoChange();
}
};
// Replaces all "A" operators with "B" operators by allocating new nodes.
class NewABReducer final : public Reducer {
public:
explicit NewABReducer(Graph* graph) : graph_(graph) {}
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpB0));
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
return Replace(graph_->NewNode(&kOpB1, node->InputAt(0)));
case kOpcodeA2:
EXPECT_EQ(2, node->InputCount());
return Replace(
graph_->NewNode(&kOpB2, node->InputAt(0), node->InputAt(1)));
}
return NoChange();
}
private:
Graph* const graph_;
};
// Wraps all "kOpA0" nodes in "kOpB1" operators by allocating new nodes.
class A0Wrapper final : public Reducer {
public:
explicit A0Wrapper(Graph* graph) : graph_(graph) {}
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeA0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpB1, node));
}
return NoChange();
}
private:
Graph* const graph_;
};
// Wraps all "kOpB0" nodes in two "kOpC1" operators by allocating new nodes.
class B0Wrapper final : public Reducer {
public:
explicit B0Wrapper(Graph* graph) : graph_(graph) {}
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeB0:
EXPECT_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&kOpC1, graph_->NewNode(&kOpC1, node)));
}
return NoChange();
}
private:
Graph* const graph_;
};
// Replaces all "kOpA1" nodes with the first input.
class A1Forwarder final : public Reducer {
public:
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeA1:
EXPECT_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Replaces all "kOpB1" nodes with the first input.
class B1Forwarder final : public Reducer {
public:
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeB1:
EXPECT_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Replaces all "B" operators with "C" operators without creating new nodes.
class InPlaceBCReducer final : public Reducer {
public:
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeB0:
EXPECT_EQ(0, node->InputCount());
node->set_op(&kOpC0);
return Replace(node);
case kOpcodeB1:
EXPECT_EQ(1, node->InputCount());
node->set_op(&kOpC1);
return Replace(node);
case kOpcodeB2:
EXPECT_EQ(2, node->InputCount());
node->set_op(&kOpC2);
return Replace(node);
}
return NoChange();
}
};
// Swaps the inputs to "kOp2A" and "kOp2B" nodes based on ids.
class AB2Sorter final : public Reducer {
public:
Reduction Reduce(Node* node) final {
switch (node->op()->opcode()) {
case kOpcodeA2:
case kOpcodeB2:
EXPECT_EQ(2, node->InputCount());
Node* x = node->InputAt(0);
Node* y = node->InputAt(1);
if (x->id() > y->id()) {
node->ReplaceInput(0, y);
node->ReplaceInput(1, x);
return Replace(node);
}
}
return NoChange();
}
};
} // namespace
class AdvancedReducerTest : public TestWithZone {
public:
AdvancedReducerTest() : graph_(zone()) {}
protected:
Graph* graph() { return &graph_; }
private:
Graph graph_;
};
TEST_F(AdvancedReducerTest, Replace) {
struct DummyReducer final : public AdvancedReducer {
explicit DummyReducer(Editor* editor) : AdvancedReducer(editor) {}
Reduction Reduce(Node* node) final {
Replace(node, node);
return NoChange();
}
};
StrictMock<MockAdvancedReducerEditor> e;
DummyReducer r(&e);
Node* node0 = graph()->NewNode(&kOpA0);
Node* node1 = graph()->NewNode(&kOpA1, node0);
EXPECT_CALL(e, Replace(node0, node0));
EXPECT_CALL(e, Replace(node1, node1));
EXPECT_FALSE(r.Reduce(node0).Changed());
EXPECT_FALSE(r.Reduce(node1).Changed());
}
TEST_F(AdvancedReducerTest, Revisit) {
struct DummyReducer final : public AdvancedReducer {
explicit DummyReducer(Editor* editor) : AdvancedReducer(editor) {}
Reduction Reduce(Node* node) final {
Revisit(node);
return NoChange();
}
};
StrictMock<MockAdvancedReducerEditor> e;
DummyReducer r(&e);
Node* node0 = graph()->NewNode(&kOpA0);
Node* node1 = graph()->NewNode(&kOpA1, node0);
EXPECT_CALL(e, Revisit(node0));
EXPECT_CALL(e, Revisit(node1));
EXPECT_FALSE(r.Reduce(node0).Changed());
EXPECT_FALSE(r.Reduce(node1).Changed());
}
class GraphReducerTest : public TestWithZone {
public:
GraphReducerTest() : graph_(zone()) {}
static void SetUpTestCase() {
TestWithZone::SetUpTestCase();
DefaultValue<Reduction>::Set(Reducer::NoChange());
}
static void TearDownTestCase() {
DefaultValue<Reduction>::Clear();
TestWithZone::TearDownTestCase();
}
protected:
void ReduceNode(Node* node, Reducer* r) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r);
reducer.ReduceNode(node);
}
void ReduceNode(Node* node, Reducer* r1, Reducer* r2) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.ReduceNode(node);
}
void ReduceNode(Node* node, Reducer* r1, Reducer* r2, Reducer* r3) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.AddReducer(r3);
reducer.ReduceNode(node);
}
void ReduceGraph(Reducer* r1) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.ReduceGraph();
}
void ReduceGraph(Reducer* r1, Reducer* r2) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.ReduceGraph();
}
void ReduceGraph(Reducer* r1, Reducer* r2, Reducer* r3) {
GraphReducer reducer(graph(), zone());
reducer.AddReducer(r1);
reducer.AddReducer(r2);
reducer.AddReducer(r3);
reducer.ReduceGraph();
}
Graph* graph() { return &graph_; }
private:
Graph graph_;
};
TEST_F(GraphReducerTest, NodeIsDeadAfterReplace) {
StrictMock<MockReducer> r;
Node* node0 = graph()->NewNode(&kOpA0);
Node* node1 = graph()->NewNode(&kOpA1, node0);
Node* node2 = graph()->NewNode(&kOpA1, node0);
EXPECT_CALL(r, Reduce(node0)).WillOnce(Return(Reducer::NoChange()));
EXPECT_CALL(r, Reduce(node1)).WillOnce(Return(Reducer::Replace(node2)));
ReduceNode(node1, &r);
EXPECT_FALSE(node0->IsDead());
EXPECT_TRUE(node1->IsDead());
EXPECT_FALSE(node2->IsDead());
}
TEST_F(GraphReducerTest, ReduceOnceForEveryReducer) {
StrictMock<MockReducer> r1, r2;
Node* node0 = graph()->NewNode(&kOpA0);
EXPECT_CALL(r1, Reduce(node0));
EXPECT_CALL(r2, Reduce(node0));
ReduceNode(node0, &r1, &r2);
}
TEST_F(GraphReducerTest, ReduceAgainAfterChanged) {
Sequence s1, s2, s3;
StrictMock<MockReducer> r1, r2, r3;
Node* node0 = graph()->NewNode(&kOpA0);
EXPECT_CALL(r1, Reduce(node0));
EXPECT_CALL(r2, Reduce(node0));
EXPECT_CALL(r3, Reduce(node0)).InSequence(s1, s2, s3).WillOnce(
Return(Reducer::Changed(node0)));
EXPECT_CALL(r1, Reduce(node0)).InSequence(s1);
EXPECT_CALL(r2, Reduce(node0)).InSequence(s2);
ReduceNode(node0, &r1, &r2, &r3);
}
TEST_F(GraphReducerTest, ReduceGraphFromEnd1) {
StrictMock<MockReducer> r1;
Node* n = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n);
graph()->SetEnd(end);
Sequence s;
EXPECT_CALL(r1, Reduce(n));
EXPECT_CALL(r1, Reduce(end));
ReduceGraph(&r1);
}
TEST_F(GraphReducerTest, ReduceGraphFromEnd2) {
StrictMock<MockReducer> r1;
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
Sequence s1, s2;
EXPECT_CALL(r1, Reduce(n1)).InSequence(s1, s2);
EXPECT_CALL(r1, Reduce(n2)).InSequence(s1);
EXPECT_CALL(r1, Reduce(n3)).InSequence(s2);
EXPECT_CALL(r1, Reduce(end)).InSequence(s1, s2);
ReduceGraph(&r1);
}
TEST_F(GraphReducerTest, ReduceInPlace1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
// Tests A* => B* with in-place updates.
InPlaceABReducer r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_EQ(&kOpB1, end->op());
EXPECT_EQ(n1, end->InputAt(0));
}
}
TEST_F(GraphReducerTest, ReduceInPlace2) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
// Tests A* => B* with in-place updates.
InPlaceABReducer r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_EQ(&kOpB1, n2->op());
EXPECT_EQ(n1, n2->InputAt(0));
EXPECT_EQ(&kOpB1, n3->op());
EXPECT_EQ(n1, n3->InputAt(0));
EXPECT_EQ(&kOpB2, end->op());
EXPECT_EQ(n2, end->InputAt(0));
EXPECT_EQ(n3, end->InputAt(1));
}
}
TEST_F(GraphReducerTest, ReduceNew1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
NewABReducer r(graph());
// Tests A* => B* while creating new nodes.
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
if (i == 0) {
EXPECT_NE(before, graph()->NodeCount());
} else {
EXPECT_EQ(before, graph()->NodeCount());
}
Node* nend = graph()->end();
EXPECT_NE(end, nend); // end() should be updated too.
Node* nn2 = nend->InputAt(0);
Node* nn3 = nend->InputAt(1);
Node* nn1 = nn2->InputAt(0);
EXPECT_EQ(nn1, nn3->InputAt(0));
EXPECT_EQ(&kOpB0, nn1->op());
EXPECT_EQ(&kOpB1, nn2->op());
EXPECT_EQ(&kOpB1, nn3->op());
EXPECT_EQ(&kOpB2, nend->op());
}
}
TEST_F(GraphReducerTest, Wrapping1) {
Node* end = graph()->NewNode(&kOpA0);
graph()->SetEnd(end);
EXPECT_EQ(1, graph()->NodeCount());
A0Wrapper r(graph());
ReduceGraph(&r);
EXPECT_EQ(2, graph()->NodeCount());
Node* nend = graph()->end();
EXPECT_NE(end, nend);
EXPECT_EQ(&kOpB1, nend->op());
EXPECT_EQ(1, nend->InputCount());
EXPECT_EQ(end, nend->InputAt(0));
}
TEST_F(GraphReducerTest, Wrapping2) {
Node* end = graph()->NewNode(&kOpB0);
graph()->SetEnd(end);
EXPECT_EQ(1, graph()->NodeCount());
B0Wrapper r(graph());
ReduceGraph(&r);
EXPECT_EQ(3, graph()->NodeCount());
Node* nend = graph()->end();
EXPECT_NE(end, nend);
EXPECT_EQ(&kOpC1, nend->op());
EXPECT_EQ(1, nend->InputCount());
Node* n1 = nend->InputAt(0);
EXPECT_NE(end, n1);
EXPECT_EQ(&kOpC1, n1->op());
EXPECT_EQ(1, n1->InputCount());
EXPECT_EQ(end, n1->InputAt(0));
}
TEST_F(GraphReducerTest, Forwarding1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
A1Forwarder r;
// Tests A1(x) => x
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, graph()->end());
}
}
TEST_F(GraphReducerTest, Forwarding2) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
A1Forwarder r;
// Tests reducing A2(A1(x), A1(y)) => A2(x, y).
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_EQ(n1, end->InputAt(1));
EXPECT_EQ(&kOpA2, end->op());
EXPECT_EQ(0, n2->UseCount());
EXPECT_EQ(0, n3->UseCount());
}
}
TEST_F(GraphReducerTest, Forwarding3) {
// Tests reducing a chain of A1(A1(A1(A1(x)))) => x.
for (int i = 0; i < 8; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = n1;
for (int j = 0; j < i; j++) {
end = graph()->NewNode(&kOpA1, end);
}
graph()->SetEnd(end);
A1Forwarder r;
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(n1, graph()->end());
}
}
}
TEST_F(GraphReducerTest, ReduceForward1) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = graph()->NewNode(&kOpA2, n2, n3);
graph()->SetEnd(end);
InPlaceABReducer r;
B1Forwarder f;
// Tests first reducing A => B, then B1(x) => x.
for (int i = 0; i < 3; i++) {
int before = graph()->NodeCount();
ReduceGraph(&r, &f);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpB0, n1->op());
EXPECT_TRUE(n2->IsDead());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_TRUE(n3->IsDead());
EXPECT_EQ(n1, end->InputAt(0));
EXPECT_EQ(&kOpB2, end->op());
EXPECT_EQ(0, n2->UseCount());
EXPECT_EQ(0, n3->UseCount());
}
}
TEST_F(GraphReducerTest, Sorter1) {
AB2Sorter r;
for (int i = 0; i < 6; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* n2 = graph()->NewNode(&kOpA1, n1);
Node* n3 = graph()->NewNode(&kOpA1, n1);
Node* end = NULL; // Initialize to please the compiler.
if (i == 0) end = graph()->NewNode(&kOpA2, n2, n3);
if (i == 1) end = graph()->NewNode(&kOpA2, n3, n2);
if (i == 2) end = graph()->NewNode(&kOpA2, n2, n1);
if (i == 3) end = graph()->NewNode(&kOpA2, n1, n2);
if (i == 4) end = graph()->NewNode(&kOpA2, n3, n1);
if (i == 5) end = graph()->NewNode(&kOpA2, n1, n3);
graph()->SetEnd(end);
int before = graph()->NodeCount();
ReduceGraph(&r);
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpA0, n1->op());
EXPECT_EQ(&kOpA1, n2->op());
EXPECT_EQ(&kOpA1, n3->op());
EXPECT_EQ(&kOpA2, end->op());
EXPECT_EQ(end, graph()->end());
EXPECT_LE(end->InputAt(0)->id(), end->InputAt(1)->id());
}
}
namespace {
// Generate a node graph with the given permutations.
void GenDAG(Graph* graph, int* p3, int* p2, int* p1) {
Node* level4 = graph->NewNode(&kOpA0);
Node* level3[] = {graph->NewNode(&kOpA1, level4),
graph->NewNode(&kOpA1, level4)};
Node* level2[] = {graph->NewNode(&kOpA1, level3[p3[0]]),
graph->NewNode(&kOpA1, level3[p3[1]]),
graph->NewNode(&kOpA1, level3[p3[0]]),
graph->NewNode(&kOpA1, level3[p3[1]])};
Node* level1[] = {graph->NewNode(&kOpA2, level2[p2[0]], level2[p2[1]]),
graph->NewNode(&kOpA2, level2[p2[2]], level2[p2[3]])};
Node* end = graph->NewNode(&kOpA2, level1[p1[0]], level1[p1[1]]);
graph->SetEnd(end);
}
} // namespace
TEST_F(GraphReducerTest, SortForwardReduce) {
// Tests combined reductions on a series of DAGs.
for (int j = 0; j < 2; j++) {
int p3[] = {j, 1 - j};
for (int m = 0; m < 2; m++) {
int p1[] = {m, 1 - m};
for (int k = 0; k < 24; k++) { // All permutations of 0, 1, 2, 3
int p2[] = {-1, -1, -1, -1};
int n = k;
for (int d = 4; d >= 1; d--) { // Construct permutation.
int p = n % d;
for (int z = 0; z < 4; z++) {
if (p2[z] == -1) {
if (p == 0) p2[z] = d - 1;
p--;
}
}
n = n / d;
}
GenDAG(graph(), p3, p2, p1);
AB2Sorter r1;
A1Forwarder r2;
InPlaceABReducer r3;
ReduceGraph(&r1, &r2, &r3);
Node* end = graph()->end();
EXPECT_EQ(&kOpB2, end->op());
Node* n1 = end->InputAt(0);
Node* n2 = end->InputAt(1);
EXPECT_NE(n1, n2);
EXPECT_LT(n1->id(), n2->id());
EXPECT_EQ(&kOpB2, n1->op());
EXPECT_EQ(&kOpB2, n2->op());
Node* n4 = n1->InputAt(0);
EXPECT_EQ(&kOpB0, n4->op());
EXPECT_EQ(n4, n1->InputAt(1));
EXPECT_EQ(n4, n2->InputAt(0));
EXPECT_EQ(n4, n2->InputAt(1));
}
}
}
}
TEST_F(GraphReducerTest, Order) {
// Test that the order of reducers doesn't matter, as they should be
// rerun for changed nodes.
for (int i = 0; i < 2; i++) {
Node* n1 = graph()->NewNode(&kOpA0);
Node* end = graph()->NewNode(&kOpA1, n1);
graph()->SetEnd(end);
InPlaceABReducer abr;
InPlaceBCReducer bcr;
// Tests A* => C* with in-place updates.
for (int j = 0; j < 3; j++) {
int before = graph()->NodeCount();
if (i == 0) {
ReduceGraph(&abr, &bcr);
} else {
ReduceGraph(&bcr, &abr);
}
EXPECT_EQ(before, graph()->NodeCount());
EXPECT_EQ(&kOpC0, n1->op());
EXPECT_EQ(&kOpC1, end->op());
EXPECT_EQ(n1, end->InputAt(0));
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8