db1a685b8f
This reverts r19196. TBR=mstarzinger@chromium.org Review URL: https://codereview.chromium.org/147443008 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19199 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1301 lines
44 KiB
C++
1301 lines
44 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
|
|
#include "cpu-profiler.h"
|
|
#include "unicode.h"
|
|
#include "log.h"
|
|
#include "code-stubs.h"
|
|
#include "regexp-stack.h"
|
|
#include "macro-assembler.h"
|
|
#include "regexp-macro-assembler.h"
|
|
#include "arm/regexp-macro-assembler-arm.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
/*
|
|
* This assembler uses the following register assignment convention
|
|
* - r4 : Temporarily stores the index of capture start after a matching pass
|
|
* for a global regexp.
|
|
* - r5 : Pointer to current code object (Code*) including heap object tag.
|
|
* - r6 : Current position in input, as negative offset from end of string.
|
|
* Please notice that this is the byte offset, not the character offset!
|
|
* - r7 : Currently loaded character. Must be loaded using
|
|
* LoadCurrentCharacter before using any of the dispatch methods.
|
|
* - r8 : Points to tip of backtrack stack
|
|
* - r9 : Unused, might be used by C code and expected unchanged.
|
|
* - r10 : End of input (points to byte after last character in input).
|
|
* - r11 : Frame pointer. Used to access arguments, local variables and
|
|
* RegExp registers.
|
|
* - r12 : IP register, used by assembler. Very volatile.
|
|
* - r13/sp : Points to tip of C stack.
|
|
*
|
|
* The remaining registers are free for computations.
|
|
* Each call to a public method should retain this convention.
|
|
*
|
|
* The stack will have the following structure:
|
|
* - fp[56] Isolate* isolate (address of the current isolate)
|
|
* - fp[52] direct_call (if 1, direct call from JavaScript code,
|
|
* if 0, call through the runtime system).
|
|
* - fp[48] stack_area_base (high end of the memory area to use as
|
|
* backtracking stack).
|
|
* - fp[44] capture array size (may fit multiple sets of matches)
|
|
* - fp[40] int* capture_array (int[num_saved_registers_], for output).
|
|
* - fp[36] secondary link/return address used by native call.
|
|
* --- sp when called ---
|
|
* - fp[32] return address (lr).
|
|
* - fp[28] old frame pointer (r11).
|
|
* - fp[0..24] backup of registers r4..r10.
|
|
* --- frame pointer ----
|
|
* - fp[-4] end of input (address of end of string).
|
|
* - fp[-8] start of input (address of first character in string).
|
|
* - fp[-12] start index (character index of start).
|
|
* - fp[-16] void* input_string (location of a handle containing the string).
|
|
* - fp[-20] success counter (only for global regexps to count matches).
|
|
* - fp[-24] Offset of location before start of input (effectively character
|
|
* position -1). Used to initialize capture registers to a
|
|
* non-position.
|
|
* - fp[-28] At start (if 1, we are starting at the start of the
|
|
* string, otherwise 0)
|
|
* - fp[-32] register 0 (Only positions must be stored in the first
|
|
* - register 1 num_saved_registers_ registers)
|
|
* - ...
|
|
* - register num_registers-1
|
|
* --- sp ---
|
|
*
|
|
* The first num_saved_registers_ registers are initialized to point to
|
|
* "character -1" in the string (i.e., char_size() bytes before the first
|
|
* character of the string). The remaining registers start out as garbage.
|
|
*
|
|
* The data up to the return address must be placed there by the calling
|
|
* code and the remaining arguments are passed in registers, e.g. by calling the
|
|
* code entry as cast to a function with the signature:
|
|
* int (*match)(String* input_string,
|
|
* int start_index,
|
|
* Address start,
|
|
* Address end,
|
|
* Address secondary_return_address, // Only used by native call.
|
|
* int* capture_output_array,
|
|
* byte* stack_area_base,
|
|
* bool direct_call = false)
|
|
* The call is performed by NativeRegExpMacroAssembler::Execute()
|
|
* (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
|
|
* in arm/simulator-arm.h.
|
|
* When calling as a non-direct call (i.e., from C++ code), the return address
|
|
* area is overwritten with the LR register by the RegExp code. When doing a
|
|
* direct call from generated code, the return address is placed there by
|
|
* the calling code, as in a normal exit frame.
|
|
*/
|
|
|
|
#define __ ACCESS_MASM(masm_)
|
|
|
|
RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(
|
|
Mode mode,
|
|
int registers_to_save,
|
|
Zone* zone)
|
|
: NativeRegExpMacroAssembler(zone),
|
|
masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
|
|
mode_(mode),
|
|
num_registers_(registers_to_save),
|
|
num_saved_registers_(registers_to_save),
|
|
entry_label_(),
|
|
start_label_(),
|
|
success_label_(),
|
|
backtrack_label_(),
|
|
exit_label_() {
|
|
ASSERT_EQ(0, registers_to_save % 2);
|
|
__ jmp(&entry_label_); // We'll write the entry code later.
|
|
__ bind(&start_label_); // And then continue from here.
|
|
}
|
|
|
|
|
|
RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
|
|
delete masm_;
|
|
// Unuse labels in case we throw away the assembler without calling GetCode.
|
|
entry_label_.Unuse();
|
|
start_label_.Unuse();
|
|
success_label_.Unuse();
|
|
backtrack_label_.Unuse();
|
|
exit_label_.Unuse();
|
|
check_preempt_label_.Unuse();
|
|
stack_overflow_label_.Unuse();
|
|
}
|
|
|
|
|
|
int RegExpMacroAssemblerARM::stack_limit_slack() {
|
|
return RegExpStack::kStackLimitSlack;
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
|
|
if (by != 0) {
|
|
__ add(current_input_offset(),
|
|
current_input_offset(), Operand(by * char_size()));
|
|
}
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
|
|
ASSERT(reg >= 0);
|
|
ASSERT(reg < num_registers_);
|
|
if (by != 0) {
|
|
__ ldr(r0, register_location(reg));
|
|
__ add(r0, r0, Operand(by));
|
|
__ str(r0, register_location(reg));
|
|
}
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::Backtrack() {
|
|
CheckPreemption();
|
|
// Pop Code* offset from backtrack stack, add Code* and jump to location.
|
|
Pop(r0);
|
|
__ add(pc, r0, Operand(code_pointer()));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::Bind(Label* label) {
|
|
__ bind(label);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
|
|
__ cmp(current_character(), Operand(c));
|
|
BranchOrBacktrack(eq, on_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
|
|
__ cmp(current_character(), Operand(limit));
|
|
BranchOrBacktrack(gt, on_greater);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
|
|
Label not_at_start;
|
|
// Did we start the match at the start of the string at all?
|
|
__ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(ne, ¬_at_start);
|
|
|
|
// If we did, are we still at the start of the input?
|
|
__ ldr(r1, MemOperand(frame_pointer(), kInputStart));
|
|
__ add(r0, end_of_input_address(), Operand(current_input_offset()));
|
|
__ cmp(r0, r1);
|
|
BranchOrBacktrack(eq, on_at_start);
|
|
__ bind(¬_at_start);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
|
|
// Did we start the match at the start of the string at all?
|
|
__ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(ne, on_not_at_start);
|
|
// If we did, are we still at the start of the input?
|
|
__ ldr(r1, MemOperand(frame_pointer(), kInputStart));
|
|
__ add(r0, end_of_input_address(), Operand(current_input_offset()));
|
|
__ cmp(r0, r1);
|
|
BranchOrBacktrack(ne, on_not_at_start);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
|
|
__ cmp(current_character(), Operand(limit));
|
|
BranchOrBacktrack(lt, on_less);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
|
|
__ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
|
|
__ cmp(current_input_offset(), r0);
|
|
__ add(backtrack_stackpointer(),
|
|
backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
|
|
BranchOrBacktrack(eq, on_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
|
|
int start_reg,
|
|
Label* on_no_match) {
|
|
Label fallthrough;
|
|
__ ldr(r0, register_location(start_reg)); // Index of start of capture
|
|
__ ldr(r1, register_location(start_reg + 1)); // Index of end of capture
|
|
__ sub(r1, r1, r0, SetCC); // Length of capture.
|
|
|
|
// If length is zero, either the capture is empty or it is not participating.
|
|
// In either case succeed immediately.
|
|
__ b(eq, &fallthrough);
|
|
|
|
// Check that there are enough characters left in the input.
|
|
__ cmn(r1, Operand(current_input_offset()));
|
|
BranchOrBacktrack(gt, on_no_match);
|
|
|
|
if (mode_ == ASCII) {
|
|
Label success;
|
|
Label fail;
|
|
Label loop_check;
|
|
|
|
// r0 - offset of start of capture
|
|
// r1 - length of capture
|
|
__ add(r0, r0, Operand(end_of_input_address()));
|
|
__ add(r2, end_of_input_address(), Operand(current_input_offset()));
|
|
__ add(r1, r0, Operand(r1));
|
|
|
|
// r0 - Address of start of capture.
|
|
// r1 - Address of end of capture
|
|
// r2 - Address of current input position.
|
|
|
|
Label loop;
|
|
__ bind(&loop);
|
|
__ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
|
|
__ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
|
|
__ cmp(r4, r3);
|
|
__ b(eq, &loop_check);
|
|
|
|
// Mismatch, try case-insensitive match (converting letters to lower-case).
|
|
__ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case.
|
|
__ orr(r4, r4, Operand(0x20)); // Also convert input character.
|
|
__ cmp(r4, r3);
|
|
__ b(ne, &fail);
|
|
__ sub(r3, r3, Operand('a'));
|
|
__ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter?
|
|
__ b(ls, &loop_check); // In range 'a'-'z'.
|
|
// Latin-1: Check for values in range [224,254] but not 247.
|
|
__ sub(r3, r3, Operand(224 - 'a'));
|
|
__ cmp(r3, Operand(254 - 224));
|
|
__ b(hi, &fail); // Weren't Latin-1 letters.
|
|
__ cmp(r3, Operand(247 - 224)); // Check for 247.
|
|
__ b(eq, &fail);
|
|
|
|
__ bind(&loop_check);
|
|
__ cmp(r0, r1);
|
|
__ b(lt, &loop);
|
|
__ jmp(&success);
|
|
|
|
__ bind(&fail);
|
|
BranchOrBacktrack(al, on_no_match);
|
|
|
|
__ bind(&success);
|
|
// Compute new value of character position after the matched part.
|
|
__ sub(current_input_offset(), r2, end_of_input_address());
|
|
} else {
|
|
ASSERT(mode_ == UC16);
|
|
int argument_count = 4;
|
|
__ PrepareCallCFunction(argument_count, r2);
|
|
|
|
// r0 - offset of start of capture
|
|
// r1 - length of capture
|
|
|
|
// Put arguments into arguments registers.
|
|
// Parameters are
|
|
// r0: Address byte_offset1 - Address captured substring's start.
|
|
// r1: Address byte_offset2 - Address of current character position.
|
|
// r2: size_t byte_length - length of capture in bytes(!)
|
|
// r3: Isolate* isolate
|
|
|
|
// Address of start of capture.
|
|
__ add(r0, r0, Operand(end_of_input_address()));
|
|
// Length of capture.
|
|
__ mov(r2, Operand(r1));
|
|
// Save length in callee-save register for use on return.
|
|
__ mov(r4, Operand(r1));
|
|
// Address of current input position.
|
|
__ add(r1, current_input_offset(), Operand(end_of_input_address()));
|
|
// Isolate.
|
|
__ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
|
|
|
|
{
|
|
AllowExternalCallThatCantCauseGC scope(masm_);
|
|
ExternalReference function =
|
|
ExternalReference::re_case_insensitive_compare_uc16(isolate());
|
|
__ CallCFunction(function, argument_count);
|
|
}
|
|
|
|
// Check if function returned non-zero for success or zero for failure.
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(eq, on_no_match);
|
|
// On success, increment position by length of capture.
|
|
__ add(current_input_offset(), current_input_offset(), Operand(r4));
|
|
}
|
|
|
|
__ bind(&fallthrough);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotBackReference(
|
|
int start_reg,
|
|
Label* on_no_match) {
|
|
Label fallthrough;
|
|
Label success;
|
|
|
|
// Find length of back-referenced capture.
|
|
__ ldr(r0, register_location(start_reg));
|
|
__ ldr(r1, register_location(start_reg + 1));
|
|
__ sub(r1, r1, r0, SetCC); // Length to check.
|
|
// Succeed on empty capture (including no capture).
|
|
__ b(eq, &fallthrough);
|
|
|
|
// Check that there are enough characters left in the input.
|
|
__ cmn(r1, Operand(current_input_offset()));
|
|
BranchOrBacktrack(gt, on_no_match);
|
|
|
|
// Compute pointers to match string and capture string
|
|
__ add(r0, r0, Operand(end_of_input_address()));
|
|
__ add(r2, end_of_input_address(), Operand(current_input_offset()));
|
|
__ add(r1, r1, Operand(r0));
|
|
|
|
Label loop;
|
|
__ bind(&loop);
|
|
if (mode_ == ASCII) {
|
|
__ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
|
|
__ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
|
|
} else {
|
|
ASSERT(mode_ == UC16);
|
|
__ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
|
|
__ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
|
|
}
|
|
__ cmp(r3, r4);
|
|
BranchOrBacktrack(ne, on_no_match);
|
|
__ cmp(r0, r1);
|
|
__ b(lt, &loop);
|
|
|
|
// Move current character position to position after match.
|
|
__ sub(current_input_offset(), r2, end_of_input_address());
|
|
__ bind(&fallthrough);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
|
|
Label* on_not_equal) {
|
|
__ cmp(current_character(), Operand(c));
|
|
BranchOrBacktrack(ne, on_not_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
|
|
uint32_t mask,
|
|
Label* on_equal) {
|
|
if (c == 0) {
|
|
__ tst(current_character(), Operand(mask));
|
|
} else {
|
|
__ and_(r0, current_character(), Operand(mask));
|
|
__ cmp(r0, Operand(c));
|
|
}
|
|
BranchOrBacktrack(eq, on_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
|
|
unsigned mask,
|
|
Label* on_not_equal) {
|
|
if (c == 0) {
|
|
__ tst(current_character(), Operand(mask));
|
|
} else {
|
|
__ and_(r0, current_character(), Operand(mask));
|
|
__ cmp(r0, Operand(c));
|
|
}
|
|
BranchOrBacktrack(ne, on_not_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
|
|
uc16 c,
|
|
uc16 minus,
|
|
uc16 mask,
|
|
Label* on_not_equal) {
|
|
ASSERT(minus < String::kMaxUtf16CodeUnit);
|
|
__ sub(r0, current_character(), Operand(minus));
|
|
__ and_(r0, r0, Operand(mask));
|
|
__ cmp(r0, Operand(c));
|
|
BranchOrBacktrack(ne, on_not_equal);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacterInRange(
|
|
uc16 from,
|
|
uc16 to,
|
|
Label* on_in_range) {
|
|
__ sub(r0, current_character(), Operand(from));
|
|
__ cmp(r0, Operand(to - from));
|
|
BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition.
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
|
|
uc16 from,
|
|
uc16 to,
|
|
Label* on_not_in_range) {
|
|
__ sub(r0, current_character(), Operand(from));
|
|
__ cmp(r0, Operand(to - from));
|
|
BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition.
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckBitInTable(
|
|
Handle<ByteArray> table,
|
|
Label* on_bit_set) {
|
|
__ mov(r0, Operand(table));
|
|
if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
|
|
__ and_(r1, current_character(), Operand(kTableSize - 1));
|
|
__ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
|
|
} else {
|
|
__ add(r1,
|
|
current_character(),
|
|
Operand(ByteArray::kHeaderSize - kHeapObjectTag));
|
|
}
|
|
__ ldrb(r0, MemOperand(r0, r1));
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(ne, on_bit_set);
|
|
}
|
|
|
|
|
|
bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
|
|
Label* on_no_match) {
|
|
// Range checks (c in min..max) are generally implemented by an unsigned
|
|
// (c - min) <= (max - min) check
|
|
switch (type) {
|
|
case 's':
|
|
// Match space-characters
|
|
if (mode_ == ASCII) {
|
|
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
|
|
Label success;
|
|
__ cmp(current_character(), Operand(' '));
|
|
__ b(eq, &success);
|
|
// Check range 0x09..0x0d
|
|
__ sub(r0, current_character(), Operand('\t'));
|
|
__ cmp(r0, Operand('\r' - '\t'));
|
|
__ b(ls, &success);
|
|
// \u00a0 (NBSP).
|
|
__ cmp(r0, Operand(0x00a0 - '\t'));
|
|
BranchOrBacktrack(ne, on_no_match);
|
|
__ bind(&success);
|
|
return true;
|
|
}
|
|
return false;
|
|
case 'S':
|
|
// The emitted code for generic character classes is good enough.
|
|
return false;
|
|
case 'd':
|
|
// Match ASCII digits ('0'..'9')
|
|
__ sub(r0, current_character(), Operand('0'));
|
|
__ cmp(r0, Operand('9' - '0'));
|
|
BranchOrBacktrack(hi, on_no_match);
|
|
return true;
|
|
case 'D':
|
|
// Match non ASCII-digits
|
|
__ sub(r0, current_character(), Operand('0'));
|
|
__ cmp(r0, Operand('9' - '0'));
|
|
BranchOrBacktrack(ls, on_no_match);
|
|
return true;
|
|
case '.': {
|
|
// Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
|
|
__ eor(r0, current_character(), Operand(0x01));
|
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
|
|
__ sub(r0, r0, Operand(0x0b));
|
|
__ cmp(r0, Operand(0x0c - 0x0b));
|
|
BranchOrBacktrack(ls, on_no_match);
|
|
if (mode_ == UC16) {
|
|
// Compare original value to 0x2028 and 0x2029, using the already
|
|
// computed (current_char ^ 0x01 - 0x0b). I.e., check for
|
|
// 0x201d (0x2028 - 0x0b) or 0x201e.
|
|
__ sub(r0, r0, Operand(0x2028 - 0x0b));
|
|
__ cmp(r0, Operand(1));
|
|
BranchOrBacktrack(ls, on_no_match);
|
|
}
|
|
return true;
|
|
}
|
|
case 'n': {
|
|
// Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
|
|
__ eor(r0, current_character(), Operand(0x01));
|
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
|
|
__ sub(r0, r0, Operand(0x0b));
|
|
__ cmp(r0, Operand(0x0c - 0x0b));
|
|
if (mode_ == ASCII) {
|
|
BranchOrBacktrack(hi, on_no_match);
|
|
} else {
|
|
Label done;
|
|
__ b(ls, &done);
|
|
// Compare original value to 0x2028 and 0x2029, using the already
|
|
// computed (current_char ^ 0x01 - 0x0b). I.e., check for
|
|
// 0x201d (0x2028 - 0x0b) or 0x201e.
|
|
__ sub(r0, r0, Operand(0x2028 - 0x0b));
|
|
__ cmp(r0, Operand(1));
|
|
BranchOrBacktrack(hi, on_no_match);
|
|
__ bind(&done);
|
|
}
|
|
return true;
|
|
}
|
|
case 'w': {
|
|
if (mode_ != ASCII) {
|
|
// Table is 128 entries, so all ASCII characters can be tested.
|
|
__ cmp(current_character(), Operand('z'));
|
|
BranchOrBacktrack(hi, on_no_match);
|
|
}
|
|
ExternalReference map = ExternalReference::re_word_character_map();
|
|
__ mov(r0, Operand(map));
|
|
__ ldrb(r0, MemOperand(r0, current_character()));
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(eq, on_no_match);
|
|
return true;
|
|
}
|
|
case 'W': {
|
|
Label done;
|
|
if (mode_ != ASCII) {
|
|
// Table is 128 entries, so all ASCII characters can be tested.
|
|
__ cmp(current_character(), Operand('z'));
|
|
__ b(hi, &done);
|
|
}
|
|
ExternalReference map = ExternalReference::re_word_character_map();
|
|
__ mov(r0, Operand(map));
|
|
__ ldrb(r0, MemOperand(r0, current_character()));
|
|
__ cmp(r0, Operand::Zero());
|
|
BranchOrBacktrack(ne, on_no_match);
|
|
if (mode_ != ASCII) {
|
|
__ bind(&done);
|
|
}
|
|
return true;
|
|
}
|
|
case '*':
|
|
// Match any character.
|
|
return true;
|
|
// No custom implementation (yet): s(UC16), S(UC16).
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::Fail() {
|
|
__ mov(r0, Operand(FAILURE));
|
|
__ jmp(&exit_label_);
|
|
}
|
|
|
|
|
|
Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
|
|
Label return_r0;
|
|
// Finalize code - write the entry point code now we know how many
|
|
// registers we need.
|
|
|
|
// Entry code:
|
|
__ bind(&entry_label_);
|
|
|
|
// Tell the system that we have a stack frame. Because the type is MANUAL, no
|
|
// is generated.
|
|
FrameScope scope(masm_, StackFrame::MANUAL);
|
|
|
|
// Actually emit code to start a new stack frame.
|
|
// Push arguments
|
|
// Save callee-save registers.
|
|
// Start new stack frame.
|
|
// Store link register in existing stack-cell.
|
|
// Order here should correspond to order of offset constants in header file.
|
|
RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
|
|
r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
|
|
RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
|
|
__ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
|
|
// Set frame pointer in space for it if this is not a direct call
|
|
// from generated code.
|
|
__ add(frame_pointer(), sp, Operand(4 * kPointerSize));
|
|
__ mov(r0, Operand::Zero());
|
|
__ push(r0); // Make room for success counter and initialize it to 0.
|
|
__ push(r0); // Make room for "position - 1" constant (value is irrelevant).
|
|
// Check if we have space on the stack for registers.
|
|
Label stack_limit_hit;
|
|
Label stack_ok;
|
|
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(isolate());
|
|
__ mov(r0, Operand(stack_limit));
|
|
__ ldr(r0, MemOperand(r0));
|
|
__ sub(r0, sp, r0, SetCC);
|
|
// Handle it if the stack pointer is already below the stack limit.
|
|
__ b(ls, &stack_limit_hit);
|
|
// Check if there is room for the variable number of registers above
|
|
// the stack limit.
|
|
__ cmp(r0, Operand(num_registers_ * kPointerSize));
|
|
__ b(hs, &stack_ok);
|
|
// Exit with OutOfMemory exception. There is not enough space on the stack
|
|
// for our working registers.
|
|
__ mov(r0, Operand(EXCEPTION));
|
|
__ jmp(&return_r0);
|
|
|
|
__ bind(&stack_limit_hit);
|
|
CallCheckStackGuardState(r0);
|
|
__ cmp(r0, Operand::Zero());
|
|
// If returned value is non-zero, we exit with the returned value as result.
|
|
__ b(ne, &return_r0);
|
|
|
|
__ bind(&stack_ok);
|
|
|
|
// Allocate space on stack for registers.
|
|
__ sub(sp, sp, Operand(num_registers_ * kPointerSize));
|
|
// Load string end.
|
|
__ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
|
// Load input start.
|
|
__ ldr(r0, MemOperand(frame_pointer(), kInputStart));
|
|
// Find negative length (offset of start relative to end).
|
|
__ sub(current_input_offset(), r0, end_of_input_address());
|
|
// Set r0 to address of char before start of the input string
|
|
// (effectively string position -1).
|
|
__ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
|
|
__ sub(r0, current_input_offset(), Operand(char_size()));
|
|
__ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
|
|
// Store this value in a local variable, for use when clearing
|
|
// position registers.
|
|
__ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
|
|
|
|
// Initialize code pointer register
|
|
__ mov(code_pointer(), Operand(masm_->CodeObject()));
|
|
|
|
Label load_char_start_regexp, start_regexp;
|
|
// Load newline if index is at start, previous character otherwise.
|
|
__ cmp(r1, Operand::Zero());
|
|
__ b(ne, &load_char_start_regexp);
|
|
__ mov(current_character(), Operand('\n'), LeaveCC, eq);
|
|
__ jmp(&start_regexp);
|
|
|
|
// Global regexp restarts matching here.
|
|
__ bind(&load_char_start_regexp);
|
|
// Load previous char as initial value of current character register.
|
|
LoadCurrentCharacterUnchecked(-1, 1);
|
|
__ bind(&start_regexp);
|
|
|
|
// Initialize on-stack registers.
|
|
if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
|
|
// Fill saved registers with initial value = start offset - 1
|
|
if (num_saved_registers_ > 8) {
|
|
// Address of register 0.
|
|
__ add(r1, frame_pointer(), Operand(kRegisterZero));
|
|
__ mov(r2, Operand(num_saved_registers_));
|
|
Label init_loop;
|
|
__ bind(&init_loop);
|
|
__ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
|
|
__ sub(r2, r2, Operand(1), SetCC);
|
|
__ b(ne, &init_loop);
|
|
} else {
|
|
for (int i = 0; i < num_saved_registers_; i++) {
|
|
__ str(r0, register_location(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize backtrack stack pointer.
|
|
__ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
|
|
|
|
__ jmp(&start_label_);
|
|
|
|
// Exit code:
|
|
if (success_label_.is_linked()) {
|
|
// Save captures when successful.
|
|
__ bind(&success_label_);
|
|
if (num_saved_registers_ > 0) {
|
|
// copy captures to output
|
|
__ ldr(r1, MemOperand(frame_pointer(), kInputStart));
|
|
__ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
|
|
__ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
|
|
__ sub(r1, end_of_input_address(), r1);
|
|
// r1 is length of input in bytes.
|
|
if (mode_ == UC16) {
|
|
__ mov(r1, Operand(r1, LSR, 1));
|
|
}
|
|
// r1 is length of input in characters.
|
|
__ add(r1, r1, Operand(r2));
|
|
// r1 is length of string in characters.
|
|
|
|
ASSERT_EQ(0, num_saved_registers_ % 2);
|
|
// Always an even number of capture registers. This allows us to
|
|
// unroll the loop once to add an operation between a load of a register
|
|
// and the following use of that register.
|
|
for (int i = 0; i < num_saved_registers_; i += 2) {
|
|
__ ldr(r2, register_location(i));
|
|
__ ldr(r3, register_location(i + 1));
|
|
if (i == 0 && global_with_zero_length_check()) {
|
|
// Keep capture start in r4 for the zero-length check later.
|
|
__ mov(r4, r2);
|
|
}
|
|
if (mode_ == UC16) {
|
|
__ add(r2, r1, Operand(r2, ASR, 1));
|
|
__ add(r3, r1, Operand(r3, ASR, 1));
|
|
} else {
|
|
__ add(r2, r1, Operand(r2));
|
|
__ add(r3, r1, Operand(r3));
|
|
}
|
|
__ str(r2, MemOperand(r0, kPointerSize, PostIndex));
|
|
__ str(r3, MemOperand(r0, kPointerSize, PostIndex));
|
|
}
|
|
}
|
|
|
|
if (global()) {
|
|
// Restart matching if the regular expression is flagged as global.
|
|
__ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
|
__ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
|
|
__ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
|
|
// Increment success counter.
|
|
__ add(r0, r0, Operand(1));
|
|
__ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
|
// Capture results have been stored, so the number of remaining global
|
|
// output registers is reduced by the number of stored captures.
|
|
__ sub(r1, r1, Operand(num_saved_registers_));
|
|
// Check whether we have enough room for another set of capture results.
|
|
__ cmp(r1, Operand(num_saved_registers_));
|
|
__ b(lt, &return_r0);
|
|
|
|
__ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
|
|
// Advance the location for output.
|
|
__ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
|
|
__ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
|
|
|
|
// Prepare r0 to initialize registers with its value in the next run.
|
|
__ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
|
|
|
|
if (global_with_zero_length_check()) {
|
|
// Special case for zero-length matches.
|
|
// r4: capture start index
|
|
__ cmp(current_input_offset(), r4);
|
|
// Not a zero-length match, restart.
|
|
__ b(ne, &load_char_start_regexp);
|
|
// Offset from the end is zero if we already reached the end.
|
|
__ cmp(current_input_offset(), Operand::Zero());
|
|
__ b(eq, &exit_label_);
|
|
// Advance current position after a zero-length match.
|
|
__ add(current_input_offset(),
|
|
current_input_offset(),
|
|
Operand((mode_ == UC16) ? 2 : 1));
|
|
}
|
|
|
|
__ b(&load_char_start_regexp);
|
|
} else {
|
|
__ mov(r0, Operand(SUCCESS));
|
|
}
|
|
}
|
|
|
|
// Exit and return r0
|
|
__ bind(&exit_label_);
|
|
if (global()) {
|
|
__ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
|
}
|
|
|
|
__ bind(&return_r0);
|
|
// Skip sp past regexp registers and local variables..
|
|
__ mov(sp, frame_pointer());
|
|
// Restore registers r4..r11 and return (restoring lr to pc).
|
|
__ ldm(ia_w, sp, registers_to_retain | pc.bit());
|
|
|
|
// Backtrack code (branch target for conditional backtracks).
|
|
if (backtrack_label_.is_linked()) {
|
|
__ bind(&backtrack_label_);
|
|
Backtrack();
|
|
}
|
|
|
|
Label exit_with_exception;
|
|
|
|
// Preempt-code
|
|
if (check_preempt_label_.is_linked()) {
|
|
SafeCallTarget(&check_preempt_label_);
|
|
|
|
CallCheckStackGuardState(r0);
|
|
__ cmp(r0, Operand::Zero());
|
|
// If returning non-zero, we should end execution with the given
|
|
// result as return value.
|
|
__ b(ne, &return_r0);
|
|
|
|
// String might have moved: Reload end of string from frame.
|
|
__ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
|
SafeReturn();
|
|
}
|
|
|
|
// Backtrack stack overflow code.
|
|
if (stack_overflow_label_.is_linked()) {
|
|
SafeCallTarget(&stack_overflow_label_);
|
|
// Reached if the backtrack-stack limit has been hit.
|
|
Label grow_failed;
|
|
|
|
// Call GrowStack(backtrack_stackpointer(), &stack_base)
|
|
static const int num_arguments = 3;
|
|
__ PrepareCallCFunction(num_arguments, r0);
|
|
__ mov(r0, backtrack_stackpointer());
|
|
__ add(r1, frame_pointer(), Operand(kStackHighEnd));
|
|
__ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
|
|
ExternalReference grow_stack =
|
|
ExternalReference::re_grow_stack(isolate());
|
|
__ CallCFunction(grow_stack, num_arguments);
|
|
// If return NULL, we have failed to grow the stack, and
|
|
// must exit with a stack-overflow exception.
|
|
__ cmp(r0, Operand::Zero());
|
|
__ b(eq, &exit_with_exception);
|
|
// Otherwise use return value as new stack pointer.
|
|
__ mov(backtrack_stackpointer(), r0);
|
|
// Restore saved registers and continue.
|
|
SafeReturn();
|
|
}
|
|
|
|
if (exit_with_exception.is_linked()) {
|
|
// If any of the code above needed to exit with an exception.
|
|
__ bind(&exit_with_exception);
|
|
// Exit with Result EXCEPTION(-1) to signal thrown exception.
|
|
__ mov(r0, Operand(EXCEPTION));
|
|
__ jmp(&return_r0);
|
|
}
|
|
|
|
CodeDesc code_desc;
|
|
masm_->GetCode(&code_desc);
|
|
Handle<Code> code = isolate()->factory()->NewCode(
|
|
code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
|
|
PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
|
|
return Handle<HeapObject>::cast(code);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::GoTo(Label* to) {
|
|
BranchOrBacktrack(al, to);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
|
|
int comparand,
|
|
Label* if_ge) {
|
|
__ ldr(r0, register_location(reg));
|
|
__ cmp(r0, Operand(comparand));
|
|
BranchOrBacktrack(ge, if_ge);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
|
|
int comparand,
|
|
Label* if_lt) {
|
|
__ ldr(r0, register_location(reg));
|
|
__ cmp(r0, Operand(comparand));
|
|
BranchOrBacktrack(lt, if_lt);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
|
|
Label* if_eq) {
|
|
__ ldr(r0, register_location(reg));
|
|
__ cmp(r0, Operand(current_input_offset()));
|
|
BranchOrBacktrack(eq, if_eq);
|
|
}
|
|
|
|
|
|
RegExpMacroAssembler::IrregexpImplementation
|
|
RegExpMacroAssemblerARM::Implementation() {
|
|
return kARMImplementation;
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
|
|
Label* on_end_of_input,
|
|
bool check_bounds,
|
|
int characters) {
|
|
ASSERT(cp_offset >= -1); // ^ and \b can look behind one character.
|
|
ASSERT(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
|
|
if (check_bounds) {
|
|
CheckPosition(cp_offset + characters - 1, on_end_of_input);
|
|
}
|
|
LoadCurrentCharacterUnchecked(cp_offset, characters);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::PopCurrentPosition() {
|
|
Pop(current_input_offset());
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::PopRegister(int register_index) {
|
|
Pop(r0);
|
|
__ str(r0, register_location(register_index));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
|
|
__ mov_label_offset(r0, label);
|
|
Push(r0);
|
|
CheckStackLimit();
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::PushCurrentPosition() {
|
|
Push(current_input_offset());
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::PushRegister(int register_index,
|
|
StackCheckFlag check_stack_limit) {
|
|
__ ldr(r0, register_location(register_index));
|
|
Push(r0);
|
|
if (check_stack_limit) CheckStackLimit();
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
|
|
__ ldr(current_input_offset(), register_location(reg));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
|
|
__ ldr(backtrack_stackpointer(), register_location(reg));
|
|
__ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
|
|
__ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
|
|
Label after_position;
|
|
__ cmp(current_input_offset(), Operand(-by * char_size()));
|
|
__ b(ge, &after_position);
|
|
__ mov(current_input_offset(), Operand(-by * char_size()));
|
|
// On RegExp code entry (where this operation is used), the character before
|
|
// the current position is expected to be already loaded.
|
|
// We have advanced the position, so it's safe to read backwards.
|
|
LoadCurrentCharacterUnchecked(-1, 1);
|
|
__ bind(&after_position);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
|
|
ASSERT(register_index >= num_saved_registers_); // Reserved for positions!
|
|
__ mov(r0, Operand(to));
|
|
__ str(r0, register_location(register_index));
|
|
}
|
|
|
|
|
|
bool RegExpMacroAssemblerARM::Succeed() {
|
|
__ jmp(&success_label_);
|
|
return global();
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
|
|
int cp_offset) {
|
|
if (cp_offset == 0) {
|
|
__ str(current_input_offset(), register_location(reg));
|
|
} else {
|
|
__ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
|
|
__ str(r0, register_location(reg));
|
|
}
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
|
|
ASSERT(reg_from <= reg_to);
|
|
__ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
|
|
for (int reg = reg_from; reg <= reg_to; reg++) {
|
|
__ str(r0, register_location(reg));
|
|
}
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
|
|
__ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
|
|
__ sub(r0, backtrack_stackpointer(), r1);
|
|
__ str(r0, register_location(reg));
|
|
}
|
|
|
|
|
|
// Private methods:
|
|
|
|
void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
|
|
__ PrepareCallCFunction(3, scratch);
|
|
|
|
// RegExp code frame pointer.
|
|
__ mov(r2, frame_pointer());
|
|
// Code* of self.
|
|
__ mov(r1, Operand(masm_->CodeObject()));
|
|
|
|
// We need to make room for the return address on the stack.
|
|
int stack_alignment = OS::ActivationFrameAlignment();
|
|
ASSERT(IsAligned(stack_alignment, kPointerSize));
|
|
__ sub(sp, sp, Operand(stack_alignment));
|
|
|
|
// r0 will point to the return address, placed by DirectCEntry.
|
|
__ mov(r0, sp);
|
|
|
|
ExternalReference stack_guard_check =
|
|
ExternalReference::re_check_stack_guard_state(isolate());
|
|
__ mov(ip, Operand(stack_guard_check));
|
|
DirectCEntryStub stub;
|
|
stub.GenerateCall(masm_, ip);
|
|
|
|
// Drop the return address from the stack.
|
|
__ add(sp, sp, Operand(stack_alignment));
|
|
|
|
ASSERT(stack_alignment != 0);
|
|
__ ldr(sp, MemOperand(sp, 0));
|
|
|
|
__ mov(code_pointer(), Operand(masm_->CodeObject()));
|
|
}
|
|
|
|
|
|
// Helper function for reading a value out of a stack frame.
|
|
template <typename T>
|
|
static T& frame_entry(Address re_frame, int frame_offset) {
|
|
return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
|
|
}
|
|
|
|
|
|
int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
|
|
Code* re_code,
|
|
Address re_frame) {
|
|
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
|
|
if (isolate->stack_guard()->IsStackOverflow()) {
|
|
isolate->StackOverflow();
|
|
return EXCEPTION;
|
|
}
|
|
|
|
// If not real stack overflow the stack guard was used to interrupt
|
|
// execution for another purpose.
|
|
|
|
// If this is a direct call from JavaScript retry the RegExp forcing the call
|
|
// through the runtime system. Currently the direct call cannot handle a GC.
|
|
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
|
|
return RETRY;
|
|
}
|
|
|
|
// Prepare for possible GC.
|
|
HandleScope handles(isolate);
|
|
Handle<Code> code_handle(re_code);
|
|
|
|
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
|
|
|
|
// Current string.
|
|
bool is_ascii = subject->IsOneByteRepresentationUnderneath();
|
|
|
|
ASSERT(re_code->instruction_start() <= *return_address);
|
|
ASSERT(*return_address <=
|
|
re_code->instruction_start() + re_code->instruction_size());
|
|
|
|
MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
|
|
|
|
if (*code_handle != re_code) { // Return address no longer valid
|
|
int delta = code_handle->address() - re_code->address();
|
|
// Overwrite the return address on the stack.
|
|
*return_address += delta;
|
|
}
|
|
|
|
if (result->IsException()) {
|
|
return EXCEPTION;
|
|
}
|
|
|
|
Handle<String> subject_tmp = subject;
|
|
int slice_offset = 0;
|
|
|
|
// Extract the underlying string and the slice offset.
|
|
if (StringShape(*subject_tmp).IsCons()) {
|
|
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
|
|
} else if (StringShape(*subject_tmp).IsSliced()) {
|
|
SlicedString* slice = SlicedString::cast(*subject_tmp);
|
|
subject_tmp = Handle<String>(slice->parent());
|
|
slice_offset = slice->offset();
|
|
}
|
|
|
|
// String might have changed.
|
|
if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
|
|
// If we changed between an ASCII and an UC16 string, the specialized
|
|
// code cannot be used, and we need to restart regexp matching from
|
|
// scratch (including, potentially, compiling a new version of the code).
|
|
return RETRY;
|
|
}
|
|
|
|
// Otherwise, the content of the string might have moved. It must still
|
|
// be a sequential or external string with the same content.
|
|
// Update the start and end pointers in the stack frame to the current
|
|
// location (whether it has actually moved or not).
|
|
ASSERT(StringShape(*subject_tmp).IsSequential() ||
|
|
StringShape(*subject_tmp).IsExternal());
|
|
|
|
// The original start address of the characters to match.
|
|
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
|
|
|
|
// Find the current start address of the same character at the current string
|
|
// position.
|
|
int start_index = frame_entry<int>(re_frame, kStartIndex);
|
|
const byte* new_address = StringCharacterPosition(*subject_tmp,
|
|
start_index + slice_offset);
|
|
|
|
if (start_address != new_address) {
|
|
// If there is a difference, update the object pointer and start and end
|
|
// addresses in the RegExp stack frame to match the new value.
|
|
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
|
|
int byte_length = static_cast<int>(end_address - start_address);
|
|
frame_entry<const String*>(re_frame, kInputString) = *subject;
|
|
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
|
|
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
|
|
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
|
|
// Subject string might have been a ConsString that underwent
|
|
// short-circuiting during GC. That will not change start_address but
|
|
// will change pointer inside the subject handle.
|
|
frame_entry<const String*>(re_frame, kInputString) = *subject;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
|
|
ASSERT(register_index < (1<<30));
|
|
if (num_registers_ <= register_index) {
|
|
num_registers_ = register_index + 1;
|
|
}
|
|
return MemOperand(frame_pointer(),
|
|
kRegisterZero - register_index * kPointerSize);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
|
|
Label* on_outside_input) {
|
|
__ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
|
|
BranchOrBacktrack(ge, on_outside_input);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
|
|
Label* to) {
|
|
if (condition == al) { // Unconditional.
|
|
if (to == NULL) {
|
|
Backtrack();
|
|
return;
|
|
}
|
|
__ jmp(to);
|
|
return;
|
|
}
|
|
if (to == NULL) {
|
|
__ b(condition, &backtrack_label_);
|
|
return;
|
|
}
|
|
__ b(condition, to);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
|
|
__ bl(to, cond);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::SafeReturn() {
|
|
__ pop(lr);
|
|
__ add(pc, lr, Operand(masm_->CodeObject()));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
|
|
__ bind(name);
|
|
__ sub(lr, lr, Operand(masm_->CodeObject()));
|
|
__ push(lr);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::Push(Register source) {
|
|
ASSERT(!source.is(backtrack_stackpointer()));
|
|
__ str(source,
|
|
MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::Pop(Register target) {
|
|
ASSERT(!target.is(backtrack_stackpointer()));
|
|
__ ldr(target,
|
|
MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckPreemption() {
|
|
// Check for preemption.
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(isolate());
|
|
__ mov(r0, Operand(stack_limit));
|
|
__ ldr(r0, MemOperand(r0));
|
|
__ cmp(sp, r0);
|
|
SafeCall(&check_preempt_label_, ls);
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::CheckStackLimit() {
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_regexp_stack_limit(isolate());
|
|
__ mov(r0, Operand(stack_limit));
|
|
__ ldr(r0, MemOperand(r0));
|
|
__ cmp(backtrack_stackpointer(), Operand(r0));
|
|
SafeCall(&stack_overflow_label_, ls);
|
|
}
|
|
|
|
|
|
bool RegExpMacroAssemblerARM::CanReadUnaligned() {
|
|
return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
|
|
}
|
|
|
|
|
|
void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
|
|
int characters) {
|
|
Register offset = current_input_offset();
|
|
if (cp_offset != 0) {
|
|
// r4 is not being used to store the capture start index at this point.
|
|
__ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
|
|
offset = r4;
|
|
}
|
|
// The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
|
|
// and the operating system running on the target allow it.
|
|
// If unaligned load/stores are not supported then this function must only
|
|
// be used to load a single character at a time.
|
|
if (!CanReadUnaligned()) {
|
|
ASSERT(characters == 1);
|
|
}
|
|
|
|
if (mode_ == ASCII) {
|
|
if (characters == 4) {
|
|
__ ldr(current_character(), MemOperand(end_of_input_address(), offset));
|
|
} else if (characters == 2) {
|
|
__ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
|
|
} else {
|
|
ASSERT(characters == 1);
|
|
__ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
|
|
}
|
|
} else {
|
|
ASSERT(mode_ == UC16);
|
|
if (characters == 2) {
|
|
__ ldr(current_character(), MemOperand(end_of_input_address(), offset));
|
|
} else {
|
|
ASSERT(characters == 1);
|
|
__ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#undef __
|
|
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
}} // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_ARM
|