d07a2eb806
This way we don't clash with the ASSERT* macros defined by GoogleTest, and we are one step closer to being able to replace our homegrown base/ with base/ from Chrome. R=jochen@chromium.org, svenpanne@chromium.org Review URL: https://codereview.chromium.org/430503007 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22812 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
506 lines
18 KiB
C++
506 lines
18 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifdef __linux__
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <utility>
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/full-codegen.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/snapshot.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
using namespace v8::internal;
|
|
|
|
|
|
TEST(MarkingDeque) {
|
|
CcTest::InitializeVM();
|
|
int mem_size = 20 * kPointerSize;
|
|
byte* mem = NewArray<byte>(20*kPointerSize);
|
|
Address low = reinterpret_cast<Address>(mem);
|
|
Address high = low + mem_size;
|
|
MarkingDeque s;
|
|
s.Initialize(low, high);
|
|
|
|
Address original_address = reinterpret_cast<Address>(&s);
|
|
Address current_address = original_address;
|
|
while (!s.IsFull()) {
|
|
s.PushBlack(HeapObject::FromAddress(current_address));
|
|
current_address += kPointerSize;
|
|
}
|
|
|
|
while (!s.IsEmpty()) {
|
|
Address value = s.Pop()->address();
|
|
current_address -= kPointerSize;
|
|
CHECK_EQ(current_address, value);
|
|
}
|
|
|
|
CHECK_EQ(original_address, current_address);
|
|
DeleteArray(mem);
|
|
}
|
|
|
|
|
|
TEST(Promotion) {
|
|
CcTest::InitializeVM();
|
|
TestHeap* heap = CcTest::test_heap();
|
|
heap->ConfigureHeap(1, 1, 1, 0);
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
|
|
// Allocate a fixed array in the new space.
|
|
int array_length =
|
|
(Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
|
|
(4 * kPointerSize);
|
|
Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
|
|
Handle<FixedArray> array(FixedArray::cast(obj));
|
|
|
|
// Array should be in the new space.
|
|
CHECK(heap->InSpace(*array, NEW_SPACE));
|
|
|
|
// Call mark compact GC, so array becomes an old object.
|
|
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
|
|
heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
|
|
|
|
// Array now sits in the old space
|
|
CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
|
|
}
|
|
|
|
|
|
TEST(NoPromotion) {
|
|
CcTest::InitializeVM();
|
|
TestHeap* heap = CcTest::test_heap();
|
|
heap->ConfigureHeap(1, 1, 1, 0);
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
|
|
// Allocate a big fixed array in the new space.
|
|
int array_length =
|
|
(Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
|
|
(2 * kPointerSize);
|
|
Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
|
|
Handle<FixedArray> array(FixedArray::cast(obj));
|
|
|
|
// Array should be in the new space.
|
|
CHECK(heap->InSpace(*array, NEW_SPACE));
|
|
|
|
// Simulate a full old space to make promotion fail.
|
|
SimulateFullSpace(heap->old_pointer_space());
|
|
|
|
// Call mark compact GC, and it should pass.
|
|
heap->CollectGarbage(OLD_POINTER_SPACE);
|
|
}
|
|
|
|
|
|
TEST(MarkCompactCollector) {
|
|
FLAG_incremental_marking = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
TestHeap* heap = CcTest::test_heap();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<GlobalObject> global(isolate->context()->global_object());
|
|
|
|
// call mark-compact when heap is empty
|
|
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
|
|
|
|
// keep allocating garbage in new space until it fails
|
|
const int ARRAY_SIZE = 100;
|
|
AllocationResult allocation;
|
|
do {
|
|
allocation = heap->AllocateFixedArray(ARRAY_SIZE);
|
|
} while (!allocation.IsRetry());
|
|
heap->CollectGarbage(NEW_SPACE, "trigger 2");
|
|
heap->AllocateFixedArray(ARRAY_SIZE).ToObjectChecked();
|
|
|
|
// keep allocating maps until it fails
|
|
do {
|
|
allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
|
} while (!allocation.IsRetry());
|
|
heap->CollectGarbage(MAP_SPACE, "trigger 3");
|
|
heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
|
|
|
|
{ HandleScope scope(isolate);
|
|
// allocate a garbage
|
|
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<JSFunction> function = factory->NewFunction(func_name);
|
|
JSReceiver::SetProperty(global, func_name, function, SLOPPY).Check();
|
|
|
|
factory->NewJSObject(function);
|
|
}
|
|
|
|
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
|
|
|
|
{ HandleScope scope(isolate);
|
|
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
|
|
v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, func_name);
|
|
CHECK(maybe.has_value);
|
|
CHECK(maybe.value);
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(global, func_name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
|
|
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
|
|
JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
|
|
}
|
|
|
|
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
|
|
|
|
{ HandleScope scope(isolate);
|
|
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
|
|
v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, obj_name);
|
|
CHECK(maybe.has_value);
|
|
CHECK(maybe.value);
|
|
Handle<Object> object =
|
|
Object::GetProperty(global, obj_name).ToHandleChecked();
|
|
CHECK(object->IsJSObject());
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
|
|
Smi::FromInt(23));
|
|
}
|
|
}
|
|
|
|
|
|
// TODO(1600): compaction of map space is temporary removed from GC.
|
|
#if 0
|
|
static Handle<Map> CreateMap(Isolate* isolate) {
|
|
return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
|
}
|
|
|
|
|
|
TEST(MapCompact) {
|
|
FLAG_max_map_space_pages = 16;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
{
|
|
v8::HandleScope sc;
|
|
// keep allocating maps while pointers are still encodable and thus
|
|
// mark compact is permitted.
|
|
Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
|
|
do {
|
|
Handle<Map> map = CreateMap();
|
|
map->set_prototype(*root);
|
|
root = factory->NewJSObjectFromMap(map);
|
|
} while (CcTest::heap()->map_space()->MapPointersEncodable());
|
|
}
|
|
// Now, as we don't have any handles to just allocated maps, we should
|
|
// be able to trigger map compaction.
|
|
// To give an additional chance to fail, try to force compaction which
|
|
// should be impossible right now.
|
|
CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
|
|
// And now map pointers should be encodable again.
|
|
CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
|
|
}
|
|
#endif
|
|
|
|
|
|
static int NumberOfWeakCalls = 0;
|
|
static void WeakPointerCallback(
|
|
const v8::WeakCallbackData<v8::Value, void>& data) {
|
|
std::pair<v8::Persistent<v8::Value>*, int>* p =
|
|
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
|
|
data.GetParameter());
|
|
DCHECK_EQ(1234, p->second);
|
|
NumberOfWeakCalls++;
|
|
p->first->Reset();
|
|
}
|
|
|
|
|
|
TEST(ObjectGroups) {
|
|
FLAG_incremental_marking = false;
|
|
CcTest::InitializeVM();
|
|
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
|
|
TestHeap* heap = CcTest::test_heap();
|
|
NumberOfWeakCalls = 0;
|
|
v8::HandleScope handle_scope(CcTest::isolate());
|
|
|
|
Handle<Object> g1s1 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
Handle<Object> g1s2 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
Handle<Object> g1c1 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
|
|
GlobalHandles::MakeWeak(g1s1.location(),
|
|
reinterpret_cast<void*>(&g1s1_and_id),
|
|
&WeakPointerCallback);
|
|
std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
|
|
GlobalHandles::MakeWeak(g1s2.location(),
|
|
reinterpret_cast<void*>(&g1s2_and_id),
|
|
&WeakPointerCallback);
|
|
std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
|
|
GlobalHandles::MakeWeak(g1c1.location(),
|
|
reinterpret_cast<void*>(&g1c1_and_id),
|
|
&WeakPointerCallback);
|
|
|
|
Handle<Object> g2s1 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
Handle<Object> g2s2 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
Handle<Object> g2c1 =
|
|
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
|
|
std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
|
|
GlobalHandles::MakeWeak(g2s1.location(),
|
|
reinterpret_cast<void*>(&g2s1_and_id),
|
|
&WeakPointerCallback);
|
|
std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
|
|
GlobalHandles::MakeWeak(g2s2.location(),
|
|
reinterpret_cast<void*>(&g2s2_and_id),
|
|
&WeakPointerCallback);
|
|
std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
|
|
GlobalHandles::MakeWeak(g2c1.location(),
|
|
reinterpret_cast<void*>(&g2c1_and_id),
|
|
&WeakPointerCallback);
|
|
|
|
Handle<Object> root = global_handles->Create(*g1s1); // make a root.
|
|
|
|
// Connect group 1 and 2, make a cycle.
|
|
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
|
|
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
|
|
|
|
{
|
|
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
|
|
Object** g1_children[] = { g1c1.location() };
|
|
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
|
|
Object** g2_children[] = { g2c1.location() };
|
|
global_handles->AddObjectGroup(g1_objects, 2, NULL);
|
|
global_handles->AddImplicitReferences(
|
|
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
|
|
global_handles->AddObjectGroup(g2_objects, 2, NULL);
|
|
global_handles->AddImplicitReferences(
|
|
Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
|
|
}
|
|
// Do a full GC
|
|
heap->CollectGarbage(OLD_POINTER_SPACE);
|
|
|
|
// All object should be alive.
|
|
CHECK_EQ(0, NumberOfWeakCalls);
|
|
|
|
// Weaken the root.
|
|
std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
|
|
GlobalHandles::MakeWeak(root.location(),
|
|
reinterpret_cast<void*>(&root_and_id),
|
|
&WeakPointerCallback);
|
|
// But make children strong roots---all the objects (except for children)
|
|
// should be collectable now.
|
|
global_handles->ClearWeakness(g1c1.location());
|
|
global_handles->ClearWeakness(g2c1.location());
|
|
|
|
// Groups are deleted, rebuild groups.
|
|
{
|
|
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
|
|
Object** g1_children[] = { g1c1.location() };
|
|
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
|
|
Object** g2_children[] = { g2c1.location() };
|
|
global_handles->AddObjectGroup(g1_objects, 2, NULL);
|
|
global_handles->AddImplicitReferences(
|
|
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
|
|
global_handles->AddObjectGroup(g2_objects, 2, NULL);
|
|
global_handles->AddImplicitReferences(
|
|
Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
|
|
}
|
|
|
|
heap->CollectGarbage(OLD_POINTER_SPACE);
|
|
|
|
// All objects should be gone. 5 global handles in total.
|
|
CHECK_EQ(5, NumberOfWeakCalls);
|
|
|
|
// And now make children weak again and collect them.
|
|
GlobalHandles::MakeWeak(g1c1.location(),
|
|
reinterpret_cast<void*>(&g1c1_and_id),
|
|
&WeakPointerCallback);
|
|
GlobalHandles::MakeWeak(g2c1.location(),
|
|
reinterpret_cast<void*>(&g2c1_and_id),
|
|
&WeakPointerCallback);
|
|
|
|
heap->CollectGarbage(OLD_POINTER_SPACE);
|
|
CHECK_EQ(7, NumberOfWeakCalls);
|
|
}
|
|
|
|
|
|
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
|
|
public:
|
|
TestRetainedObjectInfo() : has_been_disposed_(false) {}
|
|
|
|
bool has_been_disposed() { return has_been_disposed_; }
|
|
|
|
virtual void Dispose() {
|
|
DCHECK(!has_been_disposed_);
|
|
has_been_disposed_ = true;
|
|
}
|
|
|
|
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
|
|
return other == this;
|
|
}
|
|
|
|
virtual intptr_t GetHash() { return 0; }
|
|
|
|
virtual const char* GetLabel() { return "whatever"; }
|
|
|
|
private:
|
|
bool has_been_disposed_;
|
|
};
|
|
|
|
|
|
TEST(EmptyObjectGroups) {
|
|
CcTest::InitializeVM();
|
|
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
|
|
|
|
v8::HandleScope handle_scope(CcTest::isolate());
|
|
|
|
Handle<Object> object = global_handles->Create(
|
|
CcTest::test_heap()->AllocateFixedArray(1).ToObjectChecked());
|
|
|
|
TestRetainedObjectInfo info;
|
|
global_handles->AddObjectGroup(NULL, 0, &info);
|
|
DCHECK(info.has_been_disposed());
|
|
|
|
global_handles->AddImplicitReferences(
|
|
Handle<HeapObject>::cast(object).location(), NULL, 0);
|
|
}
|
|
|
|
|
|
#if defined(__has_feature)
|
|
#if __has_feature(address_sanitizer)
|
|
#define V8_WITH_ASAN 1
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
|
|
// do not care how much memory the simulator uses, since it is only there for
|
|
// debugging purposes. Testing with ASAN doesn't make sense, either.
|
|
#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
|
|
|
|
|
|
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
|
|
char* end_address = buffer + *position;
|
|
uintptr_t result = strtoul(buffer + *position, &end_address, base);
|
|
CHECK(result != ULONG_MAX || errno != ERANGE);
|
|
CHECK(end_address > buffer + *position);
|
|
*position = end_address - buffer;
|
|
return result;
|
|
}
|
|
|
|
|
|
// The memory use computed this way is not entirely accurate and depends on
|
|
// the way malloc allocates memory. That's why the memory use may seem to
|
|
// increase even though the sum of the allocated object sizes decreases. It
|
|
// also means that the memory use depends on the kernel and stdlib.
|
|
static intptr_t MemoryInUse() {
|
|
intptr_t memory_use = 0;
|
|
|
|
int fd = open("/proc/self/maps", O_RDONLY);
|
|
if (fd < 0) return -1;
|
|
|
|
const int kBufSize = 10000;
|
|
char buffer[kBufSize];
|
|
int length = read(fd, buffer, kBufSize);
|
|
intptr_t line_start = 0;
|
|
CHECK_LT(length, kBufSize); // Make the buffer bigger.
|
|
CHECK_GT(length, 0); // We have to find some data in the file.
|
|
while (line_start < length) {
|
|
if (buffer[line_start] == '\n') {
|
|
line_start++;
|
|
continue;
|
|
}
|
|
intptr_t position = line_start;
|
|
uintptr_t start = ReadLong(buffer, &position, 16);
|
|
CHECK_EQ(buffer[position++], '-');
|
|
uintptr_t end = ReadLong(buffer, &position, 16);
|
|
CHECK_EQ(buffer[position++], ' ');
|
|
CHECK(buffer[position] == '-' || buffer[position] == 'r');
|
|
bool read_permission = (buffer[position++] == 'r');
|
|
CHECK(buffer[position] == '-' || buffer[position] == 'w');
|
|
bool write_permission = (buffer[position++] == 'w');
|
|
CHECK(buffer[position] == '-' || buffer[position] == 'x');
|
|
bool execute_permission = (buffer[position++] == 'x');
|
|
CHECK(buffer[position] == '-' || buffer[position] == 'p');
|
|
bool private_mapping = (buffer[position++] == 'p');
|
|
CHECK_EQ(buffer[position++], ' ');
|
|
uintptr_t offset = ReadLong(buffer, &position, 16);
|
|
USE(offset);
|
|
CHECK_EQ(buffer[position++], ' ');
|
|
uintptr_t major = ReadLong(buffer, &position, 16);
|
|
USE(major);
|
|
CHECK_EQ(buffer[position++], ':');
|
|
uintptr_t minor = ReadLong(buffer, &position, 16);
|
|
USE(minor);
|
|
CHECK_EQ(buffer[position++], ' ');
|
|
uintptr_t inode = ReadLong(buffer, &position, 10);
|
|
while (position < length && buffer[position] != '\n') position++;
|
|
if ((read_permission || write_permission || execute_permission) &&
|
|
private_mapping && inode == 0) {
|
|
memory_use += (end - start);
|
|
}
|
|
|
|
line_start = position;
|
|
}
|
|
close(fd);
|
|
return memory_use;
|
|
}
|
|
|
|
|
|
intptr_t ShortLivingIsolate() {
|
|
v8::Isolate* isolate = v8::Isolate::New();
|
|
{ v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::Locker lock(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate);
|
|
CHECK(!context.IsEmpty());
|
|
}
|
|
isolate->Dispose();
|
|
return MemoryInUse();
|
|
}
|
|
|
|
|
|
TEST(RegressJoinThreadsOnIsolateDeinit) {
|
|
intptr_t size_limit = ShortLivingIsolate() * 2;
|
|
for (int i = 0; i < 10; i++) {
|
|
CHECK_GT(size_limit, ShortLivingIsolate());
|
|
}
|
|
}
|
|
|
|
#endif // __linux__ and !USE_SIMULATOR
|