v8/test/unittests/compiler/redundancy-elimination-unittest.cc
Benedikt Meurer 15c31fe461 [turbofan] Add support for huge DataViews.
This introduces Word64 support for the CheckBounds operator, which now
lowers to either CheckedUint32Bounds or CheckedUint64Bounds after the
representation selection. The right hand side of CheckBounds can now
be any positive safe integer on 64-bit architectures, whereas it remains
Unsigned31 for 32-bit architectures. We only use the extended Word64
support when the right hand side is outside the Unsigned31 range, so
for everything except DataViews this means that the performance should
remain the same. The typing rule for the CheckBounds operator was
updated to reflect this new behavior.

The CheckBounds with a right hand side outside the Unsigned31 range will
pass a new Signed64 feedback kind, which is handled with newly introduced
CheckedFloat64ToInt64 and CheckedTaggedToInt64 operators in representation
selection.

The JSCallReducer lowering for DataView getType()/setType() methods was
updated to not smi-check the [[ByteLength]] and [[ByteOffset]] anymore,
but instead just use the raw uintptr_t values and operate on any value
(for 64-bit architectures these fields can hold any positive safe
integer, for 32-bit architectures it's limited to Unsigned31 range as
before). This means that V8 can now handle huge DataViews fully, without
falling off a performance cliff.

This refactoring even gave us some performance improvements, on a simple
micro-benchmark just exercising different DataView accesses we go from

  testDataViewGetUint8: 796 ms.
  testDataViewGetUint16: 997 ms.
  testDataViewGetInt32: 994 ms.
  testDataViewGetFloat64: 997 ms.

to

  testDataViewGetUint8: 895 ms.
  testDataViewGetUint16: 889 ms.
  testDataViewGetInt32: 888 ms.
  testDataViewGetFloat64: 890 ms.

meaning we lost around 10% on the single byte case, but gained 10% across
the board for all the other element sizes.

Design-Document: http://bit.ly/turbofan-word64
Bug: chromium:225811, v8:4153, v8:7881, v8:8171, v8:8383
Change-Id: Ic9d1bf152e47802c04dcfd679372e5c85e4abc83
Reviewed-on: https://chromium-review.googlesource.com/c/1303732
Reviewed-by: Sigurd Schneider <sigurds@chromium.org>
Commit-Queue: Benedikt Meurer <bmeurer@chromium.org>
Cr-Commit-Position: refs/heads/master@{#57095}
2018-10-29 15:17:57 +00:00

1346 lines
50 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/redundancy-elimination.h"
#include "src/compiler/common-operator.h"
#include "test/unittests/compiler/graph-reducer-unittest.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/compiler/node-test-utils.h"
#include "testing/gmock-support.h"
using testing::_;
using testing::NiceMock;
namespace v8 {
namespace internal {
namespace compiler {
namespace redundancy_elimination_unittest {
class RedundancyEliminationTest : public GraphTest {
public:
explicit RedundancyEliminationTest(int num_parameters = 4)
: GraphTest(num_parameters),
reducer_(&editor_, zone()),
simplified_(zone()) {
// Initialize the {reducer_} state for the Start node.
reducer_.Reduce(graph()->start());
// Create a feedback vector with two CALL_IC slots.
FeedbackVectorSpec spec(zone());
FeedbackSlot slot1 = spec.AddCallICSlot();
FeedbackSlot slot2 = spec.AddCallICSlot();
Handle<FeedbackMetadata> metadata = FeedbackMetadata::New(isolate(), &spec);
Handle<SharedFunctionInfo> shared =
isolate()->factory()->NewSharedFunctionInfoForBuiltin(
isolate()->factory()->empty_string(), Builtins::kIllegal);
shared->set_raw_outer_scope_info_or_feedback_metadata(*metadata);
Handle<FeedbackVector> feedback_vector =
FeedbackVector::New(isolate(), shared);
vector_slot_pairs_.push_back(VectorSlotPair());
vector_slot_pairs_.push_back(
VectorSlotPair(feedback_vector, slot1, UNINITIALIZED));
vector_slot_pairs_.push_back(
VectorSlotPair(feedback_vector, slot2, UNINITIALIZED));
}
~RedundancyEliminationTest() override = default;
protected:
Reduction Reduce(Node* node) { return reducer_.Reduce(node); }
std::vector<VectorSlotPair> const& vector_slot_pairs() const {
return vector_slot_pairs_;
}
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
private:
NiceMock<MockAdvancedReducerEditor> editor_;
std::vector<VectorSlotPair> vector_slot_pairs_;
VectorSlotPair feedback2_;
RedundancyElimination reducer_;
SimplifiedOperatorBuilder simplified_;
};
namespace {
const CheckForMinusZeroMode kCheckForMinusZeroModes[] = {
CheckForMinusZeroMode::kCheckForMinusZero,
CheckForMinusZeroMode::kDontCheckForMinusZero,
};
const CheckTaggedInputMode kCheckTaggedInputModes[] = {
CheckTaggedInputMode::kNumber, CheckTaggedInputMode::kNumberOrOddball};
const NumberOperationHint kNumberOperationHints[] = {
NumberOperationHint::kSignedSmall,
NumberOperationHint::kSignedSmallInputs,
NumberOperationHint::kSigned32,
NumberOperationHint::kNumber,
NumberOperationHint::kNumberOrOddball,
};
} // namespace
// -----------------------------------------------------------------------------
// CheckBounds
TEST_F(RedundancyEliminationTest, CheckBounds) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* index = Parameter(0);
Node* length = Parameter(1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), index, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), index, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckNumber
TEST_F(RedundancyEliminationTest, CheckNumberSubsumedByCheckSmi) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckSmi(feedback1), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckNumber(feedback2), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckReceiver
TEST_F(RedundancyEliminationTest, CheckReceiver) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckReceiver(), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckReceiver(), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
// -----------------------------------------------------------------------------
// CheckReceiverOrNullOrUndefined
TEST_F(RedundancyEliminationTest, CheckReceiverOrNullOrUndefined) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckReceiverOrNullOrUndefined(), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckReceiverOrNullOrUndefined(), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
TEST_F(RedundancyEliminationTest,
CheckReceiverOrNullOrUndefinedSubsumedByCheckReceiver) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckReceiver(), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckReceiverOrNullOrUndefined(), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
// -----------------------------------------------------------------------------
// CheckString
TEST_F(RedundancyEliminationTest,
CheckStringSubsumedByCheckInternalizedString) {
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckInternalizedString(), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckString(feedback), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
// -----------------------------------------------------------------------------
// CheckSymbol
TEST_F(RedundancyEliminationTest, CheckSymbol) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckSymbol(), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckSymbol(), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
// -----------------------------------------------------------------------------
// CheckedFloat64ToInt32
TEST_F(RedundancyEliminationTest, CheckedFloat64ToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckForMinusZeroMode, mode, kCheckForMinusZeroModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedFloat64ToInt32(mode, feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedFloat64ToInt32(mode, feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
// -----------------------------------------------------------------------------
// CheckedFloat64ToInt64
TEST_F(RedundancyEliminationTest, CheckedFloat64ToInt64) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckForMinusZeroMode, mode, kCheckForMinusZeroModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedFloat64ToInt64(mode, feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedFloat64ToInt64(mode, feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
// -----------------------------------------------------------------------------
// CheckedInt32ToTaggedSigned
TEST_F(RedundancyEliminationTest, CheckedInt32ToTaggedSigned) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedInt32ToTaggedSigned(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedInt32ToTaggedSigned(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedInt64ToInt32
TEST_F(RedundancyEliminationTest, CheckedInt64ToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedInt64ToInt32(feedback1), value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedInt64ToInt32(feedback2), value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedInt64ToTaggedSigned
TEST_F(RedundancyEliminationTest, CheckedInt64ToTaggedSigned) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedInt64ToTaggedSigned(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedInt64ToTaggedSigned(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedSignedToInt32
TEST_F(RedundancyEliminationTest, CheckedTaggedSignedToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedTaggedSignedToInt32(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedTaggedSignedToInt32(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedToFloat64
TEST_F(RedundancyEliminationTest, CheckedTaggedToFloat64) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckTaggedInputMode, mode, kCheckTaggedInputModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTaggedToFloat64(mode, feedback1), value,
effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToFloat64(mode, feedback2), value,
effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
TEST_F(RedundancyEliminationTest,
CheckedTaggedToFloat64SubsubmedByCheckedTaggedToFloat64) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
// If the check passed for CheckTaggedInputMode::kNumber, it'll
// also pass later for CheckTaggedInputMode::kNumberOrOddball.
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedTaggedToFloat64(
CheckTaggedInputMode::kNumber, feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToFloat64(
CheckTaggedInputMode::kNumberOrOddball, feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedToInt32
TEST_F(RedundancyEliminationTest, CheckedTaggedToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckForMinusZeroMode, mode, kCheckForMinusZeroModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTaggedToInt32(mode, feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToInt32(mode, feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
TEST_F(RedundancyEliminationTest,
CheckedTaggedToInt32SubsumedByCheckedTaggedSignedToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckForMinusZeroMode, mode, kCheckForMinusZeroModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTaggedSignedToInt32(feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToInt32(mode, feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedToInt64
TEST_F(RedundancyEliminationTest, CheckedTaggedToInt64) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckForMinusZeroMode, mode, kCheckForMinusZeroModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTaggedToInt64(mode, feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToInt64(mode, feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedToTaggedPointer
TEST_F(RedundancyEliminationTest, CheckedTaggedToTaggedPointer) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTaggedToTaggedPointer(feedback1), value, effect,
control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTaggedToTaggedPointer(feedback2), value, effect,
control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedTaggedToTaggedSigned
TEST_F(RedundancyEliminationTest, CheckedTaggedToTaggedSigned) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedTaggedToTaggedSigned(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedTaggedToTaggedSigned(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedTruncateTaggedToWord32
TEST_F(RedundancyEliminationTest, CheckedTruncateTaggedToWord32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(CheckTaggedInputMode, mode, kCheckTaggedInputModes) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckedTruncateTaggedToWord32(mode, feedback1), value,
effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTruncateTaggedToWord32(mode, feedback2), value,
effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
}
TEST_F(RedundancyEliminationTest,
CheckedTruncateTaggedToWord32SubsumedByCheckedTruncateTaggedToWord32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
// If the check passed for CheckTaggedInputMode::kNumber, it'll
// also pass later for CheckTaggedInputMode::kNumberOrOddball.
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedTruncateTaggedToWord32(
CheckTaggedInputMode::kNumber, feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckedTruncateTaggedToWord32(
CheckTaggedInputMode::kNumberOrOddball, feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint32Bounds
TEST_F(RedundancyEliminationTest, CheckedUint32Bounds) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* index = Parameter(0);
Node* length = Parameter(1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint32Bounds(feedback1), index,
length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint32Bounds(feedback2), index,
length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint32ToInt32
TEST_F(RedundancyEliminationTest, CheckedUint32ToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint32ToInt32(feedback1), value,
effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint32ToInt32(feedback2), value,
effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint32ToTaggedSigned
TEST_F(RedundancyEliminationTest, CheckedUint32ToTaggedSigned) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint32ToTaggedSigned(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint32ToTaggedSigned(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint64Bounds
TEST_F(RedundancyEliminationTest, CheckedUint64Bounds) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* index = Parameter(0);
Node* length = Parameter(1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint64Bounds(feedback1), index,
length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint64Bounds(feedback2), index,
length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint64ToInt32
TEST_F(RedundancyEliminationTest, CheckedUint64ToInt32) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint64ToInt32(feedback1), value,
effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint64ToInt32(feedback2), value,
effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// CheckedUint64ToTaggedSigned
TEST_F(RedundancyEliminationTest, CheckedUint64ToTaggedSigned) {
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* value = Parameter(0);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckedUint64ToTaggedSigned(feedback1),
value, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect =
graph()->NewNode(simplified()->CheckedUint64ToTaggedSigned(feedback2),
value, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check1);
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeNumberEqual
TEST_F(RedundancyEliminationTest,
SpeculativeNumberEqualWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberEqual(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberEqual(NumberOperationHint::kSignedSmall,
check1, check2, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeNumberEqualWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::UnsignedSmall(), 0);
Node* rhs = Parameter(Type::UnsignedSmall(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberEqual(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberEqual(NumberOperationHint::kSignedSmall,
lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeNumberLessThan
TEST_F(RedundancyEliminationTest,
SpeculativeNumberLessThanWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberLessThan(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberLessThan(NumberOperationHint::kSignedSmall,
check1, check2, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeNumberLessThanWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::UnsignedSmall(), 0);
Node* rhs = Parameter(Type::UnsignedSmall(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberLessThan(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberLessThan(NumberOperationHint::kSignedSmall,
lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeNumberLessThanOrEqual
TEST_F(RedundancyEliminationTest,
SpeculativeNumberLessThanOrEqualWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberLessThanOrEqual(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberLessThanOrEqual(
NumberOperationHint::kSignedSmall, check1, check2, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeNumberLessThanOrEqualWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
Node* lhs = Parameter(Type::UnsignedSmall(), 0);
Node* rhs = Parameter(Type::UnsignedSmall(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback1), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* check2 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback2), rhs, length, effect, control);
Reduction r2 = Reduce(check2);
ASSERT_TRUE(r2.Changed());
EXPECT_EQ(r2.replacement(), check2);
Node* cmp3 = effect =
graph()->NewNode(simplified()->SpeculativeNumberLessThanOrEqual(
NumberOperationHint::kSignedSmall),
lhs, rhs, effect, control);
Reduction r3 = Reduce(cmp3);
ASSERT_TRUE(r3.Changed());
EXPECT_THAT(r3.replacement(),
IsSpeculativeNumberLessThanOrEqual(
NumberOperationHint::kSignedSmall, lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeNumberAdd
TEST_F(RedundancyEliminationTest,
SpeculativeNumberAddWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* add2 = effect = graph()->NewNode(
simplified()->SpeculativeNumberAdd(hint), lhs, rhs, effect, control);
Reduction r2 = Reduce(add2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeNumberAdd(hint, check1, rhs, _, _));
}
}
}
TEST_F(RedundancyEliminationTest, SpeculativeNumberAddWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Range(42.0, 42.0, zone()), 0);
Node* rhs = Parameter(Type::Any(), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* add2 = effect = graph()->NewNode(
simplified()->SpeculativeNumberAdd(hint), lhs, rhs, effect, control);
Reduction r2 = Reduce(add2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeNumberAdd(hint, lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeNumberSubtract
TEST_F(RedundancyEliminationTest,
SpeculativeNumberSubtractWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* subtract2 = effect =
graph()->NewNode(simplified()->SpeculativeNumberSubtract(hint), lhs,
rhs, effect, control);
Reduction r2 = Reduce(subtract2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeNumberSubtract(hint, check1, rhs, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeNumberSubtractWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Range(42.0, 42.0, zone()), 0);
Node* rhs = Parameter(Type::Any(), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* subtract2 = effect =
graph()->NewNode(simplified()->SpeculativeNumberSubtract(hint), lhs,
rhs, effect, control);
Reduction r2 = Reduce(subtract2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeNumberSubtract(hint, lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeSafeIntegerAdd
TEST_F(RedundancyEliminationTest,
SpeculativeSafeIntegerAddWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* add2 = effect =
graph()->NewNode(simplified()->SpeculativeSafeIntegerAdd(hint), lhs,
rhs, effect, control);
Reduction r2 = Reduce(add2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeSafeIntegerAdd(hint, check1, rhs, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeSafeIntegerAddWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Range(42.0, 42.0, zone()), 0);
Node* rhs = Parameter(Type::Any(), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* add2 = effect =
graph()->NewNode(simplified()->SpeculativeSafeIntegerAdd(hint), lhs,
rhs, effect, control);
Reduction r2 = Reduce(add2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeSafeIntegerAdd(hint, lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeSafeIntegerSubtract
TEST_F(RedundancyEliminationTest,
SpeculativeSafeIntegerSubtractWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Any(), 0);
Node* rhs = Parameter(Type::Any(), 1);
Node* length = Parameter(Type::Unsigned31(), 2);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* subtract2 = effect =
graph()->NewNode(simplified()->SpeculativeSafeIntegerSubtract(hint),
lhs, rhs, effect, control);
Reduction r2 = Reduce(subtract2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeSafeIntegerSubtract(hint, check1, rhs, _, _));
}
}
}
TEST_F(RedundancyEliminationTest,
SpeculativeSafeIntegerSubtractWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* lhs = Parameter(Type::Range(42.0, 42.0, zone()), 0);
Node* rhs = Parameter(Type::Any(), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect = graph()->NewNode(
simplified()->CheckBounds(feedback), lhs, length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* subtract2 = effect =
graph()->NewNode(simplified()->SpeculativeSafeIntegerSubtract(hint),
lhs, rhs, effect, control);
Reduction r2 = Reduce(subtract2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(),
IsSpeculativeSafeIntegerSubtract(hint, lhs, rhs, _, _));
}
}
}
// -----------------------------------------------------------------------------
// SpeculativeToNumber
TEST_F(RedundancyEliminationTest,
SpeculativeToNumberWithCheckBoundsBetterType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* index = Parameter(Type::Any(), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckBounds(feedback1), index,
length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* to_number2 = effect =
graph()->NewNode(simplified()->SpeculativeToNumber(hint, feedback2),
index, effect, control);
Reduction r2 = Reduce(to_number2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsSpeculativeToNumber(check1));
}
}
}
}
TEST_F(RedundancyEliminationTest, SpeculativeToNumberWithCheckBoundsSameType) {
Typer typer(broker(), Typer::kNoFlags, graph());
TRACED_FOREACH(VectorSlotPair, feedback1, vector_slot_pairs()) {
TRACED_FOREACH(VectorSlotPair, feedback2, vector_slot_pairs()) {
TRACED_FOREACH(NumberOperationHint, hint, kNumberOperationHints) {
Node* index = Parameter(Type::Range(42.0, 42.0, zone()), 0);
Node* length = Parameter(Type::Unsigned31(), 1);
Node* effect = graph()->start();
Node* control = graph()->start();
Node* check1 = effect =
graph()->NewNode(simplified()->CheckBounds(feedback1), index,
length, effect, control);
Reduction r1 = Reduce(check1);
ASSERT_TRUE(r1.Changed());
EXPECT_EQ(r1.replacement(), check1);
Node* to_number2 = effect =
graph()->NewNode(simplified()->SpeculativeToNumber(hint, feedback2),
index, effect, control);
Reduction r2 = Reduce(to_number2);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsSpeculativeToNumber(index));
}
}
}
}
} // namespace redundancy_elimination_unittest
} // namespace compiler
} // namespace internal
} // namespace v8