v8/src/platform.h
2009-07-31 13:17:59 +00:00

545 lines
17 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This module contains the platform-specific code. This make the rest of the
// code less dependent on operating system, compilers and runtime libraries.
// This module does specifically not deal with differences between different
// processor architecture.
// The platform classes have the same definition for all platforms. The
// implementation for a particular platform is put in platform_<os>.cc.
// The build system then uses the implementation for the target platform.
//
// This design has been chosen because it is simple and fast. Alternatively,
// the platform dependent classes could have been implemented using abstract
// superclasses with virtual methods and having specializations for each
// platform. This design was rejected because it was more complicated and
// slower. It would require factory methods for selecting the right
// implementation and the overhead of virtual methods for performance
// sensitive like mutex locking/unlocking.
#ifndef V8_PLATFORM_H_
#define V8_PLATFORM_H_
#define V8_INFINITY INFINITY
// Windows specific stuff.
#ifdef WIN32
// Microsoft Visual C++ specific stuff.
#ifdef _MSC_VER
enum {
FP_NAN,
FP_INFINITE,
FP_ZERO,
FP_SUBNORMAL,
FP_NORMAL
};
#undef V8_INFINITY
#define V8_INFINITY HUGE_VAL
namespace v8 {
namespace internal {
int isfinite(double x);
} }
int isnan(double x);
int isinf(double x);
int isless(double x, double y);
int isgreater(double x, double y);
int fpclassify(double x);
int signbit(double x);
int strncasecmp(const char* s1, const char* s2, int n);
#endif // _MSC_VER
// Random is missing on both Visual Studio and MinGW.
int random();
#endif // WIN32
// GCC specific stuff
#ifdef __GNUC__
// Needed for va_list on at least MinGW and Android.
#include <stdarg.h>
#define __GNUC_VERSION__ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100)
// Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
// warning flag and certain versions of GCC due to a bug:
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
// For now, we use the more involved template-based version from <limits>, but
// only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
// __GNUC_PREREQ is not defined in GCC for Mac OS X, so we define our own macro
#if __GNUC_VERSION__ >= 29600 && __GNUC_VERSION__ < 40100
#include <limits>
#undef V8_INFINITY
#define V8_INFINITY std::numeric_limits<double>::infinity()
#endif
#endif // __GNUC__
namespace v8 {
namespace internal {
class Semaphore;
double ceiling(double x);
// Forward declarations.
class Socket;
// ----------------------------------------------------------------------------
// OS
//
// This class has static methods for the different platform specific
// functions. Add methods here to cope with differences between the
// supported platforms.
class OS {
public:
// Initializes the platform OS support. Called once at VM startup.
static void Setup();
// Returns the accumulated user time for thread. This routine
// can be used for profiling. The implementation should
// strive for high-precision timer resolution, preferable
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
// Get a tick counter normalized to one tick per microsecond.
// Used for calculating time intervals.
static int64_t Ticks();
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();
// Returns a string identifying the current time zone. The
// timestamp is used for determining if DST is in effect.
static const char* LocalTimezone(double time);
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
static double LocalTimeOffset();
// Returns the daylight savings offset for the given time.
static double DaylightSavingsOffset(double time);
static FILE* FOpen(const char* path, const char* mode);
// Log file open mode is platform-dependent due to line ends issues.
static const char* LogFileOpenMode;
// Print output to console. This is mostly used for debugging output.
// On platforms that has standard terminal output, the output
// should go to stdout.
static void Print(const char* format, ...);
static void VPrint(const char* format, va_list args);
// Print error output to console. This is mostly used for error message
// output. On platforms that has standard terminal output, the output
// should go to stderr.
static void PrintError(const char* format, ...);
static void VPrintError(const char* format, va_list args);
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
// they are not guaranteed to be executable unless 'executable' is true.
// Returns the address of allocated memory, or NULL if failed.
static void* Allocate(const size_t requested,
size_t* allocated,
bool is_executable);
static void Free(void* address, const size_t size);
// Get the Alignment guaranteed by Allocate().
static size_t AllocateAlignment();
#ifdef ENABLE_HEAP_PROTECTION
// Protect/unprotect a block of memory by marking it read-only/writable.
static void Protect(void* address, size_t size);
static void Unprotect(void* address, size_t size, bool is_executable);
#endif
// Returns an indication of whether a pointer is in a space that
// has been allocated by Allocate(). This method may conservatively
// always return false, but giving more accurate information may
// improve the robustness of the stack dump code in the presence of
// heap corruption.
static bool IsOutsideAllocatedSpace(void* pointer);
// Sleep for a number of milliseconds.
static void Sleep(const int milliseconds);
// Abort the current process.
static void Abort();
// Debug break.
static void DebugBreak();
// Walk the stack.
static const int kStackWalkError = -1;
static const int kStackWalkMaxNameLen = 256;
static const int kStackWalkMaxTextLen = 256;
struct StackFrame {
void* address;
char text[kStackWalkMaxTextLen];
};
static int StackWalk(Vector<StackFrame> frames);
// Factory method for creating platform dependent Mutex.
// Please use delete to reclaim the storage for the returned Mutex.
static Mutex* CreateMutex();
// Factory method for creating platform dependent Semaphore.
// Please use delete to reclaim the storage for the returned Semaphore.
static Semaphore* CreateSemaphore(int count);
// Factory method for creating platform dependent Socket.
// Please use delete to reclaim the storage for the returned Socket.
static Socket* CreateSocket();
class MemoryMappedFile {
public:
static MemoryMappedFile* create(const char* name, int size, void* initial);
virtual ~MemoryMappedFile() { }
virtual void* memory() = 0;
};
// Safe formatting print. Ensures that str is always null-terminated.
// Returns the number of chars written, or -1 if output was truncated.
static int SNPrintF(Vector<char> str, const char* format, ...);
static int VSNPrintF(Vector<char> str,
const char* format,
va_list args);
static char* StrChr(char* str, int c);
static void StrNCpy(Vector<char> dest, const char* src, size_t n);
// Support for profiler. Can do nothing, in which case ticks
// occuring in shared libraries will not be properly accounted
// for.
static void LogSharedLibraryAddresses();
// Returns the double constant NAN
static double nan_value();
// Returns the activation frame alignment constraint or zero if
// the platform doesn't care. Guaranteed to be a power of two.
static int ActivationFrameAlignment();
private:
static const int msPerSecond = 1000;
DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
};
class VirtualMemory {
public:
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size);
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved();
// Returns the start address of the reserved memory.
void* address() {
ASSERT(IsReserved());
return address_;
};
// Returns the size of the reserved memory.
size_t size() { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
// ----------------------------------------------------------------------------
// ThreadHandle
//
// A ThreadHandle represents a thread identifier for a thread. The ThreadHandle
// does not own the underlying os handle. Thread handles can be used for
// refering to threads and testing equality.
class ThreadHandle {
public:
enum Kind { SELF, INVALID };
explicit ThreadHandle(Kind kind);
// Destructor.
~ThreadHandle();
// Test for thread running.
bool IsSelf() const;
// Test for valid thread handle.
bool IsValid() const;
// Get platform-specific data.
class PlatformData;
PlatformData* thread_handle_data() { return data_; }
// Initialize the handle to kind
void Initialize(Kind kind);
private:
PlatformData* data_; // Captures platform dependent data.
};
// ----------------------------------------------------------------------------
// Thread
//
// Thread objects are used for creating and running threads. When the start()
// method is called the new thread starts running the run() method in the new
// thread. The Thread object should not be deallocated before the thread has
// terminated.
class Thread: public ThreadHandle {
public:
// Opaque data type for thread-local storage keys.
enum LocalStorageKey {};
// Create new thread.
Thread();
virtual ~Thread();
// Start new thread by calling the Run() method in the new thread.
void Start();
// Wait until thread terminates.
void Join();
// Abstract method for run handler.
virtual void Run() = 0;
// Thread-local storage.
static LocalStorageKey CreateThreadLocalKey();
static void DeleteThreadLocalKey(LocalStorageKey key);
static void* GetThreadLocal(LocalStorageKey key);
static int GetThreadLocalInt(LocalStorageKey key) {
return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
}
static void SetThreadLocal(LocalStorageKey key, void* value);
static void SetThreadLocalInt(LocalStorageKey key, int value) {
SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
}
static bool HasThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key) != NULL;
}
// A hint to the scheduler to let another thread run.
static void YieldCPU();
private:
class PlatformData;
PlatformData* data_;
DISALLOW_COPY_AND_ASSIGN(Thread);
};
// ----------------------------------------------------------------------------
// Mutex
//
// Mutexes are used for serializing access to non-reentrant sections of code.
// The implementations of mutex should allow for nested/recursive locking.
class Mutex {
public:
virtual ~Mutex() {}
// Locks the given mutex. If the mutex is currently unlocked, it becomes
// locked and owned by the calling thread, and immediately. If the mutex
// is already locked by another thread, suspends the calling thread until
// the mutex is unlocked.
virtual int Lock() = 0;
// Unlocks the given mutex. The mutex is assumed to be locked and owned by
// the calling thread on entrance.
virtual int Unlock() = 0;
};
// ----------------------------------------------------------------------------
// ScopedLock
//
// Stack-allocated ScopedLocks provide block-scoped locking and unlocking
// of a mutex.
class ScopedLock {
public:
explicit ScopedLock(Mutex* mutex): mutex_(mutex) {
mutex_->Lock();
}
~ScopedLock() {
mutex_->Unlock();
}
private:
Mutex* mutex_;
DISALLOW_COPY_AND_ASSIGN(ScopedLock);
};
// ----------------------------------------------------------------------------
// Semaphore
//
// A semaphore object is a synchronization object that maintains a count. The
// count is decremented each time a thread completes a wait for the semaphore
// object and incremented each time a thread signals the semaphore. When the
// count reaches zero, threads waiting for the semaphore blocks until the
// count becomes non-zero.
class Semaphore {
public:
virtual ~Semaphore() {}
// Suspends the calling thread until the semaphore counter is non zero
// and then decrements the semaphore counter.
virtual void Wait() = 0;
// Suspends the calling thread until the counter is non zero or the timeout
// time has passsed. If timeout happens the return value is false and the
// counter is unchanged. Otherwise the semaphore counter is decremented and
// true is returned. The timeout value is specified in microseconds.
virtual bool Wait(int timeout) = 0;
// Increments the semaphore counter.
virtual void Signal() = 0;
};
// ----------------------------------------------------------------------------
// Socket
//
class Socket {
public:
virtual ~Socket() {}
// Server initialization.
virtual bool Bind(const int port) = 0;
virtual bool Listen(int backlog) const = 0;
virtual Socket* Accept() const = 0;
// Client initialization.
virtual bool Connect(const char* host, const char* port) = 0;
// Shutdown socket for both read and write. This causes blocking Send and
// Receive calls to exit. After Shutdown the Socket object cannot be used for
// any communication.
virtual bool Shutdown() = 0;
// Data Transimission
virtual int Send(const char* data, int len) const = 0;
virtual int Receive(char* data, int len) const = 0;
// Set the value of the SO_REUSEADDR socket option.
virtual bool SetReuseAddress(bool reuse_address) = 0;
virtual bool IsValid() const = 0;
static bool Setup();
static int LastError();
static uint16_t HToN(uint16_t value);
static uint16_t NToH(uint16_t value);
static uint32_t HToN(uint32_t value);
static uint32_t NToH(uint32_t value);
};
#ifdef ENABLE_LOGGING_AND_PROFILING
// ----------------------------------------------------------------------------
// Sampler
//
// A sampler periodically samples the state of the VM and optionally
// (if used for profiling) the program counter and stack pointer for
// the thread that created it.
// TickSample captures the information collected for each sample.
class TickSample {
public:
TickSample() : pc(0), sp(0), fp(0), state(OTHER), frames_count(0) {}
uintptr_t pc; // Instruction pointer.
uintptr_t sp; // Stack pointer.
uintptr_t fp; // Frame pointer.
StateTag state; // The state of the VM.
static const int kMaxFramesCount = 100;
EmbeddedVector<Address, kMaxFramesCount> stack; // Call stack.
int frames_count; // Number of captured frames.
};
class Sampler {
public:
// Initialize sampler.
explicit Sampler(int interval, bool profiling);
virtual ~Sampler();
// Performs stack sampling.
virtual void SampleStack(TickSample* sample) = 0;
// This method is called for each sampling period with the current
// program counter.
virtual void Tick(TickSample* sample) = 0;
// Start and stop sampler.
void Start();
void Stop();
// Is the sampler used for profiling.
inline bool IsProfiling() { return profiling_; }
// Whether the sampler is running (that is, consumes resources).
inline bool IsActive() { return active_; }
class PlatformData;
private:
const int interval_;
const bool profiling_;
bool active_;
PlatformData* data_; // Platform specific data.
DISALLOW_IMPLICIT_CONSTRUCTORS(Sampler);
};
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal
#endif // V8_PLATFORM_H_